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Abstract

Clinical risk prediction plays a crucial role in early disease detection and personal-
ized intervention. While recent models increasingly incorporate multimodal data,
their development typically assumes access to large-scale, multimodal datasets
and substantial computational resources. In practice, however, most clinical sites
operate under resource constraints, with access limited to EHR data alone and in-
sufficient capacity to train complicated models. This gap highlights the urgent need
to democratize clinical risk prediction by enabling effective deployment in data-
and resource-limited local clinical settings. In this work, we propose a cross-cohort
cross-modal knowledge transfer framework that leverages the multimodal model
trained on a nationwide cohort and adapts it to local cohorts with only EHR data.
We focus on EHR and genetic data as representative multimodal inputs and address
two key challenges. First, to mitigate the influence of noisy or less informative
biological signals, we propose a novel mixture-of-aggregations design to enhance
the modeling of informative and relevant genetic features. Second, to support rapid
model adaptation in low-resource sites, we develop a lightweight graph-guided
fine-tuning method that adapts pretrained phenotypical EHR representations to
local cohorts using limited patient data. Extensive experiments on real-world
clinical data validate the effectiveness of our proposed model.

1 Introduction

Predictive diagnosis and risk prediction play a pivotal role in clinical practice, particularly for chronic
conditions such as Alzheimer’s disease and related dementias, which stem from a complex interplay
of genetic and environmental factors and impose significant socioeconomic burdens and public
health challenges. As current treatments may slow progression yet cannot reverse the pathological
process, early risk prediction before clinical diagnosis aims for personalized monitoring, proactive
management and preventive care in advance to slow disease progression and improve health outcomes.

Recent studies on disease risk prediction primarily rely on electronic health record (EHR) data to cap-
ture real-world patient phenotypical information [21} 127,150} 143], including diagnoses, prescriptions,
etc. A growing number of research has explored introducing additional biological modalities, such as
medical imaging, genomics and proteomics, to boost predictive performance [22} 140,110, 2,156, 59].
However, most existing approaches are developed for a single cohort, under the assumption that
large patient populations, modalities, and ample computational resources are available for training.
In reality, this assumption often fails to hold, as many regional health providers may contend with
insufficiency of patient samples, costly modalities, and computing infrastructures to train predictive
models locally. Thus, democratizing clinical risk prediction capability to local cohorts is an important
step toward enabling accessible and equitable healthcare solutions across diverse clinical scenarios.
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data from a nationwide cohort and

transfer it to resource-limited local cohorts with only EHR data, enabling accurate risk prediction
without sharing sensitive patient information?

Despite its appeal, developing such a model is non-trivial due to two challenges. First, multimodal
data is inherently noisy or imprecise due to measurement errors and multifactorial biological processes,
which can complicate the correlation between multimodal features and disease outcomes, degrading
predictive accuracies. Second, cross-modal learning from nationwide multimodal cohorts to local
unimodal cohorts inevitably faces distribution shifts due to different population characteristics, data
collection protocols, or healthcare practices. These shifts necessitate fine-tuning of the transferred
model to adapt to the target cohort. However, the limited data and computational resources at
local cohorts make it difficult to perform effective fine-tuning. Insufficient data increases the risk of
overfitting, while constrained computational capacity limits the use of powerful models that typically
require substantial computational overhead.

Motivated by these challenges, this paper proposes a cross-cohort, cross-modal knowledge transfer
framework named C3M to support the democratization of clinical risk prediction at resource-limited
local clinical sites. In this work, we focus on utilizing EHR and genetic modalities on the source
biobank due to the wide availability of EHRs across cohorts and the essential information that
genetic data offers to capture individual-level biological mechanisms associated with disease risk
[L5]. To address the first challenge of noisy and imprecise genetic data, we design a strategy for gene
encoding with mixture-of-aggregations. This approach employs multiple aggregation tokens to jointly
identify and aggregate meaningful genetic features from different views through attention modulation
and feature reconstruction, while mitigating the influence of noisy or less informative signals. To
address the second challenge involving limited data and computational resources that hinder model
fine-tuning, we draw inspiration from the increasing use of foundation models. Specifically, we adopt
an EHR foundation model as the EHR encoder, which enables rapid and efficient phenotypical EHR
representation generation, even when local cohorts have only a small number of patients. However,
fine-tuning a foundation model remains extremely difficult in resource-constrained clinical sites due
to the substantial computational demands. To overcome this limitation, we propose a lightweight
fine-tuning method that utilizes limited patient data by constructing a bipartite graph between patients
and the medical concepts recorded in their EHRs. A graph neural network (GNN) is then applied to
this bipartite graph to adjust the foundation model-initialized phenotypical embeddings based on
their associated medical concepts, achieving effective adaptation without modifying the foundation
model itself. Finally, with the obtained phenotypical EHR and genetic embeddings and the goal
of transferring a model to a resource-limited local cohort with unimodal data, we leverage teacher-
student distillation to achieve cross-modal knowledge transfer. The teacher prediction model is
distilled into a student prediction model, which is then transferred along with the GNN to the local
cohort for further fine-tuning and downstream risk prediction.

Our contributions can be summarized as follows: 1) We study the crucial and practical problem of
democratizing clinical risk prediction capabilities in resource-limited local cohorts by leveraging
knowledge from nationwide multimodal cohorts; 2) We propose a novel mixture-of-aggregations
design to enhance the modeling of informative and relevant genetic features while mitigating the
influence of noisy or less informative signals; 3) We develop a lightweight graph-guided fine-tuning
method that adapts pretrained phenotypical EHR representations to target cohorts using limited
patient data, without requiring updates to the foundation model; 4) We conduct extensive experiments
on real-world clinical data to demonstrate the effectiveness and generalizability of our model.



2 Related Work

Cross-modal learning. Conventional multimodal learning methods aim to capture complementary
information across modalities by multimodal fusion [3}159], typically assuming complete modality
availability. However, modality missingness, common in practice, presents a widespread challenge
to their applicability [54]]. Therefore, research has focused on learning cross-modal knowledge to
compensate for missing information, falling in two main directions. One line of work relies on
modality completion that reconstructs the missed modalities from observed ones through generative
networks [44} 168 7 25,116} 151} 19, 134} 153} 29]. In contrast, modality-robust learning seeks to build
representations that remain effective under incomplete observations without explicit reconstruction.
Common strategies explore adaptive integration [28, I57]], invariant representations [47,152161]] or
graph-based relations [[62} 158163} 64, 55] to leverage the modality interactions. Besides, knowledge
distillation is also employed where the teacher model with multimodal data supervises modality-
incomplete students to transfer cross-modal knowledge [36} 137,49, |20l |48]. These methods are
primarily designed to handle random or block-wise missingness, under assumptions of modality
availability at test time, distributional consistency across modalities, or in-domain training and
deployment. They often struggle to generalize when certain modalities are consistently absent
at deployment, and become less applicable in our setting, where modality availability and data
distribution differ across cohorts.

Cross-cohort knowledge transfer. The healthcare community increasingly advocates for cross-
cohort model deployment to facilitate the transfer of beneficial knowledge, drawing inspiration from
cross-domain transfer learning across disciplines [24, 166 (60, |65]. Despite its promise to enhance
predictive diagnosis and risk prediction through the use of multi-institutional data, the question of
how to achieve effective multimodal learning across cohorts remains largely open and underexplored
due to practical constraints on data sharing and computational resources [38} 4, |18]). In fields such as
computer vision and natural language processing, multimodal cross-domain adaptation addresses
domain shifts to facilitate knowledge transfer with multiple modalities. Classical approaches primarily
focus on reducing domain discrepancies by aligning representations through domain adversarial
learning or by extracting domain-invariant features [23| 26} 30} 9} [11}[13]]. These methods typically
assume consistent modality availability, shared samples across domains, and simultaneous access
to both source and target domains during training. A few works consider more realistic scenarios,
where the target domains lack certain modalities or have non-overlapping modalities compared to the
source [[67]], while they still necessitate joint training with target domains. In contrast, our setting
assumes no access to the target domain during training and involves consistent modality missingness
at deployment across all target samples. This poses a more challenging generalization problem,
requiring source-trained models to exhibit stronger cross-cohort transferability.

3 Preliminaries

Problem Definition. We consider the task of risk prediction in a cross-cohort cross-modal setting,
where the source cohort comprises a nationwide patient population with rich multimodal data, while
the target cohort consists of a local patient population with only EHR data available. In this paper, we
focus on two modalities: electronic health records (EHRs) and genetic profiles. Specifically, in the
source cohort S = {(4, gi, yi) }X5,, where N denotes the total number of patients, each patient i is
associated with (1) a sequence of longitudinal EHR events ; = {e},€?, ..., el” ‘} extracted from
their medical history, (2) a binary genetic profile g; € {0, 1}V indicating the absence or presence of
genetic mutations for the N genes under consideration, and (3) a disease label y; € {0, 1} indicating
the occurrence of the outcome. EHR events r; capture the patient’s phenotypical information, where
each event e; corresponds to a coded medical concept, e.g., a diagnosis or a prescribed drug. Here
we denote the set of medical concepts as C. To enable early prediction, only EHR events occurring
prior to the prediction time are utilized. A prediction model F(r;,g;) — ¢; € [0,1] is trained
on this cohort to estimate the disease risk using both EHR and genetic data. In the target cohort
T ={(rj,y;) Nt consisting of N patients, only EHR data is available. This reflects a practical
scenario in local cohorts, where biological data such as genetic profiles are typically unavailable. The
target cohort may differ from the source cohort demographically and clinically.

In this paper, we aim to develop a multimodal prediction model using the source cohort S that can be
effectively transferred and adapted to the unimodal, distribution-shifted target cohort 7, under the
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Figure 2: An overview of the C3M framework: 1) Gene encoding with mixture-of-aggregations
identifies the most relevant and informative genes to learn genetic representation; 2) Graph-guided
phenotypical representation fine-tuning adapts pre-trained EHR embeddings through a lightweight
design; 3) Cross-modal knowledge transfer facilitates model transfer to target cohorts for gene-free
deployment, by distilling knowledge from both EHR and genetic modalities.

constraint that data from S and 7 cannot be jointly accessed due to privacy-preserving, non-sharing
restrictions. To facilitate adaptation, we assume access to a small labeled subset Tizpelea C T, Which
can be used to fine-tune the model using only EHR data available in the target cohort.

MOTOR. MOTOR (Many Outcome Time-Oriented Representations) [42] is a pretrained foundation
model designed to encode structured EHRs into patient-level embeddings. Given a longitudinal
EHR record r = {e!,e2,..., el”! }, where each event e’ may include clinical codes (e.g., diagnoses,
medications, lab tests, etc.) and corresponding timestamps, MOTOR transforms this sequence into a
fixed-dimensional embedding vector that captures the temporal dynamics and clinical context of the
patient’s history. The model is pretrained on large-scale EHRs and claims data using a self-supervised
time-to-event prediction objective, thus learning informative representations for survival and risk
modeling tasks.

4 The Proposed Method

In this section, we present our proposed model, C3M, which comprises three key components: 1)
gene encoding with mixture-of-aggregations, 2) graph-guided EHR representation fine-tuning, and 3)
cross-modal knowledge transfer with distillation. The overall framework is illustrated in Figure 2]

4.1 Gene Encoding with Mixture-of-Aggregations

In the source cohort, for patients with available genetic profiles, we first aim to encode the genetic
data into representations. With each gene z represented with a binary indicator g* € {0, 1} to denote
if any mutation occurs or not, these indicators collectively form an individual-level input vector
g € {0, 1}", where N is the total number of genes. To embed these discrete features into a continuous
space, we treat each gene as a token and assign it a learnable embedding, yielding a sequence of gene
token embeddings [g!, g2, .. ., gN | e RN 4 for each patient, with d denotes dimensionality.

Aggregation Token. Gene-level binary vectors are typically sparse and noisy, as not all genetic
variants are equally associated with and contributory to disease prediction. To enable the model to
adaptively focus on the most relevant subset of genes, we introduce a learnable aggregation token
for each patient that attends to all gene token embeddings, aggregates information across genetic
features and implicitly identifies those most predictive of the health conditions. This allows the model
to dynamically prioritize informative genetic signals on a per-patient basis. Formally, we denote
the learnable aggregation token by v € R?. Then, multi-head attention is applied with v as the
query and the gene token embeddings as keys and values, producing a soft attention distribution over
gene tokens using the standard self-attention [45]. It results in a set of non-negative mask weights



{mq,...,mn}, where each m; € (0,1) and Zf\il m; = 1, as determined by a softmax function.
These weights quantify the relative importance of each gene in the context of the specific patient and
are utilized to softly modulate the gene token embeddings. Specifically, each gene token is blended
with the aggregation token following:

g=0-m)-g"+m;-v, (1)
so that highly attended genes are more strongly influenced by the aggregation token. The resulting
sequence [v,g!, ..., g"] is further fed into a Transformer encoder. Ultimately, its output at the first
position, corresponding to the updated aggregation token, is employed as the patient-level genetic
representation hg, which integrates information from all gene token embeddings to support risk
prediction. The remaining contextualized outputs {hy,...,hx} from the encoder are utilized to
reconstruct the original gene binary features. If features corresponding to important genes can be
accurately reconstructed, it suggests that the aggregation token effectively captures and integrates
individual genetic information.

Gene Feature Reconstruction. In addition to producing personalized genetic representations, the
model is trained to reconstruct the original genetic features from the contextualized genetic outputs
{hy,...,hx}. This reconstruction encourages the encoder to preserve information relevant to the
input genetic features, and guides the aggregation attention to concentrate on meaningful genes by
penalizing reconstruction errors at attended positions. Each contextualized gene token embedding h;
is transformed to a binary prediction via a shared decoder as follows:

G' = softmax(Wh; + b), )

where W and b are learnable parameters of the decoder. We calculate a weighted reconstruction
loss using the aggregation attention scores {m; } Y ,, thereby emphasizing reconstruction at highly
attended positions, as defined below:

N
Lree = »_mi-CE(3, g"), 3)

=1

where CE(-) denotes the cross-entropy loss. It promotes effective aggregation by prioritizing infor-
mative genes and minimizing the influence of less relevant ones.

Mixture-of-Aggregations. Although a single aggregation token can highlight important genes,
its representational capacity can be constrained when modeling complex, multifactorial biological
signals. A single token is required to condense relevant gene-level information into a fixed-size vector,
which might overlook the input’s functional complexity, particularly for polygenic diseases where risk
is distributed across multiple genetic components. To overcome this limitation and better capture the
compositional patterns of genetic data, we extend the single-token design to a mixture-of-aggregations
framework. Specifically, we introduce M independent aggregation tokens, each functioning as a
specialized expert that attends to the gene token embeddings from a distinct perspective and produces
its own representation of the genetic feature. Formally, we learn a set of expert-specific aggregation
tokens {v(l), ., v y(E) ¢ R9}. For each expert k, we compute soft attention weights over the

gene token embeddings, yielding a set of mask scores {ml(»k) } |, with which expert-specific gene
token embeddings are modulated:

5

g

O

(1—m"). g +mP . v®), @)

The sequence [v(’”, gi“‘”, gl (M} is passed through the shared Transformer encoder, producing

. . . . PIC) .
an expert-specific genetic representation h(cf ) and reconstruction logits ¢ * for each gene using Eq.

. To combine outputs from all experts, we adopt averaging to obtain hg, §* and m; as follows:
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where §° and m; are utilized in Eq. . This allows the reconstruction objective L. to benefit from
multi-expert knowledge. The extension encourages diverse specialization among experts and allows
the model to capture multiple, potentially disentangled genetic functionalities.



4.2 Graph-Guided Phenotypical Representation Fine-Tuning

Beyond genetic information, EHR data as a critical resource provides rich phenotypical information
for disease risk prediction. Inspired by the recent success of foundation models, we leverage the
pretrained EHR foundation model MOTOR [42] to encode each patient’s longitudinal medical history
into a fixed-dimensional embedding. Specifically, given an EHR sequence r from a patient, we obtain
its embedding hg, = Motor(r). However, since both the source and target cohorts may differ from
the data used in MOTOR pretraining, in terms of population characteristics and record conventions,
the resulting embeddings generally suffer from distribution shift. Nevertheless, fine-tuning the
foundation model inevitably demands substantial computational resources and labeled data, which
are often unavailable in real-world local cohorts. To address this challenge, we propose a lightweight
graph-guided fine-tuning strategy that adapts the pretrained embeddings to novel cohorts without
updating the parameters of MOTOR itself. Instead, we leverage a graph capturing cohort-specific
patterns between patients and EHR concepts to conduct fine-tuning tailored to cohort characteristics
and thus optimize predictive capability.

Graph Construction. To facilitate the adaptation, we construct a bipartite graph G = (V, £), where
the node set V includes both patients and EHR concepts. Specifically, we define V =V, U V., where
Vp = {v1,v2,...,vn, } represents the patients in the cohort S, and V, = {c1, ¢z, ..., ¢k } denotes
the set of distinct medical concepts observed in the cohort. An undirected edge (v;, ¢x) € € is added
if patient j has at least one occurrence of concept ¢, in their EHR record r; prior to the prediction
time. The resulting graph captures co-occurrence relationships between patients and clinical events
and serves as structural guidance for message passing during the adaptation process.

Graph-guided Embedding Adaptation. Given the bipartite graph G = (V, £), we apply a graph
neural network (GNN) to refine patient embeddings using local structural context. Let {hé};v:sl

denote the initial MOTOR-based embeddings for the patients in V,, and let C° = {c; }/_, denote
learnable embeddings for concept nodes in V.. . We perform L layers of message passing as:

(0+1) 1 1 i (€)
b =0 Y s WO = Y Wy
W ()] N ()|
ckEN(vj) v; EN(ck)

(6)
where W, and W, are learnable parameters, and ¢(-) is a nonlinear activation function, and
denotes node neighborhood. At each layer, patient nodes aggregate information from connected
concept nodes, and vice versa. The resulting h,(EL) at layer L denotes phenotypical representations for
patients based on EHR information, accounting for the cohort characteristics.

4.3 Cross-Modal Knowledge Transfer with Distillation

To support prediction in local cohorts without genetic data, we adopt a teacher-student distillation
framework that transfers knowledge from a gene-aware model (teacher) to a gene-free model (student),
enabling generalization to target cohorts that lack genetic information.

The teacher model is trained on the source cohort with genetic and EHR data available. It takes
as input the learned genetic representation hg from the gene encoder, along with phenotypical
embedding hg after graph-guided adaptation. These inputs are concatenated and fed into the teacher
model to produce output logits, as supervision for teacher training, defined as L;:

Yt = fteacher([hG§ hE])a ﬁteacher = CE(ytv y) (7)

In contrast, the student model operates without access to genetic data. It relies solely on the EHR
information hg to generate predictions ys = fsudent(hg), Where teacher and student models are
implemented as multi-layer perceptrons.

Knowledge transfer is achieved through logit-level distillation, where the student is trained with a
hybrid objective to integrate the supervised signal and distillation loss, which aligns its output y
with the teacher’s prediction y;. The total training loss is defined as:

Lrudent = (1 - )\KD) : CE(Ys, y) + Akp - LKD(y.@a Yt)» (8)



where Lp is the KL divergence between student and teacher logits, CE denotes the cross-entropy loss,
and Akp is a trade-off hyperparameter. This setup allows the student to inherit decision boundaries
shaped by gene-level information, thereby improving performance in gene-missing scenarios while
maintaining deployment feasibility in gene-free environments.

4.4 Optimization

During training on the source cohort, each iteration begins by fine-tuning the representations obtained
from MOTOR to produce adapted phenotypical embeddings and encoding genetic features to generate
genetic embeddings. The teacher model is then trained using both the supervised loss in Eq. (7)) and
the reconstruction loss in Eq. (3)) following £/, 1, = CE(¥+,y) + 5L:ec. The output logits from the
teacher are subsequently used as supervision to train the student model via Eq. (§), with all other
components kept fixed. Once training converges, the model is transferred to the target cohort for
adaptation. We fine-tune the patient representation and the student model using a limited number of
target patients following L., ... = CE(¥s,v), applying the same graph-guided fine-tuning procedure.
The fine-tuned student model is then evaluated for risk prediction on the target cohort.

5 Real-World Experiments

5.1 Experimental Setup

Datasets. We evaluate the proposed model C*M using real-world healthcare data. In this work,
we focus on the Alzheimer’s Disease and Related Dementias (ADRD) prediction prior to disease
onset, considering its pervasive influence in the elderly population and practical data availability. We
leverage the national All of Us Research Platform [39] as the source cohort, and three target cohorts
respectively from one local EHR data warehouse and two sub-networks (denoted as INSIGHT-A and
INSIGHT-B) from the INSIGHT Clinical Research Network [1] to simulate our setting. We identified
ADRD cases and controls in these repositories and conducted preprocessing following common
practices in ADRD predictive modeling [21 41]]. More dataset details can be found in Appendix A.1.

Baselines. As our study focuses on the realistic scenario for risk prediction, existing work fails to
directly apply. Related works may target random missingness in a single domain, requiring adaptation
to fit our setting, or rely on access to cross-domain data during training, which is not feasible in
our scenario. To show the effectiveness of C>M, we select two categories of methods from general
domains: (1) modality imputation methods, including CMAE [34], MVAE [53]], GAN [7]] and SMIL
[29]; (2) modality-robust learning models, consisting of MUSE [55], MoMKE [57], DrFuse [[61]
and CMKD [69]. For evaluation, we adapt these methods to align with our problem setup to ensure a
fair comparison. Further baseline details are provided in Appendix A.2.

Experimental Details. We evaluate model performance using AUROC, F1 score, sensitivity, and
positive predictive values (PPV). While AUROC and F1 are standard classification metrics, we
additionally report sensitivity and PPV both at the 95% specificity, which are clinically relevant: the
former reflects the model’s ability to detect true cases under a strict false positive constraint, and the
latter indicates the trustworthiness of positive predictions in clinical decision-making. We provide
more detailed experimental settings in Appendix A.3.

5.2 Experimental Results

Peformance Comparison. Tablepresents the performance of the C>M and baseline models on one
source cohort and three target cohorts. The best results are highlighted in bold, while the top baseline
scores are underlined. Modality imputation-based baselines, including CMAE, MVAE, GAN, and
SMIL, exhibit subpar performance, likely due to their reliance on generative models to infer genetic
features from EHR representations. Given the high dimensionality, noise, and sparsity in genetic
data, the imputed genetic features are often inaccurate and degrade overall prediction performance.
Modality robust learning models such as CMKD, MoMKE, DrFuse, and MUSE employ various
strategies to integrate multimodal information, but still yield suboptimal performance. MoMKE
assumes a unified encoder design across modalities; however, in our setting, EHR and genetic data
exist in fundamentally different semantic spaces, making it ineffective to use a genetic encoder for
processing EHR representation. CMKD attempts to align EHR and genetic embeddings, but this
alignment can distort the EHR representation, reducing its informativeness and harming performance.



Table 1: Performance comparison across source and target cohorts. Metrics are in percentage (%).
Sens@95 and PPV @95 represent sensitivity and PPV values at the 95% specificity, respectively.

All of Us (Source) LocalEHR (Target)
AUROC F1 Sens@95 PPV@95 AUROC F1 Sens@95 PPV@95

CMAE [34] 73.09+055 23.36+166 30.264174 38.664230 61.224036 20.724216 16.754091 26.17+030
MVAE [53]]  72.354049 21.79+185 28.074+166 39.031423 62.0640.10 21.04+078 16.57 1047 2593113
GAN [7] 72424043 30.334082 30.484137 38.394057 62.67+078 22.004000 16.794123 25.814146
SMIL [29]  73.59+064 31.544217 31794154 39.744121 63.17+051 22.404038 17.46+1.02 26.21 118
DrFuse [61] 71.95;{:0,71 16.02:{:2,9(, 28.07:&1,37 36.46;{:0,(,(, 61.47;{:0,73 14.00;{:0,3() 15,85;{:1,05 24.97;{:1,49
MUSE [55]  66.81+172 20.97 4201 19.504196 28.98 4149 59.234510 13.134258 10.524372 17.934319
CMKD [69] 68.34+094 21.554+138 26.39+197 32.3042090 59.47+103 13.67+060 14394154 23.81 1163
MOoMKE [57]] 71954022 18.444075 28.954+066 38.194205 61.894021 11.58 100 16.67+136 25.65+174

M 79.941 034 36951051 40.79+047 45931126 T1.82+4031 31.784027 27.96+1.04 36.66+ 105

INSIGHT-A (Target) INSIGHT-B (Target)
AUROC F1 Sens@95 PPV@95 AUROC F1 Sens@95 PPV@95

CMAE (53] 64.89+040 22.374+131 16.014111 24.464120 68.114+074 24.914260 19.894029 31. 754040
MVAE [53]] 64.964029 23.11 4046 16.631048 25184063 67.5540.14 23.18+077 20.394023 32.27 1038
GAN [7] 65.25+4037 22.104276 16.531079 25.064099 68.41+026 25.71+1.16 20.244055 32.06+0.77
SMIL [29] 65.94 1056 22.57+198 17241064 25.624104 69.01+045 26.28+145 20.804061 32.47+092
DrFuse [61] 64.77;};0,(,5 12-08j:2,60 ]5.64:5:(),34 24,15:(:0,34 67.69;};0,35 16.38;‘:3,05 19.92:5:0,75 31.70;};0,(,9
MUSE [55]  59.314342 13.644346 10.504329 17441461 62251430 21.384226 11.434367 20.504477
CMKD [69] 62.57+056 15.294125 12.384243 18.574+108 64.894146 23.704270 12.924120 23.614003
MOoMKE [57]] 64.77 1040 12.924206 16.284108 24.75+121 67384111 12.444357 19.564061 31.364078

M 72.441 028 23.61+127 26.63+051 34751062 75.39+023 36.044110 29.68+045 41.031063

Method

Method

Table 2: Ablation study across source and target cohorts.
All of Us (Source) LocalEHR (Target)
AUROC F1 Sens@95 PPV@95 AUROC F1  Sens@95 PPV@95

CSM w/o Aggre 78.69:&0‘28 35.98:{:0,61 38.16:{:0‘59 43.61;‘:0‘42 70.26i0,40 29.94;‘:0,34 23.89;‘:1,31 33.09:{:1,24
C>M w/o Graph 72.274053 30.094056 23.034042 33.65+134 60.931038 18.494035 10.44 1124 17.8810.98
CSM w/0 MOTOR 70.881068 30.65+074 25.001054 37.624121 62.44 1042 21.04 1045 12.264143 20.43 112,
C>M w/o Gene 77.70+056 31.564063 35.53+045 42.5241.14  70.704036 31.33+038 24.6010.94 34.58 4083
C*M 79.94 1034 36951051 40.79+047 45931126 T1.821031 31.781027 27.96+1.04 36.66-1 05

Method

DrFuse seeks shared patterns between EHR and genetic representations, yet the inherent noise
in genetic data may lead to imprecise shared representations that negatively impact downstream
predictions. MUSE constructs a patient-modality graph by representing each modality as a node,
which may introduce overly dense and noisy connections, further limiting its effectiveness. The
proposed C*M achieves the best performance among all methods, highlighting the effectiveness of
our approach and its robustness in handling phenotypical and genetic information practically.

Ablation Study. To assess the effectiveness of each component in our model, we conduct an ablation
study on source and target cohorts, with results shown in Table [d] We evaluate four variants: (1)
without the mixture-of-aggregations (w/o Aggre), (2) without the bipartite patient-concept graph for
fine-tuning (w/o Graph), (3) without pre-trained EHR representations, using randomly initialized
EHR representations (w/o MOTOR), and (4) without genetic data (w/o Gene). From Table ] we
observe that all ablated variants underperform the full model, highlighting the importance of each
component. In particular, removing the pre-trained phenotypical EHR representation leads to a
notable performance drop, demonstrating that the foundation model provides informative EHR
representation and alleviates the need to train a complex EHR encoder from scratch, especially
beneficial in resource-limited target sites where fine-tuning such models is challenging. The variant
without the patient-concept graph shows degraded performance, suggesting that distributional shifts
exist between cohorts and the pre-trained embeddings alone are insufficient to fully represent the
phenotypical status of patients in new cohorts. The performance decline of the variant without the
mixture-of-aggregations validates the effectiveness of our mixture-of-mask-tokens design, indicating
that indiscriminately using all genes introduces noise and negatively impacts prediction. Finally, the
variant without genetic features confirms the necessity of incorporating genetic information, as it
contributes complementary signals that enhance phenotypical representation and risk prediction.
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explore the influence of the number of aggregation %%
tokens, we present experimental results in Figure[3] 2, 0351
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comparing performance when varying the number of
aggregation tokens from 1 to 4. In our design, ag-
gregation tokens are used to identify informative and 0.65
relevant genetic features, subsequently compressing
meaningful genetic information through reconstruc-
tion. The mixture-of-aggregations strategy leverages diverse perspectives from multiple experts on
the same set of genes. From the results, we observe that models with 2 to 4 aggregation tokens
outperform the variant using only one, likely because a single aggregation token tends to focus on
a narrow subset of genes and overlook other important features. However, performance slightly
degrades with 4 aggregation tokens compared to 2 or 3, possibly due to the introduction of redundant
or noisy expert views that dilute the model’s focus. Notably, models with 2 or 3 aggregation tokens
achieve comparable performance across various metrics, indicating that a moderate number of tokens
achieves a balance between diversity and relevance in capturing genetic information.
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Figure 3: Effect of #aggregation tokens.

Effect of the Number of Transformer Layers. To 040

investigate the impact of the number of Transformer 0.80 Anotys
layers, we conduct experiments with layer counts

ranging from 1 to 4. As shown in Figure[d] the vari-
ant with only one Transformer layer yields inferior ki

INSIGHT-B

performance, likely due to its limited capacity to cap- L T

ture complex gene feature interactions and long-range
dependencies. Variants with 3 and 4 layers perform
better but still fall short compared to the 2-layer variant, possibly because the training data size is
insufficient to support effective learning in deeper models and may lead to overfitting or optimization
difficulties. Notably, the 2-layer Transformer achieves the best overall performance, suggesting that it
provides an optimal balance between model capacity and generalization under the current setting.
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Figure 4: Effect of #transformer layers.

On Alternative Graph Constructions. In our model,

we construct a patient-concept bipartite graph. An | = oM B o combined
alternative approach, denoted as GCombined, inte- %% 5 P

grates gene information directly into the graph by 04 ; 7

treating each gene as a concept node. To assess the 2] /- ; = I% (// g B K
impact of these two graph construction strategies, we AUROC  FI Sensa9SPPV@ss  AUROC FI  Sensa9SPPv@os

compare their performance. As shown in Figure [5

C3M consistently outperforms GCombined across Figure 5: Performance comparison on graph
all metrics. This result suggests that incorporating  ¢construction strategies.

genetic information directly during graph fine-tuning

degrades performance, likely because the inherent noise and imprecision of genetic data negatively
influence the learning of phenotypic representations derived from EHRs.

Further Analysis. We provide more experimental results and further analyses in Appendix B.

6 Conclusion

We presented a cross-cohort, cross-modal knowledge transfer framework to address the practical
challenges of deploying the clinical risk prediction model in resource-limited settings. Our method
enables the knowledge transfer from a multimodal model to local cohorts with only EHR data, without
requiring access to genetic information during deployment. By introducing a gene encoder with
mixture-of-aggregations to handle noisy genetic inputs and a lightweight graph-guided fine-tuning
strategy for efficient adaptation, our framework achieved consistent and strong performance across
diverse real-world cohorts. A key limitation of our current work is its focus only on Alzheimer’s
disease and related dementias. In future work, we plan to extend the framework to more types
of chronic diseases, e.g., Parkinson’s disease, to further assess its generalizability across disease
domains.
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A More Details on Experimental Setup

A.1 Datasets

We evaluate the proposed method and baseline approaches with one nationwide source cohort and
three local target cohorts. The nationwide All of Us Research Program is primarily utilized to
build the source cohort of ADRD with EHR and genetic modalities. Three cohorts from LocalEHR,
INSIGHT-A, and INSIGHT-B, are leveraged to simulate realistic, resource-limited clinical scenarios
in our study.

A.1.1 All of Us Research Program

The source cohort for ADRD prediction is assembled from the All of Us Research Program [39],
launched in 2018 as a nationwide U.S. initiative designed to advance biomedical research. It collects
de-identified historical health information from distributed health assessment centers standardized
with the OMOP common data model [46]], while retaining biological samples for detailed biological
analyses. We use the All of Us dataset for its extensive, diverse cohort, which enables robust ADRD
prediction across populations and heterogeneous clinical records. The cohort construction process on
All of Us is illustrated as follows.

We first identify ADRD cases using clinically established criteria [21]. The onset time for each case
is defined as the earlier of their first ADRD diagnosis or first anti-dementia prescription. Control
samples are similarly aged individuals with no record of dementia-related diagnoses and no exposure
to anti-dementia medications. To mitigate confounders and enhance clinical relevance, we construct
the case-control matched cohort with a matching ratio of 1:10 following standard practices in
observational health research [41] by age and clinical status. And both groups are required to be
50 years or older at onset. As neurodegenerative diseases often progress gradually, making early
detection essential for timely intervention, we define the prediction time as one year prior to the
disease onset, with the observation window spanning from the start of each patient’s EHR records to
the prediction time. Accordingly, all EHR records documented after the prediction time are excluded
from model input. As a result, cases and controls are required to have at least one year of EHR history
in the observation window.

Meanwhile, genetic factors have been widely implicated in the biological mechanisms underlying
ADRD. These include processes such as amyloid-beta production and clearance, tau phosphorylation,
lipid metabolism, and neuro-inflammatory responses [33}31]. Additionally, genomic data Consider-
ing the accessiability of genetic data in the program, accordingly, we leverage genomic information
in the source cohort, given its biological relevance to ADRD and its availability at scale, and focus
on the genomic variant data, preserving alleles exceeding a population-specific frequency threshold
(>1%) or allele count (>100) for a set of ADRD-related genes based on GWAS Catalog [5]]. Due
to partial biospecimen collection and processing constraints, genetic information is unavailable for
3,027 individuals in the All of Us cohort, resulting in a random missingness rate of 26.7%. For
each individual, a gene is assigned a value of 1 in case of any mutation; otherwise, it is assigned 0.
This yields binary gene features reflecting the presence of associated genetic variants, serving as the
individual’s genetic profile.

A.1.2 Local Clinical Repository

The local hospital’s EHR repository (LocalEHR) contains patient-level clinical information, where
EHR data are standardized under the PCORnet Common Data Model [14]]. Cases and controls for
ADRD are defined using the same criteria as those applied in the All of Us cohort. We construct a
case-control matched cohort using propensity score matching with the same ratio as the All of Us
cohort based on clinical factors. Consistent criteria as All of Us for cohort construction and prediction
timing are subsequently enforced for this repository.
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Table 3: Dataset Statistics

Dataset #Patients #Genes Missing Rates
All of Us 11,356 217 26.7%
LocalEHR 6,548 - 100%
INSIGHT-A 19,062 - 100%
INSIGHT-B 17,424 - 100%

A.1.3 INSIGHT Clinical Research Network

Supported by the Patient-Centered Outcomes Research Institute (PCORI) [12], the INSIGHT Clinical
Research Network (CRN) [1] aims to improve health outcomes and care delivery by analyzing
healthcare utilization across major clinical and academic centers in the New York City. We use
two sub-networks from the network, referred to as INSIGHT-A and INSIGHT-B, each containing
longitudinal electronic health records (EHRSs) spanning over ten years from diverse patient populations
in the metropolitan area. All EHR data are standardized using the PCORnet Common Data Model
[L4]. For each sub-network, we apply identical criteria as All of Us and construct the cohort,
respectively. As different clinical sites often adopt distinct data models and record protocols, the
constructed cohorts at both the source and target sites are processed accordingly. In this study,
we leverage demographics, diagnoses, and medications due to the major role they play in clinical
decision-making. Each type of information is encoded using standard medical concept vocabularies
[8L117,132], and the corresponding timestamps are represented as discrete events, forming a temporally
ordered sequence for each patient as input to the foundation model. Data statistics are summarized in
Table 3.

A.2 Baselines

To show the effectiveness of C3M, we compare C*M to eight baselines and adapt these methods to
align with our problem setup to ensure a fair comparison. The baseline methods compared in our
experiments include:

* CMAE [34] employs a cross-modal autoencoder, which is first learned on a subset of patients
with complete modalities by reconstructing purposely masked-out modalities. Once trained, the
model is applied to impute missing modalities for all patients. Imputation of genetic modality is
performed at test time on the source cohort, and throughout on the target cohorts.

* MVAE [53] builds a multimodal variational autoencoder that learns a joint latent distribution
robust to missing data. Leveraging a product-of-experts architecture to enable parameter sharing
across modalities, MVAE takes input data with different modality combinations. We conduct
MVAE for EHR and genetic modalities, and naturally skip the genetic network during inference.

* GAN [7] proposes a generative adversarial network for Alzheimer’s disease prediction with
incomplete imaging modalities. The generator reconstructs the missing modality from the
available one, while the discriminator evaluates their coherence and performs classification.
Inference is performed by imputing the genetic modality, followed by disease prediction using
the discriminator.

* SMIL [29] integrates Bayesian meta-learning to jointly learn a reconstruction network, which
estimates the missing modality as a weighted combination of modality-specific priors inferred
from modality-complete samples, and a regularization network that conducts uncertainty-guided
feature regularization. During inference, SMIL takes samples with EHR modality as input and
reconstructs the genetic modality for further joint prediction.

* MUSE [55] represents patient—-modality relationships as a bipartite graph, where patients and
fine-grained EHR modalities are nodes, and modality features define the edges. A Siamese GNN
is trained on original and augmented graphs to enhance robustness to missing modalities. Patient
nodes are initialized with MOTOR-derived embeddings, and binary genetic features are encoded
on edges connecting patients to genetic modality nodes. To ensure consistent evaluation under
modality missingness, two fine-grained EHR modality nodes (diagnosis and medication) are used,
with concept-level codes embedded as edge attributes. During inference, EHR-alone patients only
maintain edges with fine-grained modality nodes for EHRs.
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Algorithm 1 The Training Procedure of C3M on the Source Cohort

1: Input: Multi-modal inputs {(7;, g;, y;) }» EHR foundation model Motor, bipartite graph G;
2: for each iteration do
2:  Obtain the phenotypical representation hg for each patient ¢ from Motor using r;;

2 Conduct graph-guided phenotypical representation fine-tuning and obtain hSEL) using Eq.(6);
2:  Encode genetic profile g;, and obtain updated aggregation token as patient-level genetic
representation hg, as well as contextualized genetic outputs using Eq.(4) and Eq.(5);
Compute reconstruction loss using Eq.(2)-Eq.(5);

»

2:  Using phenotypical embedding hg) and genetic embedding hg to optimize teacher model
Freacher based on the 1088 Licacher s including the reconstruction loss and classification loss;

2:  Optimize the student model fygene Using Eq.(8)

. end for

3: Evaluation using the student model fgygen and trained GNN.

(98]

* MoMKE [57] adopts a two-stage learning process, consisting of unimodal expert training and
experts mixing training, where a gating mechanism assigns weights based on modality availability
and quality. Missing modalities are handled via zero-imputation during inference.

* DrFuse [61] tackles modality missingness by learning disentangled latent representations for
EHR and imaging modalities. A disease-aware attention mechanism is applied to fuse shared and
modality-specific representations, while selectively disregarding the network branch of a modality
when it is absent. During inference, the network for genetic modality remains inactivated.

* CMKD [69] transfers knowledge from a stronger modality (teacher) to a weaker modality
(student) with paired inputs. The student model is trained to match the intermediate representations
from the teacher model and is ultimately applied with weaker modality alone during inference.

A.3 Experimental Settings

To conduct graph-guided finetuning to obtain phenotypical representations, a two-layer GCN is
adopted with 16 hidden units, along with a 16-dimensional embedding layer to represent 2634
medical concept nodes, and one transformation layer that transforms the foundation model output to
initialize patient nodes. In addition, the transformer encoder consists of two layers with two heads,
and we determine the expert number via search in {1,2,3,4}, while the gene decoder is an MLP with
one hidden layer. Attention modulation is achieved using a multi-head attention mechanism with
two heads. Both the teacher and student models are implemented as multi-layer perceptrons. The
trade-off parameter /3 for gene feature reconstruction is selected via grid search over {0.01, 0.05, 0.1,
0.5, 1} and set as 0.1. The trade-off parameter Axp of knowledge distillation for the student model is
set as 0.01 by grid search over {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0}. The learning rate of C3M and
baseline models is selected from {0.01, 0.001, 0.0005}.

The proposed model is trained with the Adam optimizer employing early stopping based on validation
performance. Model performance on the testing set of All of Us is reported to assess within-
domain model generalizability. To simulate low-resource clinical settings, we randomly sample a
small subset of each target cohort to fine-tune the model transferred from All of Us. In our main
experimental results, for three target cohorts, we randomly sample 500 patients for fine-tuning,
respectively. Besides, fine-tuning and evaluation on the target cohorts are both performed in CPU-
only environments to assess practical deployment feasibility. Similarly, baseline approaches are
trained on All of Us, and afterwards finetuned with the same small sample set on each target cohort
before evaluation. Because these methods are not tailored to our scenario, we adapt their public
implementations to our setting and determine hyperparameters via parameter search.

For datasets, the All of Us cohort is randomly split into training/validation/testing at a 6:2:2 ratio.
The training set includes both EHR data and genetic information, with a random missingness rate of
26.7% for the genetic modality. The trained model is first evaluated on the testing set of the source
cohort using EHR data alone, and further fine-tuned with a limited set of EHR-alone samples on each
target cohort to assess cross-cohort generalizability. Furthermore, for a fair comparison, all baseline
approaches are trained and evaluated using the same data splits and are provided with representations
from the foundation model as patient features. We report the average performance as well as the
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Table 4: Impact of the transferred model under varying numbers of fine-tuning patients in INSIGHT-B.
"W/o T" indicates training from scratch (without using the transferred model), while "W/ T" refers to
fine-tuning with the transferred model.

#Patients 100 200
WoT W/T | WoT W/T | WoT W/T | WoT W/T | WoT W/T

300 400 500

AUROC 0.6620 0.7308 | 0.7186 0.7502 | 0.7241 0.7517 | 0.7298 0.7524 | 0.7421 0.7539
F1 0.2299 0.3522 | 0.2759 0.3276 | 0.2866 0.3541 | 0.2921 0.3579 | 0.3077 0.3604
Sens@95 0.1194 0.2803 | 0.2161 0.2950 | 0.2472 0.2961 | 0.2597 0.2965 | 0.2760 0.2968
PPV@95 0.2180 0.3955 | 0.3377 0.4088 | 0.3543 0.4080 | 0.3744 0.4074 | 0.3928 0.4103

standard deviation of three random runs on All of Us and the target cohorts. The training procedure
of C3M is shown in Algorithm 1.

B Further Analysis and Discussion

B.1 More Experimental Results

Effect of the Tradeoff Parameter /3. The trade-
off parameter 3 controls the balance between the
supervised training objective and the gene fea- 0.8
ture reconstruction loss. We evaluate the model

All of Us
LocalEHR

o
=
S

AUROC
b

F1 Score

under different values of § and present the re- 0.7

sults in Figure 6. A small 3 leads to a weak re- Aol 301

construction signal, causing suboptimal gene en- ool 065 o1 o5 1o “Fotl obs o1 o5 1o
coding and imperfect genetic embeddings. Con- Figure 6: Effect of trade-off weight /3.

versely, a large 3 shifts the optimization focus

excessively toward reconstructing gene features,

which can impair the learning of task-relevant supervised representations and ultimately degrade
overall performance. The best performance is achieved with a moderate value of 3, indicating the
importance of balancing these two objectives. Overall, the impact of the tradeoff parameter 3 is not
large, and /3 usually slightly affects the performance.

Effect of the Number of Patients in the Target Cohorts
for Fine-tuning. To investigate the impact of the fine-

tuning dataset size, we conduct additional experiments 03 N,
by varying the number of labeled patients from the target ©

cohorts used for fine-tuning. As shown in Figure 7, the %

model achieves quite good performance even when fine- = °7

tuned with a very small set of labeled patients. As the size
of the fine-tuning set increases, the performance contin-
ues to improve, but with diminishing returns. This result
highlights the robustness and practicality of our proposed
framework, particularly in resource-limited clinical settings where only a small number of labeled
patients are available for fine-tuning.

100 200 300 400 500 1000 1500 2000
Figure 7: Effect of number of patients.

Effect of the Transferred Model. To evaluate the effectiveness of the transferred model, we compare
model performance on the target cohort (INSIGHT-B) between models trained from scratch and
those fine-tuned from the transferred model’s parameters. As shown in Table 4, when the number
of available patients in the target cohort is limited, using the transferred model offers a significant
advantage by providing a near-optimal starting point for optimization. These results underscore
the necessity of studying cross-cohort knowledge transfer to enable effective model adaptation in
low-resource settings.

Time Complexity Analysis. In our setting, target sites typically have limited computational resources,
which constrain their ability to develop models independently. This motivates the need for cross-
cohort knowledge transfer. To ensure our approach aligns with such constraints, we analyze the time
complexity on target sites. First, the time complexity of fine-tuning the transferred model, which
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consists of a GNN and student MLPs, is linear to the number of patient samples, because the time
complexity of GNN is O(d?(|V| + |E|)) and the time complexity of MLP is O(d? - N;) where d is
the hidden dimension, |V| and |E| denote the number of nodes and edges in the graph, and N; is
the number of patients in target cohort. Second, since the transferred model comes with pre-trained
parameters that are already near the optimal solution for the target cohort, only minimal fine-tuning
and a small amount of target cohort data are required. These show that our method effectively
overcomes the limitations posed by resource-limited target sites.

C Broader impacts

This work aims to democratize clinical risk prediction by enabling the transfer of predictive models
trained on multimodal nationwide data to local clinical settings with limited resources and unimodal
EHR data. If widely adopted, the proposed C*M framework could help early risk detection, such as
for Alzheimer’s Disease and Related Dementias, in underserved populations and healthcare systems
with constrained access to genetic testing and computational infrastructure. By reducing reliance on
costly or inaccessible modalities, this approach promotes more equitable access to precision medicine
tools. However, we also note the importance of local validation, continuous monitoring, and inclusive
data practices in model transfer across cohorts to ensure robust and responsible model usage.

D More Preliminaries

Self-Attention. Self-attention is a key mechanism for modeling dependencies within a sequence by
computing contextualized representations for each token through interactions with all others. Given
an input sequence of tokens X = {x1,zs,...,x,}, self-attention computes the representation of
each token as a weighted sum of all tokens in the sequence. This is achieved through the computation:

Attention(Q, K, V) ft (QKT> A\ ©)
ention(Q, K, V) = softmax | —— ,
Vdy

where Q, K, and V are the query, key, and value matrices projected from the input X, and dj,
is the dimensionality of the key vectors used for scaling. The attention weights capture pairwise
relevance between tokens, allowing the model to dynamically focus on different parts of the sequence.
Multi-head self-attention extends this mechanism by running multiple attention operations in parallel,
enabling the model to capture diverse semantic relationships.

18



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly summarize the paper’s contributions,
framework, and main findings. These sections are consistent with the detailed content
presented in the subsequent sections.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We have considered the limitations of the proposed model, which are discussed
in the Conclusion section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed descriptions of the experimental settings in Appendix, and
release the source code to facilitate reproduction.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We release the code in https://github.com/graph-ehr/C3M.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The training and the test details can be found in Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Experimental results in Table 1 and Table 2 show the standard deviation.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

21


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Appendix, we provide a comprehensive overview of the software environ-
ment and hardware setup in the experimental setting section.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We affirm that this research fully adheres to the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: In Appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our model does not have a high risk for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have obtained authorization from the All of Us platform and INSIGHT
Clinical Research Network to use their data.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new asset is proposed.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]
Justification: The paper obtained IRB based on the requirements of the institution.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This research does not incorporate LLMs in the development of core methods
or experiments. Any usage of LLMs was limited to writing assistance, which does not
impact the scientific rigor or originality of the research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

25


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Preliminaries
	The Proposed Method
	Gene Encoding with Mixture-of-Aggregations
	Graph-Guided Phenotypical Representation Fine-Tuning
	Cross-Modal Knowledge Transfer with Distillation
	Optimization

	Real-World Experiments
	Experimental Setup
	Experimental Results

	Conclusion
	More Details on Experimental Setup
	Datasets
	All of Us Research Program
	Local Clinical Repository
	INSIGHT Clinical Research Network

	Baselines
	Experimental Settings

	Further Analysis and Discussion
	More Experimental Results

	Broader impacts
	More Preliminaries

