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ABSTRACT

Diffusion large language models present a promising paradigm to language model-
ing, yet their alignment remains underexplored, particularly in systematic theoreti-
cal analysis and comprehensive empirical validation on general tasks. In this paper,
we identify a primary challenge for this problem: the high variance in Evidence
Lower Bound (ELBO)-based likelihood estimates required for preference optimiza-
tion. To address this issue, based on Direct Preference Optimization (DPO), we
propose Variance-Reduced Preference Optimization (VRPO), a framework that
formally analyzes the bias and variance of the preference optimization loss and
gradient, showing both are governed by a score-estimator variance. Building on this
foundation, we introduce multiple unbiased variance reduction strategies, includ-
ing optimal budget allocation and antithetic sampling, to improve the alignment
performance. We demonstrate the effectiveness of VRPO by applying it to LLaDA,
a large-scale diffusion language model. The resulting model, LLaDA 1.5, outper-
forms its SFT-only predecessor consistently across mathematical (GSM8K +4.7),
code (HumanEval +3.0, MBPP +1.8), and alignment (IFEval +4.0, Arena-Hard
+4.3) benchmarks. Furthermore, LLaDA 1.5 demonstrates a highly competitive
mathematical performance compared to other strong language MDMs and ARMs.

1 INTRODUCTION

Recently, masked diffusion models (MDMs) (Sohl-Dickstein et al., 2015; Austin et al., 2021a;
Campbell et al., 2022; Meng et al., 2022; Lou et al., 2023; Sahoo et al., 2024; Shi et al., 2024; Ou
et al., 2024) have achieved significant progress in language modeling. By optimizing the evidence
lower bound (ELBO) or its simplified variants, MDMs have demonstrated comparable or even
superior performance to autoregressive models (ARMs) at a small scale (Lou et al., 2023; Ou et al.,
2024; Nie et al., 2024). Explorations on the scaling properties have also revealed MDMs’ excellent
scalability in various downstream tasks (Nie et al., 2024; Gong et al., 2024; Nie et al., 2025), achieving
competitive results to representative ARMs of the same size (e.g., LLaMA 3 (Dubey et al., 2024)).

Motivated by the success of aligning ARMs with human preferences (Schulman et al., 2017; Ziegler
et al., 2019; Ouyang et al., 2022; Rafailov et al., 2023; Shao et al., 2024; Guo et al., 2025), recent
work has begun to explore MDM alignment (Zekri and Boullé, 2025; Borso et al., 2025; Zhao et al.,
2025; Huang et al., 2025; Yang et al., 2025; Gong et al., 2025; Tang et al., 2025). Notably, most
current methods adapt existing alignment frameworks to MDMs, introducing various likelihood ap-
proximation methods without providing pertinent theoretical analysis. Moreover, they primarily focus
on specialized tasks such as reasoning and code generation–which, while important–leave broader
alignment tasks underexplored that are essential for future diffusion language model development.

In this paper, we systematically study the challenge of aligning MDMs based on direct preference
optimization (DPO) (Rafailov et al., 2023), for its simplicity and notable empirical performance.
The key challenge is that the original DPO formulation requires exact log-likelihoods, which are
intractable for diffusion models. A natural solution under this scenario is to approximate these
log-likelihoods with their evidence lower bounds (ELBOs), which introduce nested expectations over
diffusion time and masked data. This substitution yields an ELBO-based preference score expressed
as a linear combination of four ELBO terms (see Eq.(7)).

In practice, these ELBO terms are estimated via a doubly Monte Carlo method (Titsias and Lázaro-
Gredilla, 2014; Dai et al., 2014). We demonstrate that this estimation introduces additional bias and
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Figure 1: Benchmark results. The left panel shows that LLaDA 1.5 improves LLaDA consistently
and significantly on various benchmarks. The right panel demonstrates that LLaDA 1.5 has a highly
competitive mathematical performance compared to strong language MDMs and ARMs.

variance into the preference optimization loss and gradient. To mitigate these errors, our theoretical
analysis reveals a crucial insight: the introduced bias and variance are governed by the variance of
the preference score estimator. This finding underscores the need to control this variance for stable
and effective preference optimization.

Building upon this, we introduce Variance-Reduced Policy Optimization (VRPO), a method integrat-
ing principled techniques to reduce the variance of the preference score estimator: (1) increasing the
sampling budget for ELBOs, (2) allocating the sampling budget across distinct diffusion timesteps
with one masked sample per timestep, and (3) applying antithetic sampling (Kroese et al., 2013) be-
tween ELBO estimates of the model and reference policies. These techniques have been theoretically
proven to reduce the variance of the score estimator in an unbiased manner and empirically validated
in both synthetic (as in Figure 2) and large-scale real-world ablation studies (as in Section 4.2). We
further discuss on potential generalization of our variance reduction techniques to other alignment
algorithms such as PPO and GRPO (Schulman et al., 2017; Shao et al., 2024).

Finally, we show the effectiveness of VRPO by applying it to LLaDA 8B Instruct (Nie et al., 2025), a
leading language MDM, using 350k preference pairs. As shown in Figure 1, the resulting model,
LLaDA 1.5, improves LLaDA consistently on mathematics, coding, and alignment tasks. In addition,
LLaDA 1.5 maintains a highly competitive mathematical performance compared to other strong
MDMs (Nie et al., 2025; Ye et al., 2025; Zhao et al., 2025) and ARMs (Dubey et al., 2024; Bi
et al., 2024), achieving the highest score on Math. These results demonstrate the effectiveness of our
variance reduction method and establish a foundation for further development of language MDMs.

2 PRELIMINARIES

2.1 ALIGNMENT METHODS

Traditional alignment approaches (Ziegler et al., 2019; Ouyang et al., 2022) consist of two stages.

Reward modeling. In the first stage, a static dataset of preference comparisons D = {(x, yw, yl)} is
constructed. For each prompt x, yw denotes the human-preferred response and yl denotes the less
preferred one, respectively. A parameterized reward model rϕ is trained to reflect these preferences by
minimizing the following objective based on Bradley-Terry formulation (Bradley and Terry, 1952):

LReward(ϕ) ≜ −E(x,yw,yl)∼D

[
log σ

(
rϕ(x, yw)− rϕ(x, yl)

)]
, (1)

where σ(·) is the sigmoid function. This encourages rϕ to assign higher scores to preferred responses.

Reinforcement Learning (RL). In the second stage, the language model policy πθ(y | x), which
defines the probability of generating response y given prompt x, is then optimized via RL to maximize:

max
πθ

Ex∼D, y∼πθ(·|x)
[
rϕ(x, y)

]
− β DKL

(
πθ(· | x) ∥πref(· | x)

)
, (2)

where πref is a fixed reference policy, often chosen as a frozen SFT model, and β is a coefficient
controlling the regularization strength. Notably, in autoregressive models (ARMs), both sampling
and likelihood evaluation for the policy are exactly characterized by the language model distribution.
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Direct Preference Optimization (DPO). DPO (Rafailov et al., 2023) offers a simplified alternative
to the two-stage paradigm above by avoiding explicit reward model training, while maintaining both
theoretical grounding and strong empirical performance (Grattafiori et al., 2024). The DPO objective
is to minimize LDPO(θ) ≜ E(x,yw,yl)∼D

[
ℓDPO(x, yw, yl; θ)

]
, where

ℓDPO(x, yw, yl; θ) ≜ − log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)
. (3)

2.2 MASKED DIFFUSION MODELS

Masked Diffusion Models (MDMs) define a model distribution via a forward–reverse frame-
work (Sohl-Dickstein et al., 2015; Austin et al., 2021a). Starting from the original input at t = 0,
the forward process progressively masks the input tokens with a masking probability increasing
over time, producing a fully masked sequence at t = 1. The reverse process learns to denoise this
sequence by iteratively predicting the masked tokens as time reverses from t = 1 to t = 0. This
framework enables principled modeling of complex data distributions, offering a feasible exploration
for non-autoregressive generation approaches.

Likelihood estimation in MDMs. Unlike ARMs, the exact log-likelihood log π(y | x) in MDMs is
often approximated by its evidence lower bound (ELBO) (Lou et al., 2023; Ou et al., 2024; Shi et al.,
2024; Sahoo et al., 2024) as follows:

Bπ(y | x) ≜ Et∼U [0,1]Eyt∼q(yt|t,y,x)
[
ℓπ(yt, t, y | x)

]
≤ log π(y | x), (4)

where q(yt | t, y, x) denotes the forward diffusion process at time t given the full response y and
prompt x, and ℓπ represents the per-step loss of the mask prediction model, which admits multiple
equivalent formulations elaborated in Appendix B. Notably, for a continuous-time diffusion process
(or equivalently, when the step size is infinitesimal), the bias of the ELBO for a well-trained model
relative to the exact likelihood is negligible, as demonstrated in prior works (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2020). From now on, we omit the conditions on x for brevity.

Computing Bπ(y) exactly is generally intractable due to the double expectations. In practice, we
approximate it by a doubly Monte Carlo method. Letting nt and nyt

be the numbers of samples for
timesteps and masked data per timestep, we draw:

St ≜ {t(j)}nt
j=1

i.i.d.∼ U [0, 1] and Sy
t(j)

|y ≜ {y(k)
t(j)

}nyt

k=1
i.i.d.∼ q(yt | t(j), y), j = 1, . . . , nt, (5)

where the masked data for different timesteps are independently sampled, i.e., given y and St,
Sy

t(j)
|y ⊥⊥ Sy

t(j
′) |y for any j ̸= j′. The ELBO is then estimated by:

B̂π(y) ≜
1

nt

nt∑
j=1

1

nyt

nyt∑
k=1

ℓπ(y
(k)

t(j)
, t(j), y), (6)

which is an average of mask-prediction loss computed over a total of n = nt × nyt
masked data.

The estimator in Eq. (6) is an unbiased approximation for the ELBO following from the linearity of
expectations. However, due to computational constraints, large values for n are typically not used.
As a result, the variance of the estimator must be considered. Particularly, in the context of MDMs’
DPO, this presents unique challenges for optimization, as will be discussed in the next section. In this
work, we explore how to mitigate the negative effects of this ELBO estimation variance on preference
optimization, considering both scenarios with scalable and fixed computational budgets.

Large-scale language MDMs. LLaDA (Nie et al., 2025) is an 8B-parameter masked diffusion model
for language generation. LLaDA is pretrained on 2.3 trillion tokens and fine-tuned on 4.5 million
pairs of SFT data. It exhibits outstanding capabilities comparable with representative ARMs (Dubey
et al., 2024) in scalability, in-context learning, and instruction-following. In this paper, we adopt
LLaDA 8B as a base model to explore and validate alignment methods for MDMs.

3 METHOD

We investigate how to align MDMs with human preferences using the DPO framework (Rafailov
et al., 2023). To address the intractability of the required log-likelihoods, we approximate them by
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Figure 2: Toy example. (a) Although X is an unbiased estimator for E[X], log σ(X) is not an
unbiased estimator for log σ(E[X]). Non-linear transformation introduces a gap between E[log σ(X)]
and log σ(E[X]) (blue and red horizontal lines). (b) Both the bias and variance of log σ(X) exhibit
monotonic trends with V[X], supporting the insight to jointly reduce these errors by reducing V[X].

ELBO estimators. We prove that the bias and variance of the resulting loss and its gradient can be
bounded by the variance of a score estimator (a linear combination of four ELBOs). Based on this, we
propose Variance-Reduced Preference Optimization (VRPO), integrating multiple unbiased variance
reduction techniques for better alignment. We also discuss potential extension beyond DPO.

3.1 SUBSTITUTING LIKELIHOODS WITH ELBOS IN DPO

Let us begin by adapting the DPO loss in Eq. (3) by substituting log-likelihoods with their ELBOs:

ℓDPO−E(yw, yl; θ) ≜ −log σ
(
β
(
Bπθ

(yw)−Bπref
(yw)

)
−β

(
Bπθ

(yl)−Bπref
(yl)
))

. (7)

We refer to the term in red as the ELBO-based preference score and denote it by sθ(yw, yl).

Intuitively, the loss encourages the current model πθ to better prefer yw over yl than reference πref by
comparing the ELBOs. As discussed around Eq. (4), the ELBO provides a principled approximation
to the log-likelihood with negligible bias. Moreover, the structure of the DPO loss—specifically its
symmetric form and the smoothness of the sigmoid function—inherently helps mitigate the overall
approximation gap, making ℓDPO−E a reliable surrogate for the original DPO objective.

In practice, each ELBO in Eq. (7) is estimated by Eq. (6). The resulting estimated loss is:

ℓ̂DPO−E(yw, yl; θ) ≜ −log σ

(
β
(
B̂πθ

(yw)−B̂πref
(yw)

)
−β

(
B̂πθ

(yl)−B̂πref
(yl)
))

, (8)

where we denote the score estimator, highlighted in red, by ŝθ(yw, yl), and we use Sŝ|yw,yl
to denote

the stochastic sampling involved in this estimation.

Notably, for a fixed pair of preference data yw, yl, the stochastic sampling in this score estimator
introduces randomness into the estimated loss, making it a random variable over Sŝ|yw,yl

, and thereby
introduces variance into both the loss and its gradient. Besides, due to the nonlinearity of log σ(·),
this also results in additional bias between E[log σ(ŝθ(yw, yl))] and the target log σ(sθ(yw, yl)) =
log σ(E[ŝθ(yw, yl)]) (see Figure 2 (a) for an intuitive illustration), although ŝθ itself is an unbiased
estimator for the true score sθ (formally explained in Appendix C.2.1).

In the remainder of this section, we address these two problems by first establishing how the variance
of the score estimator governs the introduced bias and variance, and then proposing multiple principled
variance reduction strategies to mitigate them. For clarity, we focus on the loss analysis in the main
paper and defer the analogous gradient analysis to Appendix C.4.

3.2 VARIANCE-REDUCED PREFERENCE OPTIMIZATION

The following theorem demonstrates how the bias and variance of the empirical loss can be directly
bounded in terms of the variance of the score estimator. Intuitively, the proof (see Appendix C.2.2)
utilizes the Lipschitz continuity of log σ(·) and the unbiasedness of ŝθ, which ensures that the
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variability in ŝθ leads to controlled changes in the loss and keep it close to the true objective.
Tightness analysis of these upper bounds is provided in Appendix C.2.3.

Theorem 1. Given a pair of preference data yw, yl, the bias and variance of ℓ̂DPO−E(yw, yl; θ) over
stochastic sampling in the score estimation can be bounded as:

ESŝ|yw,yl

[∣∣∣ℓDPO−E(yw, yl; θ)− ℓ̂DPO−E(yw, yl; θ)
∣∣∣] ≤√VSŝ|yw,yl

[
ŝθ(yw, yl)

]
,

VSŝ|yw,yl

[
ℓ̂DPO−E(yw, yl; θ)

]
≤ 4Eyw,yl

[
VSŝ|yw,yl

[
ŝθ(yw, yl)

]]
.

In the toy example shown in Figure 2 (b), we plot how the variance of a random variable X influences
the bias and variance of log σ(X). These curves exhibit trends that align well with Theorem 1.

Collectively, these findings suggest that one can simultaneously mitigate both errors by reducing the
variance of ŝθ. To do this, we present VRPO, illustrated in Figure 3, a set of principled techniques
designed to reduce the variance of the score estimator as follows:

(1) Sampling budget: Increase the number of samples n = nt × nyt
used to estimate each ELBO.

(2) Optimal allocation: Allocate the full budget to timesteps by setting nt = n and nyt
= 1.

(3) Antithetic sampling: Share the same sampled timesteps and masked data between the ELBO
estimates of the current policy πθ and the reference policy πref for the same input yw or yl.

Practically, the first component increases the FLOPs of preference optimization by a factor of n, while
the latter two components incur no additional computational cost: optimal allocation redistributes the
existing samples across timesteps without increasing the total sample count, and antithetic sampling
reuses samples across ELBO estimates, effectively serving as a “free lunch” for variance reduction.
In our default experimental setting, where n is set to be 8, the additional overhead is fully affordable
relative to the overall pretraining cost as discussed in Section 4, and ablation studies under both
scalable and fixed computational budgets are provided in Section 4.2.

Theoretically, all of these techniques reduce the variance of ŝθ without introducing bias. Main
analysis is presented below, with proofs and unbiasedness examinations deferred to Appendix C.3.

We first observe the variance of the score estimator by unrolling it according to the definition in
Eq. (8) (where subscripts of variances and square brackets [·] are omitted for brevity):

Vŝθ(yw, yl) =

β2
∑

y∈{yw,yl}

[
VB̂πθ

(y)+VB̂πref
(y)−2Corr

(
B̂πθ

(y), B̂πref
(y)
)√

VB̂πθ
(y)VB̂πref

(y)

]
. (9)

This decomposition reveals two strategies to reduce Vŝθ: first, decreasing the variance of each ELBO
estimation; second, increasing the correlation between the ELBO estimates for the same input y. The
techniques proposed in VRPO operate exactly according to these two strategies, as formalized below.

Proposition 1 (Reduce the ELBO variance). Given a total budget of n = nt×nyt
masked samples for

estimating B̂π(y), we have: (i) VB̂π(y) = Θ( 1n ), (ii) VB̂π(y) is minimized when nt = n, nyt = 1.

Proposition 2 (Increase the correlation). Given any response y, supposing Corr
(
B̂πθ

(y), B̂πref
(y)
)
>

0 when the Monte Carlo samples St and {Sy
t(j)

|y}nt
j=1 are shared between B̂πθ

(y) and B̂πref
(y), we

have: Sharing Monte Carlo samples yields lower Vŝθ(yw, yl) than using independent samples.

Proposition 1 characterizes a quantitative relationship between the variance of ELBO and the sampling
budget n (first technique), and derives the optimality of allocating the entire budget across timesteps
(second technique). Proposition 2 is inspired by the classical antithetic variates method (Kroese et al.,
2013), where shared randomness is leveraged to reduce the variance of the difference between paired
estimates (third technique). The result and its assumption are quite natural since the current and
reference policies typically share initialization and exhibit similar preferences on the same inputs.
This proposition primarily highlights how to leverage their positive correlation to reduce variance.
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Figure 3: Illustration of VRPO. We compare VRPO (right) with VRPO without optimal allocation
and antithetic sampling (left). VRPO allocates the sampling budget across timesteps to sample only
one masked data per timestep (indicated by red arrows) and shares Monte Carlo samples between
paired ELBOs (highlighted with the red annotations above the blocks).

The empirical effectiveness of VRPO is examined in Section 4. While we need to emphasize that our
contribution lies not only in the proposed techniques themselves but also in the systematic analysis
that motivates and supports them. Unlike approaches relying purely on empirical tuning or prior
experience with continuous diffusion for visual data, our theoretical analysis provides transferable
insights into variance reduction strategies, offering guidance for MDM alignment and helping rule
out suboptimal implementation choices.

3.3 EXTENSION TO OTHER ALIGNMENT METHODS

The variance reduction techniques and analysis in VRPO are not limited to DPO, but naturally extend
to other alignment algorithms that involve estimating the ELBO or subtracting two correlated ELBOs,
which is a commonly encountered scenario when applying alignment to MDMs.

For example, PPO (Schulman et al., 2017) and GRPO (Shao et al., 2024) optimize variants of the
objective (see Eq.(6) in Schulman et al. (2017)): Eπold

[
πθ(y|x)

πθold
(y|x) Â(x, y)

]
, where Â(x, y) is the

advantage function computed using a KL-penalized reward (see Eq.(2) in Ouyang et al. (2022)):
rθ(x, y) − β log πθ(y|x)

πref (y|x) . For both equations, when applied to MDMs, our variance reduction
techniques can be directly used to reduce the variance in ELBO-based estimation for likelihood terms
π(y|x) or likelihood-ratio terms π1(y|x)

π2(y|x) without introducing bias. These terms are structurally similar
to those in the DPO loss (Eq. (3)), and the applicability of our techniques is supported by analogous
analysis as in Propositions 1 and 2. In fact, the analysis becomes even simpler in these settings,
as they do not involve the outer nonlinear log σ(·) function that introduces additional challenge to
providing theoretical guarantees as in DPO.

4 EXPERIMENTS

We align LLaDA (Nie et al., 2025) using VRPO for general tasks and implement extensive evaluation
on common benchmarks. We briefly present the setup, with more details provided in Appendix E.

Data. We train LLaDA 8B Instruct (Nie et al., 2025) for one epoch on 350K preference pairs using
VRPO, resulting in LLaDA 1.5. The data are collected internally at scale across rich scenarios and
undergo several processing steps, including filtering out low-quality samples, removing duplicates via
similarity matching, using a reward model to rank data, and replacing some responses with outputs
from advanced LLMs. This process yields a high-quality and diverse dataset covering a wide range
of topics such as writing, dialogue, knowledge Q&A, reasoning, mathematics, and coding.
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Table 1: Benchmark results. We compare the performance of LLaDA 1.5 against LLaDA In-
struct (Nie et al., 2025) and LLaDA with naive DPO across various benchmarks, including mathemat-
ics, code, and alignment. The results show overall improvements for VRPO.

LLaDA 8B Instruct LLaDA DPO LLaDA 1.5 8B

Post-training SFT SFT + naive DPO SFT + VRPO (Ours)

Mathematics & Science

GSM8K 78.6 80.7 (+2.1) 83.3 (+4.7)
Math 42.2 41.6 (-0.6) 42.6 (+0.4)
GPQA 33.3 34.3 (+1.0) 36.9 (+3.6)

Code

HumanEval 49.4 48.2 (-1.2) 52.4 (+3.0)
MBPP 41.0 41.4 (+0.4) 42.8 (+1.8)

Alignment Tasks

IFEval 62.2 62.0 (-0.2) 66.2 (+4.0)
Arena-Hard 10.0 11.9 (+1.9) 14.3 (+4.3)
AlignBench 5.4 5.8 (+0.4) 5.9 (+0.5)
MTbench 7.2 7.1 (-0.1) 7.3 (+0.1)

Computational Cost. We use a sampling budget n = 8 for VRPO by default. This results in roughly
an 8 times increase in computation compared to methods without Monte Carlo estimation (e.g., ARMs
or setting n = 1). Despite this, the overall cost remains modest—less than 0.5% of pre-training—
making the added overhead practically acceptable. If considering a fixed computational budget,
VRPO’s optimal allocation and antithetic sampling techniques can still improve the effectiveness of
preference optimization (relevant discussions are provided in ablation studies in Section 4.2).

Metrics and evaluation. Following common practice in open-source LLMs (Grattafiori et al.,
2024; Yang et al., 2024; Liu et al., 2024), we conduct comprehensive evaluation of LLaDA 1.5
across three categories of tasks: mathematics and scientific reasoning (GSM8K (Cobbe et al., 2021),
Math (Hendrycks et al., 2021), GPQA (Rein et al., 2023)), code generation (HumanEval (Chen et al.,
2021), MBPP (Austin et al., 2021b)), and alignment (IFEval (Zhou et al., 2023), Arena-Hard (Li
et al., 2024), AlignBench (Liu et al., 2023), MTBench (Zheng et al., 2023)). Specific to MDMs, there
are three commonly used sampling strategies for inference, including diffusion sampling, diffusion
semi-autoregressive sampling (Nie et al., 2025), and low-confidence remasking (Chang et al., 2022).
Following common practice in MDM evaluation (Nie et al., 2025), we adopt the best sampling
strategy for each task. Detailed descriptions of the sampling strategies employed and ablations across
different sampling methods are provided in Appendix E.4.

4.1 BENCHMARK RESULTS

Table 1 presents benchmark results for three models: LLaDA Instruct; LLaDA with naive DPO
(nt = 1, nyt

= 1, without antithetic sampling); and LLaDA 1.5 with VRPO, which fully incorporates
variance-reduction techniques (nt = 8, nyt

= 1, with antithetic sampling). Appendix F lists
instruction-following case studies comparing LLaDA 1.5 and LLaDA Instruct, as a supplement.
Ablations for VRPO’s components under a fixed compute budget are provided in Section 4.2.

As a result, LLaDA 1.5 consistently outperforms both baselines across all benchmarks, showing the
overall effectiveness of VRPO on various tasks. Particularly, we observe that LLaDA 1.5 nonetheless
exhibits strong mathematical performance. As also shown in the right panel of Figure 1, compared
with similar-scale language MDMs and ARMs (Nie et al., 2025; Ye et al., 2025; Zhao et al., 2025;
Dubey et al., 2024; Bi et al., 2024), it remains competitive and achieves the highest four-shot score on
GSM8K and the highest zero-shot score on Math. Overall, these results demonstrate the effectiveness
of VRPO, laying the groundwork for future work to further enhance MDMs’ performance.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Ablation of VRPO variance reduction strategies. We report estimator variances and
benchmark results under different sampling configurations. As for biases, we refer to Figure 2 as an
illustration since they are difficult to measure in practice. Results confirm that techniques in VRPO
generally improve task performance, supporting the theoretical analysis in Section 3.

Base Budget Allocation Antithetic

# Timesteps nt 4 1 8 1 2 4
# Masked samples nyt 1 1 1 4 2 1
Antithetic sampling ✓ ✓ ✓ ✓ ✓ ✗

Variances

Var of score estimator 2.2 44.0 1.0 7.3 4.7 2183.7
Var of loss 3.1×10−3 8.7×10−2 2.6×10−3 3.2×10−2 7.3×10−3 62.0
Var of gradient 2.5 13.0 1.6 4.7 2.5 10.6

Mathematics & Science

GSM8K 82.8 80.1 83.3 81.4 82.3 82.0
Math 42.3 41.7 42.6 41.9 42.4 42.4
GPQA 36.4 34.3 36.9 34.9 36.4 35.9

Code

HumanEval 51.2 50.6 52.4 48.2 48.8 47.0
MBPP 42.8 40.6 42.8 40.8 41.0 41.2

Alignment Tasks

IFEval 66.1 63.9 66.2 64.8 66.2 65.8
Arena-Hard 13.9 13.5 14.3 13.8 13.4 15.6
AlignBench 5.9 5.6 5.9 5.8 5.9 5.9
MTbench 7.4 7.0 7.3 7.0 7.2 7.2

4.2 ABLATION EXPERIMENTS

We conduct ablation studies to evaluate the impact of each variance reduction technique in VRPO. We
vary sampling configurations in three factors corresponding to these components: (1) the sampling
budget n = nt × nyt

, (2) the allocation strategy between the number of timesteps and masked
samples per timestep nt/nyt

, and (3) the use of antithetic sampling. We set the base configuration as
n = 4, nt/nyt

= 4/1, with antithetic sampling used. For each configuration, we measure: (i) the
variance of the score estimator Vŝθ, (ii) the additional variances of the loss and gradient, and (iii)
benchmark results spanning mathematics, code, and alignment. Results are summarized in Table 2.
To illustrate the impact of these techniques on the optimization process more concretely, we also
provide the training loss dynamics for the ablation configurations in Appendix E.3. Details of the
empirical variance computation are provided in Appendix E. We highlight key observations below.

Effect of preference score estimator variance. Lower variances of the score estimator generally
lead to lower variances in both the loss and gradient, along with improved task performance. This
empirical trend supports our theoretical insight in Theorem 1 to control the errors by Vŝθ.

Increasing sampling budget. Increasing the sampling budget n consistently reduces estimator
variance and improves task performance. For instance, increasing n from 1 to 8 reduces Vŝθ from 44.0
to 1.0 and improves GSM8K accuracy from 80.1 to 83.3, validating our finding in Proposition 1 (i).

Comparison under fixed sampling budget. The first, fourth, and sixth columns show results under
a fixed sampling budget, where the fourth and sixth columns disable the optimal allocation technique
and antithetic sampling technique, respectively. For optimal allocation, it is shown to generally yield
lower variance and better results than repeating multiple mask samples per timestep, supporting the
analysis in Proposition 1 (ii). For antithetic sampling, we observe that it leads to notable decreases
in variance, confirming our prediction in Proposition 2. Despite this, we also observe that these
sharp reductions in variance do not always translate into substantial improvements on downstream
benchmarks. We believe this is understandable since the benchmark performance depends on two
factors: optimization and generalization. VRPO is designed to improve optimization and has shown
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effective (as further illustrated in Figure 5), whereas generalization is influenced by complex factors
that are rarely feasible to control. We hypothesize that disabling antithetic sampling may expose the
model to a broader diversity of data patterns, which could benefit certain downstream tasks.

To summarize, these results demonstrate a strong empirical correlation between the proposed tech-
niques and variance reduction, and benchmark results further confirm their essential role in effective
preference optimization, which aligns with the theoretical analysis in Section 3.

5 RELATED WORK

Masked diffusion models. MDMs are inspired by advances in discrete diffusion models (Sohl-
Dickstein et al., 2015; Austin et al., 2021a), which introduced new forward and reverse transitions
and enabled numerous variants (Campbell et al., 2022; Hoogeboom et al., 2021; He et al., 2022; Wu
et al., 2023; Zheng et al., 2024). Empirically, MDMs can match ARMs in perplexity, and simplified
objectives for masked diffusion have been proposed for efficient training (Lou et al., 2023; Sahoo et al.,
2024; Shi et al., 2024; Ou et al., 2024). Subsequent work has explored scaling properties (Nie et al.,
2024), including training from scratch and adaptation from pre-trained autoregressive models (Nie
et al., 2025; Gong et al., 2024; Ye et al., 2025).

Alignment of MDMs. Recent studies have emerged to explore aligning MDMs. Zekri and Boullé
(2025) introduced a general policy-gradient method leveraging the denoising distribution of the
discrete diffusion model during the reverse process. Borso et al. (2025) adopts a continuous-time
Markov chain view for discrete diffusion, treating each token step as an action, and introduces a DPO
variant, validated on small-scale binary sequence generation. Zhao et al. (2025); Yang et al. (2025);
Tang et al. (2025) treat each token step as an action and develop GRPO-based methods to enhance
reasoning ability. Huang et al. (2025) propose a GRPO variant viewing intermediate diffusion steps
as the RL trajectory, focusing on the reasoning and code generation tasks. Gong et al. (2025) present
a GRPO-based algorithm for code generation with a coupled-sampling variance-reduction technique,
which can be used complementary to VRPO. Compared with these existing and concurrent works, we
investigate the alignment of MDMs based on DPO with ELBO-based log-likelihood approximation,
which serves as a natural choice for diffusion models. The proposed VRPO incorporates theoretically
grounded variance-reduction techniques and is validated through large-scale experiments on general
alignment tasks beyond reasoning and code generation. We believe our work provides a meaningful
complement to existing MDMs alignment methods.

Variance reduction techniques. Our work relates to the broad fields of variance reduction in Monte
Carlo methods, doubly stochastic optimization, and variational inference. In Monte Carlo methods,
variance reduction aims to enhance estimation accuracy by improving sampling strategies. Classic
techniques include control variables and stratified sampling (Kroese et al., 2013), where our approach
adapts antithetic variates to couple correlated ELBO terms. The doubly expectation in ELBOs further
parallels the nested structure in doubly SGD (Dai et al., 2014; Titsias and Lázaro-Gredilla, 2014;
Gower et al., 2020; Kim et al., 2024), motivating decomposition via the law of total variance to isolate
distinct variance sources. Our approach also conceptually aligns with importance weighted variational
inference (Burda et al., 2016; Huang and Courville, 2019), where the outer bias is decreased by
reducing the inner variance.

6 CONCLUSION

We analyze the challenges of aligning MDMs with human preference, particularly the high variance
and bias inherent in the ELBO-based likelihood estimation. To address these issues, we propose
VRPO, a systematic framework that incorporates variance reduction techniques with both theoretical
guarantees and empirical validation, which provides transferable insight beyond specific architectures
or datasets. The resulting model, LLaDA 1.5, demonstrates stronger general capabilities than LLaDA,
with pronounced strengths in mathematics, coding, and alignment, supporting the effectiveness
of VRPO at a large scale. Careful ablation studies further investigate each component in VRPO,
showing their effect on variance reduction and thus the stability and efficiency of the optimization.
Potential extensions of the proposed variance reduction techniques to broader RL-based alignment
algorithms are also discussed. We hope this work provides useful guidance for future research on
MDM alignment and contributes to the continued development of diffusion-based language models.
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ETHICS STATEMENT

This paper focuses on aligning MDMs with human preferences to improve helpfulness. Nonetheless,
misuse risks remain: the models may still generate discriminatory, biased, or otherwise harmful
content. To mitigate these risks, we curated and filtered the preference data to remove harmful
material where feasible and will continue to evaluate and refine our safeguards to reduce harmful
outputs.

REPRODUCIBILITY STATEMENT

We provide complete proofs of our theoretical results in Section 3 and Appendix C. For experiments,
Appendix E details the setup, including model architectures and configurations, data processing steps,
training hyperparameters, evaluation metrics, and the configurations of our ablation studies. We will
release LLaDA 1.5 after the blind review period.
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VRPO:
(1) Sampling budget (2) Optimal allocation (3) Antithetic sampling

(Section 3.2)

Identify two variance reduction strategies:
I. VB̂π,V∇θB̂πθ

↓ II. Corr(B̂πθ
, B̂πref

) ↑

Control bias and variance by Vŝθ(yw, yl) and V∇ŝθ(yw, yl)
(Theorem 1, Theorem 4)

Unbiasedness guarantee
(Proposition 4)

Variance reduction guarantees:
I. Using (1) and (2) (Proposition 1, Proposition 5)

II. Using (3) (Proposition 2)

Figure 4: Illustration of the analysis process. This diagram outlines the conceptual flow that leads
to the proposed VRPO method. Gray boxes represent theoretical analyses, and the blue box highlights
the final sampling strategy. Starting from a bias and variance analysis of the estimated loss and
gradient, we identify the score-estimator variance as a dominant controller. These theoretical findings
collectively motivate the design of the VRPO algorithm, which is equipped with provable properties
(dashed lines): unbiasedness and guaranteed variance reduction.

A THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, we used large language models to assist with vocabulary
selection, identify awkward or ungrammatical sentences, and revise the text for clarity and readability.

B ADDITIONAL FORMULATION OF MDMS

For completeness, we introduce the formulation of MDMs in this section. For further details, please
refer to prior works (Shi et al., 2024; Sahoo et al., 2024; Ou et al., 2024).

In the forward process, MDMs corrupt an original sequence y by progressively masking tokens.
Each token is masked independently at a noise level t ∈ [0, 1]. Let y ∈ {0, 1, . . . ,K − 1}L be the
original full response, where K denotes the vocabulary size and L denotes the sequence length, given
a prompt x, the forward process is formulated as:

q(yt|t, y, x) =
L∏

i=1

q(yit|t, yi, x), q(yit|t, yi, x) =

{
1− t, yit = yi,

t, yit = M,
(10)

where yi denotes the i-th token of response y, and M denotes the mask token.

The reverse process starts from a fully masked sequence and gradually unmask tokens to recover
meaningful language sequences. For timesteps 0 ≤ s < t ≤ 1, the reverse process is defined as:

q(ys|s, t, yt, x) =
L∏

i=1

q(yis|s, t, yt, x), q(yis|s, t, yt, x) =


t−s
t pθ(y

i|yt, x), yit = M ∧ yis ̸= M,
s
t , yit = M ∧ yis = M,

1, yit ̸= M ∧ yis = yit,

0, otherwise,
(11)

where pθ is modeled by the mask prediction model.
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As stated in Section 2.2, the exact log-likelihood log π(y|x) in MDMs is typically approximated by
its ELBO (Lou et al., 2023; Ou et al., 2024; Shi et al., 2024; Sahoo et al., 2024):

Bπ(y|x) ≜ Et∼U [0,1]Eyt∼q(yt|t,y,x)ℓπ(yt, t, y|x), (12)

where

ℓπ(yt, t, y|x) ≜

1
t

L∑
i=1

1[yit = M] log pθ(y
i|yt, x)

 . (13)

As noted in (Ou et al., 2024; Nie et al., 2025), the following formulation is an equivalent approxima-
tion:

B′
π(y|x) ≜ El∼U({1,2,...,L})Eyl∼q(yl|l,y,x)ℓ

′
π(yl, l, y|x), (14)

where

ℓ′π(yl, l, y|x) ≜

L
l

L∑
i=1

1[yil = M] log pθ(y
i|yl, x)

 , (15)

with l uniformly sampled from {1, 2, . . . , L}, and yl denoting the sequence obtained by masking l
tokens without replacement.

In practice, although Eq. (14) and Eq. (12) are equivalent in expectation (Ou et al., 2024), the
former typically yields lower variance during estimation (Nie et al., 2025). Intuitively, Eq. (14)
deterministically masks exactly l out of L tokens in each sequence, providing more consistent
samples. In contrast, Eq. (12) relies on masking an expected fraction t of the tokens, which introduces
greater variability into the estimation process. In practice, we apply Eq. (14) as our log-likelihood
estimator.

C ADDITIONAL THEORETICAL CONTENTS

Notations. We use SBπ|y and Sŝ|yw,yl
to denote the stochastic sampling in the ELBO estimates and

the resulting preference score, respectively. Let St and Sy
t(j)

|y be as defined in Eq. (5), Sdata be as
defined in Eq. (8). Θ(·) denotes functions of the same order.

C.1 AUXILIARY LEMMAS

C.1.1 PROPERTIES OF log σ(·) (LEMMA 1)

Lemma 1 (Properties of log σ(x)). Let f(x) = log σ(x), where x ∈ R and σ(x) = 1
1+e−x denotes

the sigmoid function. Then f satisfies the following properties:

(i) concavity: f(x) is concave;

(ii) continuity: f is 1-Lipschitz continuous on R, i.e., for all x1, x2 ∈ R,

|f(x1)− f(x2)| ≤ |x1 − x2|;

(iii) smoothness: f is 1
4 -smooth on R, i.e., its derivative is 1

4 -Lipschitz continuous: for all x1, x2 ∈
R,

|f ′(x1)− f ′(x2)| ≤
1

4
|x1 − x2|.

Proof. We first compute the first and second derivatives of f . Note that

f ′(x) =
e−x

1 + e−x
=

1

1 + ex
∈ (0, 1),

and
f ′′(x) = − ex

(1 + ex)2
∈ [−1

4
, 0).
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(i) Since f ′′(x) ≥ 0 for all x ∈ R, we have f is concave.

(ii) We observe from above that |f ′(x)| ≤ 1 for all x ∈ R, implying that f is 1-Lipschitz continuous.

(iii) Since |f ′′(x)| ≤ 1
4 for all x ∈ R, the derivative f ′(x) is 1

4 -Lipschitz continuous, and thus f is
1
4 -smooth.

C.1.2 INTERCHANGEABILITY OF EXPECTATION AND GRADIENT (LEMMA 2)

Lemma 2 (Interchangeability of expectation and gradient). Let θ ∈ Rd, and let X be a random
variable (or random vector) taking values in a measurable space X . Suppose fθ : Rd × X → R
is differentiable with respect to θ for all X ∈ X , and there exists a constant C > 0 such that
∥∇θfθ(X)∥2 ≤ C for all X ∈ X . Then the expectation and gradient operators are interchangeable:

∇θEfθ(X) = E∇θfθ(X).

Proof. Let θ ∈ Rd be fixed. For all X , for each i ∈ {1, . . . , d}, define gi(X) := ∂
∂θi

fθ(X), which
exists since fθ(X) is differentiable w.r.t. θ. By assumption, we have

|gi(X)| ≤ ∥∇θfθ(X)∥2 ≤ C.

For each i, by the mean value theorem and dominated convergence theorem (Bartle, 2014, Chapter
5), we can interchange the expectation and derivative:

∂

∂θi
Efθ(X) = E

∂

∂θi
fθ(X).

Applying this for each coordinate and stacking the results gives the full gradient interchangeability:

∇θEfθ(X) = E∇θfθ(X).

C.1.3 BIAS AND VARIANCE OF TRANSFORMED RANDOM VARIABLE (LEMMA 3)

Lemma 3 (Bias and variance of transformed random variable). Let Xθ be a real-valued random
variable with EXθ = µθ with parameter θ ∈ Rd, and define function f(x) = log σ(x) on R, where
σ(x) = 1

1+e−x denotes the sigmoid function. Then:

(i) The transformed random variable satisfies:

E
∣∣f(Xθ)− f(µθ)

∣∣ ≤√VXθ, (16)

Vf(Xθ) ≤ 4VXθ. (17)

(ii) Suppose there exists a constant C ≥ 0 such that the gradient of Xθ is uniformly bounded as
∥∇θXθ∥2 ≤ C. Then, the gradient satisfies:

E
∥∥∇θf(Xθ)−∇θf(µθ)

∥∥
2
≤ C

4

√
VXθ +

√
trV∇θXθ, (18)

trV∇θf(Xθ) ≤
C2

8
VXθ + trV∇θXθ. (19)

Proof. (i) As f = log σ is 1-Lipschitz continuous by Lemma 1, for Eq. (16), we have:

E
∣∣f(Xθ)− f(µθ)

∣∣ ≤ E|Xθ − µθ|

= E
√

(Xθ − µθ)2

≤
√
E(Xθ − µθ)2 (Jensen’s inequality)

=
√
VXθ (EXθ = µθ)

17
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For Eq. (17), we have:

Vf(Xθ) = E
(
f(Xθ)− Ef(Xθ)

)2
≤ E

(∣∣f(Xθ)− f(EXθ)
∣∣+ ∣∣f(EXθ)− Ef(Xθ))

∣∣)2 (triangle inequality)

≤ 2E
(
f(Xθ)− f(EXθ)

)2
+ E

(
f(EXθ)− Ef(Xθ))

)2
((a+ b)2 ≤ 2(a2 + b2))

= 2E
(
f(Xθ)− f(EXθ)

)2
+
(
f(EXθ)− Ef(Xθ))

)2
= 2E

(
f(Xθ)− f(EXθ)

)2
+
(
E
(
f(EXθ)− f(Xθ)

))2
≤ 2E

(
f(Xθ)− f(EXθ)

)2
+ E

(
f(EXθ)− f(Xθ)

)2
(Jensen’s inequality)

= 4E
(
f(Xθ)− f(EXθ)

)2
≤ 4E(Xθ − EXθ)

2 (f is 1-Lipschitz continuous by Lemma 1)
= 4VXθ

(ii) Using the chain rule and the bounded gradient assumption, for Eq. (18), we have

E
∥∥∇θf(Xθ)−∇θf(µθ)

∥∥
2

= E
∥∥f ′(Xθ)∇θXθ − f ′(µθ)∇θµθ

∥∥
2

≤ E
∥∥∥(f ′(Xθ)− f ′(µθ)

)
∇θXθ

∥∥∥
2
+ E

∥∥f ′(µθ) (∇θXθ −∇θµθ)
∥∥
2

(triangle inequality)

= E[|f ′(Xθ)− f ′(µθ)| · ∥∇θXθ∥2] + |f ′(µθ)| · E ∥∇θXθ −∇θµθ∥2
≤ C · E

∣∣f ′(Xθ)− f ′(µθ)
∣∣+ E ∥∇θXθ −∇θµθ∥2 (f is 1-Lipschitz continuous by Lemma 1)

≤ C

4
· E |Xθ − µθ|+ E ∥∇θXθ −∇θµθ∥2 (f is 1

4 -Lipschitz smooth by Lemma 1)

=
C

4
· E |Xθ − µθ|+ E ∥∇θXθ − E∇θXθ∥2 (EXθ = µθ and Lemma 2)

≤ C

4

√
E(Xθ − µθ)2 +

√
E ∥∇θXθ − E∇θXθ∥22 (Jensen’s inequality)

=
C

4

√
VXθ +

√
trV∇θXθ.

To prove Eq. (19), we begin by decomposing the variance of the estimated gradient into three terms:

trV∇θf(Xθ) = E
∥∥∇θf(Xθ)− E∇θf(Xθ)

∥∥2
2
= E

∥∥∥f ′(Xθ)∇θXθ − E
[
f ′(Xθ)∇θXθ

]∥∥∥2
2

≤ E
∥∥f ′(Xθ)∇θXθ − f ′(EXθ)∇θXθ

∥∥2
2︸ ︷︷ ︸

(I)

+E
∥∥f ′(EXθ)∇θXθ − f ′(EXθ)E∇θXθ

∥∥2
2︸ ︷︷ ︸

(II)

+ E
∥∥∥f ′(EXθ)E∇θXθ − E

[
f ′(Xθ)∇θXθ

]∥∥∥2
2︸ ︷︷ ︸

(III)

.

We now bound each term separately.

Term (I). Using the bounded gradient assumption ∥∇θXθ∥2 ≤ C and the 1
4 -Lipschitz smoothness of

f (by Lemma 1), we have:

(I) = E
[∣∣f ′(Xθ)− f ′(EXθ)

∣∣2 · ∥∇θXθ∥22
]

≤ C2E
∣∣f ′(Xθ)− f ′(EXθ)

∣∣2
≤ C2

16
E|Xθ − EXθ|2 =

C2

16
VXθ.
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Term (II). Since f ′ is bounded by 1 (by Lemma 1), we have:

(II) =
∣∣f ′(EXθ)

∣∣2 · E∥∇θXθ − E∇θXθ∥22
≤ trV∇θXθ.

Term (III). Applying Jensen’s inequality and again using the smoothness of f and boundedness of
∇θXθ, we have:

(III) =
∥∥f ′(EXθ)E∇θXθ − Ef ′(Xθ)∇θXθ

∥∥2
2

=
∥∥∥E[f ′(EXθ)∇θXθ − f ′(Xθ)∇θXθ

]∥∥∥2
2

≤ E
∥∥f ′(EXθ)∇θXθ − f ′(Xθ)∇θXθ

∥∥2
2

= E
[∣∣f ′(EXθ)− f ′(Xθ)

∣∣2 · ∥∇θXθ∥22
]

≤ C2E
∣∣f ′(EXθ)− f ′(Xθ)

∣∣2 ≤ C2

16
VXθ.

Summing all three terms yields:

trV∇θf(Xθ) ≤
C2

8
VXθ + trV∇θXθ.

C.1.4 PREPARATION FOR TIGHTNESS ANALYSIS (LEMMA 4)

Lemma 4. Assume that a random variable X has finite mean, variance, and kurtosis, i.e., E[X] < ∞,
V[X] < ∞, and κ ≜ E[(X−E[X])4]

V[X]2 < ∞. Then there exists a constant c =
√
0.2(0.8)2 ≈ 0.2862

such that:

E[|X − E[X]|] ≥ c

κ

√
V[X].

Proof. Let µ := E[X], σ :=
√

V[X], and define Y := (X − µ)2. Then,

E[Y ] = V[X] = σ2 < ∞, E[Y 2] = E[(X − µ)4] = κσ4 < ∞.

Applying the Paley–Zygmund inequality to the nonnegative random variable Y , we have: for any
0 ≤ θ ≤ 1:

P(Y ≥ θE[Y ]) ≥ (1− θ)2 (E[Y ])2

E[Y 2]
=

(1− θ)2 σ4

κσ4
=

(1− θ)2

κ
.

Next, let FY denote the cumulated density function of Y . Unrolling the expectation, we have:

E[|X − µ|] = E[
√
Y ] =

∫ ∞

0

√
y dFY (y) ≥

∫ ∞

θσ2

√
y dFY (y) ≥

∫ ∞

θσ2

√
θσ2 dFY (y),

=
√
θσ2

[
1− FY (θσ

2)
]
= σ

√
θP(Y ≥ θσ2) ≥ σ

√
θ
(1− θ)2

κ
.

Maximizing the right hand side over θ ∈ [0, 1], we obtain

max
0≤θ≤1

√
θ(1− θ)2 =

√
0.2(1− 0.2)2.

Letting c =
√
0.2(0.8)2, we conclude that
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E[|X − µ|] ≥ c

κ
σ.

C.1.5 VARIANCE OF ELBO ESTIMATOR (LEMMA 5)

Lemma 5 (Variance of ELBO estimator). Letting B̂π(y) be as defined in Eq. (6), we have:

(i) The variance of the ELBO estimator satisfies:

VB̂π(y) =
1

nt
VtEyt|t,yℓπ(yt, t, y)︸ ︷︷ ︸

≜Vt

+
1

ntnyt

EtVyt|t,yℓπ(yt, t, y)︸ ︷︷ ︸
≜Vyt

.

(ii) The variance of the gradient of the ELBO estimator for the model policy πθ satisfies:

V∇θB̂πθ
(y) =

1

nt
VtEyt|t,y∇θℓπθ

(yt, t, y)︸ ︷︷ ︸
≜V∇

t

+
1

ntnyt

EtVyt|t,y∇θℓπθ
(yt, t, y)︸ ︷︷ ︸

≜V∇
yt

.

The Vt (or V∇
t ) and Vyt

(or V∇
yt

) capture variance across timesteps and variance due to the noise
at each step, which are inherently determined by the data and the forward process and cannot be
reduced.

Proof. For (i), by the law of total variance,

VB̂π(y) = VSt
E{Sy

t(j)
|y}

nyt
j=1|St

B̂π(y)︸ ︷︷ ︸
(I)

+ESt
V{Sy

t(j)
|y}

nyt
j=1|St

B̂π(y)︸ ︷︷ ︸
(II)

.

Term (I). Conditioned on the t-sample, the inner expectation is:

E{Sy
t(j)

|y}
nyt
j=1|St

B̂π(y) = − 1

nt

nt∑
j=1

ESy
t(j)

|y|St

1

nyt

nyt∑
k=1

ℓπ(y
(k)

t(j)
, t(j), y) = − 1

nt

nt∑
j=1

Eyt|t(j),yℓπ(yt, t
(j), y).

Since terms in St are i.i.d. sampled, the outer variance is:

(I) = VSt
E{Sy

t(j)
|y}

nyt
j=1|St

B̂π(y) = − 1

n2
t

VSt

nt∑
j=1

Eyt|t(j),yℓπ(yt, t, y) = − 1

nt
VtEyt|t,yℓπ(yt, t, y).

Term (II). Conditioned on the t-sample, the inner variance is:

V{Sy
t(j)

|y}
nyt
j=1|St

B̂π(y) = − 1

n2
t

nt∑
j=1

VSy
t(j)

|y|St

1

nyt

nyt∑
k=1

ℓπ(y
(k)

t(j)
, t(j), y)

= − 1

n2
t

nt∑
j=1

1

n2
yt

nyt∑
k=1

Vyt|t(j),yℓπ(yt, t
(j), y) = − 1

n2
tnyt

nt∑
j=1

Vyt|t(j),yℓπ(yt, t
(j), y).

Taking the expectation over St yields:

ESt
VSyt |St

B̂π(y) = − 1

n2
tnyt

ESt

nt∑
j=1

Vyt|t(j),yℓπ(yt, t
(j), y) = − 1

ntnyt

EtVyt|t,yℓπ(yt, t, y).

Combining (I) and (II) gives the result:

VB̂π(y) =
1

nt
Vt +

1

ntnyt

Vyt .

For (ii), as ∇θB̂πθ
(y) has similar structure as B̂πθ

(y):

∇θB̂πθ
(y) ≜

1

nt

nt∑
j=1

1

nyt

nyt∑
k=1

∇θℓπθ
(y

(k)

t(j)
, t(j), y),

the proof closely follows that for (i), and thus we omit the details here.
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C.2 BIAS AND VARIANCE OF ESTIMATED LOSS

C.2.1 UNBIASEDNESS OF PREFERENCE SCORE ESTIMATOR (PROPOSITION 3)

Proposition 3 (Unbiasedness of preference score estimator). The preference score estimator defined
in Eq. (8) is an unbiased estimator of the true preference score defined in Eq. (7):

ESŝ|yw,yl

[
ŝθ(yw, yl)

]
= sθ(yw, yl).

Proof. First, by the i.i.d. sampling of timesteps and masked data, i.e.,

St ≜ {t(j)}nt
j=1

i.i.d.∼ U [0, 1] and Sy
t(j)

|y ≜ {y(k)
t(j)

}nyt

k=1
i.i.d.∼ q(yt | t(j), y), j = 1, . . . , nt,

and Sy
t(j)

|y ⊥⊥ Sy
t(j

′) |y for j ̸= j′, the ELBO estimator (Eq. (6)) is unbiased:

ESt,{Sy
t(j)

|y}
nt
j=1

B̂π(y) = ESt

1

nt

nt∑
j=1

ESy
t(j)

|y

1

nyt

nyt∑
k=1

ℓπ(y
(k)

t(j)
, t(j), y)

= Et∼U [0,1]Eyt∼q(yt|t,y)ℓπ(yt, t, y | x) = Bπ(y).

Since the preference score estimator is a linear combination of four ELBO estimators, by the linearity
of the expectation, we have:

E
[
ŝθ(yw, yl)

]
= βE

[
B̂πθ

(yw)
]
− βE

[
B̂πref

(yw)
]
− βE

[
B̂πθ

(yl)
]
+ βE

[
B̂πref

(yl)
]

= β
(
Bπθ

(yw)−Bπref
(yw)

)
−β

(
Bπθ

(yl)−Bπref
(yl)
)
= sθ(yw, yl).

C.2.2 EFFECT OF PREFERENCE SCORE ESTIMATOR VARIANCE (THEOREM 1)

Theorem 1. Given a pair of preference data yw, yl, the bias and variance of ℓ̂DPO−E(yw, yl; θ) over
stochastic sampling in the score estimation can be bounded as:

ESŝ|yw,yl

[∣∣∣ℓDPO−E(yw, yl; θ)− ℓ̂DPO−E(yw, yl; θ)
∣∣∣] ≤√VSŝ|yw,yl

[
ŝθ(yw, yl)

]
,

VSŝ|yw,yl

[
ℓ̂DPO−E(yw, yl; θ)

]
≤ 4Eyw,yl

[
VSŝ|yw,yl

[
ŝθ(yw, yl)

]]
.

Proof. The proof is essentially based on the analysis of the bias and variance of the transformed
random variable in Lemma 3.

By definitions in Eq. (7) and Eq. (8), we know that:

ESŝ|yw,yl

[∣∣∣ℓDPO−E(yw, yl; θ)− ℓ̂DPO−E(yw, yl; θ)
∣∣∣]

= ESŝ|yw,yl

[∣∣∣log σ(sθ(yw, yl))− log σ
(
ŝθ(yw, yl)

)∣∣∣] ,
and

VSŝ|yw,yl

[
ℓ̂DPO−E(yw, yl; θ)

]
= VSŝ|yw,yl

[
log σ

(
ŝθ(yw, yl)

)]
.

According to Proposition 3, we know that ŝθ(yw, yl) is an unbiased estimator for sθ(yw, yl) such
that ESŝ|yw,yl

[
ŝθ(yw, yl)

]
= sθ(yw, yl). Therefore, we can apply Lemma 3 presented previously to

directly get the result.
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C.2.3 TIGHTNESS ANALYSIS (THEOREM 2, THEOREM 3)

Theorem 2 (Tightness analysis of bias). Assume that for any yw, yl, the estimator ŝθ(yw, yl) has
finite mean, variance, and kurtosis, i.e., ESŝ|yw,yl

[ŝθ(yw, yl)] < ∞, VSŝ|yw,yl
[ŝθ(yw, yl)] < ∞,

and κ ≜ E[(ŝθ(yw,yl)−E[ŝθ(yw,yl)])
4]

V[ŝθ(yw,yl)]2
< ∞. Then, under a first-order Taylor expansion, the bias of

ℓ̂DPO−E(yw, yl; θ) scales proportionally to the square root of the variance of the score estimator as:

ESŝ|yw,yl

[∣∣∣ℓDPO−E(yw, yl; θ)− ℓ̂DPO−E(yw, yl; θ)
∣∣∣]

≈ Θ

(
Eyw,yl

[∣∣∣f ′ (sθ(yw, yl))∣∣∣√VSŝ|yw,yl

[
ŝθ(yw, yl)

]])
,

where f(x) = log σ(x), f ′(x) ∈ (0, 1).

Proof. We omit the explicit conditioning on yw, yl for brevity and denote sθ := sθ(yw, yl), ŝθ :=
ŝθ(yw, yl).

By a first-order Taylor expansion of f(ŝθ) around sθ, we have:

f(ŝθ) = f(sθ) + f ′(sθ)(ŝθ − sθ) +O
(
(ŝθ − sθ)

2
)
.

Ignoring the higher-order term yields the linear approximation:
f(ŝθ) ≈ f(sθ) + f ′(sθ)(ŝθ − sθ).

According to the definition, the bias of ℓ̂DPO−E(yw, yl; θ) is:

ESŝ|yw,yl

[∣∣∣ℓDPO−E(yw, yl; θ)− ℓ̂DPO−E(yw, yl; θ)
∣∣∣] = ESŝ|yw,yl

[∣∣f (ŝθ)− f (sθ)
∣∣] .

Applying the linear approximation and using the fact that f(sθ) is constant w.r.t. Sŝ|yw,yl
, we get:

ESŝ|yw,yl

[∣∣f (ŝθ)− f (sθ)
∣∣] ≈ ESŝ|yw,yl

[∣∣f ′(sθ)
∣∣ |ŝθ − sθ|

]
=
∣∣f ′(sθ)

∣∣ESŝ|yw,yl

[
|ŝθ − sθ|

]
.

According to Jensen’s inequality and by Proposition 3, which states that ESŝ|yw,yl
[ŝθ] = sθ, we have

ESŝ|yw,yl

[
|ŝθ − sθ|

]
≤
√

ESŝ|yw,yl

[
(ŝθ − sθ)

2
]
=
√

VSŝ|yw,yl
[ŝθ],

and according to Lemma 4, there exists a constant c =
√
0.2(0.8)2 such that:

ESŝ|yw,yl

[
|ŝθ − sθ|

]
≥ c

κ

√
VSŝ|yw,yl

[ŝθ].

Thus we get:
c

κ

√
VSŝ|yw,yl

[ŝθ] ≤ ESŝ|yw,yl

[
|ŝθ − sθ|

]
≤
√
VSŝ|yw,yl

[ŝθ],

which means:

ESŝ|yw,yl

[∣∣∣ℓDPO−E(yw, yl; θ)− ℓ̂DPO−E(yw, yl; θ)
∣∣∣] ≈ ∣∣f ′(sθ)

∣∣ESŝ|yw,yl

[
|ŝθ − sθ|

]
= Θ

(∣∣f ′(sθ)
∣∣√VSŝ|yw,yl

[ŝθ]

)
.

Finally, from Lemma 1, we know f ′(sθ) ∈ (0, 1).
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Remark 1. The assumptions on ŝθ in Theorem 2, namely finite mean, variance, and kurtosis, are very
mild and standard (Boucheron et al., 2003; Vershynin, 2018; Wainwright, 2019). These conditions
exclude only extremely heavy-tailed distributions. They hold for all sub-Gaussian and sub-exponential
distributions, specifically including Gaussian, uniform, exponential, and any bounded distributions.
Since ŝθ is the estimated preference score computed from ELBOs derived using a neural network, it
is naturally bounded in practice and thus satisfies these assumptions.

Theorem 3 (Tightness analysis of variance). Under a first-order Taylor expansion, the variance of
ℓ̂DPO−E(yw, yl; θ) scales proportionally to the variance of the score estimator as follows:

VSŝ|yw,yl

[
ℓ̂DPO−E(yw, yl; θ)

]
≈
(
f ′ (sθ(yw, yl)))2 VSŝ|yw,yl

[
ŝθ(yw, yl)

]
,

where f(x) = log σ(x), f ′ (x) ∈ (0, 1).

Proof. We omit the explicit conditioning on yw, yl for brevity and denote sθ := sθ(yw, yl), ŝθ :=
ŝθ(yw, yl).

By a first-order Taylor expansion of f(ŝθ) around sθ, we have:

f(ŝθ) = f(sθ) + f ′(sθ)(ŝθ − sθ) +O
(
(ŝθ − sθ)

2
)
.

Ignoring the higher-order term yields the linear approximation:

f(ŝθ) ≈ f(sθ) + f ′(sθ)(ŝθ − sθ).

According to the definition, the variance of ℓ̂DPO−E(yw, yl; θ) is:

VSŝ|yw,yl

[
ℓ̂DPO−E(yw, yl; θ)

]
= VSŝ|yw,yl

[
f (ŝθ)

]
.

Applying the linear approximation and using the fact that f(sθ) is constant w.r.t. Sŝ|yw,yl
, we get:

VSŝ|yw,yl

[
f(ŝθ)

]
≈ VSŝ|yw,yl

[
f(sθ) + f ′(sθ)(ŝθ − sθ)

]
=
(
f ′(sθ)

)2 VSŝ|yw,yl
[ŝθ] .

Finally, from Lemma 1, we know f ′(sθ) ∈ (0, 1), ensuring the scaling factor is bounded.

C.3 VARIANCE REDUCTION OF PREFERENCE SCORE ESTIMATOR

C.3.1 UNBIASEDNESS OF VRPO (PROPOSITION 4)

Proposition 4 (Unbiasedness of VRPO). Under the variance reduction techniques in VRPO (Sec-
tion 3.2), the preference score estimator defined in Eq. (8) remains an unbiased estimator of the true
preference score defined in Eq. (7).

Proof. For sampling budget and optimal allocation, the proof of Proposition 3 for the unbiasedness
of ŝθ(yw, yl) remains valid under variations in nt and nyt

, so these do not affect the unbiasedness of
the score estimator. For antithetic sampling, by linearity of expectation, the coupling of B̂πθ

(y) and
B̂πref

(y) also does not affect the unbiasedness of the score estimator.

C.3.2 SAMPLING BUDGET AND ALLOCATION (PROPOSITION 1)

Proposition 1 (Reduce the ELBO variance). Given a total budget of n = nt×nyt masked samples for
estimating B̂π(y), we have: (i) VB̂π(y) = Θ( 1n ), (ii) VB̂π(y) is minimized when nt = n, nyt = 1.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Proof. The proof is essentially based on the variance analysis of the ELBO estimator in Lemma 5.

According to Lemma 5, we know that:

VB̂π(y) =
1

nt
Vt +

1

ntnyt

Vyt .

Given that n = nt × nyt and a fixed allocation proportion c ≜ nt

n ∈ [ 1n , 1], we have:

VB̂π(y) =
1

cn
Vt +

1

n
Vyt

.

Then, we have

VB̂π(y) = Θ(
1

n
),

and
argmin
c∈[ 1n ,1]

VB̂π(y) = 1,

which gives the desired result.

C.3.3 ANTITHETIC SAMPLING (PROPOSITION 2)

Proposition 2 (Increase the correlation). Given any response y, supposing Corr
(
B̂πθ

(y), B̂πref
(y)
)
>

0 when the Monte Carlo samples St and {Sy
t(j)

|y}nt
j=1 are shared between B̂πθ

(y) and B̂πref
(y), we

have: Sharing Monte Carlo samples yields lower Vŝθ(yw, yl) than using independent samples.

Proof. This result yields naturally from Eq. (9) that when Corr(B̂πθ
(y), B̂πref

(y)) > 0,

VB̂πθ
(y) + VB̂πref

(y)− 2Corr
(
B̂πθ

(y), B̂πref
(y)
)√

VB̂πθ
(y)VB̂πref

(y) < VB̂πθ
(y) + VB̂πref

(y).

C.4 DEFERRED ANALYSIS OF ESTIMATED GRADIENT

In this section, we present a theoretical analysis of the effect of VRPO on gradient estimation,
following a structure analogous to the loss analysis in the main paper.

We first introduce a bounded assumption on the gradient of per-step mask prediction loss ℓπθ
, which

serves as a mild condition for the subsequent derivations.
Assumption 1 (Bounded gradient of per-step mask prediction loss). The gradient of the per-step
masked prediction loss ℓπθ

(yt, t, y) (Eq. (4)) is bounded, i.e., there exists a constant 0 ≤ C < ∞
such that ∥∇θℓπθ

(yt, t, y)∥2 ≤ C for all θ in the model parameter space, y in D, and t ∈ [0, 1].

This boundedness assumption is reasonable in practice and leads directly to the following corollary.
Corollary 1 (Bounded gradient of preference score estimator). Under Assumption 1, the gradient of
the preference score estimator ŝθ(yw, yl) is bounded, i.e., there exists a constant 0 ≤ C̃ < ∞ such
that ∥∇θ ŝθ(yw, yl)∥2 ≤ C̃ for all θ in the model parameter space and (yw, yl) in D.

Proof. Recall that the preference score estimator is defined as:

ŝθ(yw, yl) = β
(
B̂πθ

(yw)−B̂πref
(yw)

)
−β

(
B̂πθ

(yl)−B̂πref
(yl)
)
,

where

B̂π(y) =
1

nt

nt∑
j=1

1

nyt

nyt∑
k=1

ℓπ(y
(k)

t(j)
, t(j), y).
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Taking the gradient with respect to θ leads to:

∇θ ŝθ(yw, yl) = β∇θB̂πθ
(yw)− β∇θB̂πθ

(yl).

Now expand each gradient term to get:

∇θB̂πθ
(y) =

1

ntnyt

nt∑
j=1

nyt∑
k=1

∇θℓπθ
(y

(k)

t(j)
, t(j), y).

By Assumption 1, each term
∥∥∥∇θℓπθ

(y
(k)

t(j)
, t(j), y)

∥∥∥
2
≤ C, we have:∥∥∥∇θB̂πθ

(y)
∥∥∥
2
=

1

ntnyt

nt∑
j=1

nyt∑
k=1

∥∥∥∇θℓπθ
(y

(k)

t(j)
, t(j), y)

∥∥∥
2
≤ C.

Thus, ∥∥∇θ ŝθ(yw, yl)
∥∥
2
≤ β

∥∥∥∇θB̂πθ
(yw)

∥∥∥
2
+ β

∥∥∥∇θB̂πθ
(yl)
∥∥∥
2
≤ 2βC < ∞.

Setting C̃ = 2βC gives the desired result.

C.4.1 EFFECT OF PREFERENCE SCORE ESTIMATOR VARIANCE (THEOREM 4)

We now present a theorem that characterizes how the variance of the score estimator and the variance
of its gradient influence the bias and variance of ∇θ ℓ̂DPO−E.
Theorem 4. Suppose Assumption 1 holds. Then, there exists a constant 0 ≤ C̃ < ∞ such that, given
a pair of preference data yw, yl, the bias and variance of ∇θ ℓ̂DPO−E can be bounded as:

ESŝ|yw,yl

[∥∥∥∇θℓDPO−E(yw, yl; θ)−∇θ ℓ̂DPO−E(yw, yl; θ)
∥∥∥
2

]
≤ C̃

4

√
VSŝ|yw,yl

ŝθ(yw, yl) +
√
trVSŝ|yw,yl

∇θ ŝθ(yw, yl),

and

trVSŝ|yw,yl

[
∇θ ℓ̂DPO−E(yw, yl; θ)

]
≤ C̃2

8
VSŝ|yw,yl

ŝθ(yw, yl) + trVSŝ|yw,yl
∇θ ŝθ(yw, yl).

Proof. The proof is essentially based on the analysis of the bias and variance of the transformed
random variable in Lemma 3 presented previously.

By definitions in Eq. (7) and Eq. (8), we know that:

ESŝ|yw,yl

[∥∥∥∇θℓDPO−E(yw, yl; θ)−∇θ ℓ̂DPO−E(yw, yl; θ)
∥∥∥
2

]
= ESŝ|yw,yl

[∥∥∥∇θ log σ
(
sθ(yw, yl)

)
−∇θ log σ

(
ŝθ(yw, yl)

)∥∥∥
2

]
,

and

trVSŝ|yw,yl

[
∇θ ℓ̂DPO−E(yw, yl; θ)

]
= trVSŝ|yw,yl

[
∇θ log σ

(
ŝθ(yw, yl)

)]
.

According to Corollary 1, under Assumption 1, there exists a constant 0 ≤ C̃ < ∞ such that the
gradient of ŝθ(yw, yl) is uniformly bounded as ∥ŝθ(yw, yl)∥2 ≤ C̃. Then by Lemma 3, we have:

ESŝ|yw,yl

∥∥∇θ log σ(ŝθ(yw, yl))−∇θ log σ(sθ(yw, yl))
∥∥
2

≤ C̃

4

√
VSŝ|yw,yl

ŝθ(yw, yl) +
√
trVSŝ|yw,yl

∇θ ŝθ(yw, yl),

and trVSŝ|yw,yl
∇θ log σ(ŝθ(yw, yl)) ≤

C̃2

8
VSŝ|yw,yl

ŝθ(yw, yl) + trVSŝ|yw,yl
∇θ ŝθ(yw, yl).

Applying these bounds to the above equations gives the desired results.
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C.4.2 SAMPLING BUDGET AND ALLOCATION (PROPOSITION 5)

Given Theorem 4, our goal is to reduce the variance associated with the preference score estimator,
specifically Vŝθ(yw, yl) and trV∇θ ŝθ(yw, yl) (we omit the subscript on Sŝ|yw,yl

for brevity). The
variance Vŝθ(yw, yl) has been analyzed in Appendix C.3. Now, we turn our focus to trV∇θ ŝθ(yw, yl),
showing that the first two techniques in VRPO—increasing the sampling budget and applying optimal
allocation—effectively reduce this term.

We begin by expanding V∇θ ŝθ(yw, yl) for detailed analysis. According to the definition of the score
estimator as in Eq. (8), the gradient of the preference score estimator takes the form:

∇θ ŝθ(yw, yl) = β∇θB̂πθ
(yw)− β∇θB̂πθ

(yl).

Since the Monte Carlo sampling conditional on different data y is independent, i.e., SBπθ
|yw

⊥⊥
SBπθ

|yl
, we have:

V∇θ ŝθ(yw, yl) = Vβ∇θB̂πθ
(yw) + Vβ∇θB̂πθ

(yl) = β2V∇θB̂πθ
(yw) + β2V∇θB̂πθ

(yl). (20)

Eq. (20) shows that V∇θ ŝθ(yw, yl) can be reduced by lowering the variance of ∇θB̂π(y). We next
provide a theoretical guarantee that increasing the sampling budget and adopting optimal allocation
in VRPO lead to a reduction in V∇θB̂π(y).

Proposition 5. Let B̂π(y) be estimated using a total of n = nt×nyt
masked samples. Then we have:

(i) V∇θB̂π(y) = Θ( 1n ), and (ii) V∇θB̂π(y) is minimized when nt = n and nyt = 1 with a fixed n.

Proof. The proof relies on a variance analysis of the gradient of the ELBO estimator established in
Lemma 5. Since the argument closely parallels the proof of Proposition 1 in Appendix C.3.2, we
omit the details here.

D DETAILS OF FIGURE 2

For Figure 2, we generated synthetic data as follows. We sampled N = 1000 points from a zero-mean
Gaussian distribution X ∼ N (0, σ2), with ten different variance levels σ2 ∈ {0.1, 0.2, . . . , 1.0}.
For each sample, we applied the transformation log σ(X) = log(1/(1 + e−X)) and recorded its
empirical mean, variance, and bias. The ground-truth reference value for comparison is log σ(E[X]),
which for E[X] = 0 equals log σ(0).

Panel (a) sets σ2 = 1.0. The light blue curve in the horizontal axis shows the Gaussian density
N (0, 1), while the black curve plots the nonlinear function x 7→ log σ(x). The blue histogram in the
vertical axis displays the empirical distribution of log σ(X) under this sampling, and the horizontal
dashed blue line indicates its empirical mean E[log σ(X)]. The red star and solid lines mark the
reference value log σ(E[X]), highlighting the bias introduced by the nonlinear transformation.

Panel (b) summarizes the trends across all variance levels. The horizontal axis is the variance of
the Gaussian input X , and the vertical axis reports the corresponding empirical variance and bias
of log σ(X). Bias is computed as the absolute difference between the sample mean of log σ(X)
and the reference log σ(E[X]). Both quantities are observed to grow monotonically with V[X],
supporting the insight that reducing the variance of X jointly mitigates both the bias and variance of
the transformed estimator.

E EXPERIMENTS

E.1 IMPLEMENTATION OF VRPO

We implement VRPO using a packing strategy, where multiple preference data samples are packed
into a single sequence to maximize hardware utilization. For each sequence, we construct an
attention mask so that tokens from distinct samples within the sequence cannot attend to each other.
Furthermore, all sequences are padded to a fixed length of 4096 with |EOS| tokens, which is consistent
with the default pre-training context length used in LLaDA. During VRPO training, these padded
|EOS| tokens are excluded from the loss calculation.
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Table 3: The architecture of LLaDA.

LLaDA

Layers 32

Model dimension 4096

Attention heads 32

Vocabulary size 126,464

FFN dimension 12,288

Key/Value heads 32

Total parameters 8.02 B

Non-embedding parameters 6.98 B

E.2 MODEL ARCHITECTURE

In this section, we present the details of the SFT model LLaDA Instruct.

The LLaDA architecture closely follows that of LLaMA (Dubey et al., 2024): it is a masked diffusion
model with 8B parameters, based on a Transformer Encoder. Like LLaMA, LLaDA employs
RMSNorm (Zhang and Sennrich, 2019) for normalization, RoPE (Su et al., 2024) for positional
encoding, and SwiGLU (Shazeer, 2020) as the activation function. Detailed model specifications can
be found in Table 3.

E.3 TRAINING

To enhance the general capabilities of LLaDA, we use 350K preference pairs as our training data.
These pairs were collected internally on a large scale and processed by filtering out low-quality
samples, removing duplicates based on similarity matching, ranking samples with reward models
to select high-quality data, and replacing some chosen responses with outputs from state-of-the-
art LLMs, ultimately resulting in a dataset comprising approximately 35% creative writing, 18%
knowledge QA, 16% NLP tasks, 14% mathematics tasks, 7% recommendation tasks, 5% code
generation, 3% reasoning tasks, and a small portion of safety and other tasks.

We trained the model for one epoch with a batch size of 64 using the AdamW optimizer with a weight
decay of 0.01, β1 of 0.9, and β2 of 0.95. The learning rate schedule employed 15 warmup steps to
a maximum learning rate of 5 × 10−7, followed by cosine decay. We configured DPO Loss with
β = 0.2 and complemented it with a 0.05 weighted MDMs SFT loss to improve training stability.
We initialize πref with LLaDA Instruct for VRPO. Training consumed approximately 405 H100 GPU
hours for 8 Monte Carlo samples. Due to hardware resource constraints, we did not perform any
hyperparameter search.

To evaluate the impact of our variance reduction strategies, Figure 5 plots the training losses for the
configurations reported in Table 1 and Table 2. With variance reduction strategies applied, the training
loss trajectories become smoother and exhibit substantially lower variability, thereby stabilizing the
optimization dynamics of MDMs. We also observe a faster decrease in loss and a lower final loss;
these trends are consistent with reduced gradient variance and improved optimization stability.

E.4 EVALUATION

Similar to ARMs with diverse sampling methods (Holtzman et al., 2019; Brown, 2020), MDMs
also benefit from various sampling strategies that can enhance sample quality. Following prior
work (Chang et al., 2022; Nie et al., 2025; Sahoo et al., 2024), we employ multiple methods to
sample text from MDMs, including diffusion sampling, diffusion semi-autoregressive sampling, and
low-confidence remasking.
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Figure 5: Loss curves under different variance reduction strategies. Top: w/ antithetic sampling;
bottom: w/o antithetic sampling. The curve labeled “w/o antithetic sampling, nt = 1, nyt = 1”
corresponds to the training loss of the naive DPO baseline reported in Table 1, all other curves come
from the ablation study in Table 2, obtained by varying the number of timesteps nt, the number of
masked samples nyt

, and whether antithetic sampling is applied. We present two panels because the
loss magnitudes differ substantially across settings. For visual clarity, all curves are smoothed with
an exponential moving average with coefficient 0.3.

In diffusion semi-autoregressive sampling, to generate a fixed length of L tokens, the method divides
the generation process into L

B blocks, where B is the number of tokens generated per block. Within
each block, tokens are generated using the original reverse process, and then each block is generated
autoregressively. Furthermore, the low-confidence remasking method remasks predicted tokens that
exhibit the lowest confidence, based on the predictions.

Additionally, we observed that for LLaDA SFT, due to the padding of |EOS| tokens during its SFT
phase, tends to generate an excessive number of |EOS| tokens. This often leads to incomplete
content generation, resulting in notably truncated outputs and adversely affecting model performance.
Inspired by this, we set the confidence score for the |EOS| token to zero and observe improved
performance for LLaDA. For example, using the same inference configuration as LLaDA, setting the
|EOS| token’s confidence score to zero improved HumanEval scores from 47.6 to 49.4. Consequently,
we adopted this setting for evaluation. The MTBench, AlignBench, and the ArenaHard benchmark
results are obtained via the “gpt-4-32k” API provided by OpenAI.

To ensure a fair comparison, we employ both diffusion sampling and semi-autoregressive sampling
for LLaDA and LLaDA 1.5 and report the best results. We tuned the answer length over {64, 128,
256, 512, 1024}, for semi-autoregressive sampling, we tuned the block length over {8, 16, 32, 64,
128}. As shown in Table 6, we detail the best inference configurations employed for each benchmark.
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Table 4: Ablation study on sampling strategies across key benchmarks. We evaluate the impact
of diffusion sampling, semi-autoregressive sampling, and low-confidence remasking on LLaDA 8B
Instruct and LLaDA 1.5 8B.

LLaDA 8B Instruct LLaDA 1.5 8B

GSM8K
Diffusion Sampling 53.2 55.7
Low-Confidence Remasking 69.4 70.3
Semi-Autoregressive Sampling 78.6 83.3

HumanEval
Diffusion Sampling 12.2 17.1
Low-Confidence Remasking 49.4 47.0
Semi-Autoregressive Sampling 47.6 52.4

IFEval
Diffusion Sampling 55.2 59.4
Low-Confidence Remasking 62.2 60.1
Semi-Autoregressive Sampling 61.7 66.2

Moreover, to test VRPO’s generality, we evaluate LLaDA and LLaDA 1.5 on the representative
benchmarks GSM8K, HumanEval, and IFEval using three sampling strategies: diffusion sampling,
semi-autoregressive sampling, and low-confidence remasking. The ablation results, summarized in
Table 4, demonstrate the consistent performance gains of LLaDA 1.5 over LLaDA 8B Instruct across
most sampling strategies. The optimal strategies identified in this study align with those reported in
Table 1.

Table 5: Comparison of LLaDA and LLaDA 1.5 under training randomness. LLaDA 1.5 reports
mean ± standard deviation and 95% confidence intervals across three VRPO runs, varying only the
random seed.

Task LLaDA LLaDA 1.5

GSM8K 78.6 82.9 ± 0.6
(95% CI: [81.4, 84.3])

Math 42.2 43.0 ± 0.3
(95% CI: [42.2, 43.8])

GPQA 33.3 35.7 ± 1.0
(95% CI: [33.1, 38.3])

HumanEval 49.4 52.0 ± 0.7
(95% CI: [50.3, 53.7])

MBPP 41.0 42.3 ± 0.8
(95% CI: [40.4, 44.1])

IFEval 62.2 65.1 ± 0.9
(95% CI: [62.8, 67.4])

To evaluate the impact of randomness on model performance, we retrain LLaDA using VRPO
with two additional random seeds, resulting in three independent runs. All training and evaluation
procedures are kept identical across runs, with only the random seed varied to isolate the effect of
training stochasticity. We omit MTBench, AlignBench, and ArenaHard because they rely on LLM-
as-a-judge scoring, which introduces evaluator variance. We report the mean, standard deviation, and
95% confidence intervals (calculated using the t-distribution) of performance across the three runs
in Table 5. As shown, LLaDA 1.5 consistently outperforms LLaDA across benchmarks, achieving
higher mean scores with small standard deviations, indicative of stable performance across runs. For
most tasks, the 95% confidence intervals for LLaDA 1.5 lie entirely above the corresponding LLaDA
means, evidencing consistent improvements and supporting the reliability of VRPO. Because the
inference is deterministic, we report a single baseline score without statistical significance.
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Table 6: Inference configurations for LLaDA and LLaDA 1.5. MDMs benefit from various
sampling strategies. We list inference configurations for LLaDA and LLaDA 1.5 that achieve optimal
performance. A block length smaller than the answer length indicates the use of diffusion semi-
autoregressive sampling; otherwise, diffusion sampling is employed.

LLaDA 8B Instruct LLaDA 1.5 8B
Block length Answer length Block length Answer length

GSM8K 8 256 16 256
Math 64 512 128 1024
GPQA 64 64 16 256
HumanEval 512 512 32 512
MBPP 256 256 32 512
IFEval 512 512 32 512
Arena-Hard 128 1024 128 1024
AlignBench 32 512 32 512
MTBench 32 512 16 256

E.5 CALCULATION OF VARIANCES

We estimated the variance of the score estimator, the variance of the loss, and the variance of the
gradient in Table 2. We sampled 128 preference data samples, processed with a batch size of 16. For
each data point, 8 independent calculations were performed. πref was initialized using LLaDA, while
πθ was a model checkpoint from the VRPO training process. Given the large model size, storing
full gradients for each calculation was computationally prohibitive. Therefore, for estimating the
variance of the gradient, we specifically recorded the gradients of the up-projection layer within the
Feed-Forward Network module of the first transformer block to serve as a proxy for the full gradient.

F CASE STUDY

In this section, we present additional case studies of LLaDA 1.5. First, Table 7 and Table 8 illustrate
the advantages of LLaDA 1.5 over LLaDA in alignment tasks. Table 9 and Table 10 provide a
comparison between LLaDA and LLaDA 1.5 on mathematical tasks.
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Table 7: Alignment cases of LLaDA 8B Instruct and LLaDA 1.5 (1).

Prompt
Write a brief biography of a person named "Brilliant Le Hou". Do not use
commas in your reply. Highlight at least 3 sections with markdown, i.e.
*highlighted section*. The biography should start with the name of the
person.

LLaDA
Brilliant Le Hou was born in 1985 in
Paris, France. From a young age, he
showed a keen interest for science and
technology. He attended the presti-
gious École Polytechnique, where he
excelled in mathematics and engineer-
ing. After graduating, Le Hou began
his career at MIT, where he conducted
groundbreaking research in artificial
intelligence.
*highlighted section*
At MIT, Le Hou developed a new algo-
rithm that significantly improved the
accuracy of machine learning models.
This breakthrough earned him numer-
ous awards and recognition in the sci-
entific community.
*highlighted section*
After working at MIT, Le Hou
founded a tech company called Bril-
liantTech Inc. The company quickly
became a leader in the field of AI, with
products that revolutionized industries
such as healthcare, finance, and trans-
portation.
*highlighted section*
Le Hou’s contributions to AI have had
a profound impact on society. His
work has led to advancements in med-
ical diagnostics, financial forecasting,
and autonomous vehicles. He has also
been involved in various philanthropic
activities, focusing on improving edu-
cation and environmental sustainabil-
ity.
*highlighted section*

LLaDA 1.5
Brilliant Le Hou was born in 1945 in a
small village in France. From a young
age he showed a remarkable talent for
art and music. His parents encour-
aged him to pursue his passions and
he quickly became a renowned artist
and musician.
*Early Life* Brilliant Le Hou grew up
in a small village surrounded by beau-
tiful landscapes. His parents were both
artists and they instilled in him a love
for art and music. He spent his child-
hood painting and playing the guitar.
*Career* Brilliant Le Hou’s career
began in the 1960s when he started
exhibiting his paintings in local gal-
leries. His unique style and talent
quickly gained him a following. He
also started performing in local cafes
and soon became a popular musician.
*Achievements* Brilliant Le Hou re-
ceived numerous awards and acco-
lades throughout his career. He won
the prestigious Prix de Rome in 1975
and was inducted into the French Mu-
sic Hall of Fame in 1980. His work
has been featured in major galleries
and museums around the world.
*Personal Life* Brilliant Le Hou was
married to a fellow artist for many
years. They had two children together.
He was known for his kindness and
generosity and often donated his earn-
ings to charitable causes.
*Legacy* Brilliant Le Hou’s legacy is
one of creativity and generosity. His
art and music continue to inspire peo-
ple around the world. His contribu-
tions to charitable causes have left a
lasting impact on the community.
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Table 8: Alignment cases of LLaDA 8B Instruct and LLaDA 1.5 (2).

Prompt
I need a joke involving Zoe and bubbles that contains at least 3 placeholders
represented by square brackets such as [date].

LLaDA
Zoe was blowing bubbles on [date]
when she heard a loud pop. She looked
down and saw a bubble that had burst,
causing her to burst into laughter.

LLaDA 1.5
Zoe was at a bubblegum party and she
saw a bubble that was [size] feet wide.
She tried to pop it, but it just kept [bub-
bling] and [bubbling] and [bubbling]!
Finally, she decided to take a break
and go for a [nap] in the shade. When
she woke up, the bubble was still [bub-
bling] and [bubbling] and [bubbling]!
Zoe laughed, "I guess this bubble is
just [size] of a party!"

Prompt
Suggest two names for a new type of tonic. Include the keyword "brand"
each time, followed by suggested name in double angular brackets, such as
«American Tonic».
First repeat the request above word for word without change, then give your
answer. Do not say any words or characters before repeating the request.

LLaDA
Suggest two names for a new type of
tonic. Include the keyword "brand"
each time, followed by suggested
name in double angular brackets, such
as «American Tonic».

LLaDA 1.5
Suggest two names for a new type of
tonic. Include the keyword "brand"
each time, followed by suggested
name in double angular brackets, such
as «American Tonic».
Brand «Serenity Tonic» Brand
«Elysian Tonic»
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Table 9: Math cases of LLaDA and LLaDA 1.5 (1).

Prompt
Find 9−1 (mod 100), as a residue modulo 100. (Give an answer between 0
and 99, inclusive.)
Please reason step by step, and put your final answer within \boxed{}.

LLaDA
To find the modular inverse of 9 mod-
ulo 100, we need to find an integer x
such that:

9x ≡ 1 (mod 100)

This means we need to solve the con-
gruence:

9x− 1 ≡ 0 (mod 100)

or equivalently:

9x− 1 = 100k

for some integer k. Rearranging this
equation, we get:

9x = 100k + 1

We can simplify this equation by di-
viding both sides by 9:

x = 11k +
1

9

Since x must be an integer, 1
9 must

also be an integer. This implies that
9 must be a divisor of 1, which is not
possible because 9 and 1 are coprime
(they have no common factors other
than 1). Therefore, there is no integer
x such that 9x ≡ 1 (mod 100).
Thus, the modular inverse of 9 modulo
100 is:

−1

LLaDA 1.5 To find the modular in-
verse of 9 modulo 100, we need to
find an integer x such that 9x ≡ 1
(mod 100). This means we need to
solve the congruence 9x − 100k = 1
for some integer k.
We can use the Extended Euclidean
Algorithm to find this inverse. The
Extended Euclidean Algorithm not
only finds the greatest common divi-
sor (gcd) of two numbers but also pro-
vides the coefficients x and k such that
9x− 100k = 1.
First, we apply the Euclidean Algo-
rithm to find the gcd of 9 and 100:
1. 100 = 9 · 11 + 1
2. 9 = 1 · 9 + 0
The gcd of 9 and 100 is 1, which con-
firms that an inverse exists.
Next, we use the Extended Euclidean
Algorithm to express 1 as a combina-
tion of 9 and 100:
From the first equation:

1 = 100− 9 · 11

This gives us:

1 = 100− 9 · 11

Thus, x = −11 and k = 1. However,
we need x to be a positive residue mod-
ulo 100. Therefore, we convert −11 to
a positive equivalent by adding 100:

−11 + 100 = 89

So, the modular inverse of 9 modulo
100 is:

89
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Table 10: Math cases of LLaDA and LLaDA 1.5 (2).

Prompt
Question: The ratio of men to women on a bus is 5:9. If the total number of
passengers on the bus is 84, and 20 women alight from the bus at the next
stop, how many women have remained on the bus?
Let’s think step by step
Answer:

LLaDA
1. The ratio of men to women on the
bus is 5:9. This means for every 5 men,
there are 9 women.
2. The total number of passengers on
the bus is 84.
3. The total number of parts in the
ratio is 5 + 9 = 14.
4. To find the number of men and
women, we divide the total number
of passengers by the total number of
parts:
- Number of men = 84 passengers / 14
parts = 6 men
- Number of women = 84 passengers /
14 parts = 9 women
5. Now, 20 women alight from the bus
at the next stop.
6. To find the number of women re-
maining on the bus, we subtract the
number of women who alight from the
initial number of women:
- Number of women remaining = Initial
number of women - Number of women
who alight
- Number of women remaining = 9
women - 20 women
- Number of women remaining = 9
women
Therefore, the number of women re-
maining on the bus is 9.
The answer is 9.>

LLaDA 1.5
1. The ratio of men to women on the
bus is 5:9. This means for every 5 men,
there are 9 women.
2. The total number of passengers on
the bus is 84.
3. The total number of parts in the
ratio is 5 + 9 = 14.
4. To find the number of men and
women, we divide the total number
of passengers by the total number of
parts:
- Number of passengers per part = 84 /
14 = 6
- Number of men = 5 parts * 6 passen-
gers per part = 30
- Number of women = 9 parts * 6 pas-
sengers per part = 54
So, initially, there are 30 men and 54
women on the bus.
5. At the next stop, 20 women alight
from the bus.
6. To find the number of women re-
maining on the bus, we subtract the
number of women who alighted from
the initial number of women:
- Number of women remaining = 54
women - 20 women = 34 women
The answer is 34
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