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Image-free Pre-training for Low-Level Vision
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ABSTRACT
The constrained data scale in low-level vision often induces the
demon overfitting hazard for restoration networks, necessitating
the adoption of the pre-training paradigm. Mirroring the success of
the high-level pre-training approaches, recent methods in the low-
level community aim to derive general visual representation from
extensive data with synthesized degradation. In this paper, we pro-
pose a new perspective beyond the data-driven image pre-training
paradigm for low-level vision, building upon the following exami-
nation. First, unlike the semantic extraction prevalent in high-level
vision tasks, low-level vision primarily focuses on the continuous
and content-agnostic pixel-level regression, indicating that the di-
versified image contents inherent in large-scale data are potentially
unnecessary for low-level vision pre-training. Secondary, consider-
ing the low-level degradations are highly relevant to the frequency
spectrum, we discern that the low-level pre-training paradigm can
be implemented in the Fourier space with fostered degradation
sensibility. Therefore, we develop an Image-Free Pre-training (IFP)
paradigm, a novel low-level pre-training approach with necessity
of single randomly sampled Gaussian noise image, streamlining
complicated data collection and synthesis procedure. The princi-
ple of the IFP involves reconstructing the original Gaussian noise
from the randomly perturbed counterpart with partially masked
spectrum band, facilitating the capability for robust spectrum rep-
resentation extraction in response to the capricious downstream
degradations. Extensive experiments demonstrate the significant
improvements brought by the IFP paradigm to various downstream
tasks, such as 1.31dB performance boost in low-light enhancement
for Restormer, and improvements of 1.2dB in deblurring and 2.42dB
in deraining for Uformer.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Com-
puter vision; Computer vision representations.

KEYWORDS
Low-level Pre-training, Fourier Transform,Masked ImageModeling

1 INTRODUCTION
In order to alleviate the overfitting problem and bring further im-
provement when data is limited, image pre-training has received
widespread attention in the field of computer vision. However, un-
like the remarkable success in high-level vision, the application of
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Figure 1: Comparison of different low-level vision pre-
training methods. (a) The data types utilized in both the pre-
training and fine-tuning phases of mainstream methods are
identical. However, the necessity for large-scale paired data
poses a challenge, particularly for high-cost tasks where syn-
thesizing degraded data is challenging. (b) DegAE [29], while
not requiring identical data types as downstream tasks, still
mandates learning from extensive synthesized datasets. (c)
In contrast, our IFP necessitates only a randomly generated
Gaussian noise sample throughout the entire pre-training
process, thereby offering superior adaptability and efficiency.

pre-training in low-level vision remains underdeveloped. In main-
stream opinion, this is attributed to the lack of large-scale low-level
vision datasets comparable to ImageNet [8] in the community. Ad-
hering to the perspective that the scale of data plays a decisive role
in the effectiveness of pre-training, pioneer works [4, 7, 23] attempt
to synthesize paired degradation data on ImageNet [8] through
sundry data corruption pipelines and perform corresponding image
restoration tasks. These data-driven pre-training methods meet the
challenge of introducing target degradation into the pre-training
phase. This requirement hinders their applicability to high-cost
tasks where the synthesis of degradation is a challenge.

Recently, the emergence of DegAE [28] makes it possible for
high-cost tasks to benefit from pre-training. It no longer focuses
on data acquisition but designs a new pre-training paradigm that
learns a general low-level vision representation by transferring
the degradation between images. The new paradigm significantly
improves the downstream image restoration tasks after fine-tuning,
even if the target degradation does not appear in the pre-training
stage. However, DegAE [28] does not deviate from the traditional
pre-training paradigm of learning from data. Because it still relies on

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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(c) The effect of different image types adopted in IFP

Figure 2: (a) Both visualization pattern and t-SNE of the amplitude spectrum manifest that different degradation types
exhibit disparate disturbance patterns to the frequency spectrum. We simulate different frequency disturbances by random
frequency masking in IFP. (b) We perform the Frequency-aware Masking (FAM) on the real image and then reconstruct it
using Restormer [45], which is only pre-trained with IFP. And all IFP needs is a randomly generated Gaussian noise image. (c)
The pre-training effect of different image types adopted in IFP is similar. Random Init denotes the baseline without IFP. Real
images are randomly selected from ImageNet [8]. More details are in Table 5.

manually generating degradation data pairs exceeding 10G. More-
over, it requires an additional degradation information injection
module, which necessitates significant computational resources
and may potentially cause task bias in downstream applications.

Different from previous data-driven works, we propose a data-
efficient and time-saving low-level pre-training paradigm called
Image-Free Pre-training (IFP). As shown in Fig. 1, IFP requires only
one randomly generated Gaussian noise image. However, it can
enhance the performance of Restormer [45] on motion deblurring
task by 0.66 dB. Specifically, IFP performs Masked Image Modeling
(MIM) [14, 37, 41] in the frequency domain, enabling the model
to deduce the information of the masked bands from the known
bands. Such design is based on the following observations:

First, we find that different degradation types show different
disturbance patterns to the spectrum in the frequency domain. As
illustrated in Fig. 2(a), blurring predominantly eliminates high-
frequency details, rain primarily introduces low-frequency infor-
mation, and low-light augments low-frequency while diminishing
high-frequency. Therefore, image restoration can be interpreted
as the process of reconstructing any destroyed frequency band by
using the unchanged ones. Frequency domain MIM enables models
to learn occlusion invariance on the spectrum, thereby making it
suitable as the pre-training task for low-level vision.

Second, unlike semantic extraction in high-level vision, the core
intention in low-level pre-training lies in the continuous pixel-level
regression ability, which is principally content-agnostic. Inspired
by the generative models that takes Gaussian noise to synthesis
various content images, we take the Gaussian noise as input and
simulate different frequency disturbances by random frequency
masking to investigate content-agnostic pre-training. It can be ob-
served from Fig. 2(b) that albeit the model has only seen a randomly
generated Gaussian noise image during pre-training, it still gets

a strong image reconstruction ability after frequency MIM pre-
training. Moreover, we show the influence of image types on the
IFP effect in Fig.2(c). With applying our method on real images
from ImageNet [8] dataset, the performance increase is consistent
compared with random noise. These findings imply that the effec-
tiveness of IFP does not stem from the image and the diversity of
image content inherent in large-scale data is not essential.

In conclusion, IFP is a new attempt in the field of low-level vision
pre-training. To our knowledge, it is the first method that deviates
from the traditional pre-training paradigm of learning from data.
It means that IFP is independent on downstream tasks, and the
pre-trained representations are general and transferable. Moreover,
only one Gaussian noise imagemeans the computational cost comes
to be extremely low. In summary, our contributions include:

• We propose a simple but effective low-level pre-training
paradigm, named Image-Free pre-training (IFP), where one
randomly generated Gaussian noise image is all IFP needs
in contrast with prevailing image pre-training methods. To
the best of our knowledge, IFP is the first attempt to find
a solution in frequency domain and exploit task-agnostic
data for low-level vision pre-training, releasing the great
potential under data-constrained conditions.

• Inspired by the remarkablely disparate disturbance pattern
of diverse degradations on the spectrum domain, we pro-
pose the frequency-aware masking strategy to enable the
degradation-agnostic general representation learning by re-
inforcing the capability of the model for perceiving the sus-
ceptible spectra variations for downstream tasks.

• Extensive experiments on a variety of downstream image
restoration tasks demonstrate the efficiency and effective-
ness of our method, including image deraining, image de-
blurring, and low-light image enhancement.
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Figure 3: Overview of our IFP pre-training pipeline. The only pure noise input 𝐼𝑜 required for pre-training is randomly sampled
from the Gaussian distribution I (x) ∽ N(𝜇, 𝛿2) at the beginning of stage 1. During pre-training, 𝐼𝑜 is converted to the frequency
domain by FFT to obtain its amplitude spectrum 𝐴𝑜 and phase spectrum 𝑃𝑜 . The Frequency-aware Masking (FAM) strategy
simulate random degradation effect on different frequencies. Specifically, the amplitude spectrum is randomly masked and the
phase spectrum is kept unchanged. After iFFT, the noise whose amplitude information has been corrupted is sent to the encoder
(e.g., ViT, CNN) and the original image is reconstructed using a lightweight decoder. At the downstream task fine-tuning stage,
we initialize the model with encoder parameters obtained during the pre-training stage, replace the decoder with a simple
convolutional layer, and then fine-tune the whole network with data from a specific low-level task.

2 RELATEDWORK
2.1 Image Restoration
The purpose of image restoration is to reconstruct high quality natu-
ral images from the observed degraded images (e.g. noise, blur, rain
drops) by removing degradations. Early methods typically focuses
on incorporating various natural image priors along with hand-
crafted features for specific degradation removal tasks [1, 30]. Re-
cently, deep learning basedmethods havemade compelling progress
on various image restoration tasks. For instance, SRCNN [9] in-
troduces an end-to-end convolutional neural network for super-
resolution task. Zhang et al. [50] proposes the first deep learning
method DnCNN for denoising task, DehazeNet [3] andMSCNN [34]
for image dehazing task, DeblurGAN [20] and Deblurgan-v2 [21]
for image motion deblurring task. In addition, with the advent
of ViT [10], the transformer, due to its excellent performance in
modeling global dependencies and superior adaptability to the in-
put content, has been introduced into vision tasks. For instance,
IPT [4], Uformer [36], SwinIR [26] and Restormer [45] are notable

examples of such methods that have significantly contributed to
advancements in the image restoration area.

2.2 Low-level Vision Pre-training
Pre-training can help the model find a good initialization, which
is an effective way to alleviate model overfitting problem in data-
scarce scenarios, but there is little exploration in the low-level
vision field. Most low-level vision pre-training methods [4, 7, 23]
concentrate on tasks where downstream training data is easy to
obtain. The pre-training phase can be supplanted by adding down-
stream training data, thereby undermining the true purpose of
pre-training. Based on the challenge of procuring training data for
downstream tasks, DegAE [28] divides low-level tasks into low-
cost and high-cost categories. Focusing on only high-cost tasks,
DegAE [28] designs a pretext task centered around image degra-
dation transfer, taking into account the specific characteristics of
low-level tasks. The downstream tasks are significantly improved
with relatively less pre-training data. However, it still requires over
10G of data that has undergone a series of manual preprocessing,
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along with additional structural modules. In contrast, our proposed
IFP does not require any preprocessing, and the data requirement
is only a randomly generated Gaussian noise image, which means
the degradation invariance is obtained by design rather than data.

3 METHOD
The overall architecture of IFP is shown in Fig. 3, which uses the
target model as the encoder and a simple CNN as the decoder. One
randomly generated Gaussian noise imagewith a random amplitude
spectrum mask is used as input to perform image reconstruction,
and the lost amplitude spectrum information is attempted to be
restored from the generated image. Despite performing masking in
the frequency domain, we still take the converted spatial images as
input such that the model would not suffer an input domain gap
between pre-training and fine-tuning. In the forthcoming sections,
we will elaborate on how to generate the noise input in Sec. 3.1
and how to carry out frequency-aware masking (FAM) strategy
in Sec. 3.2. In addition, The design of the encoder and decoder
in the framework is introduced in Sec. 3.3 and the optimization
objective of the pre-training process is proposed in Sec. 3.4. Finally,
we discuss the essence of IFP in Sec. 3.5.

3.1 Noisy Input
Previous research [19] has shown that the benefit from MIM is
free of content information in the spatial domain. In Sec. 4.5, we
confirm that IFP similarly exhibits this characteristic in the fre-
quency domain. Therefore, for the input, we select Gaussian noise
I (x) ∽ N(𝜇, 𝛿2) with 𝜇 = 0 and 𝛿 = 1 as standard to simplify
natural image representation. The theoretical foundation of this
operation is rooted in the fact that its statistical property aligns with
the Gray-World Color Constancy Hypothesis [2], which posits that
for an image with large color variations, the averages of the three
RGB components converge to the same gray value K. In the pre-
training stage, we only initialize a Gaussian noise image randomly
at the beginning of the process.

3.2 Frequency-aware Masking
Our Frequency-aware Masking (FAM) is performed on the ampli-
tude spectrum for the following reasons: (1) The effect of degrada-
tion on the original image appears as the random destruction of
low or high frequency information in Fourier space. (2) Phase rep-
resents the content information and spatial details while amplitude
represents the global statistical properties. We want to avoid the
influence of specific image content when designing the pretext task.
The FAM operation is simple. Specifically, since the destruction of
degradation on the frequency spectrum is center-symmetric and
discrete, we don’t divide the input image into patches like MAE [14],
nor do we directly use a high-pass or low-pass filter to mask the
continuous frequency band like [40], but regarding the amplitude
spectrum of the image as a combination of concentric squares with
unit width. Then, following MAE [14], we randomly sample these
concentric squares at a 25% ratio and follow a uniform distribution.
Algorithm 1 provides the pseudo-code to show the details of FAM.
Such operation can largely eliminate the information redundancy
caused by the continuity of frequency distribution.

Algorithm 1 Pseudocode of FAM operation in IFP.

# x : data input (WxHxC)
# m_ratio: mask ratio

# calculate the mask range
mid_x = W/2
mid_y = H/2
max_r = min(mid_x, mid_y)

# calculate the number of mask frames
mask_num = max_r * m_ratio
# random generate mask frames
mask_ls = randint(0, max_r, mask_num)
mask = ones(W, H) # WxH
for i in mask_ls: # generate mask

mask[mid_y-i, mid_x-i : mid_x+i] = 0
mask[mid_y+i, mid_x-i : mid_x+i] = 0
mask[mid_y-i : mid_y+i, mid_x-i] = 0
mask[mid_y-i : mid_y+i, mid_x+i] = 0

# masking
x_m, x_p = fft(x) # magnitude, phase
x_m_masked = x_m * mask # random mask

# 2D iFFT
x_corrupted = ifft(x_m_masked, x_p)

return x_corrupted

Spatial spaceFourier space
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asked input         G

T              IFP output     

IFP Random init

(a) With IFP pre-training

Spatial spaceFourier space
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T              IFP output     

IFP Random init

(b) Without IFP pre-training

Figure 4: Visualization of degradation embeddings from
Restormer [45]. With IFP pre-training, the embeddings for
each task are closer to the clean ones.

3.3 Encoder and Decoder
We use the model that needs to be pre-trained as the encoder of the
IFP model during pre-training phase, which does not have a fixed
form. Since there is no single architecture that works best on all
low-level vision tasks, in this paper we employ two state-of-the-art
Transformer architectures in low-level vision - Ufomer [36] and
Restormer [45] as our encoder for multiple tasks. For the model
that we use as an encoder, nothing else is done except to modify
the channel number of the last convolutional layer from 3 to 64 to
accommodate subsequent decoder. This operation ensures that the
original architecture of the model is largely preserved, allowing it
to retain its inherent strengths while benefiting from the additional
learning provided by the pre-training process. Since the decoder is
only used in the pre-training stage to perform image reconstruction
tasks, its architecture can be flexibly designed in a way that is
independent of the encoder design. As long as its input is compatible
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Figure 5: Visual comparison with state-of-the-art methods on three low-level vision tasks. Please zoom in for details.

with the output of the encoder and simple enough, it can be in
any form. Follow DegAE [28], we simply take a CNN with four
residual blocks [15] as our decoder and it will be replaced by a
single convolution layer in the downstream task fine-tuning stage.

3.4 Optimization Objective
Our IFP reconstructs the input by predicting the missing values on
the amplitude spectrum. Specifically, the loss function consists of
amplitude spectrum reconstruction loss and pixel-wise reconstruc-
tion loss, which can be formulated as:

L = 𝜆∥𝐼𝑜 , 𝐼𝑟 ∥2 +
𝑀 ⊙ 𝐴𝑜 , 𝑀 ⊙ 𝐴𝑟

2, (1)

where 𝐼𝑜 denotes the original Gaussian noise image, 𝐼𝑟 is the recon-
structed image, 𝜆 is the balanced weight.𝑀 represents the binary
masking map, ⊙ is the Hadamard product between matrices,𝐴𝑜 and
𝐴𝑟 are the amplitude spectra corresponding to 𝐼𝑜 and 𝐼𝑟 respectively.
The first part of the formula is the pixel-wise reconstruction loss,
while the second part is the amplitude spectrum reconstruction
loss. We follow the settings in MAE [14], and only calculate the
masked region in practical application.

3.5 Discussion About How IFP Works
IFP is the first attempt to exploit task-agnostic data for low-level vi-
sion pre-training. We argue that by learning occlusion invariance in
the frequency domain, IFP enables the model to extract robust spec-
tral representation regardless of whether it encounters a clean or
degraded image. To substantiate this claim, we take Restormer [45]

as the backbone and perform the visual analysis of its output fea-
tures before and after pre-training. As shown in Fig. 4, with the
help of IFP pretraining, the gap between different degradations is
reduced, proving advantageous in response to the unpredictable
disturbances caused by downstream degradations.

4 EXPERIMENT
We conduct extensive experiments to show the effectiveness of
our proposed IFP method. Specifically, We evaluate the proposed
IFP pre-training paradigm on several high-cost low-level tasks, in-
cluding image deraining, image deblurring, and low-light image
enhancement. In the following sections, we explain the implemen-
tation details and show the IFP’s performance on different tasks.
Due to the space limit, we show the experimental results for the
low-cost task in the supplementary file.

4.1 Implementation Details
We implement IFP on a single NVIDIA Geforce RTX 3090 GPU.
For pre-training, the learning rate is initialized as 2e-4. Adam op-
timizer [18] with 𝛽1 = 0.9 and 𝛽2 = 0.99 is adopted. The Gaussian
noise input selected from I (x) ∽ N(0, 1) is in the shape of 224×224.
The batch size is one and a total of 30K iterations are executed.
After pre-training, we initialize the model with the parameters of
the encoder from the first stage and then fine-tune it on specific
downstream datasets. We employ the same training policy across
different backbones for fairness and convenience. It’s important to
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Figure 6: Visual comparisons on deraining, deblurring and low-light image enhancement tasks. Please zoom in for details.

highlight that since our IFP pre-training data is only one noise im-
age, the results shown below are the average of 5 different Gaussian
noise results to ensure the reliability of the experimental results.

4.2 Deraining
We adopt Rain13K dataset for fine-tuning, which includes 13,712
clean-rain image pairs collected from multiple datasets [11, 24,
25, 29, 44] and is newly-adopted in [6, 36, 45, 46]. For testing, we
adopt Rain100L [43], Rain100H [43], Test100 [49], Test1200 [48]
and Test2800 [12] datasets. The PSNR and SSIM values is calculated
on the Y channel in the YCbCr color space. We compare our IFP
with state-of-the-art methods, including five derain methods: De-
rainNet [11], RESCAN [24],PreNet [33], MSPFN [16],MPRNet [46],
and one state-of-the-art pre-training method: DegAE [28]. The
quantitative results are shown in Table 1 and the visual results are
shown in Fig. 5. It shows that IFP helps improve the performance
of Restormer and Uformer on all five datasets. The improvement is
the most obvious on Rain100H dataset, with Uformer producing an
improvement of 2.42dB and Restormer producing a performance
improvement of 0.84dB. From the visualization results in Fig. 6,
IFP pre-training can help the target model to remove rain more
thoroughly to produce better visual effects.

4.3 Deblurring
For image deblurring, we adopt GoPro [31] dataset for training
and testing. It consists of 3214 pairs of blurred and clean images
extracted from 33 sequences. The blurred images are generated
by averaging varying number (7–13) of successive latent frames

to produce varied blur. Follow previous methods [31, 47], we use
2103 image pairs for training and the remaining 1111 pairs for test-
ing. the compared methods that we select are DeblurGAN [20],
DeblurGAN-v2 [21], SRN [35], SPAIR [32], HINet [6], MPRNet [46],
IPT [4], NAFNet [5] and DegAE [28]. As can be seen from the
quantitative results of motion deblur in Table 2, IFP has brought
improvements of 0.60 dB and 1.02 dB to Restormer and Uformer
on GoPro dataset, respectively. Although neither Restormer nor
Uformer achieves the best performance on the GoPro dataset, it
does not affect the validation of our method. One can achieve bet-
ter results by using a higher-performance backbone. Moreover, as
illustrated in Fig. 6, with application of IFP pre-training, the model
becomes more proficient in eliminating blur from the image and
the image restored is closer to the target with more details.

4.4 Low-light Image Enhancement
IFP can also bring considerable improvement on low-light enhance-
ment task. We use the LOL dataset [38] as the fine-tuning dataset,
which contains 500 low/normal-light image pairs. In the training,
we merely employ 450 image pairs, and no synthetic images are
used. We report the results of IFP along with eight state-of-the-art
methods TAPE [27], AirNet [22], PairLIE [13], EnlightenGAN [17],
STAR [42], URetinexNet [39], SwinIR [26] and DegAE [28]. As can
be seen from the results in Table 3 and Fig. 5, with the introduc-
tion of IFP, the performance of the model has been significantly
improved. Specifically, Uformer and Restormer achieve 0.94 dB
and 1.31dB improvements on the LOL dataset, respectively. What’s
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Table 1: Image deraining results on benchmark datasets. IFP pre-training can significantly boost the performance of the model,
such as the improvement on Uformer backbone brings up to 2.42dB.

Rain100L Rain100H Test100 Test1200 Test2800Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR SSIM↑

DerainNet [11] 27.03 0.884 14.92 0.592 22.77 0.810 23.38 0.835 24.31 0.861
RESCAN [24] 29.80 0.881 26.36 0.786 25.00 0.835 30.51 0.882 31.29 0.904
PreNet [33] 32.44 0.950 26.77 0.858 24.81 0.851 31.36 0.911 31.75 0.916
MSPFN [16] 32.40 0.933 28.66 0.860 27.50 0.876 32.39 0.916 32.82 0.930
MPRNet [46] 36.40 0.965 30.41 0.890 30.27 0.897 32.91 0.916 33.64 0.938
DegAE(Restormer) [28] 37.85 0.973 30.72 0.896 29.85 0.899 30.84 0.877 33.88 0.939

Uformer 32.56 0.943 21.81 0.751 25.65 0.864 31.59 0.915 29.26 0.913
IFP(Uformer) 32.63 0.941 24.23 0.805 26.24 0.872 31.59 0.913 29.27 0.913

Restormer 38.22 0.975 30.59 0.894 30.01 0.904 31.33 0.904 33.84 0.942
IFP(Restormer) 38.68 0.977 31.43 0.902 30.32 0.916 32.05 0.904 33.86 0.944

Table 2: Image deblurring results on Gopro dataset. IFP pre-
training can bring improvement up to 1.02dB for Uformer
backbone.

GoProMethod PSNR↑ SSIM↑

DeblurGAN [20] 28.70 0.927
DeblurGAN-v2 [21] 29.55 0.934
SRN [35] 30.26 0.934
SPAIR [32] 32.06 0.953
MPRNet [46] 32.66 0.959
DegAE(Restormer) [28] 32.67 0.928
HINet [6] 32.71 0.959
NAFNet [5] 32.85 0.960

Uformer 30.97 0.903
IFP(Uformer) 31.99(+1.02) 0.919

Restormer 32.12 0.926
IFP(Restormer) 32.72(+0.60) 0.929

more, as demonstrated in Fig. 6, after IFP pre-training, the model ex-
hibits enhanced capabilities in restoring darker regions of the image,
and the problems of in-homogeneous background and abnormal
color have been significantly improved.

4.5 Ablation Study
We present the ablation experiments on image deraining task with
Restormer [45] as the backbone to verify the effectiveness of our
method. Basically, we explore the impact of pre-training iterations,
the number of Gaussian noise images, and the masking ratio on
the proposed IFP method. Additionally, to verify the data-agnostic
characteristic of the IFP pre-trainingmethod, we conducted compar-
ative experiments using different real images and Gaussian noise
images. We still train on the Rain13K dataset [11, 24, 25, 29, 44]
and test on five benchmark datasets: Rain100L [43], Rain100H [43],

Table 3: Quantitative comparisons on low-light image en-
hancement dataset. IFP pre-training can bring improvement
up to 1.31dB for Restormer backbone.

LOLMethod PSNR↑ SSIM↑

EnlightenGAN [17] 17.48 0.651
SwinIR [26] 17.81 0.723
AirNet [22] 18.18 0.735
TAPE [27] 18.97 0.621
STAR [42] 19.30 0.579
PairLIE [13] 19.51 0.736
URetinexNet [39] 19.84 0.826
DegAE(Restormer) [28] 23.37 0.874

Uformer 19.63 0.737
IFP(Uformer) 20.57(+0.94) 0.755

Restormer 22.40 0.873
IFP(Restormer) 23.71(+1.31) 0.876

Test100 [49], Test1200 [48] and Test2800 [12]. The average perfor-
mance across these test datasets is used as the evaluation criterion
for the models’ performance.

Type of pre-training input. In order to verify whether the
performance of the IFP pre-training method is affected by the input
image content, we conduct a total of 10 repeated experiments on the
image deraining task using 5 randomly generated Gaussian noise
images and 5 real images randomly selected from ImageNet [8].
The final results are shown in Table 5. It can be observed that the
difference between pure Gaussian noise images and real images in
terms of downstream fine-tuning improvement is very small. The
performance of Gaussian noise images is even more stable than
that of real images. This result indicates that the effectiveness of
the IFP method does not stem from the content of the image. Such
data-agnostic invariance indicates that IFP pre-training method is
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independent of downstream low-level vision tasks, and the pre-
trained representations are general and transferable. IFP unleashes
significant potential under data-constrained conditions.

Table 4: Ablation results on the pre-training iterations of IFP.
When fine-tuning iterations reaches 500K, the Restormer
backbone’s result is 32.52 dB. And when fine-tuning itera-
tions is 800K, the Restormer backbone’s result is 32.80 dB.

Finetuning
iterations

Pre-training iterations
10K 20K 30K 40K 50K

Mean 500K 32.82 32.86 32.99 32.86 32.85
800K 33.10 33.12 33.27 33.15 33.13

Variance 500K 0.015 0.018 0.022 0.054 0.032
800K 0.010 0.008 0.009 0.019 0.010

Table 5: The effect (PSNR) of different image types adopted
in IFP paradigm. Random Init denotes the baseline without
IFP pre-training.

Input type Number Training Mean Variance

Real 5 Random Init 32.80 -
IFP 33.32 0.016

Noise 5 Random Init 32.80 -
IFP 33.27 0.008

Table 6: Ablation experiment results on the number of the
randomly generated Gaussian noise images adopted in IFP.
Random Init denotes the baseline. Results in bold indicate
the best performance (PSNR) as default settings.

Pre-training images Fine-tuning iterations
100k 600k 800k 900k

Random Init 30.36 32.75 32.80 32.80
1 32.03 33.14 33.27 33.29
10 30.76 32.77 32.83 32.96
100 30.68 32.60 32.74 32.86

Number of pre-training iterations. We explore the influence
of pre-training degree on the downstream deraining task. As shown
in Table 4, we are surprised to find that when the number of pre-
training iterations reaches about 10K, there is a certain performance
improvement. When the number of iterations reaches about 30K,
the pre-training achieves the ideal effect, and the performance im-
provement reaches 0.47dB. When the number of iterations reaches
about 40K, it can still significantly improve the model’s perfor-
mance, but the effect slightly decreases. We hypothesize that this is
because overfitting tends to occur when performing MIM training
on a very small training set, as the network can easily “remember”
the unique training image.
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Figure 7: Ablation experiment results on the masking ratios
adopted in IFP. Random Init denotes the baseline and its
result is 32.80 dB.

Masking ratio. We also explore the influence of the masking
ratio on IFP, and the results are shown in Fig. 7. It can be observed
that the effect of IFP is closely related to the masking ratio. A
relatively high masking ratio can bring a good initialization to
downstream tasks. Similar to the spatial MIM method [14], the IFP
method works best when the masking ratio reaches 75%.

Number of noise images. The outstanding advantage of our
method is that only one noise image is used during pre-training.
Here we explore the effect of increasing the number of training
inputs on model performance, and the results are shown in Table 6.
It suggests that an increase in the quantity of noise images can
actually hinder the progress of pre-training. We hypothesize that
this phenomenon is due to the fact that the efficacy of the IFP is
not intrinsically derived from the data and one image is enough for
IFP to learn. Consequently, an increase in data complexity merely
introduces negative interference to the model, amplifies the training
challenge, thus leads to the reduction in the effectiveness of IFP.

5 CONCLUSION
Due to the constrained data scale related to many degradation
restoration problems and the black-box nature of low-level model
learning process, pre-training has not been well developed in the
low-level vision field. In this paper, we propose a bold idea when
thinking about solving the problem: can pre-training be done with-
out using any task-related data? We analyze the impact of different
degradation on images from the frequency domain perspective,
and then introduce a new low-level self-supervised pre-training
paradigm, called Image-Free Pre-training (IFP). The final results
provide many surprises, and experimental results show that even if
only one randomly generated Gaussian noise image is used for IFP
pre-training, it can still bring significant improvement to a wide
range of downstream tasks. This groundbreaking work forces us
to rethink the complexity of image features in low-level vision
problems, and we hope that our work will inspire research on the
interpretability of low-level vision networks.
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