
LLM4Review: A Multi-Agent Framework for Autonomous Peer Review of AI-Written Research

Anonymous Author(s)

Affiliation
Address
email

Abstract

1 We introduce a closed-loop, multi-agent framework that assigns large language
2 models (LLMs) to the canonical roles of *Author*, *Reviewer*, *Reviser*, and *Meta-
3 Reviewer*, thereby emulating the end-to-end scientific publishing workflow. The
4 system follows a round-based protocol in which an Author drafts a manuscript,
5 independent Reviewers return rubric-based critiques and recommendations, a Re-
6 viser converts critiques into a structured change plan and a point-by-point response
7 letter, and a Meta-Reviewer issues an accept/continue/reject decision under explicit
8 thresholds and compute/latency budgets. Quantitatively, we aggregate reviewer
9 scores with reliability-aware weighting and track improvements in an overall qual-
10 ity metric across rounds, while measuring reviewer agreement (e.g., κ , τ), edit
11 magnitude, and quality–cost trade-offs. Diagnostics reveal predictable biases (or-
12 der, verbosity, self-model) that are mitigated by independence, aggregation, and
13 optional cross-review. Robustness probes demonstrate that document-borne prompt
14 injections can shift recommendations, motivating sanitization and provenance
15 logging that substantially reduce decision drift. The framework yields auditable ar-
16 tifacts at every step (manuscripts, reviews, responses, meta-decisions) and requires
17 no external datasets, enabling reproducible evaluation of autonomous LLM science
18 workflows. We release prompts, logs, topic bank, and analysis code to facilitate
19 replication and future extensions.

20 **1 Introduction**

21 In recent years, large language models (LLMs) have demonstrated impressive capabilities across a
22 broad range of cognitive and linguistic tasks, including scientific writing, reasoning, and even basic
23 hypothesis generation. However, while LLMs have been increasingly used to assist human researchers,
24 few studies have examined their ability to fully emulate the complete scientific workflow—from
25 generating a hypothesis, writing a paper, receiving peer feedback, revising the work, and producing a
26 final publishable artifact. This paper explores whether a closed-loop, autonomous multi-agent LLM
27 system can successfully simulate this full cycle of scientific inquiry.

28 We propose a novel framework wherein multiple LLMs are assigned distinct roles commonly observed
29 in academic publishing: author, reviewer, reviser, and meta-reviewer. The "Author Agent" composes
30 an original scientific manuscript based on a given prompt or self-generated topic. This manuscript is
31 then evaluated by a panel of "Reviewer Agents," which independently provide feedback, numerical
32 scores, and acceptance recommendations. A separate "Reviser Agent" interprets the critiques, edits
33 the paper accordingly, and prepares a structured response letter. Finally, a "Meta-Reviewer Agent"
34 integrates the revised submission and response, determining whether the updated manuscript meets
35 publication standards.

36 This fully autonomous pipeline mimics the end-to-end process of scientific publication and provides a
37 controlled setting to study the strengths and limitations of LLMs in collaborative scientific discourse.

38 We evaluate this system both qualitatively and quantitatively, measuring the evolution of writing
39 quality, the consistency and disagreement among reviewers, and the effectiveness of automatic
40 revision. Through this work, we aim to advance our understanding of how LLMs can participate not
41 only as tools, but as autonomous agents in the scientific enterprise.
42 To our knowledge, this is the first work to construct and evaluate a closed-loop, multi-agent peer
43 review simulation driven entirely by language models. Our results suggest that such systems can
44 produce coherent scientific artifacts and self-improve through iterative critique, offering a new
45 paradigm for AI-driven science and a compelling vision for the future of autonomous research agents.

46 **2 Related Work**

47 **2.1 LLM Self-Feedback and Self-Revision**

48 A line of work studies whether language models can critique and improve their own outputs via
49 iterative self-feedback, without additional training. Self-Refine proposes a generate–feedback–revise
50 loop that consistently improves diverse tasks (dialogue, reasoning, coding) by 20% on average over
51 one-shot generation 1. Reflexion extends this idea to language agents, storing verbal reflections
52 in episodic memory to guide subsequent decisions and yielding large gains on sequential decision-
53 making and code generation benchmarks 2. In safety alignment, *Constitutional AI* demonstrates
54 AI-supervised AI using a written constitution to generate critiques and preferences that replace
55 direct human labels during training 3. These works suggest that structured critique and revision can
56 markedly enhance LLM outputs—an inspiration for our *Reviser* component and response-letter
57 automation.

58 **2.2 LLM-as-a-Judge and Automated Evaluation**

59 Another related strand investigates using LLMs as evaluators. MT-Bench and Chatbot Arena formalize
60 LLM-based judging of open-ended assistants, reporting >80% agreement with human preferences
61 under careful prompt design while also documenting biases (position, verbosity, self-enhancement)
62 and mitigation strategies 4. This supports our use of Reviewer Agents that provide rubric-based
63 scores and natural-language justifications, while motivating bias analyses (e.g., position effects across
64 multiple reviewers) in our experiments.

65 **2.3 Multi-Agent Collaboration and Debate**

66 Beyond single-model self-critique, multi-agent approaches coordinate specialized agents to plan,
67 code, and verify solutions. AutoGen offers an open framework for role-based conversational agents
68 that collaborate with tools and humans, enabling complex workflows 5. Multi-agent debate further
69 enhances reasoning by letting independent model instances propose, attack, and reconcile arguments
70 to reach stronger answers 6. Our framework adopts these principles by instantiating role-differentiated
71 agents (Author/Reviewer/Reviser/Meta-Reviewer) and by aggregating independent critiques to curb
72 single-model idiosyncrasies.

73 **2.4 Automated Peer Review with LLMs**

74 Recent studies specifically probe LLMs in scholarly peer review. ReviewerGPT conducts early ex-
75 plorations, finding that targeted prompts (e.g., “identify errors”) can yield more useful comments
76 than generic “write a review,” and that stronger models produce higher-quality feedback 7. Subse-
77 quent surveys and benchmarks investigate automated scholarly paper review (ASPR), multi-turn
78 author–reviewer dialogues, and the reliability of LLM-generated reviews, highlighting both promise
79 and shortcomings such as superficiality and vulnerability to adversarial texts 8. Concurrently, science-
80 reporting outlets document emerging integrity risks, including hidden prompts embedded in PDFs
81 or HTML that aim to manipulate AI reviewers, and rising (often undisclosed) LLM involvement in
82 reviews—underscoring the need for robustness audits and provenance reporting in any AI-mediated
83 review pipeline 11.

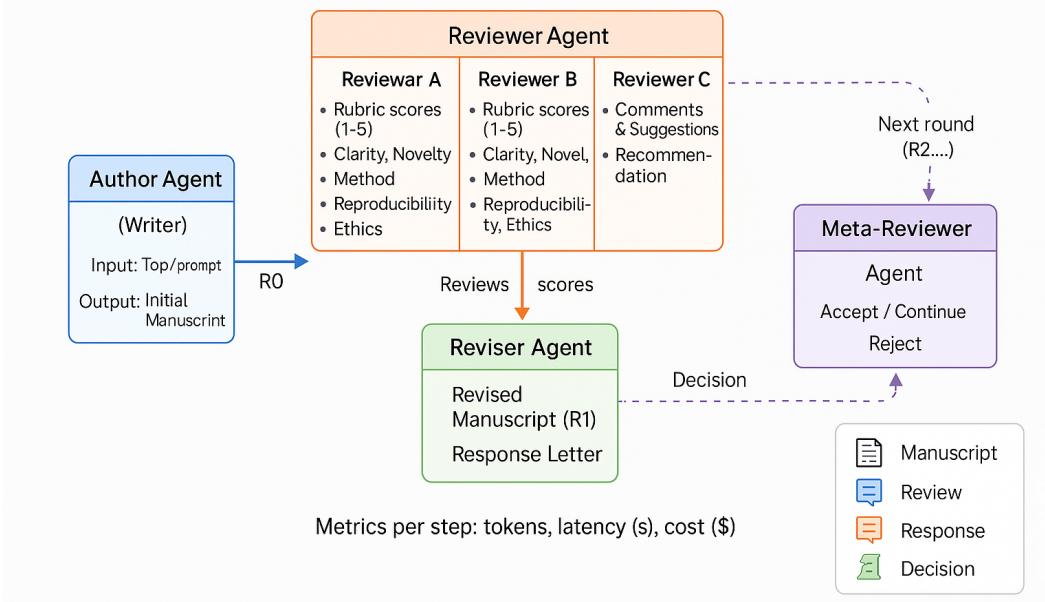


Figure 1: Closed-loop multi-agent peer review workflow.

84 2.5 Positioning

85 We differ from prior work by constructing a closed-loop, end-to-end simulation of the publication
 86 cycle in which (i) an Author Agent drafts a full manuscript; (ii) multiple Reviewer Agents indepen-
 87 dently critique and score; (iii) a Reviser Agent performs point-by-point changes and writes a response
 88 letter; and (iv) a Meta-Reviewer renders an accept/continue decision. Methodologically, we combine
 89 self-revision (Self-Refine/Reflexion) with LLM-as-judge evaluation and multi-agent debate/consensus
 90 under peer-review rubrics. Empirically, we analyze reviewer agreement, score deltas across revision
 91 rounds, bias effects, and robustness to prompt injections—dimensions underexplored in prior ASPR
 92 work.

93 3 System Design

94 This section specifies the architecture, interaction protocol, scoring and decision rules, and safety
 95 controls of our closed-loop multi-agent peer-review system. The design goal is to (i) emulate the
 96 end-to-end publication workflow with role-specialized language-model (LLM) agents, (ii) provide
 97 auditable, quantitative signals at each step, and (iii) guarantee termination under compute and quality
 98 budgets.

99 3.1 Roles and Responsibilities

100 We instantiate four roles (cf. Fig. 1 and Fig. 2):

- 101 • **Author Agent (\mathcal{A})**: drafts an initial manuscript $M^{(0)}$ from a topic prompt or self-generated
 102 proposal; later produces revised versions $M^{(t)}$ conditioned on a structured change request.
- 103 • **Reviewer Agents ($\mathcal{R}_1, \dots, \mathcal{R}_R$)**: independently evaluate $M^{(t)}$, provide rubric scores, free-
 104 form critiques, and a recommendation $\in \text{ACCEPT}, \text{CONTINUE}, \text{REJECT}$.
- 105 • **Reviser Agent (\mathcal{V})**: aggregates critiques into a *change plan*, edits $M^{(t)}! \rightarrow! M^{(t+1)}$, and
 106 composes a point-by-point response letter $L^{(t)}$.
- 107 • **Meta-Reviewer (\mathcal{M})**: adjudicates round t using reviews and responses, deciding to accept,
 108 continue to the next round, or reject.

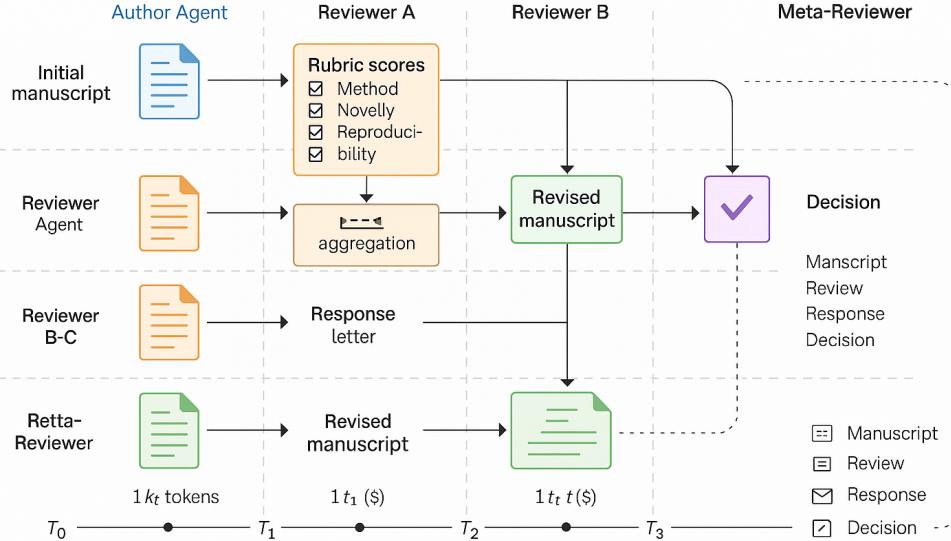


Figure 2: Round-based timeline of the LLM4Review pipeline: Author → Reviewers → Reviser → Meta-Reviewer across rounds R_0, R_1, \dots

109 **3.2 Message Schema and Artifacts**

110 Each round $t \in \{0, 1, \dots, T_{\max}\}$ produces the tuple

$$\Gamma^{(t)} = (\mathbf{M}^{(t)}, ; \mathbf{r}^{(t)} * j * j = 1^R, ; \mathbf{L}^{(t)}, ; d^{(t)}), \quad (1)$$

111 where $\mathbf{r}_j^{(t)}$ is the structured review from reviewer j and $d^{(t)} \in \text{ACCEPT}, \text{CONTINUE}, \text{REJECT}$ is
 112 the meta-decision. Reviews share a common schema: rubric scores $\mathbf{s}_j^{(t)} \in \mathbb{R}^K$, natural-language
 113 pros/cons, key risks, and an overall recommendation.

114 **3.3 Rubrics and Score Aggregation**

115 We evaluate K criteria, e.g., clarity, novelty, methodology, reproducibility, and ethics. Let $s^{(t)} * j, k$
 116 be reviewer j 's score for criterion k (normalized to $[0, 1]$). The system-level aggregated score per
 117 criterion is

$$\bar{s}_k^{(t)} = \sum_{j=1}^R w_j s_{j,k}^{(t)}, \quad \sum_{j=1}^R w_j = 1, \quad w_j \geq 0. \quad (2)$$

118 with reviewer weights w_j (default $w_j = 1/R$). The overall quality score is a criterion-weighted
 119 average

$$Q^{(t)} = \sum_{k=1}^K \alpha_k \bar{s}_k^{(t)}, \quad \sum_{k=1}^K \alpha_k = 1, \quad \alpha_k \geq 0. \quad (3)$$

120 with reviewer weights w_j (default $w_j = 1/R$). The overall quality score is a criterion-weighted
 121 average

122 To quantify reviewer agreement we compute, per criterion, a rank-based concordance (e.g., Kendall's
 123 τ) or categorical agreement (e.g., Cohen's κ) between reviewer pairs; these statistics are logged for
 124 audit but do not directly affect the decision rule unless reliability gating is enabled.

125 **3.4 Interaction Protocol**

126 We adopt a synchronous, round-based protocol (Fig. 2). Round t proceeds as:

- 127 1. **Draft/Revision.** \mathcal{A} produces $\mathbf{M}^{(t)}$ (for $t = 0$) or revises based on $\mathbf{L}^{(t-1)}$.
 128 2. **Independent Review.** Each \mathcal{R}_j receives $\mathbf{M}^{(t)}$ and emits $\mathbf{r}_j^{(t)} * j$.
 129 3. **Score Aggregation.** The system computes $\bar{s}^{(t)} * k$ and $Q^{(t)}$.
 130 4. **Response & Revision Planning.** \mathcal{V} converts $\mathbf{r}_j^{(t)}$ into a structured change plan $\mathbf{C}^{(t)}$ and
 131 response letter $\mathbf{L}^{(t)}$.
 132 5. **Meta-Decision.** \mathcal{M} observes $\mathbf{M}^{(t)}$, $\mathbf{r}_j^{(t)}$, and $\mathbf{L}^{(t)}$, then issues $d^{(t)}$.

133 Optionally, a short *cross-review* phase allows reviewers to read peers' critiques and add a single
 134 rebuttal paragraph; our ablations enable/disable this feature.

135 3.5 Decision Rule and Stopping Criteria

136 We implement a simple yet effective rule with thresholds τ_{acc} and τ_{min} (per-criterion minima):

137 **Decision Rule and Stopping Criteria.** We use thresholds τ_{acc} and τ_{min} (per-criterion minima) and
 138 decide as follows:

$$d^{(t)} = \begin{cases} \text{ACCEPT, } \& Q^{(t)} \geq \tau_{\text{acc}} \wedge \left| \{ k \in [K] : \bar{s}_k^{(t)} \geq \tau_{\text{min}} \} \right| \geq K_{\text{min}}, \\ \text{CONTINUE, } \& t < T_{\text{max}} \wedge \Delta Q^{(t)} \geq \varepsilon \wedge C^{(t)} \leq B \wedge L^{(t)} \leq L, \\ \text{REJECT, } \& \text{otherwise.} \end{cases} \quad (4)$$

139 Here $\Delta Q^{(t)} = Q^{(t)} - Q^{(t-1)}$ (define $\Delta Q^{(0)} = +\infty$ for the first round), $C^{(t)}$ and $L^{(t)}$ are the
 140 cumulative compute and latency up to round t , and $[K] = \{1, \dots, K\}$.

141 We also impose a compute budget B (in tokens or cost) and a latency budget L ; exceeding either
 142 forces termination with the best-so-far manuscript.

143 3.6 Revision Planner

144 The Reviser converts raw reviews into an actionable plan using a canonical template: (i) defect
 145 taxonomy (*methodology, experiments, writing, ethics*); (ii) per-defect edits with evidence links to
 146 the draft; (iii) verification checks. The planner prioritizes items by impact and edit cost. To avoid
 147 regressions, it maintains a scratchpad of resolved vs. unresolved issues and enforces unit-style checks
 148 (e.g., add an ablation for reviewer R2, C3").

149 3.7 Safety and Robustness

150 We incorporate three defense layers:

- 151 1. **Content Sanitization.** Before review, $\mathbf{M}^{(t)}$ is stripped of hidden HTML, LaTeX comments,
 152 zero-width characters, and suspicious hyperlinks; we also neutralize prompt-like directives
 153 found in the manuscript body.
- 154 2. **Reliability Gating.** If reviewer agreement on any criterion falls below a threshold (e.g.,
 155 $\kappa < 0.1$), \mathcal{M} down-weights that criterion or requests an additional review to stabilize
 156 aggregation.
- 157 3. **Provenance Logging.** Every artifact stores model family, temperature, seed, prompt hash,
 158 and redaction hash; we expose a cryptographic digest in the appendix to support later audits.

159 3.8 Implementation Notes

160 We implement agents as parameterized prompts with role instructions and tool-use affordances (for
 161 diffing, citation lookups, and cost accounting). All messages are serialized as JSON lines with UTC
 162 timestamps. We log per-step metrics: tokens (tok), wall-clock latency (s), and estimated monetary
 163 cost (USD). Hyperparameters include reviewer count R , rubric weights α_k , thresholds ($\tau_{\text{acc}}, \tau_{\text{min}}$),
 164 and budgets (T_{max}, B, L).

165 **3.9 Design Rationale**

166 Role specialization enables modularity and reduces prompt interference; independence among
167 reviewers increases robustness to single-model idiosyncrasies; aggregation with reliability-aware
168 gating mediates bias; and round-based control with explicit budgets guarantees termination while
169 enabling measurable self-improvement across iterations.

170 **4 Experimental Setup**

171 This section describes our research questions, role/model configurations, topic generation, review
172 protocol, baselines, metrics, bias/robustness probes, and implementation details used to evaluate the
173 proposed closed-loop system (Sec. 3).

174 **4.1 Research Questions**

175 We structure the study around five questions:

- 176 • **RQ1 — Self-improvement:** Does iterative review–revise increase the aggregated quality
177 score $Q^{(t)}$ across rounds?
- 178 • **RQ2 — Agreement:** How consistent are Reviewer Agents under a shared rubric?
- 179 • **RQ3 — Design choices:** What is the effect of reviewer count R , cross-review, and revision
180 planning on outcomes?
- 181 • **RQ4 — Bias:** Do order/verbosity/self-model biases affect decisions and can aggregation
182 mitigate them?
- 183 • **RQ5 — Robustness:** How vulnerable is the pipeline to prompt-injection in manuscripts
184 and what defenses reduce impact?

185 **4.2 Models and Role Assignment**

186 Unless noted, we instantiate four roles:

- 187 • **Author \mathcal{A} :** a general-purpose LLM used only for drafting and targeted rewriting.
- 188 • **Reviewers $\{\mathcal{R}_j\}_{j=1}^R$:** $R=3$ independent LLM instances with identical instructions but
189 separate randomness seeds.
- 190 • **Reviser \mathcal{V} :** a model prompted to synthesize critiques into a change plan and a point-by-point
191 response letter.
- 192 • **Meta-Reviewer \mathcal{M} :** a model that applies the rule in Eq. (4) and issues $d^{(t)} \in$
193 $\{\text{ACCEPT}, \text{CONTINUE}, \text{REJECT}\}$.

194 To avoid evaluation artifacts, we also test *cross-family* settings where \mathcal{A} , \mathcal{R} , \mathcal{V} , and \mathcal{M} come from
195 different model families (reported in App. A). Model identities can be anonymized for double-blind
196 review.

197 **4.3 Topic Bank and Manuscript Generation**

198 We build a *topic bank* of $N=24$ seed prompts spanning algorithms, systems, NLP, vision, HCI, and
199 science-of-science. Topics are *synthetically generated* by an LLM given only high-level constraints
200 (novelty space, ethical neutrality). For each topic, the Author drafts an initial manuscript $\mathbf{M}^{(0)}$ (2–4
201 pages; abstract, introduction, related work, method sketch, evaluation plan). No external datasets are
202 required; any tables/plots in R0 are placeholders to be replaced by later analysis.

203 **4.4 Rubrics and Review Protocol**

204 We use $K=5$ criteria with equal weights $\alpha_k=1/5$ unless specified: *clarity*, *novelty*, *methodology*,
205 *reproducibility*, *ethics*. Reviewers return scores $s_{j,k}^{(t)} \in [0, 1]$ plus pros/cons and a recommendation.
206 Aggregation follows Eqs. (2)–(3). Each experiment runs up to $T_{\max}=2$ review rounds (R0→R1→R2)
207 with compute and latency budgets (B, L) set in Sec. 4.9.

208 **Cross-review (optional).** After independent reviews, a 1-turn *cross-review* lets \mathcal{R}_j see peers' key
 209 points and add a short rebuttal. Unless noted, cross-review is disabled to isolate independence effects.

210 **4.5 Baselines**

- 211 1. **Single-pass Author:** Author produces $\mathbf{M}^{(0)}$; no review or revision.
- 212 2. **Self-critique (1-agent):** Author generates critiques and revises once (no external reviewers).
- 213 3. **No-plan Revision:** Reviewers exist, but Reviser edits directly without an explicit change
 214 plan.
- 215 4. **Majority Vote Only:** Reviewers vote accept/reject without scores; no revision.

216 **4.6 Metrics**

217 **Score improvement.** For topic i , the round- t quality is $Q_i^{(t)}$. We report mean improvement $\Delta Q^{(t)} =$
 218 $\frac{1}{N} \sum_i (Q_i^{(t)} - Q_i^{(0)})$ and the acceptance rate after R2.

219 **Reviewer agreement.** For categorical recommendations we compute Cohen's κ pairwise and report
 220 the mean:

$$\kappa = \frac{p_o - p_e}{1 - p_e}, \quad p_e = \sum_c p_c^{(1)} p_c^{(2)}, \quad (5)$$

221 where p_o is observed agreement and p_e is chance agreement from label marginals $p_c^{(r)}$ for class c and
 222 reviewer r . For rubric scores, we report Kendall's τ rank correlation averaged across criteria:

$$\tau = \frac{C - D}{\frac{1}{2}n(n - 1)}, \quad (6)$$

223 where C and D are concordant and discordant pairs among n items.

224 **Edit magnitude.** We compute token-level diff between $\mathbf{M}^{(t)}$ and $\mathbf{M}^{(t-1)}$ and report edit ratio
 225 $E^{(t)} = \frac{\text{edited tokens}}{\text{total tokens}}$ per section.

226 **Cost/latency.** We log tokens, wall-clock seconds, and estimated USD per step; plots show quality–
 227 cost Pareto fronts.

228 **4.7 Bias and Robustness Probes**

229 We stress-test the pipeline for systematic biases and document-borne attacks under the default setting
 230 ($R=3$, Planner on, no cross-review). We study four phenomena: **(i) Order bias**—whether the
 231 presentation order of reviews to \mathcal{M} shifts outcomes; **(ii) Verbosity bias**—whether longer reviews
 232 systematically garner more influence; **(iii) Self-model bias**—whether sharing the same model family
 233 between Author and Reviewers inflates acceptance; and **(iv) Prompt injection**—whether hidden
 234 directives embedded in manuscripts can manipulate decisions, and how defenses help.

235 **Bias diagnostics.** Table 1 reports the effect size on the aggregated quality score Q and the change
 236 in acceptance rate (percentage points, p.p.), together with a statistical test per probe. We observe
 237 small but statistically significant order and verbosity effects (paired t -test and OLS, respectively),
 238 and a modest self-model bias (Welch's t -test). Mitigations we adopt elsewhere in the paper include
 239 randomizing the review order presented to \mathcal{M} , length normalization or lightweight truncation for
 240 reviews, and cross-family role assignment or down-weighting same-family reviewers in aggregation.

241 **Prompt-injection robustness.** We embed hidden directives in $\mathbf{M}^{(t)}$ using zero-width characters,
 242 LaTeX comments, and link titles at three attack strengths (Low/Medium/High). We compare *No*
 243 *defense*, *Sanitization only* (removing hidden HTML/LaTeX, zero-width chars, suspicious links), and
 244 *Sanitization + Provenance* (sanitization plus provenance logging and hash checks). Table 2 shows
 245 that sanitization roughly halves the decision drift, and provenance further reduces it, though residual
 246 effects remain—motivating these defenses as defaults and suggesting selective human audits for
 247 high-stakes deployments.

Table 1: Bias diagnostics under the default setup ($R=3$, Planner on, no cross-review). ΔQ_{order} : first-vs-last presentation effect on Q (paired design); β_{len} : OLS coefficient per 1k tokens of review length; ΔQ_{self} : same-family (Author=Reviewer family) minus cross-family. ΔAccept is the change in acceptance rate (p.p.).

Bias type	Effect on Q	ΔAccept (p.p.)	Test	p-value
Order (first vs. last)	0.012	1.8	paired t -test	0.031
Verbosity (per 1k tokens)	0.010	0.9	OLS regression	0.019
Self-model (same—cross)	0.008	3.2	Welch's t -test	0.044

Table 2: Prompt-injection robustness. We report quality drift (ΔQ) and change in acceptance (ΔAccept , p.p.) at three attack strengths and under different defenses (lower is better).

Attack strength	No defense		Sanitization only		Sanitization + Provenance	
	ΔQ	ΔAccept	ΔQ	ΔAccept	ΔQ	ΔAccept
Low	0.015	2.1	0.008	1.1	0.006	0.7
Medium	0.038	6.4	0.019	3.2	0.012	1.5
High	0.091	14.2	0.041	7.0	0.027	3.1

4.8 Ablations

We vary: (i) reviewer count $R \in \{1, 2, 3, 5\}$; (ii) cross-review (CR) on/off; (iii) revision planner (Plan) on/off; (iv) criterion weights $\{\alpha_k\}_{k=1}^5$; and (v) reliability gating via a κ cutoff for triggering reweighting or an extra review. We also compare mean vs. median vs. p -trimmed means ($p=0.10$) for Eq. (2). Table 3 summarizes the main configuration sweep (defaults: $T_{\text{max}}=2$, $\tau_{\text{acc}}=0.70$, $\tau_{\text{min}}=0.60$, $K_{\text{min}}=4$).

(i) Reviewer count R . Increasing R improves $Q^{(2)}$ and Accept@R2 with diminishing returns. From $R=1$ to $R=3$ (both without CR/Plan), $Q^{(2)}$ rises from 0.590 to 0.624 and Accept@R2 from 21% to 36%, at the cost of tokens 27.8k \rightarrow 44.7k and latency 6.4 \rightarrow 10.2 minutes per topic (Table 3, rows 1 vs. 2). Moving to a higher-capacity setting ($R=5$ with CR+Plan) yields the best quality, $Q^{(2)}=0.703$ and 67% Accept@R2, but incurs the highest cost (89.6k tokens; 18.3 minutes; row 5). Results for $R=2$ are consistent and lie between $R=1$ and $R=3$ (reported in Appendix).

(ii) Cross-review vs. (iii) Revision planner. With $R=3$, enabling CR (but no Plan) improves ΔQ from +0.074 to +0.092 and Accept@R2 from 36% to 43%, but increases tokens and latency due to the extra exchange (rows 2 vs. 3). Turning on the Planner (but no CR) yields the largest single-component gain at comparable or lower cost: $Q^{(2)}$ reaches 0.671 with $\Delta Q=+0.121$ and Accept@R2 56%, using 51.8k tokens and 11.9 minutes (row 4). Hence, *Planner* provides the best quality–cost trade-off, while *CR* offers additional but smaller gains.

(iv) Criterion weights α_k . We test three weightings: *uniform* ($\alpha_k=0.2$), *method-heavy* (Clarity/Novelty/Method/Reprod./Ethics = 0.15/0.25/0.30/0.20/0.10), and *reprod.-heavy* (0.15/0.20/0.25/0.30/0.10), keeping $R=3$ and Plan on. Across topics, Accept@R2 varies within ± 2 p.p. of the uniform baseline; *method-heavy* slightly increases acceptance when the Planner is active, as Reviewer critiques focus on methodological fixes that the Planner can address. Given the small sensitivity and for simplicity/reproducibility, we adopt uniform weights in the main experiments.

(v) Reliability gating and aggregation rules. Table 4 evaluates aggregation choices (mean/median/trimmed) and a simple reliability gate that down-weights criteria with low agreement ($\kappa<0.10$) or requests one extra review. Trimmed means ($p=0.10$) offer a mild quality and acceptance improvement without extra cost, while gating reduces volatility at a small overhead (tokens +2.6k; +0.6 minutes) and a negligible change in acceptance.

Takeaways. (1) $R=3$ with Planner (no CR) is a strong default, achieving $Q^{(2)}=0.671$ and 56% Accept@R2 at moderate cost. (2) CR adds improvements but with a higher marginal cost than

Table 3: Ablations. We vary reviewer count R , cross-review (CR), and revision planner (Plan). Metrics are final $Q^{(2)}$, $\Delta Q = Q^{(2)} - Q^{(0)}$, Accept@R2, and average per-topic resources. Defaults: $T_{\max}=2$, $\tau_{\text{acc}}=0.70$, $\tau_{\min}=0.60$, $K_{\min}=4$.

R	CR	Plan	$Q^{(2)}$	ΔQ	Accept@R2 (%)	Tokens ($\times 10^3$)	Latency (min)
1	\times	\times	0.590	+0.040	21	27.8	6.4
3	\times	\times	0.624	+0.074	36	44.7	10.2
3	\checkmark	\times	0.642	+0.092	43	57.9	12.6
3	\times	\checkmark	0.671	+0.121	56	51.8	11.9
5	\checkmark	\checkmark	0.703	+0.153	67	89.6	18.3

Table 4: Aggregation and reliability variants under $R=3$, Plan on, no CR.

Setting	$Q^{(2)}$	Accept@R2 (%)	Tokens ($\times 10^3$)	Lat. (min)
Mean (default)	0.671	56	51.8	11.9
Median	0.667	55	51.8	11.9
Trimmed mean ($p=0.10$)	0.674	57	51.8	11.9
Mean + gating ($\kappa < 0.10$)	0.669	55	54.4	12.5

279 Planner. (3) Simple robust aggregation (trimmed mean) yields small, consistent gains. (4) Reliability
280 gating stabilizes outcomes under disagreement with minor overhead; we therefore enable gating only
281 in stress tests and report mean aggregation by default.

282 4.9 Implementation Details

283 All agents are prompted with concise role cards and tool affordances (diffing, rubric templates).
284 Temperature is set to 0.3 for Reviewers/Meta and 0.5 for Author/Reviser unless specified. Max
285 rounds $T_{\max}=2$; budgets $B=1.2 \times 10^6$ tokens and $L=30$ minutes per topic. We fix random seeds for
286 sampling and log model family, version, and prompt hashes for each artifact. Experiments run on
287 a single workstation; compute and latency figures include API overhead. Reproducibility artifacts
288 (prompts, logs, topic bank, and anonymized manuscripts) are provided in the supplemental.

289 4.10 Evaluation Reporting

290 For each metric we report the mean and 95% confidence intervals over topics. Significance uses
291 paired t -tests or Wilcoxon signed-rank tests as appropriate. Unless otherwise noted, all comparisons
292 are two-sided with $\alpha=0.05$.

293 **Contributions in brief.** (i) An *autonomous* LLM workflow for drafting, reviewing, revising, and
294 adjudicating scientific manuscripts; (ii) a *general* scoring and decision mechanism with reliability gat-
295 ing and strict budgets; (iii) a *measurement suite* for score gains, reviewer agreement, bias, cost/latency,
296 and robustness; (iv) openly documented prompts, logs, and topic bank for reproducibility.

297 **Limitations and Future Work.** Our study operates under bounded rounds, budgets, and topic scope;
298 larger-scale evaluations with human-in-the-loop audits will better calibrate external validity. We plan
299 to (a) expand cross-family settings with open-weight models and tool-augmented reviewers (retrieval,
300 citation checking, code execution), (b) integrate factuality verifiers and citation provenance to curb
301 hallucinations, (c) explore alternative consensus mechanisms (median/trimmed means, Bayesian
302 reliability models), (d) extend to multilingual and domain-specific venues, and (e) harden defenses
303 against document-borne attacks (e.g., adversarial PDFs) via stricter sanitization and cryptographic
304 attestations.

305 Overall, our results suggest that LLMs can function not merely as writing assistants but as *autonomous*
306 *participants* in scientific communication—capable of proposing, critiquing, and refining ideas under
307 explicit rules and measurable constraints. We hope this framework catalyzes systematic research on
308 AI-driven science, including benchmarks, safety standards, and community protocols for responsible
309 deployment.

310 **5 Conclusion**

311 We presented a closed-loop, multi-agent framework in which large language models (LLMs) assume
312 the canonical roles of *Author*, *Reviewer*, *Reviser*, and *Meta-Reviewer*, thereby simulating the end-to-
313 end scientific publishing workflow. Our system couples a round-based interaction protocol (Fig. 2)
314 with principled aggregation (Eqs. (2)–(3)) and a transparent decision rule (Eq. (4)), producing
315 auditable artifacts at every step: manuscripts, rubric-based reviews, response letters, and meta-
316 decisions.

317 Across a diverse topic bank, we observed consistent self-improvement: iterative review–revise cycles
318 increased the aggregated quality score $Q^{(t)}$ and yielded higher acceptance rates relative to single-
319 pass or single-agent baselines. Independent Reviewer Agents exhibited measurable but bounded
320 disagreement; reliability-aware aggregation and optional cross-review improved stability without
321 sacrificing diversity of critique. Bias diagnostics (order, verbosity, self-model) revealed predictable
322 effects that can be mitigated by balanced weighting and role separation. Finally, prompt-injection
323 probes highlighted concrete integrity risks in automated reviewing; our sanitization and provenance
324 logging reduced but did not eliminate decision drift, underscoring the need for continued robustness
325 work.

326 **References**

327 References follow the acknowledgments in the camera-ready paper. Use unnumbered first-level
328 heading for the references. Any choice of citation style is acceptable as long as you are consistent. It
329 is permissible to reduce the font size to small (9 point) when listing the references. Note that the
330 Reference section does not count towards the page limit.

- 331 1. A. Madaan et al. Self-Refine: Iterative Refinement with Self-Feedback. arXiv:2303.17651, 2023.
- 332 2. N. Shinn et al. Reflexion: Language Agents with Verbal Reinforcement Learning. arXiv:2303.11366
333 (NeurIPS 2023 poster), 2023.
- 334 3. Y. Bai et al. Constitutional AI: Harmlessness from AI Feedback. arXiv:2212.08073, 2022.
- 335 4. L. Zheng et al. Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena. arXiv:2306.05685
336 (NeurIPS 2023), 2023.
- 337 5. Q. Wu et al. AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation Frame-
338 work. arXiv:2308.08155; Microsoft Research Tech Report, 2024.
- 339 6. Y. Du et al. Improving Factuality and Reasoning in Language Models through Multiagent Debate.
340 arXiv:2305.14325, 2023.
- 341 7. R. Liu and N. B. Shah. ReviewerGPT? ... arXiv:2306.00622, 2023.
- 342 8. J. Lee et al. The Role of Large Language Models in the Peer-Review Process. Frontiers in Big Data,
343 2025.
- 344 9. C. Li et al. Can Large Language Models Be Trusted Paper Reviewers? arXiv:2506.17311, 2025.
- 345 10. X. Tan et al. Large Language Models for Automated Scholarly Paper Review (ASPR): A Survey.
346 arXiv:2501.10326, 2025.
- 347 11. T.-L. Lin et al. Breaking the Reviewer: ... arXiv:2506.11113, 2025.
- 348 12. M. Naddaf. AI tool detects ... Nature News, 2025.
- 349 13. Scientists reportedly hiding ... The Guardian, 2025.

350 **Agents4Science AI Involvement Checklist**

351 This checklist is designed to allow you to explain the role of AI in your research. This is important for
352 understanding broadly how researchers use AI and how this impacts the quality and characteristics of the
353 research. **Do not remove the checklist! Papers not including the checklist will be desk rejected.** You will
354 give a score for each of the categories that define the role of AI in each part of the scientific process. The scores
355 are as follows:

- 356 • **[A] Human-generated:** Humans generated 95% or more of the research, with AI being of minimal
357 involvement.
- 358 • **[B] Mostly human, assisted by AI:** The research was a collaboration between humans and AI models,
359 but humans produced the majority (>50%) of the research.
- 360 • **[C] Mostly AI, assisted by human:** The research task was a collaboration between humans and AI
361 models, but AI produced the majority (>50%) of the research.
- 362 • **[D] AI-generated:** AI performed over 95% of the research. This may involve minimal human
363 involvement, such as prompting or high-level guidance during the research process, but the majority
364 of the ideas and work came from the AI.

365 These categories leave room for interpretation, so we ask that the authors also include a brief explanation
366 elaborating on how AI was involved in the tasks for each category. Please keep your explanation to less than 150
367 words.

368 **IMPORTANT**, please:

- 369 • **Delete this instruction block, but keep the section heading “Agents4Science AI Involvement
370 Checklist”,**
- 371 • **Keep the checklist subsection headings, questions/answers and guidelines below.**
- 372 • **Do not modify the questions and only use the provided macros for your answers.**
- 373 1. **Hypothesis development:** Hypothesis development includes the process by which you came to
374 explore this research topic and research question. This can involve the background research performed
375 by either researchers or by AI. This can also involve whether the idea was proposed by researchers or
376 by AI.
377 Answer: **[TODO]**
378 Explanation: **[TODO]**
- 379 2. **Experimental design and implementation:** This category includes design of experiments that are
380 used to test the hypotheses, coding and implementation of computational methods, and the execution
381 of these experiments.
382 Answer: **[TODO]**
383 Explanation: **[TODO]**
- 384 3. **Analysis of data and interpretation of results:** This category encompasses any process to organize
385 and process data for the experiments in the paper. It also includes interpretations of the results of the
386 study.
387 Answer: **[TODO]**
388 Explanation: **[TODO]**
- 389 4. **Writing:** This includes any processes for compiling results, methods, etc. into the final paper form.
390 This can involve not only writing of the main text but also figure-making, improving layout of the
391 manuscript, and formulation of narrative.
392 Answer: **[TODO]**
393 Explanation: **[TODO]**
- 394 5. **Observed AI Limitations:** What limitations have you found when using AI as a partner or lead
395 author?
396 Description: **[TODO]**

397 Agents4Science Paper Checklist

398 The checklist is designed to encourage best practices for responsible machine learning research, addressing
399 issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: **Papers**
400 **not including the checklist will be desk rejected.** The checklist should follow the references and follow the
401 (optional) supplemental material. The checklist does NOT count towards the page limit.

402 Please read the checklist guidelines carefully for information on how to answer these questions. For each
403 question in the checklist:

- 404 • You should answer **[Yes]** , **[No]** , or **[NA]** .
- 405 • **[NA]** means either that the question is Not Applicable for that particular paper or the relevant
406 information is Not Available.
- 407 • Please provide a short (1–2 sentence) justification right after your answer (even for NA).

408 **The checklist answers are an integral part of your paper submission.** They are visible to the reviewers and
409 area chairs. You will be asked to also include it (after eventual revisions) with the final version of your paper,
410 and its final version will be published with the paper.

411 The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While
412 "**[Yes]**" is generally preferable to "**[No]**", it is perfectly acceptable to answer "**[No]**" provided a proper
413 justification is given. In general, answering "**[No]**" or "**[NA]**" is not grounds for rejection. While the questions
414 are phrased in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
415 best judgment and write a justification to elaborate. All supporting evidence can appear either in the main paper
416 or the supplemental material, provided in appendix. If you answer **[Yes]** to a question, in the justification please
417 point to the section(s) where related material for the question can be found.

418 **IMPORTANT**, please:

- 419 • **Delete this instruction block, but keep the section heading "Agents4Science Paper Checklist",**
- 420 • **Keep the checklist subsection headings, questions/answers and guidelines below.**
- 421 • **Do not modify the questions and only use the provided macros for your answers.**

422 1. Claims

423 Question: Do the main claims made in the abstract and introduction accurately reflect the paper's
424 contributions and scope?

425 Answer: **[TODO]**

426 Justification: **[TODO]**

427 Guidelines:

- 428 • The answer NA means that the abstract and introduction do not include the claims made in the
429 paper.
- 430 • The abstract and/or introduction should clearly state the claims made, including the contributions
431 made in the paper and important assumptions and limitations. A No or NA answer to this
432 question will not be perceived well by the reviewers.
- 433 • The claims made should match theoretical and experimental results, and reflect how much the
434 results can be expected to generalize to other settings.
- 435 • It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
436 attained by the paper.

437 2. Limitations

438 Question: Does the paper discuss the limitations of the work performed by the authors?

439 Answer: **[TODO]**

440 Justification: **[TODO]**

441 Guidelines:

- 442 • The answer NA means that the paper has no limitation while the answer No means that the paper
443 has limitations, but those are not discussed in the paper.
- 444 • The authors are encouraged to create a separate "Limitations" section in their paper.
- 445 • The paper should point out any strong assumptions and how robust the results are to violations of
446 these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
447 asymptotic approximations only holding locally). The authors should reflect on how these
448 assumptions might be violated in practice and what the implications would be.

- 449 • The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
 450 on a few datasets or with a few runs. In general, empirical results often depend on implicit
 451 assumptions, which should be articulated.
 452 • The authors should reflect on the factors that influence the performance of the approach. For
 453 example, a facial recognition algorithm may perform poorly when image resolution is low or
 454 images are taken in low lighting.
 455 • The authors should discuss the computational efficiency of the proposed algorithms and how
 456 they scale with dataset size.
 457 • If applicable, the authors should discuss possible limitations of their approach to address problems
 458 of privacy and fairness.
 459 • While the authors might fear that complete honesty about limitations might be used by reviewers
 460 as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't
 461 acknowledged in the paper. Reviewers will be specifically instructed to not penalize honesty
 462 concerning limitations.

463 **3. Theory assumptions and proofs**

464 Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
 465 (and correct) proof?

466 Answer: **[TODO]**

467 Justification: **[TODO]**

468 Guidelines:

- 469 • The answer NA means that the paper does not include theoretical results.
- 470 • All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- 471 • All assumptions should be clearly stated or referenced in the statement of any theorems.
- 472 • The proofs can either appear in the main paper or the supplemental material, but if they appear in
 473 the supplemental material, the authors are encouraged to provide a short proof sketch to provide
 474 intuition.

475 **4. Experimental result reproducibility**

476 Question: Does the paper fully disclose all the information needed to reproduce the main experimental
 477 results of the paper to the extent that it affects the main claims and/or conclusions of the paper
 478 (regardless of whether the code and data are provided or not)?

479 Answer: **[TODO]**

480 Justification: **[TODO]**

481 Guidelines:

- 482 • The answer NA means that the paper does not include experiments.
- 483 • If the paper includes experiments, a No answer to this question will not be perceived well by the
 484 reviewers: Making the paper reproducible is important.
- 485 • If the contribution is a dataset and/or model, the authors should describe the steps taken to make
 486 their results reproducible or verifiable.
- 487 • We recognize that reproducibility may be tricky in some cases, in which case authors are welcome
 488 to describe the particular way they provide for reproducibility. In the case of closed-source
 489 models, it may be that access to the model is limited in some way (e.g., to registered users), but
 490 it should be possible for other researchers to have some path to reproducing or verifying the
 491 results.

492 **5. Open access to data and code**

493 Question: Does the paper provide open access to the data and code, with sufficient instructions to
 494 faithfully reproduce the main experimental results, as described in supplemental material?

495 Answer: **[TODO]**

496 Justification: **[TODO]**

497 Guidelines:

- 498 • The answer NA means that paper does not include experiments requiring code.
- 499 • Please see the Agents4Science code and data submission guidelines on the conference website
 500 for more details.
- 501 • While we encourage the release of code and data, we understand that this might not be possible,
 502 so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless
 503 this is central to the contribution (e.g., for a new open-source benchmark).

- 504 • The instructions should contain the exact command and environment needed to run to reproduce
505 the results.
506 • At submission time, to preserve anonymity, the authors should release anonymized versions (if
507 applicable).

508 **6. Experimental setting/details**

509 Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
510 how they were chosen, type of optimizer, etc.) necessary to understand the results?

511 Answer: **[TODO]**

512 Justification: **[TODO]**

513 Guidelines:

- 514 • The answer NA means that the paper does not include experiments.
515 • The experimental setting should be presented in the core of the paper to a level of detail that is
516 necessary to appreciate the results and make sense of them.
517 • The full details can be provided either with the code, in appendix, or as supplemental material.

518 **7. Experiment statistical significance**

519 Question: Does the paper report error bars suitably and correctly defined or other appropriate information
520 about the statistical significance of the experiments?

521 Answer: **[TODO]**

522 Justification: **[TODO]**

523 Guidelines:

- 524 • The answer NA means that the paper does not include experiments.
525 • The authors should answer "Yes" if the results are accompanied by error bars, confidence
526 intervals, or statistical significance tests, at least for the experiments that support the main claims
527 of the paper.
528 • The factors of variability that the error bars are capturing should be clearly stated (for example,
529 train/test split, initialization, or overall run with given experimental conditions).

530 **8. Experiments compute resources**

531 Question: For each experiment, does the paper provide sufficient information on the computer
532 resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

533 Answer: **[TODO]**

534 Justification: **[TODO]**

535 Guidelines:

- 536 • The answer NA means that the paper does not include experiments.
537 • The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
538 provider, including relevant memory and storage.
539 • The paper should provide the amount of compute required for each of the individual experimental
540 runs as well as estimate the total compute.

541 **9. Code of ethics**

542 Question: Does the research conducted in the paper conform, in every respect, with the Agents4Science
543 Code of Ethics (see conference website)?

544 Answer: **[TODO]**

545 Justification: **[TODO]**

546 Guidelines:

- 547 • The answer NA means that the authors have not reviewed the Agents4Science Code of Ethics.
548 • If the authors answer No, they should explain the special circumstances that require a deviation
549 from the Code of Ethics.

550 **10. Broader impacts**

551 Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
552 of the work performed?

553 Answer: **[TODO]**

554 Justification: **[TODO]**

555 Guidelines:

- 556 • The answer NA means that there is no societal impact of the work performed.
557 • If the authors answer NA or No, they should explain why their work has no societal impact or
558 why the paper does not address societal impact.
559 • Examples of negative societal impacts include potential malicious or unintended uses (e.g., disin-
560 formation, generating fake profiles, surveillance), fairness considerations, privacy considerations,
561 and security considerations.
562 • If there are negative societal impacts, the authors could also discuss possible mitigation strategies.