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ABSTRACT

The main focus of Hierarchical Reinforcement Learning (HRL) is studying how
large Markov Decision Processes (MDPs) can be more efficiently solved when
addressed in a modular way, by combining partial solutions computed for smaller
subtasks. Despite their very intuitive role for learning, most notions of MDP ab-
stractions proposed in the HRL literature have limited expressive power or do not
possess formal efficiency guarantees. This work addresses these fundamental is-
sues by defining Realizable Abstractions, a new relation between generic low-level
MDPs and their associated high-level decision processes. The notion we propose
avoids non-Markovianity issues and has desirable near-optimality guarantees. In-
deed, we show that any abstract policy for Realizable Abstractions can be translated
into near-optimal policies for the low-level MDP, through a suitable composition of
options. As demonstrated in the paper, these options can be expressed as solutions
of specific constrained MDPs. Based on these findings, we propose RARL, a new
HRL algorithm that returns compositional and near-optimal low-level policies,
taking advantage of the Realizable Abstraction given in the input. We show that
RARL is Probably Approximately Correct, it converges in a polynomial number of
samples, and it is robust to inaccuracies in the abstraction.

1 INTRODUCTION

Hierarchical Reinforcement Learning (HRL) is the study of abstractions of decision processes and
how they can be used to improve the efficiency and compositionality of RL algorithms (Barto &
Mahadevan, 2003; Abel et al., 2018). To pursue these objectives, most HRL methods augment the
low-level Markov Decision Process (MDP) (Puterman, 1994) with some form of abstraction, often a
simplified state representation or a high-level policy. As was immediately identified (Dayan & Hinton,
1992), compositionality is arguably one of the most important features for HRL algorithms, as it is
commonly associated with increased efficiency (Wen et al., 2020) and policy reuse for downstream
tasks (Brunskill & Li, 2014; Abel et al., 2018; Tasse et al., 2020; 2022). There is a common intuition
that drives many authors in HRL. That is, abstract states correspond to sets of ground states, and
abstract actions correspond to sequences of ground actions. This was evident since the early work in
HRL (Dayan & Hinton, 1992), and was largely derived from hierarchical planning. However, the
main question that still remains unanswered is which sequence of ground actions should each abstract
action correspond to? The answer to this question also requires the identification of a suitable state
abstraction. The resulting notion of MDP abstraction has a strong impact on the applicability and the
guarantees of the associated HRL methods.

There is no shared consensus on what “MDP abstractions” should refer to. In the literature, the term
is loosely used to refer to a variety of concepts, including state partitions (Abel et al., 2020; Wen et al.,
2020), bottleneck states (Jothimurugan et al., 2021b), subtasks (Nachum et al., 2018; Jothimurugan
et al., 2021a), options (Precup & Sutton, 1997; Khetarpal et al., 2020), entire MDPs (Ravindran &
Barto, 2002; Cipollone et al., 2023), or even the natural language (Jiang et al., 2019). In addition,
most HRL methods have been validated only experimentally (Nachum et al., 2018; Jinnai et al., 2020;
Jothimurugan et al., 2021b; Lee et al., 2021; 2022b), leading to a limited theoretical understanding
of general abstractions and their use in RL. Some notable exceptions (Brunskill & Li, 2014; Fruit
et al., 2017; Fruit & Lazaric, 2017; Wen et al., 2020) give formal definitions of state and temporal
abstractions, and provide formal near-optimality and efficiency guarantees. However, they do not
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define a high-level decision process, enforcing requirements that are often impractical on the ground
MDP directly.

In this work, we propose a new formal definition of MDP abstractions, based on a high-level decision
process. This definition enables algorithms, such as the one proposed in this paper, that do not
require specific knowledge about the ground MDP. In particular, we identify a new relation that
links generic low-level MDPs to their high-level representations, and we use a second-order MDP
as the high-level decision process in order to overcome non-Markovian dependencies. As we show,
the abstractions we propose are widely applicable, do not incur the non-Markovian effects that are
often found in HRL (Bai et al., 2016; Nachum et al., 2018; Jothimurugan et al., 2021b), and provide
near-optimality guarantees for their associated low-level policies. Such near-optimal policies only
result from the compositions of smaller options, without any global constraint. Due to this feature, we
call them Realizable Abstractions. An important feature of our work is also that we do not restrict the
cardinality of the state and action spaces for the ground MDP that does not need to be finite. Instead,
we require that the abstract decision process has finite state and action sets, so that we can compute
an exact tabular representation of the abstract value function.

We also address the associated algorithmic question of how to learn the ground options that realize
each high-level behavior. As we show, the realization problem, that is, the problem of learning
suitable options from experience, can be cast as a Constrained MDP (CMDP) (Altman, 1999) and
solved with off-the-shelf online RL algorithms for CMDPs (Zhang et al., 2020; Ding et al., 2022).
Based on these principles, we develop a new algorithm, called RARL (for “Realizable Abstractions
RL”), which learns compositional policies for the ground MDP and it is Probably Approximately
Correct (PAC) (Fiechter, 1994). An additional novelty of this work is that the proposed algorithm
iteratively refines the high-level decision process given in input by sampling in the ground MDP and
it exploits the solution obtained from the current abstraction to drive exploration in the ground MDP.

Summary of contributions The contributions of this work are theoretical and algorithmic. We
propose Realizable Abstractions (Definition 2), we show a formal relation between the abstract and
the ground values (Theorem 1 and Corollary 3), and we provide original insights on the conditions
that must be met to reduce the effective horizon in the abstraction (Proposition 7). Regarding the
algorithmic contributions, RARL is sample efficient, PAC, and robust with respect to approximately
realizable abstractions and overly optimistic abstract rewards (Theorem 8).

RELATED WORK

State-action abstractions Similarly to Abel (2020), we organize most of the work in HRL in two
groups: state abstractions, which primarily focus on simplified state representations, and action
abstractions, which focus on high-level actions and temporal abstractions. From the first group, we
mention the MDP homomorphisms (Ravindran & Barto, 2002; 2004), stochastic bisimulation (Givan
et al., 2003; Ferns et al.) and the irrelevance criteria listed in Li et al. (2006). These are all related
to the language of MDP abstractions used here. However, the limited expressive power of these
early works mainly captures specific projections of state features or symmetries in MDP dynamics.
As we discuss in Appendix B, our framework extends both MDP homomorphisms and stochastic
bisimulations of Givan et al. (2003). In the second group, the options framework (Precup & Sutton,
1997; Sutton et al., 1998; 1999) is one of the first to successfully achieve temporal abstraction in
MDPs. Options are partial policies, which can be interpreted as abstract actions, and can be fully
learned from experience (Bacon et al., 2017; Machado et al., 2017; Khetarpal et al., 2020). Thanks to
these properties, many works implemented HRL principles within the theory of options, such as the
automatic discovery of landmarks and sub-goals (Simsek & Barto, 2004; Castro & Precup, 2011;
Kulkarni et al., 2016; Nachum et al., 2018; Jinnai et al., 2019; Ramesh et al., 2019; Jinnai et al.,
2020; Jiang et al., 2022; Lee et al., 2022b). Nonetheless, since the state space is usually not affected
by the use of options, the lack of a simplified state representation limits the reuse of previously
acquired skills. The study of abstractions that involve both states and actions is the most natural
progression for HRL research. Nonetheless, many works in this direction (Ravindran & Barto, 2003;
Abel et al., 2020; Abel, 2020; Jothimurugan et al., 2021b; Wen et al., 2020; Infante et al., 2022)
only consider a ground MDP and a partition of the state space, without any explicit dynamics at the
abstract level. The main difficulty in defining abstract dynamics comes from the non-Markovian
and non-stationary effects that often arise in HRL (Jothimurugan et al., 2021b; Gürtler et al., 2021).
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This works overcomes these issues and defines MDP abstractions as distinct decision process with
independent reward and transition dynamics.

HRL theory The theoretical work on HRL is still less developed compared to the empirical studies.
The first PAC analysis for RL in the presence of options is by Brunskill & Li (2014). Later, Fruit &
Lazaric (2017) and Fruit et al. (2017) strongly contributed to the characterization of the conditions
that cause options to be beneficial (or harmful) for learning, such as the near-optimality of options
and the reduction in the MDP diameter. Both of these findings are consistent with our results. Lastly,
Wen et al. (2020) developed PEP, an HRL algorithm, and derived its regret guarantee. Similarly to
our algorithm, PEP learns low-level policies in a compositional way. However, our algorithm does
not receive the “exit profiles” in input, which are unlikely to be known in practice.

Compositional HRL and logic composition Logical descriptions and planning domains can also
be used to subdivide complex dynamics into smaller subtasks. This approach can be seen as a state-
action abstraction with associated semantic labels and has been explored in various forms (Dietterich,
2000; Konidaris et al., 2018; Illanes et al., 2020; Jothimurugan et al., 2021a; Lee et al., 2022a),
even in purely logical settings (Banihashemi et al., 2017). The main strength of logical abstractions
is their suitability for compositionality and skill reuse (Andreas et al., 2017; Jothimurugan et al.,
2021a; Neary et al., 2022). However, because of the difficulty of aligning logical representations
with stochastic environments and discounted values, most methods do not come with significant
near-optimality guarantees for the low-level domain.

Other algorithms Regarding the algorithmic contribution, RARL is capable of correcting and
adapting to very inaccurate abstract rewards. This feature has been heavily inspired by RL algorithms
for multi-fidelity simulators (Cutler et al., 2014; Kandasamy et al., 2016). However, the algorithm
cannot update the input mapping function. Unlike other works (Jonsson & Barto, 2006; Allen et al.,
2021; Steccanella & Jonsson, 2022), learning such a state partition remains outside the scope of this
work.

2 PRELIMINARIES

Notation With the juxtaposition of sets, as in XY and X k, we denote the abbreviation of their
Cartesian product. Similarly, xy ∈ XY is preferred to (x, y), when not ambiguous. Sequences,
which we write as xi:j , are elements of X j−i+1. The set of probability distributions on a set X is
written as ∆(X ). For x ∈ X , we use δx ∈ ∆(X ) for the deterministic probability distribution on x.
For finite X , this is δx(x′) := I(x′ = x). The indicator function I(φ) evaluates to 1 if the condition φ
is true, 0 otherwise. We write [n] for {1, . . . , n}. For any surjective function ϕ : S → S̄ and s̄ ∈ S̄,
we define ⌊s̄⌋ϕ := {s ∈ S | ϕ(s) = s̄}, also written ⌊s̄⌋, whenever the function is clear from context.

Decision Processes A k-order Markov Decision Process (k-MDP) is a tuple M = ⟨S,A, T,R, γ⟩,
where S is a set of states,A is a set of actions, 0 < γ < 1 is the discount factor, T : Sk×A → ∆(S)
is the transition function, and R : Sk ×A → [0, 1] is the reward function. To generate the next state
or reward, each function receives the last k states in the trajectory. In particular, at each time step h,
R(sh−k:h−1, ah) returns the immediate expected reward rh. We denote the initial distribution of s0
with µ := T (sk⋆, a), for any a ∈ A, where s⋆ ∈ S is some distinguished dummy state. We write
the cardinalities of S,A as S,A. In addition, an MDP is a 1-MDP, for which we can simply write
rh ∼ R(sh−1, ah) and sh ∼ T (sh−1, ah) (Puterman, 1994). In any k-MDP, the value of a policy π
in some states s0:k−1 ∈ Sk, written V π(s0:k−1), is the expected sum of future discounted rewards,
when starting from s0:k−1, and selecting actions based on π. The function Qπ(s0:k−1, ak) is the
value of π when the first action after s0:k−1 is set to ak. Without referring to any states, the value of a
policy π is V π

µ := V π(sk⋆) = Es0∼µ[V
π(sk−1

⋆ s0)], which is the value from the initial distribution µ.
Every k-MDP admits an optimal policy, π∗ := argmaxπ V

π
µ , which is deterministic and Markovian

in Sk. Thus, we often consider the set of policies Π := Sk → A. The optimal value function V π∗
is

also written as V ∗. Near-optimal policies are defined as follows. For ε > 0, a policy π is ε-optimal
if V ∗

µ − V π
µ ≤ ε. Generally speaking, Reinforcement Learning (RL) is the problem of learning a

(near-)optimal policy in an MDP with unknown T and R.

Constrained MDPs A Constrained MDP (CMDP) (Ross, 1985; Altman, 1999) is defined as a
tuple M = ⟨S,A, T,R, {Ri}i∈[m], {li}i∈[m], γ⟩, where ⟨S,A, T,R, γ⟩ forms an MDP and each
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Ri : S ×A → [0, 1] is an auxiliary reward function with an associated li ∈ [0, 1]. Given a CMDP M,
let V π

µ,i be the value of π in the MDP ⟨S,A, T,Ri, γ⟩. Then, the set of feasible policies for M is
Πc ⊆ Π with

Πc := {π ∈ Π | V π
µ,i ≥ li for each i ∈ [m]} (1)

The optimal policy of a CMDP is defined as argmaxπ∈Πc
V π. Near-optimal policies are defined

as usual. Extending this relaxation to constraints, we also define the set of η-feasible policies as:
Πc,η := {π ∈ Π | V π

µ,i ≥ li − η for each i ∈ [m]}. To capture negative cost functions, some works
do not restrict auxiliary rewards to the [0, 1] range. However, this will be enough for our purposes.

Occupancy measures The state occupancy measure of any policy π, is the discounted probability
of reaching some s, when starting from some previous state sp, and selecting actions with π.
That is, dπs (s | sp) := (1 − γ)

∑∞
t=0 γ

t P(st = s | s0 = sp, π). Similarly, the state-action
occupancy is dπsa(sa | sp) := dπs (s | sp)π(a | s). The value function of any policy can be
expressed as a scalar product between dπsa and the reward function. Using the vector notation, this is
V π(s) = ⟨dπsa(s), R⟩/(1−γ), and from the initial distribution, V π

µ = ⟨V π, µ⟩. Often, we will simply
write both distributions as dπ . For simplicity, the notation we use is specific to discrete distributions.
However, values and occupancy measures remain well defined for continuous state and action spaces.

Options An option is a temporally extended action (Sutton et al., 1998), defined as o = ⟨Io, πo, βo⟩,
where Io ⊆ S2 is an initiation set composed of pairs of states, πo ∈ Π is the policy that o executes
and βo : S → {0, 1} is a termination condition. An option is applicable at some at−1rt−1st−1atrtst
if st−1st ∈ Io. With respect to the classic definition (Sutton et al., 1998), we have extended the
initiation sets to pairs, instead of single states. In this work, we focus on a specific class of options,
called ϕ-relative options (Abel et al., 2020). For clarity, we recall that ⌊·⌋ϕ and ⌊·⌋ denote the inverse
image of ϕ. Given some surjective ϕ : S → S̄, an option o = ⟨Io, πo, βo⟩ is said to be ϕ-relative if
there exists two distinct s̄p, s̄ ∈ S̄ such that Io = ⌊s̄p⌋ϕ × ⌊s̄⌋ϕ, βo(s) = I(s ̸∈ ⌊s̄⌋ϕ), and πo ∈ Πs̄,
where Πs̄ := ⌊s̄⌋ϕ → A is the set of policies defined for the block. In essence, ϕ-relative options
always start in some block and terminate as soon as the block changes. Any set of options Ω is
ϕ-relative iff all of its options are. In the remainder of this paper, we only consider sets ϕ-relative
options. Regarding the notation, we use Ωs̄ps̄ for the set of all options starting in ⌊s̄p⌋⌊s̄⌋, and
Ωs̄ := ∪s̄pΩs̄ps̄ for all options in one block. Finally, we call policy of options any set Ω that contains
a single ϕ-relative option for each pair s̄ps̄. We use this name because Ω can be fully treated as a
policy for the ground MDP. V Ω is the value of the policy that always executes the only applicable
option in Ω until each option terminates.

3 REALIZABLE ABSTRACTIONS

This section defines Realizable Abstractions and studies the properties they satisfy. To explain
the main intuitions behind our abstractions, we use the running example of Figure 1 (left), which
represents a ground MDP M, with a simple grid world dynamics. In this work, an MDP abstraction
is a pair ⟨M̄, ϕ⟩, where M̄ is a decision process over states S̄, and ϕ : S → S̄ is the state mapping
function. In the example, S̄ = {s̄1, s̄2, s̄3}. The association of abstract states with ground blocks
in the partition is intuitive, as shown by the colors in the example. Actions and ground options, on
the other hand, are much less trivial to associate. In this work, with Realizable Abstractions, we
encode the following intuition: if an abstract transition (s̄1, ā, s̄3) has a high probability of occurring
from s̄1 in the abstract model M̄, then there must exist a ϕ-relative option that moves the agent
from block ⌊s̄1⌋ to block ⌊s̄3⌋ in the ground MDP, with high probability and in a few steps. In other
words, we choose to interpret abstract transitions as representations of what is possible to replicate,
we say “realize”, in the ground MDP. Both conditions above, in terms of probability and time, are
equally important and consistent with the meaning of discounted values in MDPs. Here, we choose
ϕ-relative options because they only terminate after leaving each block. In the example, no direct
transition is possible between ⌊s̄2⌋ and ⌊s̄3⌋. So, we should have P(s̄3 | s̄2, ā, M̄) = 0, for any ā.
Instead, selecting an appropriate value for P(s̄3 | s̄1, ā, M̄) is much more complex, as it strongly
depends on the initial state of the option in the gray block. This is at the heart of non-Markovianity
in HRL. In this work, we address this issue through a careful treatment of entry states and allowing
abstractions to model second-order dependencies. This allows us to condition the probability of the
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Figure 1: (left) The running example. The ground MDP is a grid world domain and S̄ = {s̄1, s̄2, s̄3}.
Each e is an entry in Es̄2s̄1 and each x is an exit in Xs̄1 . (right) A different ground MDP.

transition (s̄1, ā, s̄3) on the previous abstract state visited, which might be s̄2 or s̄3 in the example.
This modeling advantage motivates our choice of abstract second-order abstract MDPs.

We now proceed to formalize all the previous intuitions. In this work, the abstraction of an MDP M is
a pair ⟨M̄, ϕ⟩, where M̄ is a 2-MDP M̄ = ⟨S̄, Ā, T̄ , R̄, γ⟩ with finite states and actions spaces, and
ϕ : S → S̄ is a surjective function. Our formal statements will also be valid when M̄ is an MDP, since
it can also be regarded as a 2-MDP with restricted dynamics. For each two distinct abstract states
s̄p, s̄ ∈ S̄ , we define the set of entry states Es̄ps̄ as the set of ground states in ⌊s̄⌋, at which it is possible
to enter ⌊s̄⌋ from ⌊s̄p⌋. Also, the exit states Xs̄ contains all ground states outside the block ⌊s̄⌋ that are
reachable in one transition. In Figure 1 (left), each entry in Es̄2s̄1 is marked with an e, and each exit in
Xs̄1 is marked with an x. More generally, Es̄ps̄ := {s ∈ ⌊s̄⌋ | ∃sp ∈ ⌊s̄p⌋,∃a ∈ A, T (s | sp, a) > 0}
andXs̄ := ∪s̄′ ̸=s̄Es̄s̄′ . Exit and entry states are an intuitive way to discuss the boundaries of contiguous
state partitions and are often found in the HRL literature (Wen et al., 2020; Infante et al., 2022). There
is one last possibility of entering a block, that is, through the initial distribution µ. However, this
specific case is also captured by Es̄⋆s̄. The previous abstract state carries fundamental information to
characterize entry states, while knowledge of abstract states further back are not nearly as crucial
and would make the model significantly more cumbersome. For this reason, we only use 2-MDPs to
represent the abstract MDP, and never a k-MDP with k>2. A careful treatment of exits and entries
is essential, as it allows us to develop a truly compositional approach where each block is treated
separately. For this purpose, associated with each abstract state, we define the block MDP as the
portion of the original MDP that is restricted to a single block, its exit states and a new absorbing
state.

Definition 1. Given an MDP M and ϕ : S → S̄, we define the block MDP of some s̄ ∈ S̄ as
Ms̄ = ⟨Ss̄,A, Ts̄, Rs̄, γ⟩, with states Ss̄ := ⌊s̄⌋ ∪ Xs̄ ∪ {s⊥}, where s⊥ is a new absorbing state;
the transition function is Ts̄(s, a) := T (s, a) if s ∈ ⌊s̄⌋ and T (s, a) := δs⊥ , otherwise, which is a
deterministic transition to s⊥; the reward function is Rs̄(s, a) := R(s, a) if s ∈ ⌊s̄⌋ and 0 otherwise.

Therefore, the dynamics of each block MDP remains unchanged while in the relevant block, but is
modified to reach the aborbing state with a null reward, from the exits. With respect to analogous
definitions from the literature (Fruit et al., 2017), our exit states are not absorbing. This small change
is essential to preserve the original occupancy distributions at the exits. Now, since any ϕ-relative
option is a complete policy for the block MDP of s̄, we will use dos̄ to denote the state occupancy
measure for policy πo in Ms̄. Since abstract transitions should only reflect the “external” behavior of
the options at the level of blocks, regardless of the specific ground paths followed, we marginalize the
occupancy measure with respect to the exit blocks. More precisely, we define the block occupancy
measure of s̄ and o ∈ Ωs̄ at some s ∈ ⌊s̄⌋ as the probability distribution ho

s̄(s) ∈ ∆(S̄ ∪ {s⊥}),
with ho

s̄(s̄
′ | s) :=

∑
s′∈⌊̄s′⌋ d

o
s̄(s

′ | s), if s̄′ ̸= s⊥, and ho
s̄(s⊥ | s) := dos̄(s⊥ | s), otherwise. Block

occupancies are perfect candidates for relating the abstract transitions to the options in the ground
MDP. Similarly, abstract rewards will be related to the total return accumulated within the block. This
second term is exactly captured by V o

s̄ (s), the value of the option o in the block MDP of s̄. These
two elements, ho

s̄ and V o
s̄ , that are relative to the ground MDP, will be related to analogous quantities

in the abstraction. Specifically, this work identifies that these quantities should be compared with the
probability of the associated abstract transitions and the associated abstract rewards. Expanding these
terms for 2-MDPs in any s̄p, s̄, s̄

′ ∈ S̄ and ā ∈ Ā, with s̄p ̸= s̄ and s̄ ̸= s̄′, these are:

h̃s̄ps̄ā(s̄
′) := (1− γ)(γ̄ T̄ (s̄′ | s̄ps̄, ā) + γ̄2 T̄s̄ps̄ā T̄ (s̄

′ | s̄s̄, ā)) (2)

Ṽs̄ps̄ā := R̄(s̄ps̄, ā) + γ̄ T̄s̄ps̄ā R̄(s̄s̄, ā) (3)
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with T̄s̄ps̄ā =
T̄ (s̄|s̄ps̄,ā)

1−γ̄ T̄ (s̄|s̄s̄,ā) . Their structure is mainly motivated by the fact that these expressions
sum over an indefinite number of self-loops in s̄ before transitioning to a different state in the 2-MDP.
Equation 2 encodes the discounted cumulative probability of visiting s̄′ immediately after s̄ in the
abstract model, which is

∑∞
t=0 γP(s̄t = s̄′ | s̄0:t−1 = s̄, ā1:t = ā, s̄−1 = s̄p, M̄). This expression

is similar to what the occupancy measure captures in the ground MDP, with the difference that the
action becomes an option and, instead of a single state, s̄ is associated with all states in the block
⌊s̄⌋. Expanding the probability above leads to Equation 2. In particular, T̄s̄ps̄ā is the result of the
geometric series T̄ (s̄ | s̄ps̄, ā)

∑
t γ

tT̄ (s̄ | s̄s̄, ā) that accounts for an indefinite number of self loops
in s̄. Analogously, Equation 3 is the discounted cumulative return accumulated in s̄. All self loops in
s̄ contribute with a reward of R̄(s̄s̄, ā), which explains the second term in the sum. The first term is
the reward achieved after the first transition in s̄. Note that if the abstraction is a standard 1-MDP,
then R̄(s̄s̄, ā) = R̄(s̄ps̄, ā) and T̄ (s̄′ | s̄ps̄, ā) = T̄ (s̄′ | s̄s̄, ā) the expressions simplify to:

h̃s̄ps̄ā(s̄
′) :=

(1− γ) γ̄ T̄ (s̄′ | s̄, ā)
1− γ̄ T̄ (s̄ | s̄, ā)

Ṽs̄ps̄ā :=
R̄(s̄, ā)

1− γ̄ T̄ (s̄ | s̄, ā)
(4)

which does not depend on s̄p.

Realizable Abstractions Using the concepts above, we are now ready to provide a complete
description of our MDP abstractions. We say that an abstract action is realizable if the behavior
described by the abstract transitions and rewards can be replicated (realized) in the ground MDP.
Definition 2. Given an MDP M and an abstraction ⟨M̄, ϕ⟩, any abstract tuple (s̄ps̄, ā), with s̄p ̸= s̄,
is said (α, β)-realizable if there exists a ϕ-relative option o ∈ Ωs̄ps̄, such that

(1− γ)(Ṽs̄ps̄ā − V o
s̄ (s)) ≤ α (5)

h̃s̄ps̄ā(s̄
′)− ho

s̄(s̄
′ | s) ≤ β (6)

for all s̄′ ̸= s̄ and s ∈ Es̄ps̄. The option o is called (α, β)-realization of (s̄ps̄, ā). An abstraction
⟨M̄, ϕ⟩ is said (α, β)-realizable in M if any (s̄ps̄, ā) ∈ S̄2×Āwith s̄p ̸= s̄ also is. A (0, 0)-realizable
abstraction is perfectly realizable.

This definition essentially requires that the desired block occupancy and value, computed from the
abstraction, should be similar to the ones that are possible in the ground MDP from each entry
state. We observe that if the abstraction is an MDP, as is often the case in the literature (Li et al.,
2006; Ravindran & Barto, 2002), eqs. (2) and (3) simplify and our definition can still be applied.
Finally, we note that the scale factor of (1 − γ) was added to (5) to obtain two parameters α and
β in the same range of [0, 1], although the appropriate magnitude for such values should scale
with (1 − γ). Any given α and β put a restriction not only on the abstract decision process but
also on the possible mapping functions. Indeed, some partitions may not admit any dynamics that
satisfies Definition 2 over the induced abstract states. Consider, for example, the ground MDP
and the partition of Figure 1 (right). If the grid world is deterministic, there exists an option o
for which ho

s̄1(s̄3 | s2) = γ11 ≈ 0.57, but, due to the higher number of steps required from s1,
ho
s̄1(s̄3 | s1) = γ21 ≈ 0.34. Let γ = 0.95 and M̄ be so that, for some ā, h̃s̄2s̄1ā(s̄3) = 0.6. Then,

due to the very diverse behaviors from s1 and s2, the tuple (s̄2s̄1ā) is not realizable with β = 0.09 in
Figure 1 (right), while it is in the MDP of Figure 1 (left).

The most important feature of our abstractions is that any policy for a Realizable Abstraction can
be associated with a near-optimal policy for the ground MDP, which can be expressed as a simple
composition of ϕ-relative options. Indeed, if some abstraction ⟨M̄, ϕ⟩ is (α, β)-realizable, then it is
possible to associate to each tuple (s̄ps̄, ā) the option that realizes it. In the following, we say that
some policy of options Ω is the realization of some abstract policy π̄, if Ω contains the realization of
every tuple (s̄ps̄, π̄(s̄ps̄)). We can finally state the main property below. Its proof is in the appendix.

Theorem 1. Let ⟨M̄, ϕ⟩ be an (α, β)-realizable abstraction of an MDP M. Then, if Ω is the
realization of some abstract policy π̄, then, for any s̄p ∈ S̄, sp ∈ ⌊s̄p⌋, s ∈ Xs̄p , s̄ = ϕ(s),

V̄ π̄(s̄ps̄)− V Ω(s) ≤ α

(1− γ)2
+

β |S̄|
(1− γ)2(1− γ̄)

(7)

Moreover, if µ̄(s̄) =
∑

s∈⌊̄s⌋ µ(s) for every s̄, the same bound also holds for V̄ π̄
µ̄ − V Ω

µ .
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This bound relates the value of π̄ in the abstract M̄ with the value of the realization Ω in the ground M.
Essentially, this theorem proves that (α, β)-realizability is sufficient to have formal guarantees on the
minimal value achieved by the realization. Importantly, such a value can be achieved by a composition
of options that are only characterized by local constraints on the individual block MDPs. In this light,
the value loss in (7) is the maximum cost to be paid for finding a policy as a union of shorter policies,
without any global optimization. To evaluate the scale of the bound, we note that β and α are in [0, 1],
and that γ̄ ≤ γ. Also, the size of abstract state space S̄ := |S̄| is always finite, and the size of the
ground state space, which is usually very large or infinite, does not appear. Theorem 1 does not yet
imply near-optimality of Ω in M, because pessimistic abstractions with null target occupancies and
block values would also satisfy Definition 2, trivially. Thus, in addition to realizability, we require
that abstractions should be always optimistic, in the following sense.
Definition 3. An abstraction ⟨M̄, ϕ⟩ of an MDP M is admissible if for any (s̄ps̄, ā), with s̄p ̸= s̄,
and any option o ∈ Ωs̄ps̄, h̃s̄ps̄ā(s̄

′) ≥ ho
s̄(s̄

′ | s) and Ṽs̄ps̄ā ≥ V o
s̄ (s), for all s̄′ ̸= s̄ and s ∈ Es̄ps̄.

As we show below, admissible abstractions provide optimistic estimates of ground values. Together
with Theorem 1, this property allows us to guarantee the near-optimality of the realizations in M.
Proposition 2. Let ⟨M̄, ϕ⟩ be an admissible abstraction of an MDP M. Then, for any abstract
policy π̄, ground policy π, it holds V̄ π̄(s̄ps̄) ≥ V π(s), at any s̄p ∈ S̄, sp ∈ ⌊s̄p⌋, s ∈ Xs̄p , s̄ = ϕ(s).

Corollary 3. Any realization of the optimal policy of any admissible and (α, β)-realizable abstraction
is ε-optimal, for ε = α(1−γ̄)+βS̄

(1−γ)2(1−γ̄) , as long as µ̄(s̄) =
∑

s∈⌊̄s⌋ µ(s), for all s̄.

Realizable Abstractions are flexible representations that can capture both very coarse state partitions
and much more fine-grained subdivisions. For example, on one extreme, we verify that any MDP M
can be abstracted by itself as ⟨M, I⟩, where I : x 7→ x is the identity function.
Proposition 4. Any MDP M admits ⟨M, I⟩ as an admissible and perfectly realizable abstraction.

Although our abstractions are able to represent compressions along the time dimension, they are
not restricted to those. As a special case, they can capture any MDP homomorphism (Ravindran
& Barto, 2002; 2004) and any stochastic bisimulation (Givan et al., 2003). These two formalisms
have equivalent expressive power Ravindran (2004, Theorem 6) and their compression takes place
only with respect to parallel symmetries of the state space. We report the main results for MDP
homomorphisms here. The relevant definitions and proofs are deferred to Appendix B.
Proposition 5. If ⟨f, {gs}s∈S⟩ is an MDP homomorphism from M to M̄, then ⟨M̄, f⟩ is an admissi-
ble and perfectly realizable abstraction of M.

Proposition 6. There exists an MDP M and an admissible and perfectly realizable abstraction
⟨M̄, ϕ⟩ for which no surjections {gs}s∈S exist such that ⟨ϕ, {gs}s∈S⟩ is an MDP homomorphism
from M to M̄.

Reducing the effective horizon A reduction in the effective planning horizon, which scales with
(1 − γ)−1 for the ground MDP, can have a very strong impact on learning. As we already know,
γ̄ ≤ γ. Moreover, this inequality can become strict for Realizable Abstractions, as long as the two
discount factors satisfy Definition 2. However, to make the relation between γ and γ̄ more explicit,
we prove the following proposition.
Proposition 7. If ⟨M̄, ϕ⟩ is an admissible abstraction for an MDP M, then, for any tuple (s̄ps̄, ā)
with s̄p ̸= s̄, option o ∈ Ωs̄ps̄, and s ∈ Es̄ps̄, it holds ho

s̄(s̄ | s) ≥ (1− γ̄)max{1, V o
s̄ }.

This statement is composed of two results, ho
s̄(s̄ | s) ≥ 1− γ̄, which only constrains the occupancy,

and V o
s̄ ≤ ho

s̄(s̄ | s)/(1 − γ̄) which also involves value. These inequalities encode the necessary
conditions for reducing the effective horizon in the abstraction. The first inequality says that γ̄ can
only be low if the occupancy in every block is high. In particular, if there exists an option o that
leaves some ⌊s̄⌋ in one step, then ho

s̄(s̄ | s) = 1−γ and γ̄ = γ is the only feasible choice. The second
says that γ̄ can only be low if V o

s̄ is also low with respect to ho
s̄. In particular, if o collects in ⌊s̄⌋ a

reward of 1 at each step, then V o
s̄ = ho

s̄(s̄ | s)/(1− γ) and γ̄ = γ is the only feasible choice. This
allows us to conclude that a time compression in the abstraction is possible only if: (i) the changes
between blocks occur at some lower timescale; (ii) rewards are temporally sparse. This confirms some
common intuitions among the HRL literature, while it shows that sparse rewards are also important.
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Learning realizations To conclude this section, we now study how each realizing option can
be learned from experience. Although the constraints in Definition 2 could be direcly used, here
we propose a slight relaxation that is more suitable for online learning. Specifically, instead of
quantifying for each entry state Es̄ps̄, we consider some initial distribution ν ∈ ∆(Es̄ps̄).

Definition 4. Given an MDP M and an abstraction ⟨M̄, ϕ⟩, an abstract tuple (s̄ps̄, ā), with s̄p ̸= s̄,
is (α, β)-realizable from a distribution ν ∈ ∆(Es̄ps̄), if there exists a ϕ-relative option o ∈ Ωs̄ps̄,
such that h̃s̄ps̄ā(s̄

′) − ho
ν(s̄

′) ≤ β and (1 − γ)(Ṽs̄ps̄ā − V o
ν ) ≤ α, for all s̄′ ̸= s̄, where ho

ν(s̄
′) :=∑

s h
o
s̄(s̄

′ | s) ν(s) and V o
ν :=

∑
s V

o
s̄ (s) ν(s). The option o is the realization of (s̄ps̄, ā) from ν.

Being a relaxed definition, every realization is also a realization from any distribution, but not vice
versa. However, given some policy of options Ω, if each o ∈ Ω is a (α, β)-realization of a tuple
(s̄ps̄, ā) from some ν, and ν is the entry distribution of ⌊s̄⌋ from ⌊s̄p⌋ given Ω, then, V̄ π̄

µ̄ − V Ω
µ still

satisfy the bound in Theorem 1. The advantage is that, due to marginalization, the terms ho
ν and V o

ν
are no longer dependent on ground states. This means that realizability from distribution consists
exactly of |S̄| constraints, of which |S̄| − 1 come from the block occupancies and one from the value.

In this work, we identify two techniques for learning realizations: by solving Constrained MDPs, or
by Linear Programming. The Linear Programming formulation provides insteresting insights and is
discussed in Appendix C. However, realizing with Constrained MDPs is the preferred approach, and
it is the one discussed here. Unlike standard RL, CMDPs allow the encoding of both soft and hard
constraints. This field has received attention because of its relevance for RL and the encoding of hard
constraints in safety-critical systems. By expressing the realizability problem as a CMDP, we do not
restrict ourselves to a specific technique. Rather, we could realize abstract actions with any online
RL algorithm for CMDPs. This is especially relevant since the ground MDP may be non-tabular.
Fortunately, there are many general RL algorithms for CMDPs already available (Achiam et al., 2017;
Zhang et al., 2020; Ding et al., 2020; 2022; 2023; Wachi et al., 2024).

Among all S̄ constraints of Definition 4, we choose to represent the S̄ − 1 inequalities for the target
occupancies as hard constraints and the single inequality for the value as a soft constraint. By
assuming the realizability of each abstract tuple, the option o∗ ∈ Ωs̄ps̄, obtained as the maximization
of the soft objective V o

ν , will satisfy all the S̄ original constraints. To express the hard constraints, we
observe that ho

ν(s̄
′) =

∑
s,s′∈S dos̄(s

′ | s) I(s′ ∈ ⌊s̄′⌋) ν(s) = (1− γ)V o
ν,s̄′ , where V o

ν,s̄′ is the value
function of o in the MDP ⟨Ss̄,A, Ts̄, R

′
s̄′ , γ⟩, with R′

s̄′(s, a) := I(s ∈ ⌊s̄′⌋). The only difference from
this MDP and the block MDP Ms̄ is that a reward of 1 is placed in ⌊s̄′⌋, while every other internal
reward is 0. This means that we can reformulate the problem of realizing any tuple (s̄ps̄, ā) in M as:

argmax
π∈Π

V π
ν s.t. V π

ν,s̄′ ≥
h̃s̄ps̄ā(s̄

′)− β

1− γ
∀s̄′ ̸= s̄ (8)

In other words, this is a CMDP with auxiliary reward functions R′
s̄′ and associated lower limits

ls̄′ := (h̃s̄ps̄ā(s̄
′)− β)/(1− γ). Its solution can be seen as a ϕ-relative option for M.

4 RARL: A NEW HRL ALGORITHM

Taking advantage of the properties of Realizable Abstractions, in this section, we develop a new
sample efficient HRL algorithm called RARL (Realizable Abstractions RL). The algorithm learns
a ground policy of options in a compositional way. Moreover, in case the rewards of the input
abstraction are strongly overestimated, RARL can correct and update the abstraction accordingly.
The complete procedure is shown in algorithm 1. Although we assume that some abstraction ⟨M̄, ϕ⟩
is given explicitly, the algorithm only accesses the ground MDP M through online simulations. The
appropriate values for the other input parameters will be described later in Assumptions 1 and 2.
Initially, for each abstract tuple, RARL instantiates one individual online RL algorithm for CMDPs.
The dictionary O, which contains all the realizing options, is initially empty. At convergence, after
all relevant tuples have been realized, the algorithm repeatedly executes the lines 8–11. In this
exploitation phase, the abstract policy is responsible for selecting the option to execute. During the
exploration phase, instead, the algorithm reaches some block for which no option is already known.
In this case, the online CMDP solver has full control over the samples collected in block ⌊s⌋ (line 13).
When the CMDP solver finds a near-optimal option for the block (line 14), as in Assumption 1, the
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Algorithm 1: RARL

inputs : MDP simulator M, abstraction ⟨M̄, ϕ⟩, and parameters α, β, ζ.

1 foreach (s̄ps̄, ā) do
2 A(s̄1s̄2, ā1)← REALIZER(M, ⌊s̄⌋, h̃spsa, β) // Online RL algorithm for CMDPs

3 O(s̄1s̄2, ā1)← null // policy of options

4 sp ← s⋆; s←M.RESET()
5 repeat
6 π̄ ← VALUEITERATION(M̄, 1

1−γ log 2
(1−γ)ε )

7 repeat
8 s̄ps̄← ϕ(sp)ϕ(s)
9 ā← π̄(s̄ps̄)

10 if O(s̄ps̄, ā) is not null then
11 sps← ROLLOUT(M, O(s̄ps̄, ā)) // until s ∈ Xs̄

12 else
13 sps← A(s̄ps̄, ā).ROLLOUT() // until s ∈ Xs̄

14 if A(s̄ps̄, ā).found then
15 O(s̄ps̄, ā), V̂ ← A(s̄ps̄, ā).GET()

16 if Ṽs̄ps̄ā − V̂ > α
1−γ + ζ then

17 M̄← ABSTRACTONER(M̄, (s̄ps̄, ā), V̂ + α
1−γ + ζ)

18 sps← ROLLOUT(M) // conclude episode
19 break

20 sps← ROLLOUT(M) // conclude episode

21 Function ABSTRACTONER(M̄, (s̄ps̄, ā), V )
22 foreach s̄′p /∈ {s̄p, s̄} do V −

s̄′ps̄ā
← Ṽs̄′ps̄ā

23 R̄(s̄ps̄, ā)← max{0, R̄(s̄ps̄, ā) + V − Ṽs̄ps̄ā}

24 if R̄(s̄ps̄, ā) = 0 then R̄(s̄s̄, ā)← V
(

γ̄T̄ (s̄|s̄ps̄,ā)
1−γ̄T̄ (s̄|s̄s̄,ā)

)−1

25 foreach s̄′p /∈ {s̄p, s̄} do R̄(s̄′ps̄, ā)← min{1, R̄(s̄′ps̄, ā) + V −
s̄′ps̄ā
− Ṽs̄′ps̄ā

}

option is returned, along with its associated value (line 15). These are the estimated π and V π
ν of

Eq. (8). Importantly, each tuple is realized at most once. Then, whenever the block value of the
realization is below some threshold (line 16), the algorithm calls ABSTRACTONER, which updates
the rewards of M̄ to correct for this mismatch. In this case, the break statement triggers a new
re-planning in M̄ with Value Iteration, which is executed for the number of iterations specified in
input.

Sample complexity In this conclusive section, we provide formal guarantees on the sampe ef-
ficiency of RARL. Since the algorithm is modular and depends on the specific CMDP algorithm
adopted, we first characterize PAC online algorithms for CMDPs. An RL algorithm A is PAC-Safe
if, for any unknown CMDP M and positive parameters η, ζ and δ, whenever Πc is not empty, with
probability exceeding 1− δ, A returns some ζ-optimal and η-feasible policy in Πc,η . Moreover, the
number of episodes collected from M must be less than some polynomial in the relevant quantities.

Assumption 1. REALIZER is a PAC-Safe online RL algorithm with parameters ζ, η and confidence
1− δ/(2S̄2Ā), where ζ is the input of RARL.

The second assumption ensures that the input abstraction is admissible, and the transition function T̄
is β-realizable. The same is not assumed for rewards, which can be severely overestimated by M̄.

Assumption 2. Let ⟨M̄, ϕ⟩ and β, α be the inputs of RARL. We assume that ⟨M̄, ϕ⟩ is admissible
and that there exists some admissible (α, β)-realizable abstraction ⟨M̄∗, ϕ⟩, in which M̄∗ only differs
from M̄ by its reward function.
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The main intuition that we use to prove the sample complexity is that, although sampling occurs in
M, all decisions of RARL take place at the level of blocks and high-level states. This allows us to
use M̄ as a proxy to refer to the returns that are possible in M. Moreover, thanks to the admissibility
ensured by Assumption 2, we can show that RARL is optimistic in the face of uncertainty, because
the overestimated rewards of M̄ play the role of exploration bonuses for tuples that have not yet been
realized. Finally, to discuss the third and last assumption, we consider each νt,s̄ps̄, that represents the
entry distribution for block ⌊s̄⌋ from ⌊s̄p⌋ at episode t. Due to the way the algorithm is constructed,
these distributions can remain mostly fixed, and they only depend on the available options in O at
the beginning of episode t (let Ot represent this set). Still, since the addition of new options might
change such distributions, we assume that the old realizations remain valid in the future, as follows.
Assumption 3. During any execution of RARL, if Ot(s̄ps̄, ā) is an (α, β)-realization of (s̄ps̄, ā) in
M̄∗ from νt,s̄ps̄, then the same is true from νt′,s̄ps̄, for any t′ > t.

This is a quite nuanced dependency, and it only arises when learning realizations from specific entry
distributions, instead of all entry states. We omit the treatment of this marginal issue here. We can
finally state our bound, which limits the sample complexity of exploration (Kakade, 2003) of RARL.
Theorem 8. Under Assumptions 1 to 3, and any positive inputs ε, δ, with probability exceeding
1− δ, RARL is ε′-optimal with ε′ = α(1−γ̄)+βS̄

(1−γ)2(1−γ̄) +
3ε

1−γ on all but the following number of episodes
2S̄2Ā

ε

(
fr(ζ, η) + log 2S2A

δ

)
, where fr(ζ, η) is the sample complexity of the realization algorithm.

Thanks to the compositional property of Realizable Abstractions, the sample complexity of each
CMDP learner, which is fr(ζ, η), only contributes linearly to the bound and scales with the number
of tuples to realize. This number, which we bound with S̄2Ā, may be often much smaller because
not all tuples are relevant for near-optimal behavior. For example, Wen et al. (2020) shows that HRL
has an advantage over flat RL when the subMDPs can be grouped into K equivalence classes and
K ≪ S̄. The same argument can be applied here. When two block MDPs are equivalent, they can be
regarded as one, the collected samples can be shared, and the resulting options can be used in both
blocks. Therefore, the above bound can also be written with a multiplying factor of S̄ĀK instead of
S̄2Ā.

5 CONCLUSION

This work answers one important open question for HRL regarding how to relate the abstract actions
with the ground options. The answer is to relate the probability of abstract transitions with the
probability of the temporally-extended transitions that can be obtained with options in the ground
MDP. More specifically, this is given by the Realizable Abstractions, described in this paper. This
notion also implies suitable state abstractions that formally guarantee near-optimal and sample
efficient solutions of the ground MDP. In future work, the sample complexity of Theorem 8 could be
expressed as an instance-dependent bound. This would highlight when HRL can be more efficient
than standard RL, in presence of accurate abstractions, even without relying on equivalence classes.
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A PROPERTIES OF REALIZABLE ABSTRACTIONS

Theorem 1. Let ⟨M̄, ϕ⟩ be an (α, β)-realizable abstraction of an MDP M. Then, if Ω is the
realization of some abstract policy π̄, then, for any s̄p ∈ S̄, sp ∈ ⌊s̄p⌋, s ∈ Xs̄p , s̄ = ϕ(s),

V̄ π̄(s̄ps̄)− V Ω(s) ≤ α

(1− γ)2
+

β |S̄|
(1− γ)2(1− γ̄)

(7)

Moreover, if µ̄(s̄) =
∑

s∈⌊̄s⌋ µ(s) for every s̄, the same bound also holds for V̄ π̄
µ̄ − V Ω

µ .

Proof. To relate the value functions of different decision processes, we inductively define a sequence
of functions V0, V1, . . . as V0(sps) := V̄ π̄(ϕ(sp)ϕ(s)), and, if k ∈ N+,

Vk(sps) := E
[
go + γj Vk−1(sj−1sj) | sps, o ∈ Ω ∩ Ωϕ(sp)ϕ(s)

]
(9)

where go is the cumulative discounted return of the option o and j its random duration. In practice,
Vk is the value of executing k consecutive options, then computing the value on the abstraction. Now,
with an inductive proof, we show that, for every k ∈ N, s̄p ∈ S̄⋆, sp ∈ ⌊s̄p⌋, s ∈ Xs̄p ,

V̄ π̄(s̄ps̄)− Vk(sps) ≤
k∑

i=0

γi α (1− γ̄) + β S̄

(1− γ)(1− γ̄)
(10)

where, for this derivation, we are using the syntactic abbreviation s̄ := ϕ(s) and S̄ := |S̄|. For
the base case, k = 0 and V0(sps) = V̄ π̄(s̄ps̄). Now, for the inductive step, we apply Lemma 9
and Lemma 10 to the two value functions, respectively. We also use T̄s̄3|s̄1s̄2 and R̄s̄1s̄2 , the same
abbreviations of Lemma 9. Then,

V̄ π̄(s̄ps̄)− Vk(sps) = (11)

= R̄s̄ps̄ +
γ̄ T̄s̄|s̄ps̄

1− γ̄ T̄s̄|s̄s̄
R̄s̄s̄ +

∑
s̄′∈S̄\{s̄}

(
γ̄ T̄s̄′|s̄ps̄ +

γ̄2 T̄s̄|s̄ps̄ T̄s̄′|s̄s̄

1− γ̄ T̄s̄|s̄s̄

)
V̄ π̄(s̄s̄′)

−
∑
s′∈Ss̄

dos̄(s
′ | s)

1− γ
(I(s′ ∈ ⌊s̄⌋)R(s′, o(s′)) + I(s′ ∈ Xs̄)Vk−1(s

′)) (12)

= R̄s̄ps̄ +
γ̄ T̄s̄|s̄ps̄

1− γ̄ T̄s̄|s̄s̄
R̄s̄s̄ −

∑
s′∈⌊̄s⌋

dos̄(s
′ | s)

1− γ
R(s′, o(s′))

+
∑

s̄′∈S̄\{s̄}

(
γ̄ T̄s̄′|s̄ps̄ +

γ̄2 T̄s̄|s̄ps̄ T̄s̄′|s̄s̄

1− γ̄ T̄s̄|s̄s̄

)
V̄ π̄(s̄s̄′)−

∑
s′∈Xs̄

dos̄(s
′ | s)

1− γ
Vk−1(s

′) (13)

If V o
s̄ is the value function of o in the block-restricted MDP Ms̄,

= R̄s̄ps̄ +
γ̄ T̄s̄|s̄ps̄

1− γ̄ T̄s̄|s̄s̄
R̄s̄s̄ − V o

s̄ (s)
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+
∑

s̄′∈S̄\{s̄}

((
γ̄ T̄s̄′|s̄ps̄ +

γ̄2 T̄s̄|s̄ps̄ T̄s̄′|s̄s̄

1− γ̄ T̄s̄|s̄s̄

)
V̄ π̄(s̄s̄′)−

∑
s′∈Es̄s̄′

dos̄(s
′ | s)

1− γ
Vk−1(s

′)

)
(14)

using the fact that s′ ∈ Es̄s̄′ , and ⟨M̄, ϕ⟩ is an (α, β)-realizable abstraction,

≤ α

1− γ
+

∑
s̄′∈S̄\{s̄}

((
γ̄ T̄s̄′|s̄ps̄ +

γ̄2 T̄s̄|s̄ps̄ T̄s̄′|s̄s̄

1− γ̄ T̄s̄|s̄s̄

)
V̄ π̄(s̄s̄′)−

∑
s′∈Es̄s̄′

dos̄(s
′ | s)

1− γ
Vk−1(s

′)

)
(15)

Now, we add and subtract
∑

s̄′∈S̄\{s̄}
∑

s′∈Es̄s̄′
do
s̄(s

′|s)
1−γ V̄ π̄(s̄s̄′),

=
α

1− γ
+

∑
s̄′∈S̄\{s̄}

( ∑
s′∈Es̄s̄′

dos̄(s
′ | s)

1− γ
V̄ π̄(s̄s̄′)−

∑
s′∈Es̄s̄′

dos̄(s
′ | s)

1− γ
Vk−1(s

′)

)

+
∑

s̄′∈S̄\{s̄}

((
γ̄ T̄s̄′|s̄ps̄ +

γ̄2 T̄s̄|s̄ps̄ T̄s̄′|s̄s̄

1− γ̄ T̄s̄|s̄s̄

)
V̄ π̄(s̄s̄′)−

∑
s′∈Es̄s̄′

dos̄(s
′ | s)

1− γ
V̄ π̄(s̄s̄′)

)
(16)

=
α

1− γ
+

∑
s̄′∈S̄\{s̄}

∑
s′∈Es̄s̄′

dos̄(s
′ | s)

1− γ

(
V̄ π̄(s̄s̄′)− Vk−1(s

′)
)

+
∑

s̄′∈S̄\{s̄}

V̄ π̄(s̄s̄′)

((
γ̄ T̄s̄′|s̄ps̄ +

γ̄2 T̄s̄|s̄ps̄ T̄s̄′|s̄s̄

1− γ̄ T̄s̄|s̄s̄

)
− ho

s̄(s̄
′ | s)

1− γ

)
(17)

applying the inductive hypothesis to the first line and the definition of an (α, β)-realizable abstraction
to the second line,

≤ α

1− γ
+
∑

s′∈Xs̄

dos̄(s
′ | s)

1− γ

k−1∑
i=0

γi α (1− γ̄) + β S̄

(1− γ)(1− γ̄)
+

β S̄

(1− γ)(1− γ̄)
(18)

It only remains to quantify
∑

s′∈Xs̄
dos̄(s

′ | s). To do this, we apply Lemma 11 which gives,∑
s′∈Xs̄

dos̄(s
′ | s) = (1− ho

s̄(s̄ | s)) (1− γ) (19)

However, since the option starts in s ∈ ⌊s̄⌋, the occupancy ho
s̄(s̄ | s) cannot be less than (1− γ). This

allows us to complete the inequality and obtain

V̄ π̄(s̄ps̄)− Vk(sps) ≤
α (1− γ̄) + β S̄

(1− γ)(1− γ̄)
+ γ

k−1∑
i=0

γi α (1− γ̄) + β S̄

(1− γ)(1− γ̄)
(20)

=

k∑
i=0

γi α (1− γ̄) + β S̄

(1− γ)(1− γ̄)
(21)

This concludes the inductive step. To verify eq. (7), we observe that V Ω(sp, s) = limk→∞ Vk(sps).

We conclude by verifying the statement for the values from the respective initial distributions.

V̄ π̄
µ̄ − V Ω

µ =
∑
s̄∈S̄

µ̄(s̄) V̄ π̄(s̄⋆s̄)−
∑
s∈S

µ(s)V Ω(s) (22)

=
∑
s̄∈S̄

µ̄(s̄) V̄ π̄(s̄⋆s̄)−
∑
s̄∈S̄

∑
s∈⌊̄s⌋

µ(s) V̄ π̄(s̄⋆s̄)

+
∑
s̄∈S̄

∑
s∈⌊̄s⌋

µ(s) V̄ π̄(s̄⋆s̄)−
∑
s∈S

µ(s)V Ω(s) (23)

=
∑
s̄∈S̄

V̄ π̄(s̄⋆s̄) (µ̄(s̄) −
∑
s∈⌊̄s⌋

µ(s)) +
∑
s∈S

µ(s) (V̄ π̄(s̄⋆ϕ(s))− V Ω(s)) (24)

Using the assumption on initial distributions and the derivation above we obtain the second result.
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Proposition 2. Let ⟨M̄, ϕ⟩ be an admissible abstraction of an MDP M. Then, for any abstract
policy π̄, ground policy π, it holds V̄ π̄(s̄ps̄) ≥ V π(s), at any s̄p ∈ S̄, sp ∈ ⌊s̄p⌋, s ∈ Xs̄p , s̄ = ϕ(s).

Proof. To start, we observe that any ground policy π can be equivalently represented as a unique
policy of options Ω. Therefore, to relate the values in the two decision processes, we inductively
define a sequence of functions V0, V1, . . . as V0(sps) := V̄ π̄(ϕ(sp)ϕ(s)), and, if k ∈ N+,

Vk(sps) := E
[
go + γj Vk−1(sj−1sj) | sps, o ∈ Ω ∩ Ωϕ(sp)ϕ(s)

]
(25)

where go is the cumulative discounted return of the option o and j its random duration. In practice,
Vk is the value of executing k consecutive options, then computing the value on the abstraction. Since
V Ω(s) = limk→∞ Vk(sps), to prove the result, it suffices to show that V̄ π̄(s̄ps̄) ≥ Vk(sps), for all
k ∈ N and every s̄p ∈ S̄, sp ∈ ⌊s̄p⌋, s ∈ Xs̄p , s̄ = ϕ(s). The proof is inductive. For k = 0, the base
case holds by definition of Vk. For k > 0, we compute V̄ π̄(s̄ps̄)− Vk(sps) and expand it as in the
proof of Theorem 1. This can be done by respecting all equalities up until

V̄ π̄(s̄ps̄)− Vk(sps) =

= R̄s̄ps̄ +
γ̄ T̄s̄|s̄ps̄

1− γ̄ T̄s̄|s̄s̄
R̄s̄s̄ − V o

s̄ (s)

+
∑

s̄′∈S̄\{s̄}

∑
s′∈Es̄s̄′

dos̄(s
′ | s)

1− γ

(
V̄ π̄(s̄s̄′)− Vk−1(s

′)
)

+
∑

s̄′∈S̄\{s̄}

V̄ π̄(s̄s̄′)

((
γ̄ T̄s̄′|s̄ps̄ +

γ̄2 T̄s̄|s̄ps̄ T̄s̄′|s̄s̄

1− γ̄ T̄s̄|s̄s̄

)
− ho

s̄(s̄
′ | s)

1− γ

)
(26)

= Ṽs̄ps̄ā − V o
s̄ (s)

+
∑

s̄′∈S̄\{s̄}

∑
s′∈Es̄s̄′

dos̄(s
′ | s)

1− γ

(
V̄ π̄(s̄s̄′)− Vk−1(s

′)
)

+
∑

s̄′∈S̄\{s̄}

V̄ π̄(s̄s̄′)

(
h̃s̄′ps̄ā

(s̄′)

1− γ
− ho

s̄(s̄
′ | s)

1− γ

) (27)

Using the definition of admissible abstractions and the inductive hypothesis, we can confirm that all
three terms are positive.

Corollary 3. Any realization of the optimal policy of any admissible and (α, β)-realizable abstraction
is ε-optimal, for ε = α(1−γ̄)+βS̄

(1−γ)2(1−γ̄) , as long as µ̄(s̄) =
∑

s∈⌊̄s⌋ µ(s), for all s̄.

Proof. Using Proposition 2 and Theorem 1, V Ω
µ ≥ V̄ π̄(s̄ps̄)− ε ≥ V ∗ − ε.

Lemma 9. In any 2-MDP M and deterministic policy π, for any two distinct states sp, s ∈ S,

V π(sps) = Rsps +
γ Ts|sps

1− γ Ts|ss
Rss +

∑
s′∈S\{s}

(
γ Ts′|sps +

γ2 Ts|sps Ts′|ss

1− γ Ts|ss

)
V π(ss′) (28)

where Ts3|s1s2 := T (s3 | s1s2, π(s1s2)) and Rs1s2 := R(s1s2, π(s1s2)).

Proof. We use the abbreviations Ts1|s1s2 and Rs1s2 to avoid excessive verbosity. Then,

V π(sps) =
∑
s′∈S

Ts′|sps (Rsps + γ V π(ss′)) (29)

= Rsps +
∑

s′∈S\{s}

Ts′|sps γ V
π(ss′) + Ts|sps γ V

π(ss) (30)

= Rsps +
∑

s′∈S\{s}

Ts′|sps γ V
π(ss′) + Ts|sps γ Rss (31)
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+ Ts|sps γ Ts|ss γ V
π(ss) + Ts|sps γ

∑
s′∈S\{s}

Ts′|sps γ V
π(ss′) (32)

= Rsps + γ Ts|sps Rss

∞∑
t=0

γt T t
s|ss

+
∑

s′∈S\{s}

γ Ts′|sps V
π(ss′) + γ Ts|sps

∑
s′∈S\{s}

γ Ts′|ss V
π(ss′)

∞∑
t=0

γt T t
s|ss (33)

= Rsps +
γ Ts|sps

1− γ Ts|ss
Rss +

∑
s′∈S\{s}

(
γ Ts′|sps +

γ2 Ts|sps Ts′|ss

1− γ Ts|ss

)
V π(ss′) (34)

Lemma 10. Consider any MDP M and surjective function ϕ : S → S̄ . Then, from any state s ∈ S,
the value of any deterministic ϕ-relative option o ∈ Ωϕ(s) and policy π is

Qπ(s, o) =
∑
s′∈S

doϕ(s)(s
′ | s)

1− γ

(
I(s′ ∈ ⌊ϕ(s)⌋)R(s′, o(s′)) + I(s′ ∈ Xϕ(s))V

π(s′)
)

(35)

where doϕ(s) is the state occupancy measure of πo in the block-restricted MDP Mϕ(s).

Proof. Let ⌊s̄⌋(t) := ⌊s̄⌋t−1 × (S \ ⌊s̄⌋) be the set that includes all trajectories leaving the block in
exactly t transitions. We also abbreviate s̄ := ϕ(s). Then,

Qπ(s, o) = R(s, o(s)) + γ Es′ [I(s′ ∈ ⌊s̄⌋)Qπ(s′, o) + I(s′ ̸∈ ⌊s̄⌋)V π(s′))] (36)

= R(s, o(s)) + γ
∑
s′∈⌊̄s⌋

T (s′ | s, o(s))Qπ(s′, o) + γ
∑
s′ ̸∈⌊̄s⌋

T (s′ | s, o(s))V π(s′) (37)

=

∞∑
t=0

γt
∑

s1:t∈⌊̄s⌋t
P(s1:t | s0 = s, o,M)R(st, o(st))

+

∞∑
t=1

γt
∑

s1:t∈⌊̄s⌋(t)
P(s1:t | s0 = s, o,M)V π(st) (38)

=

∞∑
t=0

γt
∑

s1:t∈⌊̄s⌋t
P(s1:t | s0 = s, o,Ms̄)Rs̄(st, o(st))

+

∞∑
t=1

γt
∑

s1:t∈⌊̄s⌋(t)
P(s1:t | s0 = s, o,Ms̄)V

π(st) (39)

In the last equation, all probabilities are computed on the block-restricted MDP Ms̄. This is equivalent,
since all probabilities of transitions from ⌊s̄⌋ are preserved. Since every trajectory that leaves the
block may only reach s⊥, without further rewards in Ms̄, we can simplify as follows.

Qπ(s, o) =

∞∑
t=0

γt
∑

s1:t∈St
s̄

P(s1:t | s0 = s, o,Ms̄)Rs̄(st, o(st))

+

∞∑
t=1

γt
∑

s′∈Xs̄

P(st = s′ | s0 = s, o,Ms̄)V
π(s′) (40)

= E

[ ∞∑
t=0

γt rt | s, o,Ms̄

]

+
∑
s′∈S

∞∑
t=1

γt P(st = s′ | s0 = s, o,Ms̄) I(s′ ∈ Xs̄)V
π(s′) (41)
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= V o
s̄ (s) +

∑
s′∈S

∞∑
t=0

γt P(st = s′ | s0 = s, o,Ms̄) I(s′ ∈ Xs̄)V
π(s′) (42)

= (1− γ)−1
∑
s′∈⌊̄s⌋

dos̄(s
′ | s)R(s′, o(s′))

+ (1− γ)−1
∑
s′∈S

dos̄(s
′ | s) I(s′ ∈ Xs̄)V

π(s′) (43)

=
∑
s′∈S

(1− γ)−1 dos̄(s
′ | s) (I(s′ ∈ ⌊s̄⌋)R(s′, o(s′)) + I(s′ ∈ Xs̄)V

π(s′)) (44)

Lemma 11. Let Ms̄ be any block MDP, computed from some MDP M, mapping function ϕ and
abstract state s̄. Then, for any option o ∈ Ωs̄ and s ∈ ⌊s̄⌋, it holds:

dos̄(s⊥ | s) = (1− ho
s̄(s̄ | s)) γ (45)∑

s′∈Xs̄

dos̄(s
′ | s) = (1− ho

s̄(s̄ | s)) (1− γ) (46)

Proof. In a block MDP, we remind that the occupancy measure is spread between the block ⌊s̄⌋, the
exits and the sink state s⊥. In other words,∑

s′∈Xs̄

dos̄(s
′ | s) = 1−

∑
s′∈⌊̄s⌋

dos̄(s
′ | s)− dos̄(s⊥ | s) = 1− ho

s̄(s̄ | s)− dos̄(s⊥ | s) (47)

From the definition of occupancy, we also know that

dos̄(s⊥ | s) = (1− γ)

∞∑
t=0

γt P(st = s⊥ | s0 = s, o,Ms̄) (48)

= (1− γ)

∞∑
t=1

γt P(st = s⊥ | s0 = s, o,Ms̄) (49)

= (1− γ)

∞∑
t=1

γt P(st−1 ∈ Xs̄ ∪ {s⊥} | s0 = s, o,Ms̄) (50)

= γ (1− γ)

∞∑
t=0

γt P(st ∈ Xs̄ ∪ {s⊥} | s0 = s, o,Ms̄) (51)

= γ

( ∑
s′∈Xs̄

dos̄(s
′ | s) + dos̄(s⊥ | s)

)
(52)

Substituting eq. (47) into eq. (52) gives the result.

Proposition 4. Any MDP M admits ⟨M, I⟩ as an admissible and perfectly realizable abstraction.

Proof. The ground domain is M = ⟨S,A, T,R, γ⟩ and the abstraction is ⟨M, I⟩. Since admissibility
is trivially satisfied, we just need to show that this is a perfectly realizable abstraction. The identity
function induces the naive partitioning, in which each state is in a separate block: ⌊s⌋I = {s}. Also,
if we just consider deterministic I-relative options, we see that these are simple repetitions of the
same action for the same state. We can now compute the un-normalized block occupancy measure at
any state s ∈ S and deterministic o ∈ Ωs. Then, for s′ ̸= s,

ho
I(s)(s

′ | s)
1− γ

=
∑

s′∈⌊I(s′)⌋

∞∑
t=0

γt P(st = s′ | s0 = s, o,MI(s)) (53)

=

∞∑
t=1

γt P(s0:t−1 ∈ ⌊s⌋t, st = s′ | s0 = s, o,Ms) (54)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

=

∞∑
t=1

γt T (s | s, o(s))t−1 T (s′ | s, o(s)) (55)

=
γ T (s′ | s, o(s))

1− γ T (s | s, o(s))
(56)

Now we compute un-normalized eq. (2) for M. Importantly, since T (sps, a) = T (ss, a), we can just
write T (s, a):

h̃spsa(s
′)

1− γ
= γ T (s′ | s, a) + γ2 T (s | s, a)T (s′ | s, a)

1− γ T (s | s, a)
=

γ T (s′ | s, a)
1− γ T (s | s, a)

(57)

This proves that πo(s) = a is a perfect realization of a with respect to eq. (6). We now consider
rewards. The term V o

s (s), appearing in eq. (5), is the cumulative return obtained by repeating action a
(since it is the only reward in Ms).

V o
s (s) =

∞∑
t=0

γt P(st = s | s0 = s, a,Ms̄)R(s, a) (58)

=

∞∑
t=0

γt T (s | s, a)t−1 R(s, a) (59)

=
γ R(s, a)

1− γ T (s | s, a)
(60)

Following a similar procedure of eq. (57), we also verify eq. (5).

Proposition 7. If ⟨M̄, ϕ⟩ is an admissible abstraction for an MDP M, then, for any tuple (s̄ps̄, ā)
with s̄p ̸= s̄, option o ∈ Ωs̄ps̄, and s ∈ Es̄ps̄, it holds ho

s̄(s̄ | s) ≥ (1− γ̄)max{1, V o
s̄ }.

Proof. Let us fix any tuple (s̄ps̄, ā) with s̄p ̸= s̄, s̄p, s̄ ∈ S̄, option o ∈ Ωs̄ps̄, and s ∈ Es̄ps̄. Since
the abstraction is admissible, we know h̃s̄ps̄ā(s̄

′) ≥ ho
s̄(s̄

′ | s) and Ṽs̄ps̄ā ≥ V o
s̄ (s), for any s̄′ ̸= s̄.

Using the abbreviation T̄s̄3|s̄1s̄2 := T̄ (s̄3 | s̄1s̄2, ā), we expand the first inequality with (2),

ho
s̄(s̄

′ | s) ≤ (1− γ)

(
γ̄T̄s̄′|s̄ps̄ + γ̄2

T̄s̄′|s̄s̄T̄s̄|s̄ps̄

1− γ̄T̄s̄|s̄s̄

)
(61)

⇔ ho
s̄(s̄

′ | s)
(1− γ)

≤
γ̄T̄s̄′|s̄ps̄ − γ̄2T̄s̄′|s̄ps̄T̄s̄|s̄s̄ + γ̄2T̄s̄′|s̄s̄T̄s̄|s̄ps̄

1− γ̄T̄s̄|s̄s̄
(62)

by summing all such inequalities over s̄′ ̸= s̄, and using eq. (46) for the left-hand side, we obtain

⇒ 1− ho
s̄(s̄ | s) ≤

γ̄(1− T̄s̄|s̄ps̄)− γ̄2T̄s̄|s̄s̄(1− T̄s̄|s̄ps̄) + γ̄2T̄s̄|s̄ps̄(1− T̄s̄|s̄s̄)

1− γ̄T̄s̄|s̄s̄
(63)

⇔ 1− γ̄T̄s̄|s̄s̄ − ho
s̄(s̄ | s)(1− γ̄T̄s̄|s̄s̄) ≤ γ̄ − γ̄T̄s̄|s̄ps̄ − γ̄2T̄s̄|s̄s̄ + γ̄2T̄s̄|s̄ps̄ (64)

⇔ ho
s̄(s̄ | s)(1− γ̄T̄s̄|s̄s̄) ≥ (1− γ̄T̄s̄|s̄s̄)− γ̄(1− γ̄T̄s̄|s̄s̄) + γ̄T̄s̄|s̄ps̄(1− γ̄) (65)

⇔ ho
s̄(s̄ | s) ≥ 1− γ̄ +

γ̄T̄s̄|s̄ps̄(1− γ̄)

1− γ̄T̄s̄|s̄s̄
(66)

⇒ ho
s̄(s̄ | s) ≥ 1− γ̄ (67)

For the second statement, we expand Ṽs̄ps̄ā ≥ V o
s̄ (s),

V o
s̄ (s) ≤ R̄(s̄ps̄, ā) + γ̄R̄(s̄s̄, ā)

T̄s̄|s̄ps̄

1− γ̄T̄s̄|s̄s̄
(68)

⇒ V o
s̄ (s) ≤ 1 +

γ̄T̄s̄|s̄ps̄

1− γ̄T̄s̄|s̄s̄
(69)

⇔ (1− γ̄)V o
s̄ (s) ≤ (1− γ̄) +

γ̄T̄s̄|s̄ps̄(1− γ̄)

1− γ̄T̄s̄|s̄s̄
(70)
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using (66),

⇒ V o
s̄ (s) ≤ ho

s̄(s̄ | s)/(1− γ̄) (71)

B CONNECTION WITH MDP HOMOMORPHISMS AND BISIMULATION

In this section, we relate our new concept of realizable abstractions with two existing formal definitions
of MDP abstractions, namely, MDP homomorphisms (Ravindran & Barto, 2002) and stochastic
bisimulation (Givan et al., 2003). As we demonstrate in this section, both MDP homomorphisms
and stochastic bisimulation are strictly less expressive (meaning, their assumptions are strictly more
stringent) than realizable abstractions. As we show below, any MDP abstraction obtained via an
homomorphisms or a stochastic bisimulation is also an admissible and perfectly realizable abstraction.
On the other hand, there exists MDP-abstraction pairs, M and ⟨M̄, ϕ⟩, that satisfy the realizability
assumptions but no associated MDP homomorphisms or bisimulation exists for the two. In an effort
to make both MDP homomorphisms and stochastic bisimulation more widely applicable, they have
been generalized to approximate the strict relations, respectively in Ravindran & Barto (2004) and
Ferns et al.. Nonetheless, they only allow small variations around the strict equality, similarly to what
we have done in this paper for realizable abstractions, but they cannot capture very different relations
from their original definition. Therefore, we will relate the strict relations of the various formalisms:
admissible and perfectly realizable abstractions, MDP homomorphisms, and stochastic bisimulation.

MDP homomorphisms MDP homomorphisms are a classic formalism for MDP minimization
(Ravindran & Barto, 2002). A homomorphism from an MDP M = ⟨S,A, T,R, γ⟩ to another
M̄ = ⟨S̄, Ā, T̄ , R̄, γ⟩ is a pair ⟨f, {gs}s∈S⟩, with a function f : S → S̄ and surjections gs : A → Ā,
satisfying

T̄ (f(s′) | f(s), gs(a)) =
∑

s′′∈⌊f(s′)⌋

T (s′′ | s, a) (72)

R̄(f(s), gs(a)) = R(s, a) (73)

for all s, s′ ∈ S, a ∈ A. For simplicity, here we assumed that all actions are applicable in any state.
MDP homomorphisms can also be generalized to be approximate as shown in Ravindran & Barto
(2004).
Proposition 5. If ⟨f, {gs}s∈S⟩ is an MDP homomorphism from M to M̄, then ⟨M̄, f⟩ is an admissi-
ble and perfectly realizable abstraction of M.

Proof. If the ground domain is M = ⟨S,A, T,R, γ⟩, we choose as abstraction ⟨M̄, f⟩. We compute
the un-normalized block occupancy measure at any state s ∈ S and deterministic option o ∈ Ωf(s).
We also assume that o selects the same action for every ⌊f(s)⌋. Then, for s̄′ ̸= f(s),

ho
f(s)(s̄

′ | s)
1− γ

=
∑

s′∈⌊̄s′⌋

∞∑
t=0

γt P(st = s′ | s0 = s, o,Mf(s)) (74)

=
∑

s′∈⌊̄s′⌋

∞∑
t=1

γt P(s0:t−1 ∈ ⌊f(s)⌋t, st = s′ | s0 = s, o,Mf(s)) (75)

=

∞∑
t=1

γt
∑

s0:t−1∈⌊f(s)⌋t

∑
s′∈⌊̄s′⌋

P(s0:t−1, st = s′ | s0 = s, o,Mf(s)) (76)

Now, summing from s′ to st−1 back to s0 and substituting eq. (72),

=

∞∑
t=1

γt T̄ (f(s) | f(s) gs(o(s))t−1 T̄ (s̄′ | f(s) gs(o(s))) (77)

=
γ T̄ (s̄′ | f(s) gs(o(s)))

1− γ T̄ (f(s) | f(s) gs(o(s)))
(78)
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Figure 2: The ground MDP (left) and the abstract MDP (right) used in the proof of Proposition 6.

Now we compute un-normalized eq. (2) for M. As in eq. (57), since T̄ (s̄ps̄, ā) = T (s̄s̄, ā), we can
just write T (s̄, ā) and:

h̃s̄ps̄ā(s̄
′)

1− γ
=

γ T̄ (s̄′ | s̄ ā)
1− γ T̄ (s̄ | s̄ ā)

(79)

This proves that πo(s) ∈ g−1
s (ā) is a perfect realization of ā with respect to eq. (6). We now consider

rewards. The term V o
f(s)(s), appearing in eq. (5), is

V o
f(s)(s) =

∞∑
t=0

γt
∑

s0:t∈⌊f(s)⌋t+1

P(s0:t | s0 = s, o,Mf(s))R(s, a) (80)

=

∞∑
t=0

γt T̄ (f(s) | f(s) o(a))t R̄(f(s) o(a)) (81)

=
γ R̄(f(s) o(a))

1− γ T̄ (f(s) | f(s) o(a))
(82)

By comparison with Ṽs̄ps̄ā in eq. (5), the same choice πo(s) ∈ g−1
s (ā) also satisfies the second

constraint.

Proposition 6. There exists an MDP M and an admissible and perfectly realizable abstraction
⟨M̄, ϕ⟩ for which no surjections {gs}s∈S exist such that ⟨ϕ, {gs}s∈S⟩ is an MDP homomorphism
from M to M̄.

Proof. Consider the MDP in Figure 2. This is a very simple MDP M = ⟨S,A, T,R, γ⟩ with
three states S = {s0, s1, s2}, an action A = {a0}, deterministic transitions as indicated by the
figure, and a reward of +1 in state s2, zero otherwise. The state mapping function is constructed as
ϕ(s0) = ϕ(s1) = s̄0 and ϕ(s2) = s̄1. The abstract MDP is M̄ = ⟨{s̄0, s̄1}, {ā0}, T̄ , R̄, γ⟩, where
the reward function returns +1 in state s̄1, zero otherwise, and the transition function T̄ only allows
the transitions indicated by the arrows. The exact values for the stochastic transitions in s̄0 are
T̄ (s̄1 | s̄0, ā0) := γ/(1 + γ) and T̄ (s̄0 | s̄0, ā0) := 1/(1 + γ).

We now show that ⟨M̄, ϕ⟩ is admissible and perfectly realizable. Let us remind that s̄⋆ is the dummy
state symbol that represents the beginning of an episode in the abstract MDP. Then, we apply the
equations in (4) to get:

h̃s̄⋆s̄0ā0
(s̄1) =

(1− γ) γ T̄ (s̄1 | s̄0, ā0)
1− γ T̄ (s̄0 | s̄0, ā0)

=
(1− γ) γ2/(1 + γ)

1− γ/(1 + γ)
= (1− γ) γ2 (83)

Ṽs̄⋆s̄0ā0
=

R̄(s̄0, ā0)

1− γ T̄ (s̄0 | s̄0, ā0)
= 0 (84)

Ṽs̄0s̄1ā0 =
R̄(s̄1, ā0)

1− γ T̄ (s̄1 | s̄1, ā0)
=

1

1− γ
(85)

With one action, there is only one option o for each block that achieve a value of 0 in ⌊s0⌋, since all
rewards in s0, s1 are null, and a value of 1/(1 − γ) in ⌊s̄1⌋, since the rewards from s2 are 1 for an
infinite number of steps. Lastly, the block occupancy measure ho

s̄0(s̄1 | s0) is also (1− γ)γ2 because
it can only reach s2 after exactly two steps. Since the terms satisfy these equalities, the abstraction is
both admissible and perfectly realizable.

To conclude the proof, we show that the state abstraction function ϕ prevents the existence of an
MDP homomorphism from M to M̄. Simply, in the abstraction above, the ground states s0 and s1
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both belong to the same block. However, this fact contradicts (72), because:∑
s∈⌊ϕ(s2)⌋

T (s | s0, a0) = T (s2 | s0, a0) = 0 ̸= 1 = T (s2 | s1, a0) =
∑

s∈⌊ϕ(s2)⌋

T (s | s1, a0) (86)

Since ϕ(s0) = ϕ(s1), the transition function defined in eq. (72) is undefined for any gs : A → Ā.

We now turn our attention to stochastic bisimulation. As we will see, the same results above still hold
because their expressive power is equivalent to MDP homomorphisms.

Stochastic bisimulation Stochastic bisimulation (Givan et al., 2003) is a technique for state
minimization in MDPs, inspired by the bisimulation relations for transition systems and concurrent
processes. Given an MDP M, it allows to define another MDP, that we write as M̄, in which one or
more states are grouped together if they are in the bisimilarity relation. In this section, we study this
relation and we formally verify that bisimulation is strictly less expressive (meaning, more stringent),
than the realizability condition that this paper proposes.

We first introduce some required notation. Given a binary relation E ⊆ S × S ′, we write (s, s′) ∈ E
if any two s, s′ ∈ S are in the relation. If every s ∈ S and s′ ∈ S ′ appears in some pair in E,
we define E|S to be the partition of S obtained by grouping all states that are reachable under the
reflexive, symmetric, and transitive closure of E. In this section, for s ∈ S , we write ⌊s⌋E|S to denote
the set in the partition E|S to which s belongs. E|S ′ and ⌊s′⌋E|S′ are defined analogously.

A stochastic bisimulation (Givan et al., 2003) over two MDPs M = ⟨S,A, T,R, γ⟩ and M′ =
⟨S ′,A, T ′, R′, γ⟩ with the same action space, is any relation Z ∈ S × S ′ that satisfies, for any
s ∈ S, s′ ∈ S ′, a ∈ A:

1. s appears in E and s′ appears in E;

2. If (s, s′) ∈ E, then R(s, a) = R(s′, a);

3. If (s, s′) ∈ E, then for any (sn, s
′
n) ∈ E,∑

sv∈⌊sn⌋E|S

T (s, a, sv) =
∑

s′v∈⌊s′n⌋E|S′

T ′(s′, a, s′v) (87)

Despite the different formalisms, stochastic bisimulations over MDPs and MDP homomorphisms have
exactly the same expressive power. As proven by the following theorem, an MDP homomorphism
exists if and only if This has been proven in a theorem that we report below.
Proposition 12. (Ravindran, 2004, Corollary of Theorem 6) Let ⟨f, {gs}s∈S⟩ be an MDP homomor-
phism from an MDP M to an MDP M̄. The relation E ⊆ S × S̄ , defined by (s, s̄) ∈ E if and only if
ϕ(s) = s̄, is a stochastic bisimulation.

This exact statement means that the existence of an MDP homomorphism guarantees the existence of
a stochastic bisimulation. The opposite implication can be also obtained as a result of Theorem 6
from Ravindran (2004). Specifically, if E is a maximal stochastic bisimulation from M to M̄, then
there exits an MDP homomorphism between the two.

C REALIZING WITH LINEAR PROGRAMMING

For this alternative approach, we show that the realizability problem can be formulated as a linear
program, which may be addressed with primal-dual techniques. This may come as little surprise,
since the Lagrangian formulation is one of the possible solution methods for constrained optimization
problems such as CMDPs. However, we present these two techniques separately because some
CMDP methods may be more closely related to Deep RL algorithms, and they can be quite different
from online stochastic optimization algorithms for linear programs. In addition, primal-dual tech-
niques have been studied independently of CMDPs and are often developed as solution methods for
unconstrained RL. Recent research focuses on finding near-optimal policies for non-tabular MDPs,
both in the presence of generative simulators and online RL (de Farias & Roy, 2003; Mahadevan
et al., 2014; Chen & Wang, 2016; Tiapkin & Gasnikov, 2022; Gabbianelli et al., 2024; Neu & Okolo,
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2023). The advantage of online optimization is that the typically large linear programs would not be
stored explicitly. This is still an open field of study and, similarly to the CMDP formulation above,
the formulation we propose here may be solved with any feasible algorithm for this setting.

The linear programming (LP) formulation of optimal planning in MDPs dates back to Puterman
(1994); Bertsekas (1995). We first show this classic formulation here and then add the additional
constraints. Using vector notation for functions and distributions, we interpret the rewards as a vector
R ∈ RSA and the initial distribution as ν ∈ RS . Transitions are written as a matrix P ∈ RSA×S

where P (sa, s′) := T (s′ | s, a). Let E ∈ RSA×S with E(sa, s′) := I(s = s′), be a matrix that
copies elements for each action. Then, the planning problem in MDPs is expressed as:

max
b∈RSA: b≥0

bTR

s.t. ET b− γ PT b = (1− γ) ν
(88)

The constraint expressed here is the Bellman flow equation on the state-action occupancy distribution.
At the optimum, the solution b∗ is the discounted state-action occupancy measure of the optimal policy,
and we have ET b∗ = dπ

∗

ν . In addition, the objective is the scaled optimal value V ∗ = ⟨b∗, R⟩/(1−γ).
The dual linear program is

min
V ∈RS

(1− γ) νTV

s.t. E V − γ P V ≥ R
(89)

and the optimum of this problem is V ∗, the value of the optimal policy. Solving either the primal or
the dual problem is equivalent to solving the given MDP. The references cited above are only some of
the works that adopt this linear formulation to find the optimal policy. For generalizing to non-tabular
MDPs, the linear formulation is often expressed in feature space (de Farias & Roy, 2003). Here, we
work with the tabular equations shown above for simplicity.

The LP formulation just presented can now be applied to each block MDP and modified to introduce
the additional constraints. Similarly to our choice for CMDPs, we only express the constraint on
occupancy distributions. Due to the equality constraint in (88), the vector b is forced to be a state-
action occupancy distribution. Thus, all S̄ − 1 constraints from (4) can be written in the primal
program as BT b ≥ h̃s̄ps̄ā − β, where B ∈ RSA×(S̄−1) is the matrix that sums all occupancies across
states and actions for one block as BT (s̄, sa) := I(s̄ = ϕ(s)). The linear program becomes

max
b∈RSA: b≥0

bTR

s.t. ET b− γ PT b = (1− γ) ν

−BT b ≤ β − h̃s̄ps̄ā

(90)

Computing the dual of this program we have:

min
V ∈RS , y∈RS̄−1, y≥0

(
(1− γ) ν

β − h̃s̄ps̄ā

)T (
V
y

)
s.t. (E − γP −B)

(
V
y

)
≥ R

(91)

We do not need to encode the second constraint on rewards because it will be satisfied by the
optimum, provided that (s̄ps̄, ā) is realizable. The dual vector y gives interesting insights about how
this formulation works. Looking at the constraint in (91), we see that the variables y play the role
of artificial terminal values that are placed at exit states. In other words, these variables are excess
values that are needed to incentivize an increased state occupancy at exit states. This is consistent
with the classic interpretation of slack variables in dual programs. From an HRL perspective, on the
other hand, each entry of y is related to the terminal value associated with neighboring blocks. This
is what causes the optimization problem to shift from pure maximization of the internal block value
V o
ν , towards a compromise between the current block and other, more rewarding, blocks. Therefore,

if the optimal vector y∗ was known in advance, the realizability problem of each abstract state and
action could be solved simply by setting the rewards of the block MDP as

Rs̄(s, a) :=


R(s, a) if s ∈ ⌊s̄⌋
y∗(ϕ(s)) if s ∈ Xs̄

0 if s = s⊥

(92)
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and optimizing the classic RL objective over Ms̄ with any (Deep) RL technique. With this inter-
pretation, we can recognize that y∗ is related to what Wen et al. (2020) called “exit profiles”. The
main difference is that, unlike exit profiles, the values y∗ are homogeneous within blocks and are not
assumed to be known in advance.

D SAMPLE COMPLEXITY OF RARL

In this section, we use Ot, M̄t and π̄t to, respectively, denote the state of the variables O, M̄ and π̄ in
algorithm 1 at the beginning of episode t ∈ N+. Moreover we respresent the set of “known” tuples,
which have been realized already, as Kt := {(s̄ps̄, ā) | Ot(s̄ps̄, ā) is not null}. The structure of this
section is the following. The main sample complexity theorem comes first and the other lemmas
follow below. Lemma 15 proves that ABSTRACTONER updates the rewards of M̄t in such a way
as to obtain the intended targets Ṽ for the block values. Lemma 14 proves that, when called with a
near-optimal realization, any update made by ABSTRACTONER preserves admissibility and all the
previous realizations. Lemma 13 proves that, with high probability, any option in Ot is a realization
for M̄t. Finally, Theorem 8 combines these results to obtain the global sample complexity.

Theorem 8. Under Assumptions 1 to 3, and any positive inputs ε, δ, with probability exceeding
1− δ, RARL is ε′-optimal with ε′ = α(1−γ̄)+βS̄

(1−γ)2(1−γ̄) +
3ε

1−γ on all but the following number of episodes
2S̄2Ā

ε

(
fr(ζ, η) + log 2S2A

δ

)
, where fr(ζ, η) is the sample complexity of the realization algorithm.

Proof. In this proof, Ot, M̄t and π̄t respectively denote the state of the variables O, M̄ and π̄ in
algorithm 1 at the beginning of episode t ∈ N+.

The algorithm runs VALUEITERATION at the first episode and each time the abstraction is updated.
According to Lemma 16, for any εv > 0, after 1

1−γ log 2
(1−γ)2εv

value iteration updates, the output

π̄t is always an εv-optimal policy for M̄t in all states, which we write V̄ π̄∗

t (s̄) − V̄ π̄t
t (s̄) ≤ εv or

V̄ π̄∗

t (s̄)− εv ≤ V̄ π̄t
t (s̄), for all s̄. Now, for any εh > 0, to be set later, we define the abstract effective

horizon as H̄ := 1
1−γ̄ log 1

εh(1−γ̄) . Then, using Lemma 17, we obtain V̄ π̄t
t (s̄) ≤ V̄ π̄t

t,H̄
(s̄) + εh, where

V̄ π̄t

t,H̄
(s̄) is the expected sum of the first H discounted rewards collected in M̄t using π̄t. So far, the

chain of inequalities has led to the following.

V̄ π̄∗

t (s̄) ≤ V̄ π̄t

t,H̄
(s̄) + εh + εv (93)

The same inequality is also true from any initial distribution. In particular, we choose s̄ ∼ µ̄ :=
P(ϕ(s) | µ), where µ is the initial distribution in M. We write this as

V̄ π̄∗

t,µ̄ ≤ V̄ π̄t

t,H̄,µ̄
+ εh + εv (94)

Let us define the set of known tuples as Kt := {(s̄ps̄, ā) | Ot(s̄ps̄, ā) is not null}. For each t ∈ N+,
we define the “escape event” Et as the event that the execution of the algorithm encounters some tuple
(s̄ps̄, ā) which is not in Kt, in the first H̄ blocks of episode t. This happens if the algorithm reaches
the else branch in episode t after at most H̄ iterations. For each episode t, we first consider the case
in which Et is does not happen. Since Assumptions 1 to 3 are satisfied, we can apply Lemma 13.
This implies that M̄t is admissible and, for each of the first H̄ abstract tuples encountered in that
episode, there exists an associated option in Ot which is a (α′, β′)-realization. If Et does not occur,
the algorithm only executes these options in the first H̄ blocks. So, we can apply the second statement
of Theorem 1 and obtain that the algorithm is executing a policy of options Ωt that satisfies

V̄ π̄
t,H̄,µ̄ − V Ωt

H̄,µ
≤ α(1− γ̄) + βS̄

(1− γ)2(1− γ̄)
(95)

Theorem 1 is stated for value functions over infinite horizons, but it is applied here to value functions
truncated after H̄ blocks. This is necessary, since Ωt is not a fully realized policy of options. Options
are guaranteed to be realizations only for the first H̄ blocks. On the other hand, the results of
Theorem 1 still follow for the truncated functions, because, by definition, after H̄ consecutive blocks
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they both become equal to 0. Then, since V Ωt

H̄,µ
≤ V Ωt

µ , we can combine the inequality above
with (94) and obtain

V̄ π̄∗

t,µ̄ ≤ V Ωt
µ +

α(1− γ̄) + βS̄

(1− γ)2(1− γ̄)
+ εh + εv (96)

Now, using the fact that ⟨M̄t, ϕ⟩ is admissible for M, we can apply Proposition 2 for the policies π̄∗

and π∗, and take an expectation over µ to obtain

V ∗ − V Ωt
µ ≤ α(1− γ̄) + βS̄

(1− γ)2(1− γ̄)
+ εh + εv (97)

This proves that the algorithm is near-optimal for every episode t in which Et did not occur. Note
that reducing the term εv only increases the computational complexity, not the number of samples
used. In this proof, we will pick εv := εh, for simplicity. At the end of the proof, this choice will
match what is found in the main algorithm.

For the episodes in which the escape event Et does happen, instead, we do not make any guarantee on
V πt , which might be zero. Here πt represents the low-level policy used by the algorithm in episode t.
Let ¬Et be the negation of the escape event. Accounting for both cases, without conditioning on Et,
the value of the algorithm in episode t is

V πt = E

[ ∞∑
i=1

ri |M, πt

]
(98)

≥ P(¬Et)E

[ ∞∑
i=1

ri |M, πt,¬Et

]
(99)

using (97),

≥ P(¬Et)

(
V ∗ − α(1− γ̄) + βS̄

(1− γ)2(1− γ̄)
− 2εh

)
(100)

= V ∗ − P(Et)V
∗ − (1− P(Et))

(
α(1− γ̄) + βS̄

(1− γ)2(1− γ̄)
+ 2εh

)
(101)

Then,

V ∗ − V πt ≤ P(Et)V
∗ + (1− P(Et))

(
α(1− γ̄) + βS̄

(1− γ)2(1− γ̄)
+ 2εh

)
(102)

≤ P(Et)

1− γ
+

α(1− γ̄) + βS̄

(1− γ)2(1− γ̄)
+ 2εh (103)

Let ε′h := εh(1− γ),

V ∗ − V πt ≤ α(1− γ̄) + βS̄

(1− γ)2(1− γ̄)
+

P(Et)

1− γ
+

2ε′h
1− γ

(104)

If P(Et) ≤ ε′h, then the algorithm is near-optimal in episode t, with

V ∗ − V πt ≤ α(1− γ̄) + βS̄

(1− γ)2(1− γ̄)
+

3ε′h
1− γ

(105)

Now consider any episode t in which P(Et) > ε′h. We follow a similar reasoning to the proof of
theorem 10 in Strehl et al. (2009). The event Et can be modeled with a Bernoulli random variable Xt

with E[Xt] > ε′h. We observe that the probability of this event stays constant even in the following
episodes until some new option is added, because both the abstract policy and the set of options used
remain constant for the known tuples. In other words, Xt, Xt+1, . . . , Xt′ is a sequence of independent
and identically distributed Bernoulli RVs, where t′ is the first episode in which Kt′−1 ̸= Kt′ (a new
tuple becomes known). Thanks to our choices, the sum

∑
i=t,...,t′ Xi represents the number of times

that a new trajectory is collected and it contributes to the realization of (s̄ps̄, ā) before a new update
occurs. By Assumption 1 and the guarantees of PAC-Safe algorithms, the realizer only requires a
number of trajectories that is some polynomial in (|S|, |A|, 1/ζ, log(2S̄2Ā/δ), 1/η, 1/(1− γ)). Let
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fr(ζ, η) be such polynomial. We estimate the number of exits required before some tuple becomes
known. In other words, we guarantee that

∑
i=t,...,t′ Xi ≥ fr(ζ, η) with high probability, through an

application of Lemma 18. This implies that, for any δe > 0, if

t′ − t ≥ 2

ε′h

(
fr(ζ, η) + log

1

δe

)
=: ∆ (106)

then,
∑

i=t,...,t′ Xi ≥ fr(ζ, η) with probability at least 1 − δe. Therefore, with probability 1 − δe,
a new option will become known after at most ∆ episodes from t. Essentially, ∆ is the maximum
sample complexity for learning some new option with high probability.

Concluding, since the maximum number of options to realize is at most S2A, we multiply the bound
above for each tuple, and apply the union bound with δe := δ/(2S2A) to verify that the event∑

i Xi ≥ fr(ζ, η) holds with probability 1− δ/2 for all tuples. This gives a total sample complexity
of

2S̄2Ā

ε′h

(
fr(ζ, η) + log

2S2A

δ

)
(107)

With a further application of the union bound, we guarantee that this sample complexity and the
statement of Lemma 13 jointly hold with probability 1− δ. To select the appropriate accuracy, we
choose εh := ε/(1− γ), which gives ε′h = ε.

Lemma 13. Under Assumptions 1 to 3, and any positive inputs ε, δ, it holds, with probability
1 − δ, that for every t ∈ N+, M̄t is admissible and, for every (s̄ps̄, ā) ∈ Kt, Ot(s̄ps̄, ā) is an
(α′, β′)-realization of (s̄ps̄, ā) in M̄t, where α′ := α+ ζ(1− γ) and β′ := β + η(1− γ).

Proof. As assumed by Assumption 1, each instance of REALIZER is a PAC-Safe RL algorithm with
maximum failure probability of δ/(2S̄2Ā). Since there are less than S̄2Ā instances of REALIZER,
and each of them only returns the option at most once, by the union bound, the probability that any of
the instances fail is at most δ/2. Taking into account this failure probability, we condition the rest of
the proof on the event that none of the instances in A fail.

The proof is by induction. Since M̄1 is the input of the algorithm, it is admissible, according to
Assumption 2. Also, since K1 is emtpy, the second half of the statement trivially holds. The inductive
step will occupy most of the remaining proof. For any episode t ≥ 1, assume that M̄t is admissible
and, for every (s̄ps̄, ā) ∈ Kt, Ot(s̄ps̄, ā) is an (α′, β′)-realization of (s̄ps̄, ā) from νt,s̄ps̄ in M̄t. Now,
if the algorithm does not enter the block in line 14 during episode t, which can only happen at most
once in any episode, then Kt+1 = Kt, Ot+1 = Ot and M̄t+1 = M̄t. Therefore, the inductive step is
verified.

We now consider the case in which the algorithm does enter the block in line 14. In this case, a single
tuple is added, Kt+1 = Kt ∪ {(s̄ps̄, ā)}, with its associated option ô := Ot+1(s̄ps̄, ā). Therefore, we
proceed to prove that ô is an (α′, β′)-realization of (s̄ps̄, ā) from νt+1,s̄ps̄ in M̄t. We will link this
result to M̄t+1 later in the proof. Consider A(s̄ps̄, ā), the instance of REALIZER associated with the
newly added tuple. Copying from (8), and accounting for Πc,η , we observe that the realizer algorithm
is solving the following problem:

argmax
o∈Ωs̄ps̄

V o
ν s.t. V o

ν,s̄′ ≥
h̃s̄ps̄ā(s̄

′)− β

1− γ
− η ∀s̄′ ̸= s̄ (108)

Here, ν should be intended as νt,s̄ps̄ = P(s | sp ∈ ⌊s̄p⌋, s ∈ ⌊s̄⌋, Ot). In other words, this is the entry
distribution caused by the options available in episode t. Let o∗ be the optimal solution of the original
optimization problem (8), and oη∗ be the optimal solution of the relaxed probelm in (108). Note that
these options always exist because, by Assumption 2, the feasible sets Πc and Πc,η cannot be empty,
because M̄∗ only differs from M̄t with respect to the reward function, and the constraint set only
depends on transition probabilities. Then, by the guarantees of PAC-Safe algorithms, the instance of
REALIZER returns an option ô which satisfies all the constraints above and, for the objective, it holds
V oη∗

ν − V ô
ν ≤ ζ. Now, since Πc ⊆ Πc,η, it holds V o∗

ν ≤ V oη∗

ν , which implies V o∗

ν − V ô
ν ≤ ζ. Next,

we consider the abstraction M̄∗, which is referenced by Assumption 2. This unknown 2-MDP is
admissible and (α, β)-realizable. Since o∗ is an optimal solution of the original realization problem,
by Assumption 2, we have Ṽ ∗

s̄ps̄ā − V o∗

ν ≤ α/(1− γ), where the left-most term is Ṽs̄ps̄ā, computed
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in M̄∗. This means that we can lower bound V o∗

ν by Ṽ ∗
s̄ps̄ā−α/(1− γ) in the inequalities above, and

obtain (1− γ)(Ṽ ∗
s̄ps̄ā − V ô

ν ) ≤ α+ ζ(1− γ). Regarding the constraints, instead, we can follow the
same chain of equalities there were used above (8), and obtain h̃s̄ps̄ā(s̄

′)− hô
ν(s̄

′) ≤ β + η(1− γ).
Together, the two inequalities above prove that the output of A(s̄ps̄, ā) is a (α′, β′)-realization of
(s̄ps̄, ā) from ν in M̄∗, for α′ := α + ζ(1 − γ) and β′ := β + η(1 − γ). Now, according to
Assumption 3, the stame statement will be true not only from νt,s̄ps̄ but from any future initial
distribution, that may be caused by addition of new options in Ot. So, we will simply say that ô is an
(α′, β′)-realization in M̄∗.

We now distinguish two cases. If the algorithm does not enter the block in line 16 in episode t, then
M̄t+1 = M̄t. This means that M̄t+1 is admissible and ô is an (α′, β′)-realization in M̄t+1. Indeed,
the failed if-statement ensures that (1− γ)(Ṽt,s̄ps̄ā − V ô

ν ) ≤ α′. Since M̄∗ and M̄t have the same
transition function, this proves that Ot(s̄ps̄, ā) is an (α′, β′)-realization in M̄t.

The last case to consider is when the algorithm enters line 16 in episode t. In this case, the abstraction
gets updated with ABSTRACTONER. For characterizing its output, we verify if the preconditions
of Lemma 14 are satisfied. First, Condition 1 is satisfied by M̄t because M̄1 satisfies it due to
Assumption 2 and it only differs from M̄t by its reward function. Second, as option we consider
ô, which we already know from above that is an (α′, β′)-realization in M̄∗. Lastly, we know that
Ṽt,s̄ps̄ā − V ô

ν > α′/(1 − γ) because the if-statement succeeded. So, we can apply Lemma 14.
Any tuple that does not involve s̄ is not affected by the updated rewards. Therefore, we only
verify the tuples (s̄′ps̄ā). Using statement 4 of Lemma 14, we know that if (s̄′ps̄ā) ∈ Kt and
Ot(s̄

′
ps̄ā) is an (α′, β′)-realization for M̄t, then, the same will be true for M̄t, since Kt ⊆ Kt+1

and Ot(s̄
′
ps̄ā) = Ot+1(s̄

′
ps̄ā). Also, by statement 3 of Lemma 14, the same tuple is also admissible

in M̄t+1 thanks to the induction hypothesis. Lastly, the new tuple (s̄ps̄, ā) is admissible in M̄t+1

and realized by ô = Ot+1(s̄
′
ps̄ā), because of statement 2. Although we are not referring to initial

distributions, we also used Assumption 3, implicitly.

Condition 1. Given positive β and α, there exists some admissible (α, β)-realizable abstraction
⟨M̄∗, ϕ⟩ in which M̄∗ only differs from M̄ by its reward function.

Lemma 14. Consider an MDP M, an abstraction ⟨M̄, ϕ⟩ satisfying Condition 1, any tuple (s̄ps̄, ā)
and some option o ∈ Ωs̄ps̄ that is an (α, β)-realization of (s̄ps̄, ā) from M̄∗ and some ν ∈ ∆(Es̄ps̄). If
Ṽspsa ≥ V o

ν +α/(1−γ), then, in relation to M̄′ := ABSTRACTONER(M̄, (s̄ps̄, ā), V
o
ν +α/(1−γ))

it holds

1. M̄′ is a valid 2-MDP;

2. Ṽ ′
s̄ps̄ā = V o

ν + α/(1− γ);

3. For any s̄′p ̸= s̄, if (s̄′ps̄ā) is admissible in M̄ from some ν′ ∈ ∆(Es̄′ps̄), the same is true
in M̄′.

4. For any s̄′p ̸= s̄, if o′ is an (α, β)-realization of (s̄′ps̄ā) in M̄ from some ν′ ∈ ∆(Es̄′ps̄), then,
the same is true in M̄′.

Proof. The first two points of the statements are direct consequences of Lemma 15. In fact, the
assumptions taken by this statement subsume those of Lemma 15.

The third statement says that admissibility is preserved in M̄′. For transitions, this is immediately
true, because they are not modified by the ABSTRACTONER. Now we focus on rewards. For the tuple
(s̄ps̄, ā), we observe that there cannot be any other option o′ ∈ Ωs̄ps̄ and distribution ν′ ∈ ∆(Es̄ps̄),
for which Ṽ ′

s̄ps̄ā < V o′

ν′ . In fact, using statement 2 and the fact that o is a (α, β)-realization in M̄∗,
we would have

V o′

ν′ > Ṽ ′
s̄ps̄ā = V o

ν +
α

1− γ
≥ Ṽ ∗

s̄ps̄ā (109)

where the two extremes of the inequality contradict the fact that (s̄ps̄, ā) is admissible in M̄∗. Now,
it only remains to verify the reward of each remaining tuple (s̄′ps̄ā). We verify this by contradiction.
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Consider an abstract state s̄′p /∈ {s̄, s̄p}, a distribution ν′ ∈ ∆(Es̄′ps̄), and an option o′ ∈ Ωs̄′ps̄
, such

that Ṽ ′
s̄′ps̄ā

< V o′

ν′ . Then,

V o′

ν′ > R̄′(s̄′ps̄, ā) +
γ̄R̄′(s̄s̄, ā)T̄ (s̄ | s̄′ps̄, ā)

1− γ̄ T̄ (s̄ | s̄s̄, ā)
(110)

= min{1, R̄(s̄′ps̄, ā) + Ṽs̄′ps̄ā
− V +

s̄′ps̄ā
}+

γ̄R̄′(s̄s̄, ā)T̄ (s̄ | s̄′ps̄, ā)
1− γ̄ T̄ (s̄ | s̄s̄, ā)

(111)

Where min{1, R̄(s̄′ps̄, ā)+Ṽs̄′ps̄ā
−V +

s̄′ps̄ā
} is the assignment of line 25. Now, we continue considering

the case R̄(s̄′ps̄, ā) + Ṽs̄′ps̄ā
− V +

s̄′ps̄ā
≤ 1:

V o′

ν′ > R̄(s̄′ps̄, ā) + Ṽs̄′ps̄ā
− V +

s̄′ps̄ā
+

γ̄R̄′(s̄s̄, ā)T̄ (s̄ | s̄′ps̄, ā)
1− γ̄ T̄ (s̄ | s̄s̄, ā)

(112)

Expanding V +
s̄′ps̄ā

, the whole right-hand term simplifies to Ṽs̄′ps̄ā
. However, V o′

ν′ > Ṽs̄′ps̄ā
contradicts

the fact that (s̄′ps̄ā) is admissible in M. We now consider the case R̄(s̄′ps̄, ā) + Ṽs̄′ps̄ā
− V +

s̄′ps̄ā
> 1.

Then,

V o′

ν′ > Ṽ ′
s̄′ps̄ā

= 1 +
γ̄R̄′(s̄s̄, ā)T̄ (s̄ | s̄′ps̄, ā)

1− γ̄ T̄ (s̄ | s̄s̄, ā)
(113)

Now, by assumption, we know that M̄ satisfies Condition 1. This means that there exists a reward
function R̄∗ such that M̄∗ = ⟨S̄, Ā, T̄ , R̄∗, γ̄⟩ is admissible. Continuing from above,

V o′

ν′ > R̄∗(s̄′ps̄, ā) +
γ̄R̄′(s̄s̄, ā)T̄ (s̄ | s̄′ps̄, ā)

1− γ̄ T̄ (s̄ | s̄s̄, ā)
(114)

Now, we argue that R̄′(s̄s̄, ā) ≥ R̄∗(s̄s̄, ā). In fact, under the case we were considering, Ṽs̄′ps̄ā
>

V +
s̄′ps̄ā

, which means that the reward function for (s̄s̄, ā) has been modified by the algorithm. In

turn this only happens when R̄′(s̄ps̄, ā) = 0. However, since we know by statement 2 that Ṽ ′
s̄ps̄ā =

V o
ν +α/(1−γ), if it was the case that R̄∗(s̄s̄, ā) > R̄′(s̄s̄, ā), then, the rewards of (s̄ps̄, ā) would not

be α-realizable in M̄∗ with o as we assumed. Finally, since we obtained that R̄′(s̄s̄, ā) ≥ R̄∗(s̄s̄, ā),
we conclude the chain of inequalities:

V o′

ν′ > R̄∗(s̄′ps̄, ā) +
γ̄R̄∗(s̄s̄, ā)T̄ (s̄ | s̄′ps̄, ā)

1− γ̄ T̄ (s̄ | s̄s̄, ā)
= Ṽ ∗

s̄′ps̄ā
(115)

Thus, leading to contradiction with the fact that M̄∗ is admissible.

The fourth and final result of the lemma is easy to prove because it follows from the admissibility of
point 3, and the fact that V o′

ν′ + α/(1− γ) ≥ Ṽs̄′ps̄ā
≥ Ṽ ′

s̄′ps̄ā
. Also, realizability in transitions is not

affected by the function.

Lemma 15. Consider any MDP M, any abstraction ⟨M̄, ϕ⟩, any abstract tuple (s̄ps̄, ā) and any
V ∈ [0, 1/(1− γ)]. If Ṽspsa ≥ V , then M̄′ := ABSTRACTONER(M̄, (s̄ps̄, ā), V ) is a valid 2-MDP
and Ṽ ′

s̄ps̄ā = V .

Proof. First we check that M̄′ is a valid MDP. To verify this, we already know that R̄′(s̄ps̄, ā) ≥ 0.
However, R̄′(s̄ps̄, ā) ≤ 1 is also true, since we assumed that Ṽspsa ≥ V . For R̄′(s̄s̄, ā), we should
only verify the case R̄′(s̄ps̄, ā) = 0. In turn, this only happens if R̄(s̄ps̄, ā) ≤ Ṽs̄ps̄ā − V , that is
V ≤ Ṽs̄ps̄ā − R̄(s̄ps̄, ā). Then,

R̄′(s̄s̄, ā) = V

(
γ̄T̄ (s̄ | s̄ps̄, ā)

1− γ̄T̄ (s̄ | s̄s̄, ā)

)−1

(116)

≤ (Ṽs̄ps̄ā − R̄(s̄ps̄, ā))

(
γ̄T̄ (s̄ | s̄ps̄, ā)

1− γ̄T̄ (s̄ | s̄s̄, ā)

)−1

(117)

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

= R̄(s̄s̄, ā) (118)

which proves R̄′(s̄s̄, ā) ∈ [0, 1]. Finally, for any s̄′p /∈ {s̄, s̄p}, we write line 25 as:

R̄′(s̄′ps̄, ā) = min{1, R̄(s̄′ps̄, ā) + Ṽs̄′ps̄ā
− V +

s̄′ps̄ā
} (119)

where V +
s̄′ps̄ā

is Ṽs̄′ps̄ā, computed in the MDP obtained after the assignments above line 25. We

have already verified that R̄′(s̄ps̄, ā) ≤ R̄(s̄ps̄, ā) and R̄′(s̄s̄, ā) ≤ R̄(s̄s̄, ā). This implies that
Ṽs̄′ps̄ā

− V +
s̄′ps̄ā

is positive and R̄′(s̄′ps̄, ā) ∈ [0, 1].

Now we verify the second point of the statement by substituting the definition of Ṽ ′
s̄ps̄ā for M̄′. We

consider two cases. If R̄(s̄ps̄, ā) > Ṽs̄ps̄ā − V ,

Ṽ ′
s̄ps̄ā = R̄′(s̄ps̄, ā) +

γ̄R̄′(s̄s̄, ā)T̄ (s̄ | s̄ps̄, ā)
1− γ̄ T̄ (s̄ | s̄s̄, ā)

(120)

= R̄(s̄ps̄, ā) + V − Ṽs̄ps̄ā +
γ̄R̄(s̄s̄, ā)T̄ (s̄ | s̄ps̄, ā)

1− γ̄ T̄ (s̄ | s̄s̄, ā)
(121)

= V (122)

On the other hand, if R̄(s̄ps̄, ā) ≤ Ṽs̄ps̄ā − V ,

Ṽ ′
s̄ps̄ā = 0 +

γ̄R̄′(s̄s̄, ā)T̄ (s̄ | s̄ps̄, ā)
1− γ̄ T̄ (s̄ | s̄s̄, ā)

= V (123)

OTHER LEMMAS

As shown in Agarwal et al. (2021), the γ-contraction property, together with Singh & Yee (1994,
Corollary 2), gives the following.

Lemma 16. Let Q(k) be the Q-function obtained after k VALUEITERATION updates, and let π(k) be

the greedy policy for Q(k). If k ≥
log 2

(1−γ)2ε

1−γ , then V ∗(s)− V π(k)

(s) ≤ ε for each s ∈ S.

The following statement was expressed for MDPs in Kearns & Singh (2002). However, its proof only
relies on geometric discounting. So, it can also be applied to any decision process and k-MDP.
Lemma 17 (Kearns & Singh (2002)). In any decision process M and policy π, if H =
1

1−γ log 1
ε(1−γ) , then, in any state s, V π(s) ≤ V π

H(s) + ε, where V π
H is the expected sum of the

first H discounted rewards.

Finally, we adopt the following concentration inequality from Li (2009, Corollary 2).
Lemma 18 (Li (2009)). Let X1, . . . , Xm be a sequence of m independent Bernoulli RVs, with
P(Xi) ≥ a, for all i, for some constant a > 0. Then, for any k ∈ N and δ > 0, with probability at
least 1− δ,

∑
i=1,...,m Xi ≥ k, provided that

m ≥ 2

a

(
k + log

1

δ

)
(124)
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