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Abstract

Lattice field theories are fundamental testbeds for computational physics, yet sam-
pling their Boltzmann distributions remains challenging due to multimodality and
long-range correlations. While normalizing flows offer a promising alternative,
their scalability to large lattices remains a challenge. We propose sparse triangu-
lar transport maps that explicitly encode the conditional independence structure
of the lattice graph under periodic boundary conditions using monotone recti-
fied neural networks (MRNN). We introduce a comprehensive framework for
triangular transport maps that navigates the fundamental trade-off between exact
sparsity (respecting marginal conditional independence in the target distribution)
and approximate sparsity (computational tractability without fill-ins). Unlike dense
normalizing flows that suffer from O(N?) dependencies, our approach leverages
locality to reduce complexity to O(NN) while maintaining expressivity. Using ¢*
in two dimensions as a controlled setting, we analyze how node labelings (order-
ings) affect sparsity and performance of triangular maps. We compare against
Hybrid Monte Carlo (HMC) and established flow approaches (RealNVP). Our
results suggest that structure-exploiting triangular transports deliver better scaling
and competitive decorrelation compared to dense or coupling-based flows, while
preserving physical symmetries via localized stencils.

1 Introduction

Lattice field theories provide a non-perturbative framework for fundamental physics, but their study
is often constrained by the computational cost of sampling from the high-dimensional Boltzmann
distribution, P[¢] oc e~ I¢]. While standard MCMC methods like Hybrid Monte Carlo (HMC) are
asymptotically exact, they are notoriously hampered by critical slowing down near phase transitions,
where autocorrelation times grow exponentially [[17]].

To address this bottleneck, normalizing flows (NFs) have recently been introduced to lattice field
theory, demonstrating the potential for orders-of-magnitude improvements in sampling efficiency
[2, 3L l6]. However, existing architectures struggle to scale to large lattice volumes because their
inherent design limits parallelizability, requiring that the entire state is processed sequentially through
the network’s layers, which is inefficient for large configurations [[1]. In this work, we propose a
solution by developing sparse triangular transport maps, which leverage the use of Knothe-Rosenblatt
rearrangements.

Our method achieves linear scaling in lattice size /N. We accomplish this by constraining each output
of the map to depend only on a local neighborhood of preceding variables, determined by a specific
node ordering. This approach navigates the crucial trade-off between exact sparsity, which requires
modeling computationally expensive "fill-in" effects from marginalization, and approximate sparsity,
which enforces strict locality for tractability. Any error introduced by this approximation is corrected
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by a final Metropolis-Hastings step, guaranteeing exactness. Each map component is parameterized
as a monotone rectified neural network (MRNN), an integral of a strictly positive neural network,
which ensures invertibility and a tractable Jacobian.

Contributions: We present several innovations for sampling in lattice field theory:

1. We use Monotone Rectified Neural Networks (MRNNs) to flexibly define the map’s in-
vertible components. This avoids the rigidity of polynomial-based methods, which require
presetting the polynomial degree.

2. We introduce a conditionally sparse triangular map for lattice models using MRNN
components, reducing the computational and memory complexity from O(N?) to O(N).

3. We provide a systematic analysis of labeling strategies, demonstrating how the choice of
site ordering directly controls the map’s sparsity pattern and performance.

4. We empirically demonstrate that on the 2D ¢* theory the method shows competitive sampling
efficiency, establishing a robust framework for future extensions to gauge theories.

2 Related Work

Our work is positioned at the intersection of machine learning for physics, generative modeling, and
classical methods for sparse systems.

Pioneering work by [2] introduced normalizing flows to lattice physics using the ReaNVP architec-
ture [8]], later refining the model by replacing the initial dense MLP coupling layers with convolutional
neural networks to enforce parameter sharing and improve scalability [3]]. These models are com-
putationally efficient but must be stacked deeply to capture long-range physical correlations. A
parallel line of research has focused on enforcing physical symmetries, leading to gauge-equivariant
flows [[L1]]. While powerful, these approaches can be computationally expensive, often relying on
continuous normalizing flows that require costly ODE solvers [5]]. Despite this progress, developing
flow architectures that are both expressive and can scale to large, physically relevant lattices remains
a central challenge for the field [16].

An alternative to coupling-based architectures are triangular transport maps [13| 4} [14]], which
correspond to autoregressive models. These models are highly expressive and are known to be
universal approximators [[10]. However, their power comes with a critical drawback for sampling:
generating a single sample is an inherently sequential process with O(IN?) complexity, making dense
autoregressive models slow for large systems. Our work directly targets this sampling bottleneck.
Recent work has explored monotone parameterizations using polynomials and structure exploitation
[4)[7].In our case we want to construct maps that respect the conditional independence structure of the
target distribution, using the relation between graphical models and conditional independence [18]].
The primary obstacle is the phenomenon of "fill-in," where marginalizing variables introduces dense
dependencies not present in the original model. This is a classic challenge, known as the minimum
fill-in problem in the context of sparse Cholesky factorization in numerical linear algebra [9] and as a
core problem for exact inference in probabilistic graphical models [12].

3 The ¢* Lattice Field Theory

Consider a D-dimensional hypercubic lattice A = (Z/LZ)” with Ng;.s = LP sites, where L is the
extent in each dimension. A scalar field ¢, € R is defined at each site z € A. The Euclidean action
for the ¢* theory is given by:

1 D

2, MG o, o 4
S8l = |5 2 (Gorn = 6:2)" + 60+ Jrén (1)
TEA pn=1
where ¢, is the field at the site adjacent to x in the positive p-direction, m is the bare mass-
squared parameter, and )\ is the bare coupling constant. We assume periodic boundary conditions
@z+Li = ¢z. The induced Gibbs distribution is a positive Markov random field (MRF) with cliques
given by on-site and nearest-neighbor interactions:

Plg) = o5 0
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where Z = [ D¢ e 519 is the partition function, and D¢ = [],, d¢,. This Markov property,
bz L OA\({z}uN(2)) |PN (2)» Will be the key to our sparse construction.

4 Triangular Maps

Transport maps learn a diffeomorphism 7' : Z — X between a simple base distribution pz(z) (e.g.,
a standard D - Ny;es-dimensional Gaussian) over z € Z and a complex target distribution pg (¢)
(approximating P[¢]) over ¢ € X. The KR-type maps are uniquely defined once an ordering of
coordinates is chosen. In general, orderings impact both the expressivity and the computational
structure, especially if we look closely into approximate sparsity. If ¢ = T'(z), the change of variables

formula gives:
pa(8) = pz(T~(¢)) |det Jp-1(¢)| 3

or, equivalently, for z = T~ (), ps(T(2)) = pz(2) |det Jp(z)| ", where Jp(z) is the Jacobian
matrix of the transformation 7" at z. We impose an ordering on the Ng;;.s components of z =
(20, -+ ZNosrea—1) and & = (oo, . .., &N, ,,..—1). The triangular map has the form where each output
component ¢; depends on the corresponding input z; and all preceding input components z ;. The
triangular map 7" : Z — X’ is defined component-wise as ¢ = T'(z), such that each component ¢; is
generated as:

o = T(](Zo)
¢1 = T1(21; Zo)

¢j :Tj(Zj;Zo,Zh...,Zj_l) or s1mply Tj(Zj;Z<j)
“

In this structure, the j-th component function T takes the j-th base variable z; as its primary input
(the variable with respect to which it is made monotonic and invertible for the transformation) and
all preceding base variables z; = (zo,...,%;—1) as conditioning context or parameters. This
autoregressive definition ensures that the Jacobian matrix of the transformation, Jr(z) with elements

(Jr)ij = %, is lower triangular. The determinant is then simply the product of the diagonal entries:
J

det Jr(z) = Hj;é gf; . A specific parameterization for each component T’ that ensures invertibility
do;

with respect to z; and a positive partial derivative 7> is the Monotone Rectified component:
J

b) = T (253 5;) = fi(2) + / (955, 2;))ds 5)

Crucially, we parameterize the shift function f; and the scale integrand g; using neural networks.
This approach, which we term MRNN, contrasts with prior work that typically uses expansions of
orthogonal polynomials [4]. The use of neural networks offers a greater flexibility, and the universal
approximation property of neural networks ensures that the existence guarantees provided by the
polynomial formulation still hold.

Why Neural Networks over Polynomials? Neural networks provide a non-parametric, adaptive
parameterization for the high-dimensional and a priori unknown target distributions of lattice theories.
In contrast to fixed-degree polynomial expansions, they learn the required functional basis and
complex conditional dependencies directly from data. Universal approximation theorems formally
guarantee their expressive capacity is at least equivalent to that of polynomial maps.

r: R — R* is astrictly positive rectification function (e.g., r(s) = exp(s) or Softplus). This ensures
gfj > 0. The partial derivative required for the Jacobian determinant is gfj = 1(9j(25,2<5))-

Thus, the log-determinant of the full map 7 is log | det J7(z)| = Z;y:sgerl log (g (2, 2<;)). The

integral in Eq. (3)) is one-dimensional and can be approximated using a change of variables and
numerical quadrature:

zZj 1 Q
/ r(g; (s, 2<5))ds = z; / r(g5(tzg, 2<5))dt & 2y wDr(g; (925, 25)) (6)
0 0

q=1
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Figure 1: Dependency structures for a triangular map on a 4 x 4 lattice. It contrasts the dense, exact
map for a lexicographic ordering (including "fill-in") with the enforced sparse maps for lexicographic
and checkerboard ordering.

where (w(q), t(Q)) are the weights and nodes of a chosen quadrature rule (e.g., Gauss-Legendre)
on [0, 1], and @ is the number of quadrature points. This formulation is highly efficient for GPU
computation. For a batch of size B, the evaluation of g; can be parallelized across the B x @
inputs corresponding to the quadrature points. The component evaluation reduces largely to tensor
contractions:

(253 2<5) = fileg) + 27w 7(g;(b25, 2<5)) ©)
This allows the integral for every site in a large batch to be estimated with a single, highly parallelized
forward pass through the networks f; and g;.

5 From Conditional Independence to Sparse Triangular Maps

The objective is to construct an efficient autoregressive model, or triangular map, for a probability
distribution P[¢] defined by a local action. The joint distribution is factorized as:

Niites
Plg] = [] P(¢rlo<k)
k=1
where ¢, = (o, . . ., dr—1) for a chosen ordering of the lattice sites. A fundamental challenge arises

from this factorization. While the original distribution exhibits the local dependencies of a Markov
Random Field, the exact conditionals P(¢y |« ) are generally dense. This is because marginalizing
out "future" variables (¢; for [ > k) induces long-range correlations among the remaining variables.
This phenomenon, known as fill-in, is analogous to the new non-zero entries that appear during
the Cholesky factorization of a sparse matrix [15]. Finding an ordering that minimizes this fill-in
is an NP-complete problem, rendering the construction of an exactly sparse map computationally
intractable. To ensure scalability, we instead enforce approximate sparsity. This is achieved by
restricting the dependencies of the j-th component of our triangular map, ¢; = T;(z;; {¢: }icc(j))s
to a local conditioning set C(j). Motivated by the physical locality of the action, we define this set as
the "past neighbors" of site j:
C(4) = Np(4) = N(G) N{0,...,j =1}

where N(j) is the set of immediate neighbors of site j on the lattice (for a concrete structure of the
distribution see[A-4). This formulation presents a clear trade-off. By defining the conditioning context
via N, (j), the size of the set is bounded by the lattice coordination number (e.g., 2D), guaranteeing
that the map evaluation scales linearly with the system volume, O (N5 ). However, by ignoring the
fill-in from marginalization, the map only approximates the true conditional structure. Consequently,
to sample exactly from the target distribution, this approximate map must be used as a proposal
within a Metropolis-Hastings correction framework. The quality of this approximation, and thus the
overall sampling efficiency, critically depends on the chosen variable ordering.

5.1 Orderings and Sparsity

The ordering determines which neighbors are "past" (and thus available as conditioning variables)
and which are "future" (and must be marginalized over implicitly). We want an ordering that
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maximizes the information captured by the past neighbors. Our key insight is that while exact sparsity
requires considering marginalization graphs with inevitable fill-ins during triangular decomposition,
approximate sparsity based on conditional independence patterns leads computationally efficient
maps at the cost of reduced expressivity. This mirrors classical fill-in behavior in sparse Cholesky
factorizations [15]]. We investigate three strategies:

Lexicographic Ordering Sites are ordered row-by-row: 7(i) = (¢ mod L, |i/L]) for 2D lattices.
The advantages are the simple implementation, predictable structure, however it creates asymmetric
dependencies, poor for periodic boundaries.

Checkerboard Ordering Alternates between "black” and "white" sites as in checkerboard pattern.
It is natural for bipartite lattices, symmetric dependencies, but it requires two-stage generation. The
lattice is divided into even and odd sites. All even sites are ordered first, followed by all odd sites.
When modeling the odd sites, all their neighbors (which are even) are in the preceding context. This
maximizes the size of N,(j) to 2D for the second half of the variables. This structure provides the
most complete local information for the sparse map.

Max-Min Distance Ordering It greedily selects the next site to maximize minimum distance from
already-ordered sites:

max mind(x, (7 8)
zeA\{n(1),...,n(j—1)} i<j (z, () (
This creates an optimal neighborhood preservation and balanced dependencies. However we have to
account for higher reprocessing cost.

m(j) = arg

Periodic Boundary Conditions (PBCs) introduce topological complexity. Sites that are physically
adjacent may be far apart in the ordering due to boundary wrap-around (e.g., site 0 and site L — 1 in
1D). We rely on the flexibility of the MRNN parameterization and the subsequent MCMC correction
to ensure exactness. The effect of the different orderings on the structure of the triangular map for a
lattice problem can be seen in Figure 2] Here we represented a L = 4 lattice, with periodic boundary
conditions, and show the difference between the exact conditional independence and enforced sparse
representation. A more detailed analysis of the scaling behavior of fill-ins and an overall overview on
the effect of the different orderings can be seen in[A.5]

6 Experiments

We evaluate our proposed sparse triangular maps on the 2D ¢* theory (D = 2). The map pa-
rameters are optimized by minimizing the variational free energy, £(0) = E..,,-)[S[To(2)] —
log | det Jr, (z)|], via stochastic gradient descent (see [A.1). This is equivalent to minimizing the
reverse Kullback-Leibler divergence between the model distribution pg and the target Gibbs distribu-
tion P[¢]. To ensure exact sampling from the target distribution, we use the trained map as a proposal
within an Independent Metropolis-Hastings (IMH) algorithm [2] (see[A.2).

Setup. We consider an L = 8 lattice (N = 64 sites) with periodic boundary conditions. The ¢*
theory parameters are fixed at m3 = —4.0 and Ao = 8.0, placing the system in the challenging
broken-symmetry phase near the critical line (moderate correlation lengths). The primary performance
metric is the effective sample size (ESS) (see[A.3).

Model and Training. Unless specified otherwise, maps are constructed from Monotone Rectified
Neural Network (MRNN) components. The neural network for each component 7T; consists of 3
hidden layers (64 units each, GELU activation). Monotonicity is enforced via a Softplus activation
on the final layer of the integrand network, and the required integral is approximated using a 15-point
Gauss-Legendre quadrature. All models were trained for 3000 epochs using the AdamW optimizer
(initial LR 1073, weight decay 10~°) with a batch size of 256. A cosine annealing schedule decayed
the learning rate to a minimum of 1076,

6.1 Impact of Variable Ordering and Neighborhood Size

We investigate the fundamental trade-off between the sparsity of the triangular map and its expressivity
by analyzing how different variable ordering strategies and conditioning neighborhood sizes affect
performance.



186
187

189
190

191
192
193
194
195
196
197

198

199
200
201

104 Configuration

---- Checkerboard (1st)
Lexicographical (1st)
MaxMin (1st)
---- Checkerboard (2nd)
08 - — Lexicographical (2nd)
MaxMin (2nd)
-=-- Checkerboard (3rd)
Lexicographical (3rd)
MaxMin (3rd)

06 -

Effective Sample Size (ESS)

I I 1 I I
1000 1500 2000 2500 3000
Training Epach

Figure 2: Effective Sample Size (ESS) as a function of training epochs for the nine model con-
figurations. Each panel corresponds to a different variable ordering strategy (Lexicographical,
Checkerboard, MaxMin). Within each panel, lines represent models trained with cumulatively
increasing neighborhood orders (1st, 2nd, and 3rd). Expanding the conditioning set consistently
improves sampling efficiency, with the MaxMin ordering achieving the highest overall performance.

We evaluated three distinct ordering strategies: a standard Lexicographical ordering, a physics-
motivated Checkerboard (CB) ordering, and a MaxMin ordering designed to maximize spatial
separation between causally dependent variables. For each ordering, we systematically increased the
map’s complexity by cumulatively expanding the conditioning neighborhood: 1st-order (nearest-
neighbors), 2nd-order (including diagonals), and 3rd-order (including "knight-moves").

We analyzed these nine configurations based on the realized sparsity (Avg. |C(j)|) and sampling
efficiency (ESS). As visualized in Figure 2] increasing the neighborhood order consistently improves
the final ESS across all orderings, demonstrating that a richer local context allows the model to better
capture the underlying physics. The MaxMin ordering achieves the highest overall performance
(however similiar in performance to the Checkerboard ordering), confirming that its structure naturally
better preserver long-range interactions providing a more effective conditioning context compared to
the other strategies.

6.2 Architecture Comparison and Scalability

We perform a direct benchmark of various flow-based architectures to determine the most effective
and computationally efficient design for lattice field theory sampling. We compare the expressive
power of our MRNN models against a convolutional RealNVP baseline.

Five architectures are compared: (1) A Dense triangular map (lexicographical ordering), serving as
an upper-bound for expressivity but with prohibitive parameter count and quadratic scaling. (2) A
RealNVP (CNN) model, built from 8 coupling layers, representative of standard flow models for
structured data. (3-5) Sparse Triangular Maps use MaxMin ordering, with dependencies restricted
to 1st-order neighbors, 2nd-order neighbors, and the Exact Conditional dependencies derived from
graph elimination.

The results are summarized in Figure[3] The CNN-based ReaINVP performs competitively, achieving
an ESS comparable to the Exact Conditional map. The approximate sparse maps (2nd order) perform
slightly worse, highlighting the challenge of hand-picking an optimal, fixed-size conditioning set.
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However, a crucial distinction emerges regarding scalability. The ReaNVP parameter count is nearly
constant O(1) with respect to the lattice size N. Yet, its architecture is inherently sequential; the
entire configuration must pass through the deep stack of coupling layers, limiting parallelization
primarily to the batch dimension.

In contrast, while the sparse MRNN’s parameter count grows linearly O(N), its architecture is
massively parallel. Each of the N map components is an independent neural network that requires only
the base sample z; and its small, local conditioning set { 2% } xec (). This structure allows for spatial
parallelism, where all N components can be computed simultaneously. Therefore, the MRNN’s
superior parallelizability makes it a far more scalable and computationally efficient architecture for
large lattices.

Total Number of Parameters

Effective Sample Size (ESS)

0 500 1000 1500 2000 2500 2000 © ®
Training Epoch Number of Lattice Sites (N =L?)

(a) ESS evolution during training. (b) Final ESS comparison.

Figure 3: Performance comparison of various flow-based architectures. Subfigure (a) plots the ESS
during training. Subfigure (b) summarizes the final ESS, demonstrating that the sparse triangular
maps achieve superior sampling efficiency compared to the RealNVP baseline.

6.3 Statistical Error and Physical Observables

We analyze the statistical error of physical observables as a function of the number of generated
samples, comparing our optimized triangular map against a standard Hybrid Monte Carlo (HMC)
sampler.

The HMC sampler uses a standard leapfrog integrator with 10 steps. The integrator step size, e,
was dynamically tuned to achieve a target acceptance rate of ~ 70%. The implementation correctly
handles the lattice’s periodic boundary conditions using circular shifts in the force term computation.
The triangular map, used within the IMH framework, was tuned for a 50% acceptance rate (following
the structure of [2]).

For each sampler, we generated a chain of 20,000 configurations, discarding the first 2000 samples
as burn-in. We measured the energy (E) and the susceptibility xo (for exact definition see . The
statistical error was estimated using the bootstrap method (500 resamples, 68% confidence interval)
for varying sub-sample sizes (N = 200 up to N = 20, 000). The results, presented in Figure 4]
confirm that the triangular map closely follows the ideal 1/ V/N scaling behavior, achieving a slightly
lower statistical error for a given number of samples than the HMC method for the susceptibility.

7 Conclusion and Future Outlook

Limitations Triangular transport maps do not perform dimensionality reduction, meaning the latent
space must have the same dimension as the configuration space. Furthermore, approximation quality
can sometimes degrade for configurations far from the expected support of the function class, and
performance remains dependent on the predefined ordering.

This work introduces a highly scalable framework for sampling in lattice field theories using triangular
transport maps. By leveraging the inherent locality of the physical action, we construct maps with
O(N) complexity, a significant improvement over the O(NN?) scaling of dense autoregressive models.
Our central contribution is a principled navigation of the trade-off between exactness and efficiency.
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Figure 4: The statistical error of the measured energy and susceptibility as a function of the number
of samples, N. The plot compares HMC to the transport maps. The solid lines show the statistical
error, while the red dashed line represents the theoretical 1/v/ N behavior of an ideal sampler.

We demonstrate that while an exact triangular map requires modeling dense, non-local dependencies
("fill-in") created by marginalization, an approximate sparse map—conditioning only on local,
preceding physical neighbors—provides a powerful and scalable alternative.

We show that parameterizing the map components with Monotone Rectified Neural Networks
(MRNNSs) offers superior flexibility and expressivity compared to traditional polynomial-based
methods. Any error introduced by the sparsity approximation is corrected by a final Metropolis-
Hastings step, guaranteeing that the resulting samples are drawn from the exact Boltzmann distribution.
Our experiments on the 2D ¢* theory confirm the effectiveness of this approach. We systematically
show that physics-informed orderings, like the checkerboard or MaxMin pattern, outperform simpler
ones. The method produces physical observables with lower statistical error for a given number of
samples, closely tracking the ideal 1/v/N scaling and confirming its practical advantage, especially
the parallelizability, for physics simulations.

Our framework establishes an alternative foundation for parallelizable samplers in lattice QCD, with
several exciting avenues for future work.

The most significant frontier is the application to non-Abelian gauge theories. In these theories,
variables are elements of a Lie group (e.g., SU(N)) associated with the links of the lattice, and the
action is constructed from gauge-invariant objects. For example, the Wilson gauge action is built
from plaquette variables Up:

S[U] =B ReTr(1 - Un) )
O

Extending our framework requires developing gauge-equivariant maps on the SU(N) group man-
ifold that rigorously preserve local gauge symmetry. A promising path involves designing gauge-
equivariant MRNNSs that condition on local, gauge-covariant stencils (e.g., small Wilson loops). This
would involve parameterizing transformations in the Lie algebra via exponential coordinates and
incorporating corrections for the Haar measure to ensure the map is properly defined on the group.

While we have shown the power of sparsity, there is room for further optimization. Instead of relying
on fixed, predefined orderings, it may be possible to learn an optimal ordering as part of the training
process or develop adaptive orderings that change during sampling to improve decorrelation.
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A Supplementary Material

A.1 Training: KL Divergence Minimization

The parameters of the neural networks modeling f; and g; (collectively denoted ) are trained by
minimizing the Kullback-Leibler (KL) divergence between the model distribution pg (¢) (induced by
Tp) and the target distribution P[¢] (Eq. ). We minimize K L(pg (¢)||P[¢]):

KL(pal|P) = [ pol6)1o 22 as (10)
Plg]

= Eg~ps [log pa(¢) —log P[¢]] (11)

This is the appropriate loss (reverse KL or variational free energy minimization) when the target

density is known (via the action S[¢]) but samples are unavailable. Using the change of variables ¢ =
Ty (z) where z ~ pz(z) (the base Gaussian distribution), and pe (Tp(2)) = pz(z)| det Jr, (2)| '

KL(ps||P) = Eenpy () [log(pz(2)| det Jr, (2)| 1) = log(Z2 e S0 T)] (12)

— By llogpz(2) — log | det Jr, ()] + S[Ta(2)] +log 2] (13)

To minimize this KL divergence, we can drop terms constant with respect to model parameters
(namely E. ., (.)[log pz(2)] and log Z). The loss function to minimize is thus:

L(O) =E.p, () [S[To(2)] — log|det Jr,(2)]] (14)

which in this setup becomes:

Nsite s 1
£(0) = Eanp o) |SIT0(2)] — log (g (2. 22):0)) (15)
j=0
where z(<J]) denotes the appropriate conditioning set for the j* component (all z- ; for dense, or z;

for i € N,(j) for sparse). The expectation is approximated by Monte Carlo sampling from pz(z)
and using mini-batch stochastic gradient descent.

A.2 Metropolis-Hastings Correction Step

While the trained normalizing flow pe () approximates P[¢], it may not be exact. To obtain samples
from the exact target distribution P[¢], an MCMC correction step is applied. Similiar as in [2]. We
use the Independent Metropolis-Hastings (IMH) algorithm, where the proposal distribution is the
learned map itself, Q(¢’) = ps(¢’). Given a current sample ¢., a new sample ¢,, is proposed by
drawing z, ~ pz(z) and setting ¢, = Tp(z,). The acceptance probability is:

: P[¢p]Q(¢c)) : ( P[d)p]pcb(céc))
c) = LAy | = LS55 16
olopioq =min (1, 5EATES) = min (1, SRR 1o
This can be rewritten using importance weights w(¢) = P[¢]/pa(¢): a(Pp|Pe) = min (17 ngzfg )
The log-importance weight for a sample ¢ = Ty(z) is (ignoring the constant log Z):
log w'(¢) = log(e™ ")) — log pa (¢) (17)
= —S[Ty(2)] — (log pz(z) — log | det Jr, (2)[) (18)

The ratio w(¢y, ) /w(¢.) becomes w'(¢,)/w’(P.), and the acceptance probability calculation proceeds
using these relative weights. The MCMC step ensures that the resulting chain of accepted samples
converges to the exact target distribution P[¢)].

A.3 Effective Sample Size (ESS) Definition

The quality of the approximation pg can be measured by the Effective Sample Size (ESS) of the
samples generated directly from the flow, using importance weights w(¢) = P[¢]/ps(6). For M
samples {¢;}:
M 2
ESS — (23?1 w(ei)) /M (19)
2im1 w(9i)?
An ESS close to 1 indicates that pp ~ P.

10
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The Markov property emerges from the locality of the action. For the ¢* theory, the full conditional
is:

P
P (¢ | pav(a}) = PME?L}]
2 _ A4

1 2 m2
o exp —Z§(¢w+ﬂ—¢w) TR
n

This depends only on ¢+, confirming ¢, L ¢a\ ({z}un(a)) | DN (2)-

A.5 Triangular Map Structures and Fill-in Scaling

The ordering of variables is a critical choice in constructing triangular maps, as it directly dictates
the structure of both the exact and approximate dependency graphs. The exact dependency structure,
required for a perfect transformation, accounts for all correlations induced by marginalizing "future"
variables. This process, known as fill-in, typically results in a dense graph. In contrast, an approximate
map achieves computational efficiency by enforcing a sparse structure based only on local, "past”
physical neighbors. In Figure[5|and Figure[6], we provide a detailed visualization of these effects and
analyze the scaling behavior of the fill-in phenomenon for different orderings.

Dense Map (Lexicographic) Dense Map (Checkerboard) Dense Map (Max-Min)
Original Lattice (74.3% filled) (55.1% filled) (55.1% filled)
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Target Ranks
Target Ranks

e JOCmE

8 8
Conditioning Ranks Conditioning Ranks

Sparse Map (Lexicographic) Sparse Map (Checkerboard) Sparse Map (Max-Min)
(35.3% filled) (35.3% filled) (35.3% filled)
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Figure 5: Comparison of exact (top row) and enforced sparse (bottom row) dependency structures for
a triangular map on a 4 x 4 lattice under different orderings. The exact maps reveal the non-local fill-in
patterns unique to each ordering, with lexicographic ordering creating a distinctly different dense
structure from the more symmetric checkerboard ordering. The sparse maps are, by construction,
limited to preceding physical neighbors (N, (7)), highlighting the significant reduction in complexity
at the cost of approximation.

B Validation of Physical Observables

To validate the exactness of the sampling procedure (flow + IMH), we will calculate key physical
observables and compare them against HMC results.

 Average Magnetization: (M) = ( Nslm Do Gal)-
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Tri lar Map Scaling Behavior (Log-Log)
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Figure 6: Scaling of the fill-in fraction as a function of lattice size L for a 2D system. The plot shows
the ratio of non-zero entries in the exact dependency map (excluding the main diagonal and physical
neighbors) to the total possible entries. This analysis quantifies how rapidly the map densifies,
demonstrating the computational challenge of using exact maps for larger systems and motivating the
use of sparse approximations.

* Magnetic Susceptibility: xo = Nyes((M?2) — (M)?).
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