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Abstract

Semantic Parsing aims to capture the mean-001
ing of a sentence and convert it into a logical,002
structured form. Previous studies show that003
semantic parsing enhances the performance of004
smaller models (e.g., BERT) on downstream005
tasks. However, it remains unclear whether the006
improvements extend similarly to LLMs. In007
this paper, our empirical findings reveal that,008
unlike smaller models, directly adding seman-009
tic parsing results into LLMs reduces their010
performance. To overcome this, we propose011
SENSE, a novel prompting approach that em-012
beds semantic hints within the prompt. Experi-013
ments show that SENSE consistently improves014
LLMs’ performance across various tasks, high-015
lighting the potential of integrating semantic016
information to improve LLM capabilities.017

1 Introduction018

Semantic Parsing is a fundamental task in Natural019

Language Processing, which involves converting a020

natural language sentence into structured meaning021

representation. This includes tasks like Seman-022

tic Role Labeling (SRL), Frame Semantic Pars-023

ing (FSP) and Abstract Meaning Representation024

(AMR) (Gildea and Jurafsky, 2002; Baker et al.,025

2007; Banarescu et al., 2013; Palmer et al., 2010;026

An et al., 2023). Such structured information are027

applicable across various tasks, like Question An-028

swering (Khashabi et al., 2022), Machine Trans-029

lation (Rapp, 2022), Dialogue Systems (Xu et al.,030

2020; Si et al., 2022, 2024) and so on.031

Previous works from Bonial et al. (2020); Rapp032

(2022); Khashabi et al. (2022) demonstrate that033

integrating semantic parsing results from SRL034

or AMR parsing into a model’s input can effec-035

tively enhance its ability to understand illocution-036

ary acts and linguistic abstractions, thereby im-037

proving downstream performance. However, these038

findings are largely limited to smaller models like039

BERT (Devlin et al., 2019). With the rise of Large040
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Figure 1: Different ways of evaluating LLMs on down-
stream tasks. While (a) represents directly prompting
models, (b) and (c) add semantic parsing results from
the input or output side. Our SENSE, adds the semantic
hints and avoids the direct perception of the result.

Language Models (LLMs), it becomes essential 041

to explore how the integration of semantic pars- 042

ing could impact. Recently, Jin et al. (2024) in- 043

vestigates the role of semantic representation in 044

LLMs by proposing AMRCOT, a method simi- 045

lar to that depicted in Fig.1 (b). Their findings 046

reveal that introducing AMR results into the input 047

generally harms LLM performance more than it 048

helps, likely because AMR is not yet a representa- 049

tion well-suited for LLMs. However, this analysis 050

remains limited, as it only considers the effects of 051

AMR on several tasks, leaving the broader potential 052

of semantic parsing in LLMs largely unexplored. 053

In this paper, we systematically investigate the 054

impact of semantic parsing on LLMs to address the 055

question: Can Semantic Information Still Con- 056

tribute to Improve Downstream Tasks on LLMs? 057

We empirically compare different paradigms for 058

integrating semantic parsing into LLMs, as shown 059

in Fig.1. These paradigms include approaches com- 060

monly used for smaller models, such as incorporat- 061

ing semantic parsing results directly on the input 062

1



Please translate this 
{src_lang} sentence into 
{tgt_lang} by utilizing its 
semantic parsing result 
which helps to understand 
grammar and semantics:
sentence: {src}
translation:

Translation

Please use semantic parsing 
result which can enhance 
comprehension of sentence's 
structure and semantic to 
paraphrase this English 
sentence:
sentence: {src}
paraphrase: 

Paraphrase

With the help of sentence's 
semantic parsing result 
which provides its 
grammatical structures and 
semantics, simplify this 
English sentence:
sentence: {src}
simplification: 

Simplification

Given the sentence pair 
{sent1} and {sent2}, please 
utilize semantic parsing 
result to fully understand 
them, and check if they 
have the same semantics.
The answer should be exact 
'yes' or 'no'.

GLUE

Figure 2: Illustration of SENSE designed for downstream tasks.

side by fine-tuning or integrating them on the out-063

put side. However, these methods negatively affect064

model performance since they limit fixed types of065

semantic parsing and might introduce erroneous066

results. Thus, we propose a novel prompting ap-067

proach, SENSE, illustrated in Fig.1 (d). Instead068

of injecting explicit parsing results, SENSE en-069

courages LLMs to harness their internal semantic070

parsing capabilities through the addition of seman-071

tic hints. These hints are as simple as “please072

use semantic parsing result to enhance compre-073

hension of the sentence’s structure and seman-074

tics”. Our comprehensive experiments demonstrate075

that SENSE promote LLM to focus more on key076

semantic information, not only achieves superior077

and consistent performance across various tasks,078

but also produces more linguistically aligned re-079

sults, particularly on simplification and paraphras-080

ing tasks, underscoring the effectiveness of seman-081

tic parsing for enhancing LLMs’ performance.082

2 Semantic Information → LLMs083

In this section, we delve into answering the ques-084

tion: Can Semantic Information Still Contribute085

to Improve Downstream Tasks on LLMs?086

2.1 Methodology087

Previous studies, such as those by Ettinger et al.088

(2023) and Jin et al. (2024), highlight the difficulty089

LLMs face in processing the schemes and symbols090

of explicit semantic parsing results. Their findings091

suggest that directly integrating these results can092

degrade model performance. Given that LLMs are093

already capable of achieving strong results in an094

end-to-end manner, we propose a novel approach:095

incorporating semantic parsing hints into the in-096

struction to prompt LLMs to leverage their internal097

parsing capabilities.098

As Fig.2 shows, our SENSE introduces sim-099

ple semantic hints such as “utilize semantic pars-100

ing result” to “fully understand input" or "capture101

grammatical structures and semantics” to com-102

plete downstream tasks. This strategy encourages103

LLMs to engage in inherent understanding of lin- 104

guistic structures without requiring explicit seman- 105

tic parsing results. The workflow outlined in Fig.1 106

(d) demonstrates how semantic hints are integrated, 107

and SENSE works in an zero-shot manner. 108

2.2 Datasets and Evaluation 109

In our experiments, we select seven understanding 110

tasks from GLUE and three representative gener- 111

ation tasks including Machine Translation, Para- 112

phrasing, and Simplification. Specifically, for para- 113

phrasing task, we report three linguistic metrics 114

across lexical, syntactic, and semantic levels, for 115

simplification task, we report SARI and SAMSA 116

which evaluate the predicted simplified sentences 117

from lexical structure and semantic meaning preser- 118

vation. More details about our experiments can be 119

found in Appendix A.1 and A.2. 120

3 Experimental Results 121

3.1 Main Results 122

Results on Understanding Tasks From Table 123

1, the results demonstrate that although LLMs cur- 124

rently lag behind smaller models like BERT, the in- 125

tegration of SENSE significantly narrows this gap. 126

Specifically, SENSE improves the average perfor- 127

mance of GPT-4o-mini from 79.43% to 81.25%, 128

bringing it closer to BERT’s performance of 83.2%. 129

Moreover, SENSE is effective in enhancing the 130

performance of both closed-source models such as 131

GPT-series, and open-source models like LLaMA3. 132

Across all GLUE tasks, SENSE consistently yields 133

performance gains, with notable improvements in 134

MRPC (72.30% to 76.47%), MNLI (73.90% to 135

78.20%) and CoLA (65.49% to 67.22%). These re- 136

sults highlight SENSE’s ability to enhance LLMs’ 137

comprehension of input sentences and demonstrate 138

its robustness across diverse tasks. 139

Results on Paraphrasing Table 2 indicates that 140

SENSE effectively enhances linguistic diversity 141

in paraphrasing tasks while maintaining high se- 142

mantic similarity. Notably, SENSE retains the 143
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SST-2 MRPC QQP MNLI QNLI RTE CoLA
System Acc Acc Acc Acc Acc Acc Mcc Average

BERTLARGE (2019) 93.20 88.00 91.30 86.60 92.30 70.40 60.60 83.20
RoBERTaLARGE (2019) 96.40 90.90 92.20 90.20 94.70 86.60 68.00 88.43
LLaMA3-70B 95.64 73.52 74.60 71.90 91.30 84.48 63.90 79.34

+ SENSE 95.18 74.04 76.50 73.10 92.80 85.56 65.53 80.25
GPT-3.5-turbo 91.86 73.28 73.40 61.80 82.40 81.81 63.50 75.44

+ SENSE 92.20 75.49 77.20 64.60 83.20 84.12 64.57 77.34
GPT-4o-mini 91.63 72.30 73.00 73.90 92.30 87.36 65.49 79.43

+ SENSE 92.08 76.47 73.00 78.20 93.30 88.45 67.22 81.25

Table 1: Experimental results on GLUE benchmark.

Prediction–Source

System Semantic
Similarity ↑

Lexical
Overlap ↓

Syntactic
Diversity ↑

LLaMA3-70B 83.71 30.00 10.85
+ SENSE 84.02 29.00 11.51

GPT-3.5-turbo 85.79 46.37 8.76
+ SENSE 85.79 25.33 10.24

GPT-4o-mini 89.71 39.00 7.25
+ SENSE 90.26 34.00 8.08

Table 2: Experimental results on Paraphrasing. We
report linguistic metrics between source and prediction.

semantic similarity score at 90.26 but significantly144

reduces lexical overlap from 39.00 to 34.00 and145

increases syntactic diversity from 7.25 to 8.08.146

This indicates that the semantic hints introduced by147

SENSE lead to more diverse syntactic structures148

and reduced lexical repetition while preserving the149

core meaning of the source sentence, which val-150

idates the effectiveness of SENSE in generating151

paraphrases that are not only semantically faithful152

but also exhibit greater lexical and syntactic variety.153

System BLEU ↑ SARI ↑ SAMSA ↑

TrukCorpus
GPT-3.5-turbo 58.16 42.25 31.42

+ SENSE 63.42 42.42 37.03

GoogleComp
GPT-3.5-turbo 13.12 35.53 28.14

+ SENSE 14.31 35.67 30.52

Table 3: Experimental results on Simplification. We add
two metrics, SARI and SAMSA to evaluate the semantic
structure of the output.

Results on Simplification Table 3 showcases the154

improved performance of SENSE on two simpli-155

fication datasets. Compared to the vanilla prompt,156

SENSE delivers higher BLEU scores of 63.42 on157

TrukCorpus and 14.31 on GoogleComp, alongside158

a modest increase in SARI, which evaluates the159

alignment between the source and target sentences.160

More importantly, the SAMSA scores, which mea-161

sure the preservation of syntactic structure, show162

substantial improvement, reaching 37.03 and 30.52163

respectively. These results demonstrate that inte- 164

grating semantic hints into prompts enhances the 165

model’s ability to simplify sentences while pre- 166

serving their original structure, resulting in more 167

effective overall simplification. 168

Results on Machine Translation We further 169

conduct experiments on Machine Translation task 170

and present a comparative analysis of GPT-3.5- 171

turbo across the vanilla prompt, our SENSE, and 172

other state-of-the-art systems in Table 8. Results 173

show that SENSE consistently enhances GPT-3.5 174

across all evaluated metrics and language pairs. 175

For the DE-EN task, SENSE achieves the high- 176

est scores: COMET22 (86.44), ChrF (59.08), and 177

BLEU (33.75), outperforming the WMT-Best sys- 178

tem. Similarly, in the EN-DE task, SENSE sig- 179

nificantly boosts GPT-3.5’s performance, reach- 180

ing COMET22 (86.65), ChrF (62.84), and BLEU 181

(34.18). These improvements highlight the effec- 182

tiveness of SENSE in enhancing GPT-3.5’s ability 183

to handle translation tasks across different language 184

pairs. The results for ZH-EN and EN-ZH in Table 185

8 further confirm SENSE’s effectiveness. 186

3.2 Analytical Results 187

Analysis of Different Paradigms In Table 4, we 188

compare various approaches for incorporating se- 189

mantic parsing into LLMs. We examine methods 190

that either concatenate pre-generated parsing re- 191

sults using LLM or generate them on output side1. 192

The results demonstrate that directly adding seman- 193

tic parsing results degrades performance, aligning 194

with findings by Jin et al. (2024). This degradation 195

arises from the unfamiliar symbolic representation 196

and the diversity of semantic parsing tasks, inte- 197

grating specific type, and potentially erroneous re- 198

sults limits LLM’s capability. In contrast, SENSE 199

avoids explicit incorporation while consistently 200

outperforming these methods. Such finding un- 201

1We do not specify certain type of semantic parsing during
our experiments.
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System SST-2 MRPC QQP MNLI QNLI RTE CoLA

GPT-3.5-turbo 91.86 73.28 73.40 61.80 82.40 81.81 63.50
+ CoT (2022) 89.11−2.75 73.28+0.00 77.00+3.60 56.20−5.60 82.70+0.30 82.54+0.73 64.32+0.82

+ SP-Input 87.50−4.36 74.26+0.98 74.30+0.90 50.50−11.30 78.40−4.00 84.11+2.30 58.37−5.13

+ SP-Output 89.11−2.75 73.52+0.24 71.90−1.50 62.00+0.20 78.40−4.00 81.59−0.22 64.44+0.94

+ SENSE 92.20+0.34 75.49+2.21 77.20+3.80 64.60+2.80 83.20+0.80 84.12+2.31 64.57+1.07

Table 4: Analysis of different approaches that introduce semantic parsing into LLMs on GLUE benchmark.
Improvements are marked in red and decreases in green, relative to GPT-3.5-turbo.
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Figure 3: Visualization of attention scores from LLaMA3-70B on the source sentence in the Paraphrasing Task.

derscores SENSE as a more effective strategy for202

leveraging semantic parsing on LLMs.203

Comparison with Chain-of-Thought Since204

SENSE shares similarities with CoT (Kojima et al.,205

2022), which works by adding "Let’s think step206

by step", we compare it on GLUE (Table 4) and207

machine translation task (Table 8). While CoT208

degrades performance across tasks, as it is bet-209

ter suited for reasoning tasks, SENSE signifi-210

cantly enhances LLM performance by improving211

the model’s ability to understand input sentences,212

thus yielding better results.213

Visualization of Attention Scores We present214

the distribution of attention scores for paraphrasing215

task in Fig.3, where we average attention scores for216

each output token with respect to original sentence.217

The visualization reveals that, compared to vanilla218

prompt, SENSE places greater emphasis on key219

semantic elements, such as important lexical units220

and core components. This indicates that SENSE221

more effectively directs attention towards critical222

semantic information, and thus generates outputs223

that more linguistic-aligned. Additionally, we pro-224

vide case study on such examples in Table 9. While225

both vanilla prompt and SENSE successfully cap-226

ture the paraphrased meaning, SENSE is superior227

at transforming syntactical structure and utilizing228

more diverse expressions.229

4 Related Work230

Semantic parsing has significantly contributed to231

enhancing the performance of smaller language232

models. Integrating results from SRL and AMR 233

(Gildea and Jurafsky, 2002; Palmer et al., 2010; Ba- 234

narescu et al., 2013) has shown to improve model 235

performance on various tasks (Khashabi et al., 236

2022; Rapp, 2022; Xu et al., 2020; Si et al., 2022, 237

2024). However, the effectiveness of semantic pars- 238

ing to LLMs is under-explored. Recent work, such 239

as Jin et al. (2024), explores the use of AMR re- 240

sults with LLMs and finds that direct integration 241

of these results may not always yield positive in- 242

fluences. Unlike approaches focused on optimiz- 243

ing prompts directly (Zhou et al., 2022; Pryzant 244

et al., 2023; Deng et al., 2022; Guo et al., 2024), 245

our work proposes a novel strategy for leveraging 246

semantic parsing in LLMs. Similar to CoT (Ko- 247

jima et al., 2022) and DTG (Li et al., 2023), our 248

method involves integrating semantic parsing hints 249

into prompts rather than optimizing the prompts. 250

5 Conclusion 251

In this paper, we rethink leveraging semantic pars- 252

ing to enhance LLMs’ performance. Contrary to 253

smaller models, where direct integration of parsing 254

results can be beneficial, we find that this negatively 255

impacts LLMs. With the help of our proposed 256

SENSE, which introduces semantic hints within 257

prompts, LLMs can better comprehend input sen- 258

tences. Experiments show that SENSE achieves 259

great performance across both understanding and 260

generation tasks, and helps models capture lexi- 261

cal and syntactic structures, producing outputs that 262

align more closely with linguistic metrics. 263
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Limitations264

While we validate the effectiveness of SENSE265

across both understanding and generation tasks,266

there are limitations that remain for future ex-267

ploration: Firstly, our validation is restricted to268

the LLaMA and GPT-series models. Extending269

SENSE to other LLM architectures will be neces-270

sary to confirm its general applicability. Secondly,271

although SENSE shows promising results on a272

range of NLP tasks, its performance across more273

diverse datasets and applications needs further in-274

vestigation. Our experiments focus on tasks where275

the benefits of semantic parsing have been estab-276

lished, but broader testing is required to fully assess277

its potential. Additionally, the underlying mech-278

anism of how semantic parsing influences LLM279

decision-making remains unclear, as LLMs func-280

tion largely as black-box systems. Our validation281

primarily involves comparing methods that directly282

incorporate semantic parsing results from the in-283

put or output sides, and analyzing the outputs in284

contrast to both the vanilla prompt and SENSE.285
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A Supplementary Details 438

A.1 Details about Datasets 439

We list the details of each dataset, including source, 440

number, and metrics for each task in Table 5, and 441

we sample a subset of data if the original dataset is 442

large to reduce the API cost. 443

Dataset Num. Metrics

SST-2 872 Acc
MRPC 408 Acc
QQP 1000 Acc
MNLI 1000 Acc
QNLI 1000 Acc
RTE 277 Acc
CoLA 1053 Mcc
WMT DE-EN 1984 BLEU, COMET22, Chrf
WMT EN-DE 1875 BLEU, COMET22, Chrf
WMT ZH-EN 1875 BLEU, COMET22, Chrf
WMT EN-ZH 1875 BLEU, COMET22, Chrf
QQP 2500 Lexical, Syntactic, Semantic
TurkCorpus 359 BLEU, SARI, SAMSA
GoogleComp 1000 BLEU, SARI, SAMSA

Table 5: Statistics of the dataset we use in our experi-
ment.

GLUE We test on seven tasks from GLUE bench- 444

mark (Wang et al., 2019) and report the Matthews 445

Correlation Coefficient (MCC) for CoLA and Ac- 446

curacy (Acc) for the left tasks. 447

Machine Translation For machine translation, 448

we evaluate our method on the WMT22 2 dataset, 449

focusing on two language pairs: EN-DE (English 450

to German) EN-ZH (English to Chinese) and report 451

COMET22 (Rei et al., 2022), CHRF, and BLEU 452

scores 3. 453

Paraphrasing We evaluate on Quora Question 454

Pairs (QQP) 4 dataset. To analyze results profes- 455

sionally, we follow Huang et al. (2023) and report 456

three linguistic evaluation metrics across lexical, 457

syntactic, and semantic levels. 458

2https://machinetranslate.org/wmt22
3BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a
4https://quoradata.quora.com/

First-Quora-Dataset-Release-Question-Pairs
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Simplification For text simplification, we eval-459

uate on TurkCorpus and GoogleComp and use460

BLEU, SARI, and SAMSA as the evaluation met-461

rics. Specifically, SARI 5 (System output Against462

References and against the Input sentence) is463

used to compare the predicted simplified sentences464

against the reference and the source sentences, and465

SAMSA (Sulem et al., 2018) is a metric specifi-466

cally designed for text simplification that evaluates467

structural simplification and meaning preservation.468

A.2 Details about Experiment469

A.2.1 Experimental Setup470

We test our SENSE on GPT-3.5-turbo, GPT-4o-471

mini (OpenAI, 2023) with the version of 2023-11-472

06 and 2024-07-18, and LLaMA3-70B-Instruct 6.473

The temperature is set to 0 and top_p set to 1.474

A.2.2 Prompts used in Experiments475

We release the prompts we use during our experi-476

ments in Table 6 and Table 7.477

A.3 Additional Experimental Results478

Results on WMT22 From Table 8, for the ZH-479

EN translation task, SENSE improves GPT-3.5-480

turbo’s ChrF (58.50) and BLEU (27.04) scores,481

though the COMET22 score (80.47) is slightly482

lower than the baseline. In the EN-ZH task,483

SENSE achieves the highest COMET22 (88.06)484

and enhances ChrF (39.86) and BLEU (44.40) com-485

pared to baselines.486

Case Study on Paraphrasing Task In Table 9,487

we present a case study on the paraphrasing task,488

demonstrating that SENSE excels in altering syn-489

tactic structures and employing a broader range of490

expressions, thereby improving the overall quality491

of paraphrasing.492

5https://huggingface.co/spaces/
evaluate-metric/sari

6https://llama.meta.com/docs/
model-cards-and-prompt-formats/meta-llama-3

7

https://huggingface.co/spaces/evaluate-metric/sari
https://huggingface.co/spaces/evaluate-metric/sari
https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3
https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3


Dataset Method Prompt

SST-2
Vanilla Given this sentence: {sentence}, please classify its sentiment as positive or negative. The answer

should be exactly ’positive’ or ’negative’.
CoT Given this sentence: {sentence}, please think step by step, and then classify its sentiment as positive or

negative. The answer should be exactly ’positive’ or ’negative’.
SP-Input Given this sentence: {sentence} and its semantic parsing result {parsing}, please classify the sentence’s

sentiment as positive or negative. The answer should be exactly ’positive’ or ’negative’.
SP-Output Given this sentence: {sentence}, please first parse this sentence and then classify the sentence’s

sentiment as positive or negative. The answer should be exactly ’positive’ or ’negative’.
SENSE Given this sentence: {sentence}, please use semantic parsing result which can enhance comprehension

of the sentence’s structure and semantics to classify the sentence’s sentiment. The answer should be
exactly ’positive’ or ’negative’.

MRPC
Vanilla Given the sentence pair {sentence1} and {sentence2}, please check if these two sentences have the

same semantics. The answer should be exactly ’yes’ or ’no’.
CoT Given the sentence pair {sentence1} and {sentence2}, please think step by step, and then check if these

two sentences have the same semantics. The answer should be exactly ’yes’ or ’no’.
SP-Input Given the sentence pair {sentence1} and {sentence2} and their semantic parsing results {parsing1} and

{parsing2}, please check if these two sentences have the same semantics. The answer should be exactly
’yes’ or ’no’.

SP-Output Given the sentence pair {sentence1} and {sentence2}, please first parse these sentences and then check
if these two sentences have the same semantics. The answer should be exactly ’yes’ or ’no’.

SENSE Given the sentence pair {sentence1} and {sentence2}, please use semantic parsing result which can
enhance comprehension of the sentence’s structure and semantics to measure if these two sentences
have the same semantics. The answer should be exactly ’yes’ or ’no’.

MNLI
Vanilla Given the sentence1 {premise} and sentence2 {hypothesis}, determine whether sentence2 entail,

contradict, or is it neutral to sentence1. The answer should be exactly ’entail’ or ’contradict’ or
’neutral’.

CoT Given the sentence1 {premise} and sentence2 {hypothesis}, please think step by step, and then
determine whether sentence2 entail, contradict, or is it neutral to sentence1. The answer should be
exactly ’entail’ or ’contradict’ or ’neutral’.

SP-Input Given the sentence1 {premise} and sentence2 {hypothesis} and their semantic parsing results {parsing1}
and {parsing2}, please determine whether sentence2 entail, contradict, or is it neutral to sentence1. The
answer should be exactly ’entail’ or ’contradict’ or ’neutral’.

SP-Output Given the sentence1 {premise} and sentence2 {hypothesis}, please first parse these sentence to fully
understand its structure and semantics and then determine whether sentence1 entail, contradict, or is
neutral to sentence2. The answer should be exactly ’entail’ or ’contradict’ or ’neutral’.

SENSE Given the sentence1 {premise} and sentence2 {hypothesis}, please use semantic parsing result which
can enhance comprehension of the sentence’s structure and semantics to determine whether sentence1
entail, contradict, or is neutral to sentence2. The answer should be exactly ’entail’ or ’contradict’ or
’neutral’.

QNLI
Vanilla Given the sentence1 {question} and sentence2 {sentence}, please determine if the sentence contains

the answer to the question. The answer should be exactly ’entail’ or ’not entail’.
CoT Given the sentence1 {question} and sentence2 {sentence}, please think step by step, and then determine

if the sentence contains the answer to the question. The answer should be exactly ’entail’ or ’not entail’.
SP-Input Given the sentence1 {question} and sentence2 {sentence} and their semantic parsing results {parsing1}

and {parsing2}, please determine if the sentence contains the answer to the question. The answer
should be exactly ’entail’ or ’not entail’.

SP-Output Given the sentence1 {question} and sentence2 {sentence}, please first parse these sentences and then
determine if the sentence contains the answer to the question. The answer should be exactly ’entail’ or
’not entail’.

SENSE Given the sentence1 {question} and sentence2 {sentence}, please use semantic parsing result which
can enhance comprehension of the sentence’s structure and semantics to determine if the sentence
contains the answer to the question. The answer should be exactly ’entail’ or ’not entail’.

CoLA
Vanilla Given the sentence: {sentence}, please check if the sentence is grammatically correct. The answer

should be exactly ’yes’ or ’no’.
CoT Given the sentence: {sentence}, please think step by step, and then check if the sentence is grammati-

cally correct. The answer should be exactly ’yes’ or ’no’.
SP-Input Given the sentence: {sentence} and its semantic parsing result {parsing}, please check if the sentence

is grammatically correct. The answer should be exactly ’yes’ or ’no’.
SP-Output Given the sentence: {sentence}, please first parse this sentence and then check if the sentence is

grammatically correct. The answer should be exactly ’yes’ or ’no’.
SENSE Given the sentence: {sentence}, please use semantic parsing result which can enhance comprehension

of the sentence’s structure and semantics to check if the sentence is grammatically correct. The answer
should be exactly ’yes’ or ’no’.

Table 6: We list the prompts we use during our experiments on GLUE benchmarks and omit QQP and RTE since
QQP is similar to MRPC and RTE is similar to MNLI.
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Dataset Method Prompt

WMT22 Vanilla Please translate this {src_lang} sentence into {tgt_lang}: sentence: {src} translation:
SENSE Please translate this {src_lang} sentence into {tgt_lang} by utilizing its semantic parsing result which

helps to understand grammar and semantics: sentence: {src} translation:

Simplification Vanilla Please simplify this English sentence: sentence: {src} simplification:
SENSE With the help of the sentence’s semantic parsing result which provides its grammatical structures and

semantics, simplify this English sentence: sentence: {src} simplification:

Paraphrasing Vanilla Please paraphrase this English sentence: sentence: {src} paraphrase:
SENSE Please use semantic parsing result which can enhance comprehension of sentence’s structure and

semantic to paraphrase this English sentence: sentence: {src} paraphrase:

Table 7: We list the prompts we use during our experiments on generation tasks.

DE-EN EN-DE
System COMET22 ↑ ChrF ↑ BLEU ↑ COMET22 ↑ Chrf ↑ BLEU ↑

WMT-Best 85.00 58.50 33.40 87.20 64.60 38.40
GPT EVAL (2023) 84.80 58.30 33.40 84.20 59.60 30.90
DTG 5-shot (2023) 85.40 58.20 33.20 86.30 61.60 33.40
BayLing (2023) 85.47 58.65 32.94 86.93 62.76 34.12
GPT-3.5-turbo 85.71 58.19 33.15 84.60 60.48 33.42
+ CoT 84.99 57.74 31.46 84.95 61.17 29.70

+ SENSE 86.44 59.08 33.75 86.65 62.84 34.18

ZH-EN EN-ZH
System COMET22 ↑ ChrF ↑ BLEU ↑ COMET22 ↑ Chrf ↑ BLEU ↑

WMTBest 81.00 61.10 33.50 86.70 41.10 44.80
GPT EVAL (2023) 81.20 56.00 25.90 84.40 36.00 40.30
DTG 5-shot (2023) 81.70 55.90 25.20 86.60 39.40 43.50
BayLing (2023) 82.64 57.90 26.13 86.81 40.32 44.99
GPT-3.5-turbo 80.60 58.40 26.93 81.48 37.80 42.85

+ SENSE 80.47 58.50 27.04 88.06 39.86 44.40

Table 8: Experimental results on WMT22.

Source: What can make Physics easy to learn?
Target: How can you make physics easy to learn?
Vanilla Prediction: What makes learning Physics easier?
SENSE Prediction: What factors can help simplify the learning of Physics?

Source: How do I create a new shell in a new terminal using C programming (Linux terminal)?
Target: How do I create a new Terminal and new shell in Linux using C programming?
Vanilla Prediction: How do I open a new shell in a new terminal window using C programming in a Linux
environment?
SENSE Prediction: What steps should I follow to launch a new shell in a separate terminal using C programming
on a Linux system?

Table 9: Case study comparing SENSE and Vanilla prompt predictions for the paraphrasing task.
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