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Abstract

Effective evaluation of multi-hop tool use001
is critical for analyzing the understanding,002
reasoning, and function-calling capabilities of003
large language models (LLMs). However,004
progress has been hindered by a lack of005
reliable evaluation datasets. To address this,006
we present ToolHop, a dataset comprising007
995 user queries and 3,912 associated tools,008
specifically designed for rigorous evaluation009
of multi-hop tool use. ToolHop ensures010
diverse queries, meaningful interdependencies,011
locally executable tools, detailed feedback,012
and verifiable answers through a novel query-013
driven data construction approach that includes014
tool creation, document refinement, and code015
generation. We evaluate 14 LLMs across five016
model families (i.e., LLaMA3.1, Qwen2.5,017
Gemini1.5, Claude3.5, and GPT), uncovering018
significant challenges in handling multi-hop019
tool-use scenarios. The leading model, GPT-4o,020
achieves an accuracy of 49.04%, underscoring021
substantial room for improvement. Further022
analysis reveals variations in tool-use strate-023
gies for various families, offering actionable024
insights to guide the development of more025
effective approaches.1026

1 Introduction027

The task of multi-hop tool use presents a significant028

challenge for large language models (LLMs) (Ope-029

nAI, 2023; Touvron et al., 2023; Bai et al.,030

2023). As illustrated in Figure 1, it requires031

LLMs to incrementally decompose a complex032

multi-hop query into atomic subqueries, invoke the033

appropriate tools, and iteratively retrieve results034

from the tool feedback until the final answer035

is reached. This process demands advanced036

capabilities such as comprehension, reasoning,037

and function-calling (Qin et al., 2023; Qu et al.,038

2024), making the evaluation of multi-hop tool use039

1Code and data will be made publicly available upon
acceptance of the paper.
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Figure 1: An illustration of multi-hop tool use. The
process entails decomposing a complex multi-hop query
into multiple atomic sub-queries, sequentially invoking
the appropriate tools, retrieving results from the tool
feedback, and iterating until the final answer is derived.
This demonstrates the integration of comprehension,
reasoning, and function-calling capabilities.

essential for assessing these skills. Furthermore, 040

such evaluations are pivotal for advancing LLMs 041

toward generalized intelligence (Xi et al., 2023). 042

Existing studies have made progress in evaluat- 043

ing tool use of LLMs. Some focus on evaluating 044

single-step tool use in simulation environments, 045

requiring manual calibration of correct tool-call 046

results (Chen et al., 2024; Ye et al., 2024a,b). 047

Others examine the process of tool use, leveraging 048

advanced models like GPT-4 to go beyond single- 049

step evaluations and providing some valuable 050

insights (Qin et al., 2024; Huang et al., 2024; Ye 051

et al., 2025). 052

However, these works still fall short of offer- 053

ing a reliable evaluation of multi-hop tool use. 054

Specifically, a key limitation of prior work lies 055

in their reliance on tool-driven data construction 056

methods, where a collection of tools is gathered 057

and queries are simulated for them (Tang et al., 058

2023; Wu et al., 2024; Liu et al., 2024). This 059

approach fails to ensure that the collected tools are 060

interdependent or that the queries involve genuine 061

multi-hop reasoning. Furthermore, the absence of 062

verifiable answers forces these studies to depend 063
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Which day of the week was the date of birth of the English inventor that developed the
Richard Hornsby & Sons oil engine?

Which inventor developed the English
Richard Hornsby & Sons oil engine?
Answer: Herbert Akroyd Stuart

What is the date of birth of Herbert
Akroyd Stuart?
Answer: 28 January 1864

Which day of the week was 28
January 1864?
Answer: Thursday

Decompose
Multi-Hop Query

inventor_lookup:  An advanced tool to search and
identify inventors based on their inventions, associated
companies, and additional criteria. It provides detailed
historical information, context about inventors and
their contributions, and allows for more refined
searches through expanded parameters.
Parameters:
company_name: string, required
invention_name: string, required
inventor_name: string, optional
historical_context: boolean, optional
patent_number: string, optional
date_range: object(string, string), optional
output_format: string(summary, detailed, full), optional

inventor_lookup: A tool to search
and identify inventors based on their
inventions and associated companies.
It provides detailed historical infor-
mation and context about inventors
and their contributions.
Parameters:
company_name: string, required
invention_name: string, required
inventor_name: string, optional
historical_context: boolean, optional

Tool Creation

Document Refinement

def inventor_lookup(co
mpany_name: str, inven
tion_name: str, invent
or_name: str = None, h
istorical_context: boo
l = False, patent_numb
er: str = None, date_r
ange: dict = None, out
put_format: str = ‘sum
ary'):
 ……
 inventor_info = {‘inv
entor_name’: ‘Herbert 
Akroyd Stuart’, ‘compa
ny_name’: company_name, 
‘invention_name’: inve
ntion_name}
 ……

Code Generation
Figure 2: An illustration of our proposed query-driven data construction scheme, comprising three key processes:
tool creation, document refinement, and code generation. This approach incrementally develops detailed tool
document and code implementation for each atomic subquery within a multi-hop query.

on process analysis using models, introducing064

model bias and evaluation errors (Guo et al., 2023;065

Eloundou et al., 2024).066

To address these challenges, we introduce Tool-067

Hop, a novel dataset specifically designed to068

evaluate LLMs’ multi-hop tool use capabilities.069

ToolHop comprises 995 multi-hop queries and070

3,912 locally executable tools, constructed using071

a query-driven data construction scheme. This072

methodology involves tool creation, document re-073

finement, and code generation, which can expand a074

single multi-hop query into a comprehensive multi-075

hop tool use test case. An analysis of ToolHop076

demonstrates its effectiveness in accommodating077

diverse queries, ensuring meaningful interdepen-078

dencies, supporting locally executable tools, and079

delivering detailed feedback alongside verifiable080

answers. This design rigorously evaluates LLMs’081

multi-hop tool use capabilities.082

We evaluate ToolHop on 14 LLMs from five083

different families (i.e., LLaMA3.1 (Team, 2024a),084

Qwen2.5 (Team, 2024b), Gemini1.5 (Reid et al.,085

2024), Claude3.5 (Bai et al., 2022), and GPT (Ope-086

nAI, 2023)). Our results reveal that while087

tools significantly improve model performance,088

even the top-performing model, GPT-4, achieves089

only 49.04% accuracy in multi-hop tool use,090

highlighting considerable room for improvement.091

Further studies reveal that different model families092

exhibit distinct patterns in tool use, leading to 093

varied outcomes. For instance, the Qwen2.5 (Team, 094

2024b) family of models tends to emphasize 095

parallel calls, which results in hallucinations, while 096

the GPT family leverages tool feedback to improve 097

their performance in tool usage. These insights 098

provide valuable guidance for developing more 099

effective methods. 100

Our contributions are as follows: 1) We intro- 101

duce ToolHop, a test set of 995 multi-hop queries 102

with 3,912 locally executable tools, designed to 103

assess LLMs’ ability to use tools in multi-hop 104

scenarios. It ensures diverse queries, meaningful in- 105

terdependencies, locally executable tools, detailed 106

feedback, and verifiable answers; 2) We propose a 107

novel query-driven data construction process that 108

can expand queries into multi-hop tool use data 109

via tool creation, document refinement, and code 110

generation; and 3) We provide a comprehensive 111

evaluation of 14 LLMs, identifying significant 112

limitations in current tool-use capabilities and 113

offering insights for future improvements. 114

2 ToolHop 115

In this section, we introduce ToolHop in detail. 116

Specifically, we first provide a formal definition of 117

multi-hop tool use (Section 2.1), then explain our 118

proposed query-driven data construction scheme 119

(Section 2.2), and finally analyze the quality of the 120
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ToolHop dataset (Section 2.3).121

2.1 Task Formulation122

Given a multi-hop query q and a collection of tools123

T = (t1, t2, . . . , tl), where each tool ti is defined124

by a document doci and a code implementation125

funi, the description document doci includes the126

tool name ni, a function description di, and the127

corresponding parameters pi = (p1i , p
2
i , . . . , p

k
i ).128

Each parameter pji is characterized by its name129

npji , a description dpji , its type tpji , and whether130

it is required rpji . The goal of multi-hop tool use131

is for the model M to utilize the information in T132

to select and invoke the appropriate tool, retrieve133

information or process data, and ultimately solve q134

to provide the answer a.135

2.2 Query-Driven Data Construction136

As illustrated in Figure 2, we propose a novel137

query-driven data construction scheme that departs138

from traditional tool-driven approaches. This139

scheme comprises three key stages that involves140

tool creation, document refinement, and code141

generation. Given a multi-hop user query q,142

the scheme extends q to produce a sequence of143

corresponding tool documents doci..l and their144

associated code implementations funi..l.145

Tool Creation The query-driven data construc-146

tion begins with the multi-hop user query q, which147

serves as the foundation for building dynamic tools.148

The tool creation process accepts q and generates149

a preliminary set of tool documents doc′1..l. These150

documents are designed to be both relevant to q151

and interdependent.152

To achieve this, q is decomposed into a sequence153

of atomic subqueries q1, q2, . . . , ql, where each154

subquery qi depends on resolving the preceding155

ones (i.e., qi−1). For each qi, a preliminary156

document doc′i is created. . These documents not157

only capture the input-output logic of qi, but are158

also structured to generalize to similar queries. By159

maintaining backward and forward dependencies160

between documents, this approach ensures both161

modularity and cohesion, simplifying the tool162

creation process.163

Document Refinement The initial tool docu-164

ments doc′i, derived directly from atomic queries,165

are typically rudimentary due to the limited166

information in qi. The document refinement167

process transforms doc′i into a more comprehensive168
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Figure 3: Distribution of user queries across 47 domains
in the ToolHop dataset.

# Tools Three Four Five Six Seven

# Data 428 353 136 10 68

Table 1: Distribution of the number of tools required to
solve each query in ToolHop.

document doci, designed to better support the eval- 169

uation of models in complex multi-hop scenarios. 170

This process involves two key aspects. On 171

the one hand, the tool’s functionality is expanded 172

by introducing features such as result filtering 173

and customizable formats, all while maintaining 174

compatibility with the original functionality. On 175

the other hand, the number of parameters is 176

increased, and their types are optimized. For 177

instance, parameters initially represented as simple 178

strings are replaced with structured types such as 179

arrays or objects, enabling the tools to handle more 180

complex inputs. These refinements ensure that the 181

resulting tool documents are robust, versatile, and 182

capable of addressing intricate cases. 183

Code Generation Once refined tool documents 184

doci are complete, the code generation process pro- 185

duces corresponding locally executable functions 186

funi. These functions allow external invocation 187

of tools, enabling seamless multi-turn interactions 188

between the model and tools. 189

Code generation systematically maps document 190

information to code. For instance, the tool name in 191

doci is converted into the function name, while 192

parameter specifications are used to define the 193

function signature. To ensure the correctness of 194

funi, the atomic query qi and its answer ai are 195

included as inputs, requiring the function to return 196

ai when executed with qi. Additionally, a robust 197

exception-handling mechanism is implemented, 198

enabling tools to provide informative error mes- 199

sages for invalid inputs while maintaining normal 200

operation. Moreover, the generated code is verified 201

3



1
2
4
8
16
32
64
128
256
512
1024
2048

1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
um

be
r o

f T
oo

ls

Number of Parameters

1
2
4
8
16
32
64
128
256
512
1024
2048

1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
um

be
r o

f T
oo

ls

Number of Parameters

Before Refinement After Refinement

Figure 4: Distribution of the number of tool parameters
before and after document refinement.

to ensure it functions as intended.202

Dataset Construction To effectively implement203

our approach, we draw on queries from the204

MoreHopQA dataset (Schnitzler et al., 2024),205

which consists of multi-hop questions that can206

be decomposed into at least three atomic queries207

with answers. Using this foundation, we generate208

995 user queries and 3,912 corresponding locally209

executable tools, which collectively form the210

ToolHop dataset.2211

2.3 Dataset Analysis212

To ensure that the ToolHop dataset rigorously213

evaluates the multi-hop tool-use capabilities of214

LLMs, we conduct a comprehensive analysis215

across five critical dimensions. This analysis216

validates ToolHop’s ability to represent diverse and217

challenging multi-hop tool-use scenarios.218

Diverse Queries Real-world user needs vary219

widely, requiring an effective LLM to flexibly220

utilize tools to address queries spanning multiple221

domains. To evaluate such capabilities, a suitable222

dataset must encompass queries from a broad223

range of topics. ToolHop is explicitly designed224

to prioritize diversity in its multi-hop queries,225

reflecting real-world scenarios.226

To verify this diversity, we use GPT-4o to227

categorize all queries in ToolHop into distinct228

domains. Similar categories are merged to229

ensure clarity and independence. As shown in230

Figure 3, the categorization reveals that ToolHop231

spans 47 unique domains, including topics such232

as movies and television, academic subjects,233

and family relationships. This broad coverage234

ensures that ToolHop effectively evaluates LLM235

performance across diverse query types, enhancing236

2Examples of generated documents and code implementa-
tions are provided in Appendix E and Appendix F.
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Figure 5: Distribution of tool parameter types before
and after document refinement.

its representativeness and practical applicability for 237

real-world tool-use scenarios. 238

Meaningful Interdependencies Previous eval- 239

uation for tool use (Song et al., 2023; Yang et al., 240

2023; Ye et al., 2024b; Han et al., 2024) typically 241

assemble tools from disparate sources and then 242

generate user queries for them. However, these 243

approaches fail to account for interdependencies 244

between tools, often producing queries that in- 245

adequately represent multi-hop reasoning. To 246

address this limitation, ToolHop employs a novel 247

query-driven framework. It begins by formulating 248

multi-hop queries and subsequently constructs 249

the required tools based on each atomic query. 250

This approach inherently preserves the multi- 251

hop structure of queries and enforces meaningful 252

interdependencies between tools. 253

To validate the effectiveness of this approach, 254

we analyze the distribution of tools associated with 255

each query in ToolHop. As shown in Table 1, 256

the number of tools required per query ranges 257

from three to seven, which corresponds to the 258

minimum number of reasoning hops required to 259

resolve the queries, emphasizing the importance of 260

multi-hop reasoning. This distribution underscores 261

the complexity of queries handled by ToolHop and 262

its capability to support scalable multi-hop tool use. 263

Locally Executable Tools Tools are a core 264

component of the tool use task. ToolHop includes 265

3,912 locally deployable and directly executable 266

tools, enabling zero-cost invocation and seamless 267

interaction by LLMs. To better align the con- 268

structed tools with the diverse requirements of real- 269

world applications, we enhance their complexity 270

through a document refinement process. 271

Figure 4 shows that the average number of 272

parameters per tool increased from 3.49 to 5.91 273

after refinement. This reflects an intentional shift 274
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Refinement Zero One Two Three Four

Before 2 2433 1250 202 25
After 2 2490 1198 200 22

Table 2: Distribution of the number of required
parameters before and after document refinement.

Refinement string boolean array integer object number

Before 4758 2 404 333 24 114
After 4473 2 755 241 44 102

Table 3: Distribution of required tool parameter types
before and after refinement.

toward more expressive tools, which better capture275

the complexity of real-world tasks. Concurrently,276

Figure 5 illustrates a 12% reduction in simple277

string parameters, replaced by more structured278

types such as arrays, booleans, and objects, which279

enable richer and more precise tool interactions.280

Table 2 and Table 3 further demonstrate that281

the refinement process preserves the number and282

types of required parameters while increasing the283

diversity of optional parameters.284

Detailed Feedback Effective multi-turn interac-285

tion between LLMs and tools requires not only286

correct outputs for valid inputs but also meaningful287

error messages for invalid ones. Our approach288

incorporates two key strategies to address this need.289

On the one hand, we include atomic queries and290

their corresponding answers as part of the input291

during code generation, ensuring tools reliably292

produce correct outputs for solvable problems.293

On the other hand, we integrate robust exception-294

handling mechanisms into the generated code.295

Since the tools are locally executable, we can296

validate LLM-generated call instances using a297

compiler, providing detailed error reports and298

feedback to guide subsequent interactions.299

Verifiable Answers A key limitation of earlier300

tool-driven datasets is the absence of predeter-301

mined answers, which makes validation difficult.302

ToolHop overcomes this issue by predefining both303

queries and answers, enabling straightforward304

comparison with model outputs.305

To ensure verifiability, we analyze the answer306

types for the second atomic subquery and the307

final query, which is presented in Figure 6. The308

result demonstrates that ToolHop supports diverse309

and flexible answer types while standardizing310

final answers into objective entities. This design311

simplifies validation, enhances robustness, and312

person - number
date - date

year - number
person - string
date - number
person - letter

place - number
place - datetime

date - string
organization - number

organization - string
organization - character

0 30 60 90 120 150 180 210 240 270 300 330

Figure 6: Distribution of answer types for the second
atomic subquery and final answers in ToolHop.

enables consistent performance evaluation. 313

3 Experimental Setup 314

3.1 Models 315

We use ToolHop to evaluate 14 LLMs from five 316

families, including LLaMA3.1-Instruct-8B and 317

LLaMA3.1-Instruct-70B from the LLaMA3.1 318

family, Qwen2.5-Instruct-7B, Qwen2.5- 319

Instruct-14B, Qwen2.5-Instruct-32B, and 320

Qwen2.5-Instruct-72B from the Qwen2.5 fmaily, 321

Gemini1.5-flash-002 and Gemini1.5-pro-002 322

from the Gemini1.5 family, textbfClaude3.5-Haiku 323

and Claude3.5-Sonnet from the Claude3.5 324

family, and GPT-3.5-Turbo, GPT-4o-mini, 325

GPT-4-Turbo, and GPT-4o from the GPT family.3 326

3.2 Implementation Details 327

In the data construction stage, we use GPT-4o 328

to assist with processing.4 For evaluation, open- 329

source LLMs are tested using their chat templates 330

with greedy decoding, while closed-source LLMs 331

are evaluated via their APIs with a temperature 332

setting of 0. To ensure consistency across 333

evaluations, all tools are implemented through the 334

models’ function call interfaces. 335

4 Main Results 336

In this section, we present the key evaluation dimen- 337

sions (Section 4.1) and observations (Section 4.2). 338

4.1 Evaluation Dimensions 339

Evaluating the capabilities of LLMs requires a 340

comprehensive approach that assesses both their 341

ability to provide correct answers and their effec- 342

tiveness in invoking external tools. We analyze 343

these dimensions through answer correctness and 344

invocation error. 345

3More details can be found in Appendix C.
4Prompts are detailed in Appendix A.
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Source Family Version Answer Correctness (↑) Invocation Error (↓)

Direct Mandatory Free Query Instance

Avg. 19.83 32.12 32.84 18.72 8.68

Open-Source

LLaMA3.1
Instruct-8B 13.17 12.76 13.47 41.61 21.10
Instruct-70B 18.79 19.10 12.76 35.08 14.24

Qwen2.5

Instruct-7B 11.46 9.85 16.18 28.84 7.09
Instruct-14B 17.39 26.38 26.13 15.78 6.82
Instruct-32B 20.00 25.03 22.61 12.46 3.46
Instruct-72B 17.89 45.43 38.29 13.27 4.93

Closed-Source

Gemini1.5
flash-002 18.59 29.35 32.76 13.59 6.69
pro-002 18.89 31.16 33.07 14.57 6.61

Claude3.5
Haiku 36.08 38.09 44.72 23.48 15.81
Sonnet 27.14 39.90 45.23 19.60 15.83

GPT

3.5-Turbo 17.09 35.38 36.58 11.76 6.03
4o-mini 19.40 40.20 43.42 11.66 3.58
4-Turbo 18.59 47.94 46.83 10.95 4.97
4o 23.12 49.04 47.74 9.45 4.31

Table 4: Performance of various LLMs on ToolHop, including answer correctness and invocation error. ‘Direct,’
‘Mandatory,’ and ‘Free’ denote the direct answer, mandatory tool use, and free choice scenarios, respectively.
‘Query’ and ‘Instance’ refer to the percentage of queries and tool invocation instances with errors, respectively.
‘Avg.’ represents the average across all LLMs. Values above the average are highlighted in teal , and those below
are highlighted in maroon , with darker shades indicating larger deviations.

Answer Correctness For the accuracy of LLM346

responses, our query-driven data construction347

scheme enables direct comparison with predefined348

standard answers. We consider three evaluation349

scenarios: the direct answer scenario, where350

LLMs solve queries independently without external351

tools; the mandatory tool use scenario, where352

models are required to use provided tools exten-353

sively to maximize their tool-use capabilities; and354

the free choice scenario, where external tools are355

available but optional, allowing LLMs to balance356

independent problem-solving with tool use.357

Invocation Error In the mandatory tool use358

scenario, we assess errors made when invoking359

tools, leveraging detailed feedback for each tool360

to identify errors. We focus on three types:361

tool hallucination, where models invoke tools362

not included in the provided toolset; parameter363

hallucination, where unprovided parameters are364

used for a given tool; and parameter missing,365

where required parameters for a tool are omitted.366

Errors are quantified from the percentage of queries367

containing incorrect calls relative to total queries,368

and the percentage of incorrect tool invocations369

relative to all tool use instances.370

4.2 Evaluation Observations 371

From the results presented in Table 4, we can make 372

several notable observations. 373

While LLMs have significantly enhanced 374

their ability to solve complex multi-hop queries 375

with the use of tools, their multi-hop tool use 376

capabilities still leave considerable room for 377

improvement. Comparing the direct answer 378

scenario (i.e., Direct) versus the mandatory tool 379

use scenario (i.e., Mandatory), we observe that the 380

use of tools increases LLMs’ answer correctness 381

by an average of 12.29%. Notably, the GPT family 382

of models improves its accuracy by an average 383

of 23.59% through tool use, underscoring how 384

effective tool-use capabilities enhance their per- 385

formance in solving complex multi-hop problems. 386

Despite these improvements, the overall accuracy 387

in the mandatory tool use scenario remains limited. 388

Even the best-performing model, GPT-4o, achieves 389

only 49.04% answer correctness in this scenario. 390

Furthermore, 9.45% of queries exhibit hallucina- 391

tions. The performance of LLaMA3.1-Instruct- 392

8B reveals further challenges, with over 40% of 393

queries containing invocation errors, underscoring 394

the need for better documentation understanding. 395
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The performance of different LLM families396

indicates that most are optimized for tool use,397

but they exhibit distinct characteristics when398

solving multi-hop queries. In both the mandatory399

tool use scenario and the free choice scenario (i.e.,400

Free), LLMs generally opt to use tools, with answer401

correctness in these two conditions differing by402

only 0.62%. This indicates that most LLMs are403

specifically optimized for tool use. However,404

different LLM families show varying strengths in405

their tool use. For instance, Qwen2.5-Instruct-406

72B improves its answer correctness by 27.54%407

through tool use, while the Claude3.5 family excels408

in the direct answer scenario without tool reliance.409

The underlying reasons for these differences are410

explored in depth in Section 5.411

Examining the performance of different ver-412

sions within each LLM family, larger models413

generally demonstrate better tool use to meet414

user needs, aligning with the scaling law (Kaplan415

et al., 2020; Chung et al., 2022). Both open-416

source and closed-source LLMs show an increase417

in answer correctness and a decrease in invocation418

error in the mandatory tool use scenario as model419

size grows. Notably, the correlation between420

invocation errors and answer correctness is stronger421

at the query level than at the instance level,422

suggesting that invocation errors in specific queries423

significantly impair problem-solving. Interestingly,424

this pattern enables the inference of relative model425

sizes within families. For instance, based on426

performance patterns, GPT-4o is likely a larger and427

more advanced version compared to other models428

in the GPT family.429

5 Further Studies430

From the results in Section 4.2, we observe431

significant variation in the performance across432

different families of LLMs. To further investigate433

these differences, we analyze each family in detail434

and present the following key observations.5435

The LLaMA3.1 and Gemini1.5 families per-436

form poorly in multi-hop tool use scenarios437

compared to other LLMs from the same source,438

primarily due to their incomplete support for439

tool use capabilities. In the case of LLaMA3.1,440

the inability to output both natural language text441

and tool call instances simultaneously restricts its442

capacity to perform chain-of-thought (CoT) (Wei443

5Examples illustrating these observations can be found in
Appendix D.

et al., 2022) reasoning during tool use, hampering 444

its understanding and analysis of user intent. On the 445

other hand, the Gemini1.5 family of models lack 446

support for union-type parameters, which prevents 447

them from handling tool lists that include complex 448

parameter structures. This limitation significantly 449

reduces their effectiveness in such scenarios. 450

The enhancement of the Qwen2.5 family 451

with parallel tool calls introduces a trade-off 452

between efficiency and accuracy. Compared to 453

the LLaMA3.1 family, the Qwen2.5 family has 454

improved its ability to utilize tools, particularly 455

with the addition of parallel invocation, which is 456

intended to increase the problem-solving efficiency. 457

However, in multi-hop tool use scenarios, forcing 458

parallel invocation without first processing the 459

results of previous tool calls leads to hallucinations 460

in parameter value assignments, resulting in incor- 461

rect answers. For instance, in the mandatory tool 462

use scenario, the percentage of queries involving 463

parallel tool calls is 70.1% for Qwen2.5-Instruct- 464

14B and even higher at 75.08% for Qwen2.5- 465

Instruct-32B, contributing to their relatively poor 466

performance. In contrast, Qwen2.5-Instruct-72B 467

reduces the percentage of parallel calls to just 468

3.82%, significantly improving its performance. 469

The optimization of CoT reasoning in the 470

Claude family of models gives them a distinct 471

advantage in the direct answer scenario. Even 472

without explicit CoT prompts, the Claude3.5 family 473

of models independently adopt a step-by-step CoT 474

approach to decompose user queries and generate 475

answers. This method significantly improves 476

their accuracy compared to other LLMs in such 477

scenarios. For instance, in the direct answer 478

scenario, Claude3.5-Haiku applies CoT reasoning 479

to 64.92% of queries, while Claude3.5-Sonnet does 480

so for 8.5%. Additionally, the Claude3.5 family of 481

models do not fully rely on the answers returned 482

by tools. This allows them to produce correct 483

responses using their own internal knowledge when 484

tool invocations lead to errors. Despite a relatively 485

high tool invocation error rate, this ability explains 486

why overall answer correctness remains high. 487

The GPT family of models demonstrates 488

some ability to correct tool call behavior after 489

an error occurs, but this heavily depends on 490

the level of detail in the feedback provided. 491

Leveraging our query-driven data construction 492

process, we offer detailed feedback when a tool 493

call fails. We calculate the percentage of queries 494

with call errors in the mandatory tool use scenario 495
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Version w/ Feedback w/o Feedback ∆C→I ∆I→C

3.5-Turbo 36.75 21.37 20.51 5.13
4o-mini 38.53 11.93 29.36 2.75
4-Turbo 29.31 12.07 17.24 0.00
4o 47.87 24.47 25.53 2.13

Table 5: Answer correctness of the GPT family of
models in queries containing invocation error. ‘w/
Feedback’ and ‘w/o Feedback’ represent cases where
detailed feedback or only simple error reporting is
provided, respectively. ‘∆C→I’ denotes the proportion
of correct answers that become incorrect, while ‘∆I→C’
represents the proportion of incorrect answers that
become correct, when transitioning from detailed
feedback to simple error reporting.

where the GPT family of models ultimately496

provide the correct answer. We compare this497

to the percentage of correct answers when only498

minimal feedback is given, such as a simple hint499

indicating the call failed (e.g., ‘Failed!’). As500

shown in Table 5, the GPT family of models501

exhibit a significant improvement in performance502

when detailed feedback is provided, successfully503

correcting their behavior to arrive at the correct504

answer. However, when only basic error hints are505

provided, the correctness of their final answers506

drops by 20.66%. This highlights not only507

the importance of detailed feedback but also508

the challenges in further enhancing the models’509

correction capabilities.510

Based on these observations, we propose the511

following recommendations to enhance the model’s512

tool use capabilities in the future: 1) Develop513

a robust and adaptable tool-use model that can514

support a wide range of complex tools; 2) Optimize515

the model’s parallelism and other capabilities while516

prioritizing improvements in its understanding of517

user intent to avoid potential negative effects; and518

3) Investigate effective strategies for leveraging519

rich tool feedback to enhance the model’s error520

correction abilities.521

6 Related Works522

LLMs in Tool Use The use of tools is a523

prominent hallmark of biological intelligence (Shu-524

maker et al., 2011). Equipping LLMs with the525

ability to use tools is therefore a key milestone526

in advancing their capabilities toward artificial527

general intelligence (Ye et al., 2023; Xi et al., 2023).528

Tools broadly encompass APIs, online services,529

application software, and other models that can be530

represented in formats accessible to LLMs (Qin531

et al., 2023). A critical factor in enhancing tool-use532

performance is constructing extensive datasets that 533

detail tool use (Tang et al., 2023; Liu et al., 2024). 534

This involves generating diverse user queries and 535

their corresponding tool sets. Existing approaches 536

often employ a tool-driven methodology, collecting 537

tools from various sources and using models to 538

simulate user queries (Zhuang et al., 2023; Yu et al., 539

2024). However, these methods lack diversity, 540

fail to ensure dependency consistency, and cannot 541

reliably verify data correctness. In this paper, we 542

propose a query-driven data construction approach. 543

This method extends the range of locally executable 544

tools through multi-hop queries, improving dataset 545

quality and better supporting the development of 546

LLM tool-use capabilities. 547

Evaluation of Tool Use Effectively evaluating 548

the tool-use capabilities of LLMs is crucial for 549

identifying their strengths and weaknesses. Ex- 550

isting methods, such as manual verification (Tang 551

et al., 2023) or checking for the presence of 552

a final answer (Qin et al., 2024), fall short 553

in providing objective and reliable measures of 554

performance. Multi-dimensional approaches (Ye 555

et al., 2025, 2024a) attempt to evaluate the process 556

and outcomes of tool use but risk introducing 557

model bias and inconsistencies. In this paper, 558

we focus on evaluating LLMs in multi-hop tool 559

use scenarios. Our query-driven data construction 560

scheme predefines verifiable answers, ensuring 561

accurate assessments and providing a robust 562

framework for evaluation. 563

7 Conclusion 564

In this paper, we introduce ToolHop, a novel 565

dataset designed to evaluate LLMs in multi- 566

hop tool use. ToolHop employs a query-driven 567

data construction framework, encompassing tool 568

creation, document refinement, and code gener- 569

ation. This approach overcomes the limitations 570

of previous methods, ensuring diverse queries, 571

meaningful interdependencies, locally executable 572

tools, detailed feedback, and verifiable answers. 573

Using ToolHop, we benchmark 14 LLMs across 574

five families, providing a comprehensive evaluation 575

of their tool-use capabilities. Further studies illu- 576

minate the distinct characteristics of different LLM 577

families, offering actionable insights to enhance 578

their performance. By setting a robust standard 579

for multi-hop tool use evaluation, ToolHop lays 580

the groundwork for advancing LLMs’ ability to 581

perform complex tool-based reasoning tasks. 582
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Limitations583

While our dataset effectively evaluates the per-584

formance of LLMs in multi-hop tool use, one585

limitation of this work is the lack of an immediate586

strategy for enhancing these capabilities. Nonethe-587

less, the scalability of our data construction scheme588

represents a significant advantage, as it can be589

readily adapted to create training datasets aimed590

at addressing this challenge. We hypothesize591

that targeted training using such datasets could592

markedly improve the ability of LLMs to perform593

multi-hop tool use tasks. Additionally, we594

provide a detailed analysis of current tool-use595

characteristics in LLMs, offering valuable insights596

that can serve as a foundation for future research597

and advancements in this area.598
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A Prompt for Data Construction851

Our proposed query-driven data construction scheme involves tool creation, document refinement, and852

code generation. The prompts used for each process are provided in Table 6, Table 7, and Table 8,853

respectively.854

Identify the appropriate tool to solve the given problem and provide an analysis of the tool design. The
output should be in JSON format, following the specified structure.

# Steps

1. **Analyze the Problem**: Understand the question and determine the type of information required to
answer it.
2. **Tool Design**: Design a tool that can solve the problem, considering the complexity and additional
functionalities it might need.
3. **Parameter Specification**: Define the parameters for the tool, ensuring they are comprehensive and
flexible for various use cases.
4. **Output Construction**: Format the output in JSON, including both the analysis and the tool schema.

# Notes

- Ensure the tool is versatile enough to handle similar queries for different sports figures.
- Consider edge cases.

# Output Format

The output should be a JSON object with the following structure **without any other contents**:
- "analysis": A detailed analysis of the ideas behind the tool design.
- "tool": A JSON schema characterizing the tool, including its name, description, and parameters.

# Example

{Example}

**Question**: {Question}

**Output**:

Table 6: The prompt for tool creation, where ‘{Example}’ and ‘{Question}’ represent the example and subquery,
respectively.
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Refine the design of a tool by enhancing its description and increasing the complexity of parameters (e.g.,
numbers and types) while maintaining compatibility with the original functionality.

# Steps

1. **Analyze the Current Tool**: Examine the existing tool’s description and parameters to understand
its functionality and limitations.
2. **Identify Areas for Refinement**: Determine which aspects of the tool can be improved or expanded
to better meet real-world requirements.
3. **Refine the Description**: Enhance the tool’s description to clearly articulate its refined functionality.
4. **Add and Refine Parameters**: Introduce new parameters or refine existing ones to increase
complexity and utility, ensuring they align with the original functionality.
5. **Ensure Compatibility**: Verify that the refined version remains compatible with the original tool’s
purpose and structure.

# Output Format

The output should be in JSON format with the following structure **without any other contents**:
{
"analysis": "Analysis of ideas about refining the tool.",
"refined_version": the version after refinement, should be follow JSON SCHEMA format as the original
tool
}

# Notes

- Ensure that any new parameters added are relevant and enhance the tool’s functionality.
- Maintain backward compatibility with the original tool’s design and purpose.

**Tool**:
{Tool}

Table 7: The prompt for document refinement, where ‘{Tool}’ represents the preliminary document.
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Create a function implementation based on a provided tool document, question, and answer. The function
should strictly adhere to the tool’s specifications, including the function name, parameter names, and
types. Ensure the function is fully realized and capable of returning different feedback based on the input
parameters.

# Steps

1. **Understand the Tool Document**: Review the tool document to identify the function name, parameter
names, and types.
2. **Analyze the Question and Answer**: Determine how the function should be used to answer the
question.
3. **Implement the Function**:
- Use the tool name as the function name.
- Define parameters exactly as specified in the tool document.
- Implement the function logic to produce the correct answer for the given question.
- Simulate additional return values as specified in the tool document.
4. **Error Handling**: Develop a robust error handling mechanism to return valid error messages for
incorrect inputs or other issues.

# Notes

- Ensure parameter types and names match exactly with the tool document.
- Simulate additional return values as needed based on the tool’s documentation.
- Implement comprehensive error handling to cover potential issues.

# Output format

Output the result in JSON format with the following structure **without any other contents**:
{ "analysis": "Detailed analysis of how the function was designed, including reasoning for parameter
choices and exception handling.",
"function": "The specific function design, including code and comments explaining each part."
}

**Tool Document**:
{document}

**Question**: {question}

**Answer**: {answer}

Table 8: The prompt for code generation, where ‘{document}’, ‘{question}’ and ‘{answer}’ represent the refined
document, the subquery and the corresponding answer, respectively.
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B Prompt for Domain Classification 855

We conduct a domain analysis of the queries in ToolHop using GPT-4o, with the corresponding prompts 856

provided in Table 9. 857

Identify the domain of the given sentence by analyzing its content and context. The domain should be a
single, specific category that best describes the subject matter of the sentence.

# Steps

1. **Analyze the Sentence**: Break down the sentence to understand its components and context.
2. **Identify Key Elements**: Look for specific terms or phrases that indicate the subject matter, such as
names, dates, or specific topics.
3. **Determine the Domain**: Based on the analysis, select the most appropriate domain that encapsulates
the main focus of the sentence.

# Output Format

The output should be in JSON format with the following structure **without any other contents**:
{
"analysis": "Analysis of the given sentence.",
"domain": The domain of the sentence, as short as possible
}

# Notes

- Ensure the domain is specific and directly related to the main subject of the sentence.
- Consider the broader context if the sentence includes specific names or events.

Sentence: {sentence}

Table 9: The prompt for domain classification, where ‘{sentence}’ represents the multi-hop query.
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C Details for Models858

We evaluate 14 LLMs from five families, spanning both open- and closed-source models, to provide a859

comprehensive analysis of their performance in multi-hop tool use.860

• LLaMA3.1 Family. The LLaMA3.1 family, developed by Meta, includes open-source LLMs with861

model sizes of 8B, 70B, and 405B, and context lengths up to 128K. These models are optimized862

for tasks such as long text summarization, multilingual dialogue, and code generation. Due to863

computational constraints, this study evaluates LLaMA3.1-Instruct-8B and LLaMA3.1-Instruct-864

70B.865

• Qwen2.5 Family. The Qwen2.5 family, developed by Alibaba, consists of open-source LLMs866

pre-trained on 18 trillion tokens. These models are designed to excel in mathematics, programming,867

and knowledge representation, with versions ranging from 0.5B to 72B. Our evaluation focuses on868

Qwen2.5-Instruct-7B, Qwen2.5-Instruct-14B, Qwen2.5-Instruct-32B, and Qwen2.5-Instruct-869

72B.870

• Gemini1.5 Family. The Gemini1.5 family, developed by DeepMind, utilizes a mixture-of-871

experts (Jacobs et al., 1991) architecture for advanced reasoning across large datasets. This family872

includes flash and pro versions. For this paper, we analyze Gemini1.5-flash-002 and Gemini1.5-873

pro-002.874

• Claude3.5 Family. The Claude3.5 family, developed by Anthropic, includes closed-source Haiku875

and Sonnet versions, which are known for advancements in instruction-following and nuanced876

reasoning. This evaluation considers Claude3.5-Haiku and Claude3.5-Sonnet.877

• GPT Family. The GPT family, developed by OpenAI, comprises closed-source LLMs designed for878

text generation, multimodal understanding, and tool use. In this paper, we evaluate GPT-3.5-Turbo,879

GPT-4o-mini, GPT-4-Turbo, and GPT-4o.880
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D Case Study 881

In Section 4.2 and Section 5, we analyze the performance of different LLMs across various scenarios. In 882

this section, we present relevant examples from Figure 7 to Figure 10. 883

User
What is the result of substracting 3 from the reverse of the year of
birth of the man who conducted the experiment Operation light
house with Wernher von Braun?

Qwen2.5-Instruct-32B
{'arguments': '{"project_name": "Operation Light House", 
"figure_name": "Wernher von Braun", "association_type": "direct", 
"output_format": "json"}', 'name': 'historical_association_finder'}
{'arguments': '{"name": "Wernher von Braun", "information_type": 
"birth_year", "output_format": "integer"}', 'name': 
'biographical_info_retriever'}
{'arguments': '{"numbers": [1912], "output_format": "integer"}', 
'name': 'reverse_number_advanced’}
{'arguments': '{"numbers": [2191, 3], "operation": "subtract", 
"precision": 0}', 'name': 'advanced_arithmetic_calculator'}
{'arguments': '{"numbers": [2188], "operation": "average", 
"precision": 0}', 'name': 'advanced_arithmetic_calculator'}

Tool
No associations found for Operation Light House.

Tool
No data found for Wernher von Braun.

Tool 
2191

Tool 
{"result": 2188}

Tool
At least two numbers are required.

Qwen2.5-Instruct-32B
<answer>2188</answer>

Figure 7: The Qwen2.5 family of LLMs emphasizes parallel tool calls in the mandatory tool use scenario, which
can lead to hallucinations and incorrect answers.
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User
How many hours are there between the winter time zone of the place 
of birth of the person who submitted the first version of the equal 
rights amendment to congress in 1923 and UTC?

Claude3.5-Haiku
Let's solve this step by step:
1. First version of Equal Rights Amendment submitted in 1923 by 

Alice Paul
2. Alice Paul was born in Mount Laurel, New Jersey
3. New Jersey is in the Eastern Time Zone
4. Eastern Time Zone is UTC-5 during standard time

<answer>5</answer> 

Figure 8: The Claude 3.5 family of LLMs optimizes CoT reasoning in the direct answer scenario, enhancing their
analytical and problem-solving capabilities."
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User
What is the first letter of the first name of the father of the director of
film Little Joe (Film) in lowercase?

GPT-4o
{'name': 'family_relationship_finder', 'arguments': 
'{"individual_name": "Jessica Hausner", "relationship_type": 
"father"}'}

Tool
an error occured when call family_relationship_finder:
family_relationship_finder() missing 1 required positional argument:
'data_source'

Tool
Rudolf Hausner

GPT-4o
{'name': 'family_relationship_finder', 'arguments': 
'{"individual_name": "Jessica Hausner", "relationship_type": 
"father", "data_source": "default"}'}

GPT-4o
<answer>r</answer>

GPT-4o
{'name': 'movie_director_lookup', 'arguments': '{"movie_title": 
"Little Joe"}'}

Tool
Jessica Hausner

……

Figure 9: The GPT family of LLMs improves performance by refining calling behavior through the use of detailed
tool feedback.
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User
What is the first letter of the first name of the father of the director of
film Little Joe (Film) in lowercase?

GPT-4o
{'name': 'family_relationship_finder', 'arguments': 
'{"individual_name": "Jessica Hausner", "relationship_type": 
"father"}'}

Tool
Error.

GPT-4o
<answer>error</answer>

GPT-4o
{'name': 'movie_director_lookup', 'arguments': '{"movie_title": 
"Little Joe"}'}

Tool
Jessica Hausner

Figure 10: The GPT fmaily of LLMs struggles to correct their calling behavior when provided with minimal
feedback.
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E Examples of Tool Documents 884

Our query-driven data construction scheme generates preliminary document prior to refinement. Below, we 885

provide examples of documents before and after refinement. As shown, the refinement process enhances 886

the tool’s functionality, increases the number of parameters and introduces more diverse parameter types. 887

{ 888

"name": "album_release_date_finder", 889

"description": "A tool designed to find the release date of music 890

albums. It queries a database or API to retrieve accurate 891

information about album release dates, accommodating variations in 892

album titles and artist names.", 893

"parameters": { 894

"type": "object", 895

"properties": { 896

"album_name": { 897

"type": "string", 898

"description": "The name of the album for which the 899

release date is being queried." 900

}, 901

"artist_name": { 902

"type": "string", 903

"description": "The name of the artist or band 904

associated with the album, to ensure accuracy in case 905

of albums with similar names." 906

}, 907

"output_format": { 908

"type": "string", 909

"enum": [ 910

"date", 911

"text" 912

], 913

"description": "The format of the output. Defaults to 914

date (the release date in YYYY-MM-DD format)." 915

} 916

}, 917

"required": [ 918

"album_name" 919

] 920

} 921

} 922

923

{ 924

"name": "album_release_date_finder", 925

"description": "An advanced tool designed to find the release date 926

of music albums. It queries a comprehensive database or API to 927

retrieve accurate information about album release dates, 928

accommodating variations in album titles, artist names, album 929

versions, release regions, and languages. This tool ensures 930

precision and flexibility in retrieving album release information.", 931

"parameters": { 932

"type": "object", 933

"properties": { 934
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"album_name": {935

"type": "string",936

"description": "The name of the album for which the937

release date is being queried."938

},939

"artist_name": {940

"type": "string",941

"description": "The name of the artist or band942

associated with the album, to ensure accuracy in case943

of albums with similar names."944

},945

"album_version": {946

"type": "string",947

"description": "The specific version of the album948

(e.g., deluxe, remastered) to refine the search."949

},950

"release_region": {951

"type": "string",952

"description": "The geographical region where the album953

was released, which can affect the release date."954

},955

"language": {956

"type": "string",957

"description": "The language of the album, useful for958

albums released in multiple languages."959

},960

"output_format": {961

"type": "string",962

"enum": [963

"date",964

"text"965

],966

"description": "The format of the output. Defaults to967

date (the release date in YYYY-MM-DD format)."968

}969

},970

"required": [971

"album_name"972

]973

}974

}975
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F Examples of Code Implementations 976

Our query-driven data construction scheme translates the refined tool document into code, enabling it to 977

function as a locally executable tool. Below, we provide the code implementation of the refined document 978

in Appendix E. The implementation fully realizes the defined functionality, provides valid feedback for 979

correct parameter inputs, and incorporates a robust exception handling mechanism. 980

def album_release_date_finder(album_name: str, artist_name: str = 981

'', album_version: str = '', release_region: str = '', language: 982

str = '', output_format: str = 'date') -> str: 983

""" 984

Finds the release date of a specified music album. 985

986

Parameters: 987

- album_name (str): The name of the album for which the release 988

date is being queried. 989

- artist_name (str): The name of the artist or band associated with 990

the album. 991

- album_version (str): The specific version of the album (e.g., 992

deluxe, remastered). 993

- release_region (str): The geographical region where the album was 994

released. 995

- language (str): The language of the album. 996

- output_format (str): The format of the output, either 'date' or 997

'text'. 998

999

Returns: 1000

- str: The release date of the album in the specified format. 1001

""" 1002

# Simulated database/API response 1003

album_database = { 1004

'Boy': { 1005

'artist': 'U2', 1006

'release_date': '1980-10-20', 1007

'versions': { 1008

'standard': '1980-10-20', 1009

'deluxe': '2008-07-21' 1010

}, 1011

'regions': { 1012

'US': '1980-10-20', 1013

'UK': '1980-10-20' 1014

}, 1015

'languages': { 1016

'English': '1980-10-20' 1017

} 1018

} 1019

} 1020

1021

# Error handling for required parameter 1022

if not album_name: 1023

return 'Error: The album_name parameter is required.' 1024

1025

# Retrieve album information 1026

23



album_info = album_database.get(album_name)1027

if not album_info:1028

return 'Error: Album not found in the database.'1029

1030

# Check artist name if provided1031

if artist_name and album_info['artist'] != artist_name:1032

return 'Error: Artist name does not match the album record.'1033

1034

# Determine release date based on version, region, and language1035

release_date = album_info['release_date']1036

if album_version:1037

release_date = album_info['versions'].get(album_version,1038

release_date)1039

if release_region:1040

release_date = album_info['regions'].get(release_region,1041

release_date)1042

if language:1043

release_date = album_info['languages'].get(language,1044

release_date)1045

1046

# Format the output1047

if output_format == 'text':1048

return f'The album "{album_name}" by {album_info["artist"]} was1049

released on {release_date}.'1050

return release_date1051

1052

# Example usage1053

print(album_release_date_finder(album_name='Boy', artist_name='U2',1054

output_format='date')) # Output: '1980-10-20'1055

print(album_release_date_finder(album_name='Boy', artist_name='U2',1056

output_format='text')) # Output: 'The album "Boy" by U2 was released1057

on 1980-10-20.'1058

1059
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