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ABSTRACT

As language models become larger, different pruning methods have been proposed
to reduce model size. However, the typical sparsity patterns that are formed by
commonly pruning regimes do not fully exploit the properties of modern hardware
devices on which these models are being trained and deployed. Most known
unstructured, or even structured, pruning regimes usually introduce requirements
for additional hardware components to make these sparsity patterns useful. Here we
propose a simple pruning algorithm, based on variance analysis of output neurons
that correspond to entire rows of weights. Our algorithm facilitates the construction
of row-sparse matrices, allowing an extremely convenient way of exploiting this
sparsity on existing hardware architectures. Empirical experiments with natural
language understanding tasks show that our method leads to little to no accuracy
degradation, and at times even better accuracy, using a 50% sparse BERTLARGE
model.

1 INTRODUCTION

Over the last decade, deep learning researchers, especially in the field of Natural Language Processing
(NLP), have scaled neural networks sizes from a few millions up to billions and even trillions in
model parameter count. In particular, Transformer-based models (Vaswani et al., 2017) such as
BERT (Devlin et al., 2018) were extended from hundreds of millions up to tens and hundreds of
billions or parameters over a period of merely three years (Rosset, 2020; Brown et al., 2020). This
trend of growth typically yields a substantial improvement in model quality. Transformer-based
architectures have also become more popular in computer vision (Lu et al., 2020; 2019; Dosovitskiy
et al., 2020; Yuan et al., 2021), matching and even outperforming convolutional neural networks in
computer vision tasks.

Due to their success, industry practitioners and cloud service companies have a great interest in
training and deploying large Transformers, which are a fundamental part of their business model.
However, training and deploying such large models, which are constantly scaled up in memory
foot-print and compute, require a significant amount of expensive resources. Therefore, by an
active and immense research, hardware manufacturers are motivated to reduce these memory and
computational bottlenecks. In fact, they even incorporate hardware components and software designs
in their products to enable state-of-the-art algorithms and methods (Aojun Zhou, 2021).

Pruning is a common practice to reduce model size with a relatively minor cost in accuracy drop.
In this setting, the model is being effectively compressed by removing weights that are considered
to be less important according to some significance metric. Sparse models gain not only from low
memory footprint on dedicated hardware devices, but also require much lower bandwidth and energy
usage (Horowitz, 2014). Pruning methods are commonly divided to unstructured and structured
pruning. In the former, the sparsity pattern is of no particular form, while in the later, elements
are being eliminated in a particular arrangement. For example, a structure where any M out of
a contiguous block of N elements are being zeroed out. This pattern is also often referred to as
M:N structured sparsity (Aojun Zhou, 2021). Magnitude pruning (Han et al., 2015) is one of the
most vastly used method to induce unstructured sparsity in domains such as vision (Guo et al.,
2016) and NLP (Gale et al., 2019). The essential idea here is to remove weight elements with the
smallest magnitude and let the optimization algorithm compensate for the removed parts such that
other weights will sustain the lost information. Magnitude pruning, however, is less effective in the
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transfer learning regime, where fine-tune to an end-task take place, since weight values are mostly
predetermined by the pre-trained model (Sanh et al., 2020b; Guo et al., 2021).

In this work, we present a simple yet effective method to learn sparse Deep Neural Networks
(DNNs). Inspired by Dalvi et al. (2020), who found that more than 85% of neurons are redundant
in Transformer models for solving NLP tasks, we propose to prune entire rows of a weight matrix,
which correspond to the matrix’s output neurons. The key idea of our approach is to prune weight
rows whose neurons exhibit low variance during training, since we hypothesize these neurons are
less important for the model. After each matrix multiplication layer is applied, we gather statistical
information for every output neuron across many timestamps and across many batches of input
sentences. Rows that correspond to output neurons whose variance is the lowest are then pruned.
This procedure is performed gradually during the pre-training of the language model and is halted
once a desired sparsity level of the entire model is obtained. We term our method Variance Pruning.

Variance Pruning addresses several shortcomings in common methods for weight-based pruning.
First, common pruning methods tend to yield irregular sparsity masks. Therefore, the memory access
to read those sparse irregular matrices causes extremely inefficient performance and requires sparse
operation libraries and even special hardware handling. In contrast, our approach induces row-wise
sparse matrices, which can easily be squeezed into equivalent dense matrices by simply removing the
pruned rows. Hence, memory access becomes straightforward as in the original dense model, does
not require any special support of sparse multiplication libraries, and can work with existing efficient
Basic Linear Algebra Subprogram (BLAS) libraries for dense matrix multiplications.

Another shortcoming of most prior pruning methods in NLP is that they are applied after the model
has already been pre-trained, during the fine-tuning stage on a particular downstream task. However,
Guo et al. (2021) show that during fine-tuning of a pre-trained model for a range of downstream
tasks weights may have a minuscule change with respect to the pre-trained weights. Eventually, they
left with only 1% of the overall weights that need to be modified on top of the pre-trained model.
Therefore, pruning during fine-tuning may not be effective. In contrast, we apply our pruning scheme
during the pre-training phase of the model, when the model changes the most. After we prune the
model to a desired sparsity level, we can use the same pre-trained weights and fine-tune them on all
downstream tasks without needing to do so for each individual task separately. All in all, our method
allows us to benefit from sparse training and fine-tuning and enables significantly faster computations
in training as well as in deploying NLP models.

We conduct our experiments using the BERTLARGE model and examine the effectiveness of our
proposed Variance Pruning on commonly used General Language Understanding Evaluation (GLUE)
downstream tasks (Wang et al., 2018) and on SQuADv1.1 (Rajpurkar et al., 2016) (We exclude
the problematic WNLI set as in Devlin et al. (2018)). We show that our approach leads to little
to no degradation and even some improvement, compared to an unpruned BERTLARGE baseline.
Importantly, our pruned model provides a 50% reduction in memory requirements for storing weights
and the optimizer states. We also show the memory limitations of fine-tuning the dense BERTLARGE
model on a standard four GPU machine. Lastly, we show that our pruned model has a better
computational efficiency on a standard GPU machine, compared to a dense full model. We release
our code at http://ANONYMIZED for the benefit of the community.

2 RELATED WORK

Unstructured and Structured pruning in modern hardware devices. As DNN models continu-
ously grow in size (the number of parameters), model compression via pruning became a field of
extensive research. Unstructured pruning removes individual elements of the weight matrix regardless
to their location (Han et al., 2015; Louizos et al., 2018), while in structured pruning, elements are
being eliminated in a particular pattern (Li et al., 2017; Luo et al., 2017). There is a substantial
amount of work that proposes unstructured pruning, such as magnitude pruning (Han et al., 2015;
Frankle & Carbin, 2019) and pruning with connection sensitivity (Lee et al., 2019). Unstructured
sparsity, however, induces irregularity to the non-zero weight matrices and hinders the ability to
accelerate computation on modern hardware architectures. The overhead to transport, store, and use
the irregularly sparse matrices for computation can be extremely high.
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Recently, the work on the Lottery Ticket Hypothesis (Frankle & Carbin, 2019) suggested that large and
over-parameterized DNNs contain a sub-network (a “winning ticket”) that alone can be trained and
reach the full model accuracy. Moreover, such networks are easier to train because of the existence
of many combinations of sub-networks to be “chosen” from during the stochastic optimization
process. They use iterative magnitude pruning (IMP) as its core component to find the matching
sparse sub-network. In this procedure, a network is being repeatedly trained for a pre-defined number
of steps, pruned to some extent and then being reset to the initial value of weights that survived. This
concept was later broadened into the scope of NLP (Chen et al., 2020), by showing that matching
sub-networks exist at various levels of sparsity for a range of downstream tasks. Later, Prasanna and
Rogers (Prasanna et al., 2020) showed that structured IMP pruning in BERT-like models, which is
much more constrained than unstructured magnitude pruning, still achieves good accuracy and results
in patterns that store a non-trivial amount of valuable information.

Nvidia recently announced the Ampere A100 GPU (Nvidia, 2020), built-in with Sparse Tensor Cores
to accelerate such fine-grained sparsity patterns. This architecture includes special hardware support,
which induces extra cost. On the other hand, ASIC devices with a single multiplication engine will
not benefit from fine-grained sparsity, unless dedicated hardware support is introduced, which is also
limited to certain unique irregular patterns. To overcome the aforementioned limitation, we introduce
a method to obtain a universal sparsity pattern that is more effective and easy to accelerate on modern
devices. Moreover, our pruning method creates a smaller and dense model which does not require
special hardware support and the use of sparsity primitives, instead simply utilizing the original dense
BLAS operations.

Structured sparsity patterns (Wen et al., 2016), in particular methods that prune blocks (Wang et al.,
2019) or entire filters (Li et al., 2017) are more beneficial for some modern hardware accelerators.
Still, it is not always possible to convert these patterns to a dense model that can leverage existing
BLAS operations. Moreover, methods that are commonly used to obtain these patterns rely on
importance criteria extracted from the weights themselves. For example, methods that consider the
changes in weights during fine-tuning (Sanh et al., 2020b). This practice, rely on the presumption
that weights with bigger change are more important, which may not always be the case (Guo et al.,
2021). In contrast, our method is beneficial to modern hardware by design as its sparsity patterns
boils down to a dense and smaller model. Furthermore, We rely on importance information retrieved
from the output neurons, which we show that hold a more valuable information on the importance of
their origin weights.

Analyzing output neurons. Recently, researchers attempting to interpret internal representations
in deep NLP models have turned their attention to the role of individual neurons (dimensions) in
these representations (Sajjad et al., 2021). For instance, Durrani et al. (2020) analyzed how individual
neurons capture core linguistic properties of morphology, syntax, and semantics, at different layers.
They found that neurons that capture word morphology were predominantly found in the lower and
middle layers, while those capturing syntax were found at the higher layers.

More closely related to our motivation, Dalvi et al. (2020) investigated redundancy in Transformer-
based models at the level of individual neurons or full layers. They analyzed representations from
(fixed, not fine-tuned) language models, and found that up to 85% of the neurons across the network
are redundant in general and even more w.r.t a specific task. As in most work in this area, they studied
neurons at the output of each attention block (after both the self-attention and feed-forward layers).
We are inspired by these findings, but search for neuron-level redundancies in each and every one
of the parameterized layers inside the Transformer layers, in particular all the matrix multiplication
operations. Importantly, we work in the more common fine-tuning scenario, whereas Dalvi et al.
(2020) worked with frozen, non-fine-tuned models.

Pruning weights by their magnitude. Common approaches for pruning weights, such as magni-
tude pruning (Han et al., 2015) or IMP (Chen et al., 2020), can be quite restrictive, as they focus
on the absolute values of individual or groups of learnable parameters. As such, they do not take
into account the cumulative effect of the interaction between weights and the neuron activation in
different linear layers. On the one hand, individual weights can be large in magnitude but negligible
when multiplied by small values from the previous layer. Moreover, even if a large-magnitude weight
element results in a relatively large value after the multiplication, it may remain unchanged across
different timestamps and input batches. On the other hand, smaller values can have considerably
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Figure 1: Illustration of our approach. At each forward step, (i) we measure the mean and the running
variance of each individual output neuron over batches and time steps. After τ optimization steps,
(ii) we select the neurons whose variance was the lowest, and (iii) prune the weight rows (columns
in WT ) that correspond to the selected lowest variance indices. Then, (iv) we squeeze the weight
matrix and perform the weight multiplication with a dense weight matrix. Finally, (v) we expand the
output product and place sampled mean values in the corresponding indices of the bias term to be
added to the output.

more influence when the output changes significantly across inputs. Our novel approach therefore
examines the variance of neurons, rather than the magnitude of weights or other elements.

When to prune. Recent work by Sanh et al. (2020b) obtains the importance score of a weight by
observing the change of explicit weight elements during task-specific fine-tuning. Their approach is
to find and prune elements that are moving the most away from zero. In contrast, Guo et al. (2021)
show that during fine-tuning of a pre-trained model for a range of downstream tasks, weights may
have a minuscule change with respect to the pre-trained weights. They show that it is sufficient to
update only 1% of the model’s overall weight elements via the fine-tuning process, in order to achieve
on-par accuracy results compared to fine-tuning without any limitations. According to their results,
the fact that particular weights that have changed more than others during fine-tuning still does not
indicate their importance, as their significant adjustment was done in the earlier pre-training phase.

The work of Wu et al. (2020) analyze the similarities between different Transformer-based architec-
tures, when fine-tuned on different downstream tasks. They found that lower layers change less than
higher layers during fine-tuning. They also found that higher layers changes are related to localized
information about the specific task. Still, minor and localized changes with respect to some task is not
an indication of the importance of weight elements with respect to global linguistic information which
probably attained mostly during the pre-training. Inspired by the above observations, our pruning
method focus on neuron activations that have minor fluctuations during the pre-training phases rather
than the weights themselves.

3 METHODOLOGY

In this paper, we focus on Transfomer-based models that take an input consisting of words or tokens
that are embedded into a d-dimensional feature vector. Later, this input is fed into each Transformer-
layer that consists of six linear projection layers. The key point of variance pruning via output neurons
is to collect the mean and variance of each linear layer’s output neurons, for every input token across
batches and time steps, during the pre-training phase of the model. Then, we select the neurons
whose variance is the smaller and prune the entire weight matrix rows that correspond to the selected
neurons. We place the collected mean of each particular neuron in its corresponding bias term. The
statistics for each output neuron of each linear layer are collected at each training step. Figure 1
illustrates this procedure.
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Furthermore, at some pre-determined point, after we prune part of the weights based on the smallest
variance indices, we reset the mean and variance meters and start collecting them until reaching the
next pruning step. We reset the meters to ensure that the new statistics are collected with respect to
the new pruned model. This process proceeds until reaching the desired sparsity level. Intuitively,
we prune weights whose rows correspond to neurons that stay unchanged or only slightly change
compared to others and can be expressed by their mean value.

3.1 COLLECTING NEURON STATISTICS

For some linear layer l in the model, let X(l) ∈ Rm×d denote an input, where d is the hidden
dimension size1 and m = N × T the number of input tokens for batch size N and sequence
length T ,2 and let W (l) ∈ Rd×d denote a square weight matrix (w.l.o.g). For every output neuron
i ∈ [1, . . . , d] that corresponds to row i in W (l), the matrix multiplication operation at training step t
is given by:

Y
(l)
t [i] = X

(l)
t W

T (l)
t [i] ∈ Rm×1 (1)

Where WT (l)
t [i] is the transposed weight matrix of layer l at training step t for output neuron i. For

a total number of τ tokens at a given time window during training, we first compute the mean of
neuron i at layer l as follows:

µ(l)
τ [i] =

1

mτ

τ∑
t=1

m∑
j=1

Y
(l)
t,j [i] (2)

Next, since we train the model with SGD and attain the statistics per batch, we compute the expo-
nentially weighted moving variance (EWMV), which is more robust to numerical instability. The
variance of neuron i at layer l in step t is given by:

σ
2(l)
t [i] =

1

m− 1

m∑
j=1

(Y
(l)
t,j [i]− µ

(l)
t [i])2 (3)

For multiple tokens and timestamps, and a degree of weighting decrease coefficient of α,3 we compute
the EWMV of neuron i at layer l by the following recursive formula:

σ̂
(l)
t [i] =

{
σ
2(l)
1 [i], t = 1

ασ
2(l)
t [i] + (1− α)σ̂(l)

t−1[i], 1 < t ≤ τ
(4)

and denote the estimate of the variance of neuron i at layer l over a subtotal of τ tokens as σ̂(l)
τ [i].

With the collected statistics, we are ready to compute the sparsity mask.

3.2 COMPUTING AND APPLYING THE MASK

We first define a new linear layer with a modified weight matrix, such that W ′(l) =W (l)S
(l)
t , where

Wl is the original weight matrix for layer l and S(l)
t denotes the sparsity mask at step t, which is

initialized to the identity matrix S(l)
0 = 1. We gradually zero out the entries of S(l)

0 based on the
smallest-variance indices in σ̂(l)

t [i]. Instead of constructing the mask based on individual-layer local
statistics, we extend our scope to be across the model. For each type of projection independently,
we concatenate variance vectors of that type from all model layers. In each of L Transformer layers,
there are six projection types: (WQ,WK ,WV ,WO,WFF1,WFF2) for query, key, value, attention
output, and two feed-forward linear layer types, respectively. For example, the global variance vector
at step t for output neuron i from a projection layer of type Q (query) is:

σ̂
(lQ)
t [i] = {σ̂(lq0)

t [i], ..., σ̂
(lqL−1)
t [i]} (5)

1d can differs between linear layers. For example, in the Transformer FF layer d is four times larger than in
other linear layers.

2In batched training, sentences are padded up to a maximum sequence lengths. We ignore pad tokens and
measure the statistics only on the valid tokens, so in practice m ≤ N × T .

3In our experiments α is set to 0.9.
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where σ̂(lql)
t [i] is the estimated variance vector for neuron i of the query projection at layer l. For

exposition purposes, we will present our implementation on layer type Q, but in practice we form the
global variance vectors for the keys, values, attention output and both of feed-forward layers, as well.
Next, we denote P (lQ)

r as the percentile value for a pruning percentage r 4 of all neurons of layer
type Q. Then, for each individual query layer lqn, where n ∈ [0..L− 1], the mask is given by:

S
(lqn)
t =

{
0×d if σ̂(lq0)

t [i] < P
(lQ)
r

1×d otherwise
(6)

and we update the mask to with the pruned entries from previous steps, i.e., S(lqn)
t = S

(lqn)
t S

(lqn)
t−1 .

By choosing the smallest elements in the global concatenated variance vector σ̂(lQ)
t [i], we will end

up with a nonuniform sparsity level along the layers. We hypothesise that with this approach we
are less restrictive with respect to which rows we should prune, in line with results on how neurons
in different layers behave differently in Transformer models (Section 2). For example, if we were
confining ourselves to each individual layer as most common pruning methods do (Han et al., 2015;
Sanh et al., 2020b; Li et al., 2017), we might have been eliminating rows whose output neurons have
a more important role than other output neurons in different layers of the same type. Nonetheless,
with our approach, we still assume that linear layers of the same type have a similar role across the
model layers.

3.3 THE ADVANTAGE OF VARIANCE PRUNING IN FORWARD AND BACKWARD COMPUTATION

During the training process of DNNs, a general matrix multiplication layer requires three matrix
multiplication operations: one in the forward pass and two in the backward pass. The forward pass is
given by:

Y = XWT (7)
In our method we prune some rows of W and squeeze the matrix, in a trivial manner, to its smaller
but dense counterpart. We denote as r the reduction factor from pruning and squeezing W , such
that the number of valid rows in W is d

r . The forward matrix multiplication requires md2

r operations
in the pruned model’s layer as opposed to md2 in an un-pruned model. In the backward pass, the
gradients with respect to the input and the weight matrix are given by:

∂L
∂X

=
∂L
∂Y

W (8)

and
∂L
∂W

= XT ∂L
∂Y

(9)

respectively, where L is the loss function we are trying to minimize in the optimization process. Since
∂L
∂Y ∈ Rm×

d
r , both gradients with respect to W and X require md2

r operations each. As a result, the
computational footprint is reduced by a factor of r. This reduction in the number of operations allows
us to accelerate training as well as deployment. Furthermore, the memory capacity of storing the
model weights and the bandwidth required to fetch them from the volatile memory is also reduced by
a factor of r.

3.4 PRELIMINARY ANALYSIS

To motivate our technique, we first perform a preliminary study where we compare pruning via
neurons variance and random sampling of weight rows as a baseline. We ensure an identical sparsity
level between the baseline and our approach by sampling the same amount of rows for the random
setting as we decided to remove using our approach. In this experiment we first fine-tune a pre-trained
BERTBASE to four common downstream tasks as we described later on. Then, we gradually remove
weight rows in both models. We do not re-train, fine-tune or do any weight updates on both settings
after removing the portion of rows in the weight matrix. Therefore, we expect that the accuracy will
gradually drop until reaching an asymptotic minimum. Our hypothesis is that removing weight rows

4In our experiments we use a linear scheduling by globally pruning r = 10% of the model weights every
500 steps, reaching 50% sparsity in total.

6



Under review as a conference paper at ICLR 2022

whose corresponding variances are the smallest will result in a moderate decrease compared with
removing random rows of the same amount at each individual layer.

We confirm our hypothesis by testing on four benchmark language tasks. Microsoft Research
Paraphrase Corpus (MRPC) (Dolan & Brockett, 2005) for detecting semantic similarity. Winograd
Schema Challenge (recast as QNLI) (Sakaguchi et al., 2020) for Natural Language Inference, taken
from Wikipedia. Semantic Textual Similarity Benchmark (STSB) (Cer et al., 2017) and Stanford
Question Answering Dataset version 1.1 (SQuAD1.1) (Rajpurkar et al., 2016), questions for machine
comprehension of Text. Figure 2 demonstrates that the validation accuracy for BERTBASE models
whose weights were pruned according to the corresponding low variance neurons dropped much more
gradually than the random counterparts. This result is quite notable across all tested tasks. Following
these results, we continue with larger scale model and incorporate it in the pre-training process.

Figure 2: BERTBASE fine-tuned on four downstream tasks. We compare random pruning and variance
pruning without any additional fine-tuning. The plots show validation accuracy on MRPC and QNLI,
Spearman’s correlation on STSB, and accuracy (continuous) and F1 (dotted) scores on SQuAD1.1,
as a function of the sparsity level. As the sparsity level increases, variance pruning (green lines) leads
to much slower performance decrease compared to pruning random rows.

4 EXPERIMENTAL SETUP

In this section we describe the experiments we performed to assess the effectiveness of Variance
Pruning. We pre-train a completely random BERT-large-uncased model, following the original
pre-training scheme from Devlin et al. (2018), with two phases: Masked language modeling (Masked-
LM) and Next Sentence Prediction tasks (NSP). We experiment with a common transfer learning
scenario for pre-trained NLP models Devlin et al. (2018); Ruder et al. (2019), where we fine-tune the
pre-trained pruned model on the General Language Understanding Evaluation (GLUE) downstream
tasks (Wang et al., 2018) and on SQuADv1.1 (Rajpurkar et al., 2016), a question answering dataset.
We perform the two-phase pre-training with 8 A100 GPUs with 32G memories and report the
sparsity results with respect to BERT-large-uncased on all of the downstream tasks. More
implementation details are described in Section A

We apply our Variance Pruning method during the first pre-training phase of Masked-LM. We start
with eliminating 10% of the weights when reaching step 500 and then we continue pruning an
additional 10% at every additional 500 steps until we reach a final sparsity ratio of 50% 2,500 steps.
Then, we maintain the pruned weights zeroed out during the rest of the Masked-LM phase as well
as the entire NSP phase. Finally, we use the sparse pre-trained model to fine-tune and evaluate
on the downstream tasks. Moreover, to speed-up the fine-tuning stage and decrease its memory
consumption, we squeeze the non-zero rows of the weight matrices to their dense counterparts and
expand them only when bias addition is required (see Section 3 and Figure 1). We note that this
beneficial procedure could also be applied during the second phase of pre-training.5

We implement Variance Pruning based on HuggingFace’s Transformers library Wolf et al. (2020).
We compare the results obtained with the variance-pruned BERT-large-uncased both with the
results reported in the original paper and with results obtained when we run a full dense model using
HuggingFace’s code. We report both baselines to facilitate a fair comparison with our implementation.

5We did not pack the non-zero rows as we launched both phases together, but this is essentially not mandatory
and we could simply pack the matrices after the first phase.
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Table 1: Results of full dense BERTLARGE baselines and our variance-pruned 50% sparse model
(VP), on the GLUE and SQuAD 1.1 tasks. Baseline results are reported both from the original paper
Devlin et al. (2018) and when running the HuggingFace code. Our results are based on the same
pre-trained sparse model of total 50% zeroed weights on all tasks. Scores that have parenthesised
counterparts inside the cell are achieved with further distillation; the ones inside the parenthesis are
without distillation.

Model MRPC CoLA SST2 RTE STSB QQP MNLI QNLI SQuAD1.1 AVG
Acc F1 Corr Acc Acc Corr Acc F1 Acc m Acc mm Acc Acc F1

Full (original) 85.4 89.3 60.5 94.9 70.1 86.5 89.3 72.1 86.7 85.9 92.7 84.1 90.9 83.54

Full (HuggingFace) 86.2 90.3 61.8 93.1 67.1 89.5 91.6 88.8 86.7 86 92.3 84 91 85.26

50% sparse (VP) 87 90.8 62.07 92.9 (92.2) 69.7 88.6 91.2 (90.1) 88.2 (87) 84.6 85.3 91.3 84 90.54 85.09

5 RESULTS

The main results are presented in Table 1, where MRPC, QQP, and SQuAD1.1 scores are accuracy
and F1, CoLA and STSB are Matthew’s and Spearman’s correlations respectively, SST2 and RTE are
accuracy, and MNLI has accuracy on matched and mismatched sets. We keep a fixed sparsity ratio of
50% across all of the downstream tasks and compare them against the baselines. We observe that
using a sparse model, obtained with Variance Pruning, has little effect, no effect at all or even slightly
better effect on performance in the various tasks. In particular, our method achieved better results
on MRPC (in both metrics) and on CoLA. In SST2 and QQP benchmarks, we used an additional
knowledge distillation step (Hinton et al., 2015; Sanh et al., 2020a) to boost performance, where we
combined the original loss with knowledge distillation loss on the output distributions. As shown in
Table 1, using distillation, SST2 goes from 92.2 to 92.9 and in QQP the accuracy and F1 go from
90.1 and 87 to 91.2 and 88.2, respectively.

The average score over all datasets obtained by our sparse model is on-par with the score we get
using the HuggingFace code and outperforms the average score from the original paper. Namely, our
pruned model achieved an average score of 85.26 compared to 83.54 in the original paper and 85.09
when running the full dense model using the same code case we conducted our experiments with.

Table 2: GPU memory usage (GB) and computa-
tional efficiency (iterations per second) when fine-
tuning BERTLARGE on SQuAD 1.1. We compare
the full dense model with the densified 50%-sparse
model, with batch sizes ranging from one to four
and a common fixed sequence length of 384. For
a batch size of four, the full dense model goes
out-of-memory.

Batch Dense full Dense 50%-pruned

GB it/sec GB it/sec

1 8.95 1.92 6.41 2.45
2 9.22 1.58 7.85 2.05
3 10.63 1.3 9.26 1.6
4 - - 10.51 1.42

Memory and Speed analysis. In Table 2, we
compare the memory footprint and speed of a
full BERTLARGE dense model with the dense
counterpart of our pruned model. The experi-
ment was performed on the SQuAD1.1 dataset
on a 12GB TitanX GPU. We show that in addi-
tion to the little loss to small gain in accuracy,
we were able to reduce memory footprint as
well as increase computational efficiency by a
substantial margin. In fact, this margin can be
further improved by addressing the matrix ex-
pansion after the multiplication operation in the
forward as well as in the backward propagation.
In our experiments, we did not leverage any type
of specialized kernel to enhance this expansion
operation performance; however, the scatter op-
eration can be replaced with a direct write to an
intermediate buffer in the correct index order 6

such that the bias will be added properly. The table also shows that for a batch size of four, the full
model cannot run as it crashed due to an out-of-memory error. Our model, however, has no such
problem.

6We can pass the valid row indices as an auxiliary input to the model.
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Figure 3: Sparsity level within each Attention black in a pre-trained BERTLARGE model after applying
Variance Pruning in the pre-training phase and reaching 50% sparsity across all layers. Each block
consists of six linear projection layers: query, key, value, self attention output, intermediate and final
output projections.

6 SPARSITY ANALYSIS

Figure 3 exhibits the sparsity levels, across all of the model’s linear layers. This heat map shows the
importance of weights after applying our VP method during pre-training with a (masked) language
modeling objective, different from observing the importance of weights during fine-tuning (Prasanna
et al., 2020). We observe that most of linear layers are less sparse (darker) in the lower layers than
in the higher ones. This complies with analyses showing that (a) the lower layers carry lower-level
language properties, which are the building blocks of textual language understanding and may thus
be important for any end task (Durrani et al., 2020); and (b) those lower layers are less affected
by fine-tuning than higher layers Kovaleva et al. (2019); Wu et al. (2020). On the other hand,
during pre-training, the top layers specialize in the language modeling task, and hence it is more
reasonable that they become sparser. We also observe a high sparsity of the attention output layer in
the intermediate layers, different from the findings of Prasanna et al. (2020) when pruning during
fine-tuning. This again highlights the importance to consider pruning during pre-training. We leave
further investigation of the sparsity patterns from an interpretability perspective to future work.

6.1 ACHIEVING ADDITIONAL SPARSITY

During the pre-training phases, we did not constrain the weight matrices within a particular linear
projections type, e.g., query, key, value etc., to any sparsity ratio. However, our constraint was to
reach 100

r % sparsity across the model for the particular projection. As shown in Figure 3, for a given
projection type out of the six, each individual Transformer layer reached a different sparsity ratio than
its counterparts in other layers. For example, the self attention projection in layer number sixteen, was
left with less than 0.1% non-zero elements. However, the linear projections that precede it in layer
sixteen, e.g., query, key and value, did not zero out during the pre-training. Still, their sparsity ratios
are smaller versus the same projection types in other layers. This makes sense in light of the fact that
their contribution is negligible when reaching the self attention output projection. Due to this, we could
further prune these three weight matrices and achieve additional sparsity with no accuracy degradation.

7 CONCLUSIONS AND IMPLICATIONS

In this work, we consider the case of pruning NLP models by analyzing the variance of their output
neurons, which correspond to entire weight matrix rows. Weight rows whose neurons exhibit low
variance during pre-training are pruned. Our results sustain the hypothesis that output neurons hold
informational regarding the importance of weights. Importantly, our method allows for a quite aggres-
sive pruning strategy while still achieving on-par results with the full dense model. The idea of pruning
entire rows enables a straightforward reduction in memory and computational footprints on GPU
and other modern AI accelerators with small to no additional effort involved. In future work, it would
be interesting to analyze the sparsity patterns achieved from Variance Pruning in terms of language
model interpretability, for instance, to understand the reason that the attention output and the inter-
mediate layers have high and low sparsity in the middle layers, respectively. Furthermore, it would
be also interesting to combine our method with other pruning methods, to find better rows to prune,
for instance in an ensemble of pruning methods, which may eliminate any performance degradation.
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