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Abstract

Lattice field theories are fundamental testbeds for computational physics, yet sam-1

pling their Boltzmann distributions remains challenging due to multimodality and2

long-range correlations. While normalizing flows offer a promising alternative,3

their scalability to large lattices remains a challenge. We propose sparse triangu-4

lar transport maps that explicitly encode the conditional independence structure5

of the lattice graph under periodic boundary conditions using monotone recti-6

fied neural networks (MRNN). We introduce a comprehensive framework for7

triangular transport maps that navigates the fundamental trade-off between exact8

sparsity (respecting marginal conditional independence in the target distribution)9

and approximate sparsity (computational tractability without fill-ins). Unlike dense10

normalizing flows that suffer from O(N2) dependencies, our approach leverages11

locality to reduce complexity to O(N) while maintaining expressivity. Using ϕ412

in two dimensions as a controlled setting, we analyze how node labelings (order-13

ings) affect sparsity and performance of triangular maps. We compare against14

Hybrid Monte Carlo (HMC) and established flow approaches (RealNVP). Our15

results suggest that structure-exploiting triangular transports deliver better scaling16

and competitive decorrelation compared to dense or coupling-based flows, while17

preserving physical symmetries via localized stencils.18

1 Introduction19

Lattice field theories provide a non-perturbative framework for fundamental physics, but their study20

is often constrained by the computational cost of sampling from the high-dimensional Boltzmann21

distribution, P [ϕ] ∝ e−S[ϕ]. While standard MCMC methods like Hybrid Monte Carlo (HMC) are22

asymptotically exact, they are notoriously hampered by critical slowing down near phase transitions,23

where autocorrelation times grow exponentially [17].24

To address this bottleneck, normalizing flows (NFs) have recently been introduced to lattice field25

theory, demonstrating the potential for orders-of-magnitude improvements in sampling efficiency26

[2, 3, 6]. However, existing architectures struggle to scale to large lattice volumes because their27

inherent design limits parallelizability, requiring that the entire state is processed sequentially through28

the network’s layers, which is inefficient for large configurations [1]. In this work, we propose a29

solution by developing sparse triangular transport maps, which leverage the use of Knothe-Rosenblatt30

rearrangements.31

Our method achieves linear scaling in lattice size N . We accomplish this by constraining each output32

of the map to depend only on a local neighborhood of preceding variables, determined by a specific33

node ordering. This approach navigates the crucial trade-off between exact sparsity, which requires34

modeling computationally expensive "fill-in" effects from marginalization, and approximate sparsity,35

which enforces strict locality for tractability. Any error introduced by this approximation is corrected36
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by a final Metropolis-Hastings step, guaranteeing exactness. Each map component is parameterized37

as a monotone rectified neural network (MRNN), an integral of a strictly positive neural network,38

which ensures invertibility and a tractable Jacobian.39

Contributions: We present several innovations for sampling in lattice field theory:40

1. We use Monotone Rectified Neural Networks (MRNNs) to flexibly define the map’s in-41

vertible components. This avoids the rigidity of polynomial-based methods, which require42

presetting the polynomial degree.43

2. We introduce a conditionally sparse triangular map for lattice models using MRNN44

components, reducing the computational and memory complexity from O(N2) to O(N).45

3. We provide a systematic analysis of labeling strategies, demonstrating how the choice of46

site ordering directly controls the map’s sparsity pattern and performance.47

4. We empirically demonstrate that on the 2D ϕ4 theory the method shows competitive sampling48

efficiency, establishing a robust framework for future extensions to gauge theories.49

2 Related Work50

Our work is positioned at the intersection of machine learning for physics, generative modeling, and51

classical methods for sparse systems.52

Pioneering work by [2] introduced normalizing flows to lattice physics using the RealNVP architec-53

ture [8], later refining the model by replacing the initial dense MLP coupling layers with convolutional54

neural networks to enforce parameter sharing and improve scalability [3]. These models are com-55

putationally efficient but must be stacked deeply to capture long-range physical correlations. A56

parallel line of research has focused on enforcing physical symmetries, leading to gauge-equivariant57

flows [11]. While powerful, these approaches can be computationally expensive, often relying on58

continuous normalizing flows that require costly ODE solvers [5]. Despite this progress, developing59

flow architectures that are both expressive and can scale to large, physically relevant lattices remains60

a central challenge for the field [16].61

An alternative to coupling-based architectures are triangular transport maps [13, 4, 14], which62

correspond to autoregressive models. These models are highly expressive and are known to be63

universal approximators [10]. However, their power comes with a critical drawback for sampling:64

generating a single sample is an inherently sequential process with O(N2) complexity, making dense65

autoregressive models slow for large systems. Our work directly targets this sampling bottleneck.66

Recent work has explored monotone parameterizations using polynomials and structure exploitation67

[4, 7].In our case we want to construct maps that respect the conditional independence structure of the68

target distribution, using the relation between graphical models and conditional independence [18].69

The primary obstacle is the phenomenon of "fill-in," where marginalizing variables introduces dense70

dependencies not present in the original model. This is a classic challenge, known as the minimum71

fill-in problem in the context of sparse Cholesky factorization in numerical linear algebra [9] and as a72

core problem for exact inference in probabilistic graphical models [12].73

3 The ϕ4 Lattice Field Theory74

Consider a D-dimensional hypercubic lattice Λ = (Z/LZ)D with Nsites = LD sites, where L is the75

extent in each dimension. A scalar field ϕx ∈ R is defined at each site x ∈ Λ. The Euclidean action76

for the ϕ4 theory is given by:77

S[ϕ] =
∑
x∈Λ

[
1

2

D∑
µ=1

(ϕx+µ̂ − ϕx)
2 +

m2
0

2
ϕ2
x +

λ0

4!
ϕ4
x

]
(1)

where ϕx+µ̂ is the field at the site adjacent to x in the positive µ-direction, m2
0 is the bare mass-78

squared parameter, and λ0 is the bare coupling constant. We assume periodic boundary conditions79

ϕx+Lµ̂ = ϕx. The induced Gibbs distribution is a positive Markov random field (MRF) with cliques80

given by on-site and nearest-neighbor interactions:81

P [ϕ] =
1

Z
e−S[ϕ] (2)
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where Z =
∫
Dϕ e−S[ϕ] is the partition function, and Dϕ =

∏
x∈Λ dϕx. This Markov property,82

ϕx ⊥ ϕΛ\({x}∪N (x))|ϕN (x), will be the key to our sparse construction.83

4 Triangular Maps84

Transport maps learn a diffeomorphism T : Z → X between a simple base distribution pZ(z) (e.g.,85

a standard D · Nsites-dimensional Gaussian) over z ∈ Z and a complex target distribution pΦ(ϕ)86

(approximating P [ϕ]) over ϕ ∈ X . The KR-type maps are uniquely defined once an ordering of87

coordinates is chosen. In general, orderings impact both the expressivity and the computational88

structure, especially if we look closely into approximate sparsity. If ϕ = T (z), the change of variables89

formula gives:90

pΦ(ϕ) = pZ(T
−1(ϕ)) |det JT−1(ϕ)| (3)

or, equivalently, for z = T−1(ϕ), pΦ(T (z)) = pZ(z) |det JT (z)|−1, where JT (z) is the Jacobian91

matrix of the transformation T at z. We impose an ordering on the Nsites components of z =92

(z0, . . . , zNsites−1) and ϕ = (ϕ0, . . . , ϕNsites−1). The triangular map has the form where each output93

component ϕj depends on the corresponding input zj and all preceding input components z<j . The94

triangular map T : Z → X is defined component-wise as ϕ = T (z), such that each component ϕj is95

generated as:96

ϕ0 = T0(z0)

ϕ1 = T1(z1; z0)

...
ϕj = Tj(zj ; z0, z1, . . . , zj−1) or simply Tj(zj ; z<j)

(4)

In this structure, the j-th component function Tj takes the j-th base variable zj as its primary input97

(the variable with respect to which it is made monotonic and invertible for the transformation) and98

all preceding base variables z<j = (z0, . . . , zj−1) as conditioning context or parameters. This99

autoregressive definition ensures that the Jacobian matrix of the transformation, JT (z) with elements100

(JT )ij =
∂ϕi

∂zj
, is lower triangular. The determinant is then simply the product of the diagonal entries:101

det JT (z) =
∏d−1

j=0
∂ϕj

∂zj
. A specific parameterization for each component Tj that ensures invertibility102

with respect to zj and a positive partial derivative ∂ϕj

∂zj
is the Monotone Rectified component:103

ϕj = Tj(zj ; z<j) = fj(z<j) +

∫ zj

0

r(gj(s, z<j))ds (5)

Crucially, we parameterize the shift function fj and the scale integrand gj using neural networks.104

This approach, which we term MRNN, contrasts with prior work that typically uses expansions of105

orthogonal polynomials [4]. The use of neural networks offers a greater flexibility, and the universal106

approximation property of neural networks ensures that the existence guarantees provided by the107

polynomial formulation still hold.108

Why Neural Networks over Polynomials? Neural networks provide a non-parametric, adaptive109

parameterization for the high-dimensional and a priori unknown target distributions of lattice theories.110

In contrast to fixed-degree polynomial expansions, they learn the required functional basis and111

complex conditional dependencies directly from data. Universal approximation theorems formally112

guarantee their expressive capacity is at least equivalent to that of polynomial maps.113

r : R → R+ is a strictly positive rectification function (e.g., r(s) = exp(s) or Softplus). This ensures114
∂ϕj

∂zj
> 0. The partial derivative required for the Jacobian determinant is ∂ϕj

∂zj
= r(gj(zj , z<j)).115

Thus, the log-determinant of the full map T is log |det JT (z)| =
∑Nsites−1

j=0 log r(gj(zj , z<j)). The116

integral in Eq. (5) is one-dimensional and can be approximated using a change of variables and117

numerical quadrature:118 ∫ zj

0

r(gj(s, z<j))ds = zj

∫ 1

0

r(gj(tzj , z<j))dt ≈ zj

Q∑
q=1

w(q)r(gj(t
(q)zj , z<j)) (6)
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Figure 1: Dependency structures for a triangular map on a 4× 4 lattice. It contrasts the dense, exact
map for a lexicographic ordering (including "fill-in") with the enforced sparse maps for lexicographic
and checkerboard ordering.

where (w(q), t(q)) are the weights and nodes of a chosen quadrature rule (e.g., Gauss-Legendre)119

on [0, 1], and Q is the number of quadrature points. This formulation is highly efficient for GPU120

computation. For a batch of size B, the evaluation of gj can be parallelized across the B × Q121

inputs corresponding to the quadrature points. The component evaluation reduces largely to tensor122

contractions:123

Tj(zj ; z<j) ≈ fj(z<j) + zjw
⊤r(gj(tzj , z<j)) (7)

This allows the integral for every site in a large batch to be estimated with a single, highly parallelized124

forward pass through the networks fj and gj .125

5 From Conditional Independence to Sparse Triangular Maps126

The objective is to construct an efficient autoregressive model, or triangular map, for a probability
distribution P [ϕ] defined by a local action. The joint distribution is factorized as:

P [ϕ] =

Nsites∏
k=1

P (ϕk|ϕ<k)

where ϕ<k = (ϕ0, . . . , ϕk−1) for a chosen ordering of the lattice sites. A fundamental challenge arises
from this factorization. While the original distribution exhibits the local dependencies of a Markov
Random Field, the exact conditionals P (ϕk|ϕ<k) are generally dense. This is because marginalizing
out "future" variables (ϕl for l > k) induces long-range correlations among the remaining variables.
This phenomenon, known as fill-in, is analogous to the new non-zero entries that appear during
the Cholesky factorization of a sparse matrix [15]. Finding an ordering that minimizes this fill-in
is an NP-complete problem, rendering the construction of an exactly sparse map computationally
intractable. To ensure scalability, we instead enforce approximate sparsity. This is achieved by
restricting the dependencies of the j-th component of our triangular map, ϕj = Tj(zj ; {ϕi}i∈C(j)),
to a local conditioning set C(j). Motivated by the physical locality of the action, we define this set as
the "past neighbors" of site j:

C(j) = Np(j) ≡ N(j) ∩ {0, . . . , j − 1}
where N(j) is the set of immediate neighbors of site j on the lattice (for a concrete structure of the127

distribution see A.4). This formulation presents a clear trade-off. By defining the conditioning context128

via Np(j), the size of the set is bounded by the lattice coordination number (e.g., 2D), guaranteeing129

that the map evaluation scales linearly with the system volume, O(Nsites). However, by ignoring the130

fill-in from marginalization, the map only approximates the true conditional structure. Consequently,131

to sample exactly from the target distribution, this approximate map must be used as a proposal132

within a Metropolis-Hastings correction framework. The quality of this approximation, and thus the133

overall sampling efficiency, critically depends on the chosen variable ordering.134

5.1 Orderings and Sparsity135

The ordering determines which neighbors are "past" (and thus available as conditioning variables)136

and which are "future" (and must be marginalized over implicitly). We want an ordering that137
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maximizes the information captured by the past neighbors. Our key insight is that while exact sparsity138

requires considering marginalization graphs with inevitable fill-ins during triangular decomposition,139

approximate sparsity based on conditional independence patterns leads computationally efficient140

maps at the cost of reduced expressivity. This mirrors classical fill-in behavior in sparse Cholesky141

factorizations [15]. We investigate three strategies:142

Lexicographic Ordering Sites are ordered row-by-row: π(i) = (i mod L, ⌊i/L⌋) for 2D lattices.143

The advantages are the simple implementation, predictable structure, however it creates asymmetric144

dependencies, poor for periodic boundaries.145

Checkerboard Ordering Alternates between "black" and "white" sites as in checkerboard pattern.146

It is natural for bipartite lattices, symmetric dependencies, but it requires two-stage generation. The147

lattice is divided into even and odd sites. All even sites are ordered first, followed by all odd sites.148

When modeling the odd sites, all their neighbors (which are even) are in the preceding context. This149

maximizes the size of Np(j) to 2D for the second half of the variables. This structure provides the150

most complete local information for the sparse map.151

Max-Min Distance Ordering It greedily selects the next site to maximize minimum distance from152

already-ordered sites:153

π(j) = arg max
x∈Λ\{π(1),...,π(j−1)}

min
i<j

d(x, π(i)) (8)

This creates an optimal neighborhood preservation and balanced dependencies. However we have to154

account for higher reprocessing cost.155

Periodic Boundary Conditions (PBCs) introduce topological complexity. Sites that are physically156

adjacent may be far apart in the ordering due to boundary wrap-around (e.g., site 0 and site L− 1 in157

1D). We rely on the flexibility of the MRNN parameterization and the subsequent MCMC correction158

to ensure exactness. The effect of the different orderings on the structure of the triangular map for a159

lattice problem can be seen in Figure 2. Here we represented a L = 4 lattice, with periodic boundary160

conditions, and show the difference between the exact conditional independence and enforced sparse161

representation. A more detailed analysis of the scaling behavior of fill-ins and an overall overview on162

the effect of the different orderings can be seen in A.5.163

6 Experiments164

We evaluate our proposed sparse triangular maps on the 2D ϕ4 theory (D = 2). The map pa-165

rameters are optimized by minimizing the variational free energy, L(θ) = Ez∼pZ(z)[S[Tθ(z)] −166

log |det JTθ
(z)|], via stochastic gradient descent (see A.1). This is equivalent to minimizing the167

reverse Kullback-Leibler divergence between the model distribution pΦ and the target Gibbs distribu-168

tion P [ϕ]. To ensure exact sampling from the target distribution, we use the trained map as a proposal169

within an Independent Metropolis-Hastings (IMH) algorithm [2] (see A.2).170

Setup. We consider an L = 8 lattice (N = 64 sites) with periodic boundary conditions. The ϕ4171

theory parameters are fixed at m2
0 = −4.0 and λ0 = 8.0, placing the system in the challenging172

broken-symmetry phase near the critical line (moderate correlation lengths). The primary performance173

metric is the effective sample size (ESS) (see A.3).174

Model and Training. Unless specified otherwise, maps are constructed from Monotone Rectified175

Neural Network (MRNN) components. The neural network for each component Tj consists of 3176

hidden layers (64 units each, GELU activation). Monotonicity is enforced via a Softplus activation177

on the final layer of the integrand network, and the required integral is approximated using a 15-point178

Gauss-Legendre quadrature. All models were trained for 3000 epochs using the AdamW optimizer179

(initial LR 10−3, weight decay 10−5) with a batch size of 256. A cosine annealing schedule decayed180

the learning rate to a minimum of 10−6.181

6.1 Impact of Variable Ordering and Neighborhood Size182

We investigate the fundamental trade-off between the sparsity of the triangular map and its expressivity183

by analyzing how different variable ordering strategies and conditioning neighborhood sizes affect184

performance.185
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Figure 2: Effective Sample Size (ESS) as a function of training epochs for the nine model con-
figurations. Each panel corresponds to a different variable ordering strategy (Lexicographical,
Checkerboard, MaxMin). Within each panel, lines represent models trained with cumulatively
increasing neighborhood orders (1st, 2nd, and 3rd). Expanding the conditioning set consistently
improves sampling efficiency, with the MaxMin ordering achieving the highest overall performance.

We evaluated three distinct ordering strategies: a standard Lexicographical ordering, a physics-186

motivated Checkerboard (CB) ordering, and a MaxMin ordering designed to maximize spatial187

separation between causally dependent variables. For each ordering, we systematically increased the188

map’s complexity by cumulatively expanding the conditioning neighborhood: 1st-order (nearest-189

neighbors), 2nd-order (including diagonals), and 3rd-order (including "knight-moves").190

We analyzed these nine configurations based on the realized sparsity (Avg. |C(j)|) and sampling191

efficiency (ESS). As visualized in Figure 2, increasing the neighborhood order consistently improves192

the final ESS across all orderings, demonstrating that a richer local context allows the model to better193

capture the underlying physics. The MaxMin ordering achieves the highest overall performance194

(however similiar in performance to the Checkerboard ordering), confirming that its structure naturally195

better preserver long-range interactions providing a more effective conditioning context compared to196

the other strategies.197

6.2 Architecture Comparison and Scalability198

We perform a direct benchmark of various flow-based architectures to determine the most effective199

and computationally efficient design for lattice field theory sampling. We compare the expressive200

power of our MRNN models against a convolutional RealNVP baseline.201

Five architectures are compared: (1) A Dense triangular map (lexicographical ordering), serving as202

an upper-bound for expressivity but with prohibitive parameter count and quadratic scaling. (2) A203

RealNVP (CNN) model, built from 8 coupling layers, representative of standard flow models for204

structured data. (3-5) Sparse Triangular Maps use MaxMin ordering, with dependencies restricted205

to 1st-order neighbors, 2nd-order neighbors, and the Exact Conditional dependencies derived from206

graph elimination.207

The results are summarized in Figure 3. The CNN-based RealNVP performs competitively, achieving208

an ESS comparable to the Exact Conditional map. The approximate sparse maps (2nd order) perform209

slightly worse, highlighting the challenge of hand-picking an optimal, fixed-size conditioning set.210
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However, a crucial distinction emerges regarding scalability. The RealNVP parameter count is nearly211

constant O(1) with respect to the lattice size N . Yet, its architecture is inherently sequential; the212

entire configuration must pass through the deep stack of coupling layers, limiting parallelization213

primarily to the batch dimension.214

In contrast, while the sparse MRNN’s parameter count grows linearly O(N), its architecture is215

massively parallel. Each of the N map components is an independent neural network that requires only216

the base sample zj and its small, local conditioning set {zk}k∈C(j). This structure allows for spatial217

parallelism, where all N components can be computed simultaneously. Therefore, the MRNN’s218

superior parallelizability makes it a far more scalable and computationally efficient architecture for219

large lattices.220

(a) ESS evolution during training. (b) Final ESS comparison.

Figure 3: Performance comparison of various flow-based architectures. Subfigure (a) plots the ESS
during training. Subfigure (b) summarizes the final ESS, demonstrating that the sparse triangular
maps achieve superior sampling efficiency compared to the RealNVP baseline.

6.3 Statistical Error and Physical Observables221

We analyze the statistical error of physical observables as a function of the number of generated222

samples, comparing our optimized triangular map against a standard Hybrid Monte Carlo (HMC)223

sampler.224

The HMC sampler uses a standard leapfrog integrator with 10 steps. The integrator step size, ϵ,225

was dynamically tuned to achieve a target acceptance rate of ≈ 70%. The implementation correctly226

handles the lattice’s periodic boundary conditions using circular shifts in the force term computation.227

The triangular map, used within the IMH framework, was tuned for a 50% acceptance rate (following228

the structure of [2]).229

For each sampler, we generated a chain of 20,000 configurations, discarding the first 2000 samples230

as burn-in. We measured the energy ⟨E⟩ and the susceptibility χ2 (for exact definition see B). The231

statistical error was estimated using the bootstrap method (500 resamples, 68% confidence interval)232

for varying sub-sample sizes (N = 200 up to N = 20, 000). The results, presented in Figure 4,233

confirm that the triangular map closely follows the ideal 1/
√
N scaling behavior, achieving a slightly234

lower statistical error for a given number of samples than the HMC method for the susceptibility.235

7 Conclusion and Future Outlook236

Limitations Triangular transport maps do not perform dimensionality reduction, meaning the latent237

space must have the same dimension as the configuration space. Furthermore, approximation quality238

can sometimes degrade for configurations far from the expected support of the function class, and239

performance remains dependent on the predefined ordering.240

This work introduces a highly scalable framework for sampling in lattice field theories using triangular241

transport maps. By leveraging the inherent locality of the physical action, we construct maps with242

O(N) complexity, a significant improvement over the O(N2) scaling of dense autoregressive models.243

Our central contribution is a principled navigation of the trade-off between exactness and efficiency.244
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Figure 4: The statistical error of the measured energy and susceptibility as a function of the number
of samples, N . The plot compares HMC to the transport maps. The solid lines show the statistical
error, while the red dashed line represents the theoretical 1/

√
N behavior of an ideal sampler.

We demonstrate that while an exact triangular map requires modeling dense, non-local dependencies245

("fill-in") created by marginalization, an approximate sparse map—conditioning only on local,246

preceding physical neighbors—provides a powerful and scalable alternative.247

We show that parameterizing the map components with Monotone Rectified Neural Networks248

(MRNNs) offers superior flexibility and expressivity compared to traditional polynomial-based249

methods. Any error introduced by the sparsity approximation is corrected by a final Metropolis-250

Hastings step, guaranteeing that the resulting samples are drawn from the exact Boltzmann distribution.251

Our experiments on the 2D ϕ4 theory confirm the effectiveness of this approach. We systematically252

show that physics-informed orderings, like the checkerboard or MaxMin pattern, outperform simpler253

ones. The method produces physical observables with lower statistical error for a given number of254

samples, closely tracking the ideal 1/
√
N scaling and confirming its practical advantage, especially255

the parallelizability, for physics simulations.256

Our framework establishes an alternative foundation for parallelizable samplers in lattice QCD, with257

several exciting avenues for future work.258

The most significant frontier is the application to non-Abelian gauge theories. In these theories,259

variables are elements of a Lie group (e.g., SU(N)) associated with the links of the lattice, and the260

action is constructed from gauge-invariant objects. For example, the Wilson gauge action is built261

from plaquette variables U□:262

S[U ] = β
∑
□

Re Tr(1− U□) (9)

Extending our framework requires developing gauge-equivariant maps on the SU(N) group man-263

ifold that rigorously preserve local gauge symmetry. A promising path involves designing gauge-264

equivariant MRNNs that condition on local, gauge-covariant stencils (e.g., small Wilson loops). This265

would involve parameterizing transformations in the Lie algebra via exponential coordinates and266

incorporating corrections for the Haar measure to ensure the map is properly defined on the group.267

While we have shown the power of sparsity, there is room for further optimization. Instead of relying268

on fixed, predefined orderings, it may be possible to learn an optimal ordering as part of the training269

process or develop adaptive orderings that change during sampling to improve decorrelation.270
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A Supplementary Material318

A.1 Training: KL Divergence Minimization319

The parameters of the neural networks modeling fj and gj (collectively denoted θ) are trained by320

minimizing the Kullback-Leibler (KL) divergence between the model distribution pΦ(ϕ) (induced by321

Tθ) and the target distribution P [ϕ] (Eq. (2)). We minimize KL(pΦ(ϕ)||P [ϕ]):322

KL(pΦ||P ) =

∫
pΦ(ϕ) log

pΦ(ϕ)

P [ϕ]
dϕ (10)

= Eϕ∼pΦ
[log pΦ(ϕ)− logP [ϕ]] (11)

This is the appropriate loss (reverse KL or variational free energy minimization) when the target323

density is known (via the action S[ϕ]) but samples are unavailable. Using the change of variables ϕ =324

Tθ(z) where z ∼ pZ(z) (the base Gaussian distribution), and pΦ(Tθ(z)) = pZ(z)|det JTθ
(z)|−1:325

KL(pΦ||P ) = Ez∼pZ(z)[log(pZ(z)|det JTθ
(z)|−1)− log(Z−1e−S[Tθ(z)])] (12)

= Ez∼pZ(z)[log pZ(z)− log |det JTθ
(z)|+ S[Tθ(z)] + logZ] (13)

To minimize this KL divergence, we can drop terms constant with respect to model parameters θ326

(namely Ez∼pZ(z)[log pZ(z)] and logZ). The loss function to minimize is thus:327

L(θ) = Ez∼pZ(z)[S[Tθ(z)]− log |det JTθ
(z)|] (14)

which in this setup becomes:328

L(θ) = Ez∼pZ(z)

S[Tθ(z)]−
Nsites−1∑

j=0

log r(gj(zj , z
(j)
<j ; θ))

 (15)

where z
(j)
<j denotes the appropriate conditioning set for the jth component (all z<j for dense, or zi329

for i ∈ Np(j) for sparse). The expectation is approximated by Monte Carlo sampling from pZ(z)330

and using mini-batch stochastic gradient descent.331

A.2 Metropolis-Hastings Correction Step332

While the trained normalizing flow pΦ(ϕ) approximates P [ϕ], it may not be exact. To obtain samples333

from the exact target distribution P [ϕ], an MCMC correction step is applied. Similiar as in [2]. We334

use the Independent Metropolis-Hastings (IMH) algorithm, where the proposal distribution is the335

learned map itself, Q(ϕ′) = pΦ(ϕ
′). Given a current sample ϕc, a new sample ϕp is proposed by336

drawing zp ∼ pZ(z) and setting ϕp = Tθ(zp). The acceptance probability is:337

α(ϕp|ϕc) = min

(
1,

P [ϕp]Q(ϕc)

P [ϕc]Q(ϕp)

)
= min

(
1,

P [ϕp]pΦ(ϕc)

P [ϕc]pΦ(ϕp)

)
(16)

This can be rewritten using importance weights w(ϕ) = P [ϕ]/pΦ(ϕ): α(ϕp|ϕc) = min
(
1,

w(ϕp)
w(ϕc)

)
.338

The log-importance weight for a sample ϕ = Tθ(z) is (ignoring the constant logZ):339

logw′(ϕ) = log(e−S[ϕ])− log pΦ(ϕ) (17)
= −S[Tθ(z)]− (log pZ(z)− log |det JTθ

(z)|) (18)
The ratio w(ϕp)/w(ϕc) becomes w′(ϕp)/w

′(ϕc), and the acceptance probability calculation proceeds340

using these relative weights. The MCMC step ensures that the resulting chain of accepted samples341

converges to the exact target distribution P [ϕ].342

A.3 Effective Sample Size (ESS) Definition343

The quality of the approximation pΦ can be measured by the Effective Sample Size (ESS) of the344

samples generated directly from the flow, using importance weights w(ϕ) = P [ϕ]/pΦ(ϕ). For M345

samples {ϕi}Mi=1:346

ESS =
(
∑M

i=1 w(ϕi))
2∑M

i=1 w(ϕi)2
/M (19)

An ESS close to 1 indicates that pΦ ≈ P .347
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A.4 Markov Property of ϕ4 theory348

The Markov property emerges from the locality of the action. For the ϕ4 theory, the full conditional349

is:350

P
(
ϕx | ϕΛ\{x}

)
=

P [ϕ]

P
[
ϕΛ\{x}

]
∝ exp

(
−
∑
µ

1

2
(ϕx+µ̂ − ϕx)

2 − m2

2
ϕ2
x − λ

4!
ϕ4
x

)

This depends only on ϕx±µ̂, confirming ϕx ⊥ ϕΛ\({x}∪N (x)) | ϕN (x).351

A.5 Triangular Map Structures and Fill-in Scaling352

The ordering of variables is a critical choice in constructing triangular maps, as it directly dictates353

the structure of both the exact and approximate dependency graphs. The exact dependency structure,354

required for a perfect transformation, accounts for all correlations induced by marginalizing "future"355

variables. This process, known as fill-in, typically results in a dense graph. In contrast, an approximate356

map achieves computational efficiency by enforcing a sparse structure based only on local, "past"357

physical neighbors. In Figure 5 and Figure 6 , we provide a detailed visualization of these effects and358

analyze the scaling behavior of the fill-in phenomenon for different orderings.

Figure 5: Comparison of exact (top row) and enforced sparse (bottom row) dependency structures for
a triangular map on a 4×4 lattice under different orderings. The exact maps reveal the non-local fill-in
patterns unique to each ordering, with lexicographic ordering creating a distinctly different dense
structure from the more symmetric checkerboard ordering. The sparse maps are, by construction,
limited to preceding physical neighbors (Np(j)), highlighting the significant reduction in complexity
at the cost of approximation.

359

B Validation of Physical Observables360

To validate the exactness of the sampling procedure (flow + IMH), we will calculate key physical361

observables and compare them against HMC results.362

• Average Magnetization: ⟨M⟩ = ⟨| 1
Nsites

∑
x ϕx|⟩.363
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Figure 6: Scaling of the fill-in fraction as a function of lattice size L for a 2D system. The plot shows
the ratio of non-zero entries in the exact dependency map (excluding the main diagonal and physical
neighbors) to the total possible entries. This analysis quantifies how rapidly the map densifies,
demonstrating the computational challenge of using exact maps for larger systems and motivating the
use of sparse approximations.

• Magnetic Susceptibility: χ2 = Nsites(⟨M2⟩ − ⟨M⟩2).364
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