LLADA 1.5: VARIANCE-REDUCED PREFERENCE OPTI-MIZATION FOR LARGE LANGUAGE DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

025

026027028

029

031

033

034

035

037

040

041

042

043

044

046

047

048

051

052

ABSTRACT

Diffusion large language models present a promising paradigm to language modeling, yet their alignment remains underexplored, particularly in systematic theoretical analysis and comprehensive empirical validation on general tasks. In this paper, we identify a primary challenge for this problem: the high variance in Evidence Lower Bound (ELBO)-based likelihood estimates required for preference optimization. To address this issue, based on Direct Preference Optimization (DPO), we propose Variance-Reduced Preference Optimization (VRPO), a framework that formally analyzes the bias and variance of the preference optimization loss and gradient, showing both are governed by a score-estimator variance. Building on this foundation, we introduce multiple unbiased variance reduction strategies, including optimal budget allocation and antithetic sampling, to improve the alignment performance. We demonstrate the effectiveness of VRPO by applying it to LLaDA, a large-scale diffusion language model. The resulting model, LLaDA 1.5, outperforms its SFT-only predecessor consistently across mathematical (GSM8K +4.7), code (HumanEval +3.0, MBPP +1.8), and alignment (IFEval +4.0, Arena-Hard +4.3) benchmarks. Furthermore, LLaDA 1.5 demonstrates a highly competitive mathematical performance compared to other strong language MDMs and ARMs.

1 Introduction

Recently, masked diffusion models (MDMs) (Sohl-Dickstein et al., 2015; Austin et al., 2021a; Campbell et al., 2022; Meng et al., 2022; Lou et al., 2023; Sahoo et al., 2024; Shi et al., 2024; Ou et al., 2024) have achieved significant progress in language modeling. By optimizing the evidence lower bound (ELBO) or its simplified variants, MDMs have demonstrated comparable or even superior performance to autoregressive models (ARMs) at a small scale (Lou et al., 2023; Ou et al., 2024; Nie et al., 2024). Explorations on the scaling properties have also revealed MDMs' excellent scalability in various downstream tasks (Nie et al., 2024; Gong et al., 2024; Nie et al., 2025), achieving competitive results to representative ARMs of the same size (e.g., LLaMA 3 (Dubey et al., 2024)).

Motivated by the success of aligning ARMs with human preferences (Schulman et al., 2017; Ziegler et al., 2019; Ouyang et al., 2022; Rafailov et al., 2023; Shao et al., 2024; Guo et al., 2025), recent work has begun to explore MDM alignment (Zekri and Boullé, 2025; Borso et al., 2025; Zhao et al., 2025; Huang et al., 2025; Yang et al., 2025; Gong et al., 2025; Tang et al., 2025). Notably, most current methods adapt existing alignment frameworks to MDMs, introducing various likelihood approximation methods without providing pertinent theoretical analysis. Moreover, they primarily focus on specialized tasks such as reasoning and code generation—which, while important—leave broader alignment tasks underexplored that are essential for future diffusion language model development.

In this paper, we systematically study the challenge of aligning MDMs based on direct preference optimization (DPO) (Rafailov et al., 2023), for its simplicity and notable empirical performance. The key challenge is that the original DPO formulation requires exact log-likelihoods, which are intractable for diffusion models. A natural solution under this scenario is to approximate these log-likelihoods with their evidence lower bounds (ELBOs), which introduce nested expectations over diffusion time and masked data. This substitution yields an ELBO-based preference score expressed as a linear combination of four ELBO terms (see Eq.(7)).

In practice, these ELBO terms are estimated via a doubly Monte Carlo method (Titsias and Lázaro-Gredilla, 2014; Dai et al., 2014). We demonstrate that this estimation introduces additional bias and

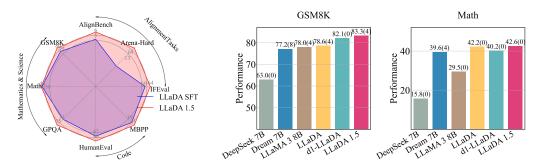


Figure 1: **Benchmark results.** The left panel shows that LLaDA 1.5 improves LLaDA consistently and significantly on various benchmarks. The right panel demonstrates that LLaDA 1.5 has a highly competitive mathematical performance compared to strong language MDMs and ARMs.

variance into the preference optimization loss and gradient. To mitigate these errors, our theoretical analysis reveals a crucial insight: the introduced bias and variance are governed by the variance of the preference score estimator. This finding underscores the need to control this variance for stable and effective preference optimization.

Building upon this, we introduce *Variance-Reduced Policy Optimization* (VRPO), a method integrating principled techniques to reduce the variance of the preference score estimator: (1) increasing the sampling budget for ELBOs, (2) allocating the sampling budget across distinct diffusion timesteps with one masked sample per timestep, and (3) applying antithetic sampling (Kroese et al., 2013) between ELBO estimates of the model and reference policies. These techniques have been theoretically proven to reduce the variance of the score estimator in an unbiased manner and empirically validated in both synthetic (as in Figure 2) and large-scale real-world ablation studies (as in Section 4.2). We further discuss on potential generalization of our variance reduction techniques to other alignment algorithms such as PPO and GRPO (Schulman et al., 2017; Shao et al., 2024).

Finally, we show the effectiveness of VRPO by applying it to LLaDA 8B Instruct (Nie et al., 2025), a leading language MDM, using 350k preference pairs. As shown in Figure 1, the resulting model, LLaDA 1.5, improves LLaDA consistently on mathematics, coding, and alignment tasks. In addition, LLaDA 1.5 maintains a highly competitive mathematical performance compared to other strong MDMs (Nie et al., 2025; Ye et al., 2025; Zhao et al., 2025) and ARMs (Dubey et al., 2024; Bi et al., 2024), achieving the highest score on Math. These results demonstrate the effectiveness of our variance reduction method and establish a foundation for further development of language MDMs.

2 Preliminaries

2.1 ALIGNMENT METHODS

Traditional alignment approaches (Ziegler et al., 2019; Ouyang et al., 2022) consist of two stages.

Reward modeling. In the first stage, a static dataset of preference comparisons $\mathcal{D} = \{(x, y_w, y_l)\}$ is constructed. For each prompt x, y_w denotes the human-preferred response and y_l denotes the less preferred one, respectively. A parameterized reward model r_ϕ is trained to reflect these preferences by minimizing the following objective based on Bradley-Terry formulation (Bradley and Terry, 1952):

$$\mathcal{L}_{\text{Reward}}(\phi) \triangleq -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(r_{\phi}(x, y_w) - r_{\phi}(x, y_l) \right) \right], \tag{1}$$

where $\sigma(\cdot)$ is the sigmoid function. This encourages r_{ϕ} to assign higher scores to preferred responses.

Reinforcement Learning (RL). In the second stage, the language model policy $\pi_{\theta}(y \mid x)$, which defines the probability of generating response y given prompt x, is then optimized via RL to maximize:

$$\max \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{\theta}(\cdot|x)} \left[r_{\phi}(x, y) \right] - \beta \mathbb{D}_{\mathrm{KL}} \left(\pi_{\theta}(\cdot \mid x) \| \pi_{\mathrm{ref}}(\cdot \mid x) \right), \tag{2}$$

where $\pi_{\rm ref}$ is a fixed reference policy, often chosen as a frozen SFT model, and β is a coefficient controlling the regularization strength. Notably, in autoregressive models (ARMs), both sampling and likelihood evaluation for the policy are exactly characterized by the language model distribution.

Direct Preference Optimization (DPO). DPO (Rafailov et al., 2023) offers a simplified alternative to the two-stage paradigm above by avoiding explicit reward model training, while maintaining both theoretical grounding and strong empirical performance (Grattafiori et al., 2024). The DPO objective is to minimize $\mathcal{L}_{\mathrm{DPO}}(\theta) \triangleq \mathbb{E}_{(x,y_w,y_l)\sim\mathcal{D}}\left[\ell_{\mathrm{DPO}}(x,y_w,y_l;\theta)\right]$, where

$$\ell_{\text{DPO}}(x, y_w, y_l; \theta) \triangleq -\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w \mid x)}{\pi_{\text{ref}}(y_w \mid x)} - \beta \log \frac{\pi_{\theta}(y_l \mid x)}{\pi_{\text{ref}}(y_l \mid x)} \right). \tag{3}$$

2.2 MASKED DIFFUSION MODELS

Masked Diffusion Models (MDMs) define a model distribution via a forward–reverse framework (Sohl-Dickstein et al., 2015; Austin et al., 2021a). Starting from the original input at t=0, the forward process progressively masks the input tokens with a masking probability increasing over time, producing a fully masked sequence at t=1. The reverse process learns to denoise this sequence by iteratively predicting the masked tokens as time reverses from t=1 to t=0. This framework enables principled modeling of complex data distributions, offering a feasible exploration for non-autoregressive generation approaches.

Likelihood estimation in MDMs. Unlike ARMs, the exact log-likelihood $\log \pi(y \mid x)$ in MDMs is often approximated by its evidence lower bound (ELBO) (Lou et al., 2023; Ou et al., 2024; Shi et al., 2024; Sahoo et al., 2024) as follows:

$$\mathcal{B}_{\pi}(y \mid x) \triangleq \mathbb{E}_{t \sim \mathcal{U}[0,1]} \mathbb{E}_{y_t \sim q(y_t \mid t, y, x)} \left[\ell_{\pi}(y_t, t, y \mid x) \right] \le \log \pi(y \mid x), \tag{4}$$

where $q(y_t \mid t, y, x)$ denotes the forward diffusion process at time t given the full response y and prompt x, and ℓ_{π} represents the per-step loss of the mask prediction model, which admits multiple equivalent formulations elaborated in Appendix B. Notably, for a continuous-time diffusion process (or equivalently, when the step size is infinitesimal), the *bias* of the ELBO for a well-trained model relative to the exact likelihood is negligible, as demonstrated in prior works (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020). From now on, we omit the conditions on x for brevity.

Computing $\mathcal{B}_{\pi}(y)$ exactly is generally intractable due to the double expectations. In practice, we approximate it by a *doubly Monte Carlo* method. Letting n_t and n_{y_t} be the numbers of samples for timesteps and masked data per timestep, we draw:

$$\mathcal{S}_{t} \triangleq \{t^{(j)}\}_{j=1}^{n_{t}} \overset{\text{i.i.d.}}{\sim} \mathcal{U}[0,1] \quad \text{and} \quad \mathcal{S}_{y_{t^{(j)}}\mid y} \triangleq \{y_{t^{(j)}}^{(k)}\}_{k=1}^{n_{y_{t}}} \overset{\text{i.i.d.}}{\sim} q(y_{t}\mid t^{(j)},y), \ j=1,\ldots,n_{t}, \ \ (5)$$

where the masked data for different timesteps are independently sampled, i.e., given y and S_t , $S_{y_{t(j)}|y} \perp S_{y_{t(j')}|y}$ for any $j \neq j'$. The ELBO is then estimated by:

$$\widehat{\mathcal{B}}_{\pi}(y) \triangleq \frac{1}{n_t} \sum_{i=1}^{n_t} \frac{1}{n_{y_t}} \sum_{k=1}^{n_{y_t}} \ell_{\pi}(y_{t^{(i)}}^{(k)}, t^{(i)}, y), \tag{6}$$

which is an average of mask-prediction loss computed over a total of $n=n_t\times n_{y_t}$ masked data. The estimator in Eq. (6) is an unbiased approximation for the ELBO following from the linearity of expectations. However, due to computational constraints, large values for n are typically not used. As a result, the variance of the estimator must be considered. Particularly, in the context of MDMs' DPO, this presents unique challenges for optimization, as will be discussed in the next section. In this work, we explore how to mitigate the negative effects of this ELBO estimation variance on preference optimization, considering both scenarios with scalable and fixed computational budgets.

Large-scale language MDMs. LLaDA (Nie et al., 2025) is an 8B-parameter masked diffusion model for language generation. LLaDA is pretrained on 2.3 trillion tokens and fine-tuned on 4.5 million pairs of SFT data. It exhibits outstanding capabilities comparable with representative ARMs (Dubey et al., 2024) in scalability, in-context learning, and instruction-following. In this paper, we adopt LLaDA 8B as a base model to explore and validate alignment methods for MDMs.

3 METHOD

We investigate how to align MDMs with human preferences using the DPO framework (Rafailov et al., 2023). To address the intractability of the required log-likelihoods, we approximate them by

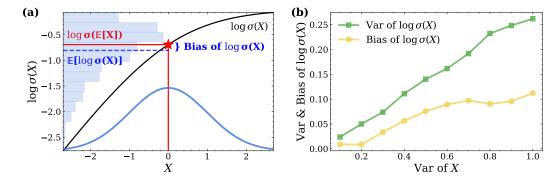


Figure 2: **Toy example.** (a) Although X is an unbiased estimator for $\mathbb{E}[X]$, $\log \sigma(X)$ is not an unbiased estimator for $\log \sigma(\mathbb{E}[X])$. Non-linear transformation introduces a gap between $\mathbb{E}[\log \sigma(X)]$ and $\log \sigma(\mathbb{E}[X])$ (blue and red horizontal lines). (b) Both the bias and variance of $\log \sigma(X)$ exhibit monotonic trends with $\mathbb{V}[X]$, supporting the insight to jointly reduce these errors by reducing $\mathbb{V}[X]$.

ELBO estimators. We prove that the bias and variance of the resulting loss and its gradient can be bounded by the variance of a score estimator (a linear combination of four ELBOs). Based on this, we propose *Variance-Reduced Preference Optimization* (VRPO), integrating multiple unbiased variance reduction techniques for better alignment. We also discuss potential extension beyond DPO.

3.1 SUBSTITUTING LIKELIHOODS WITH ELBOS IN DPO

Let us begin by adapting the DPO loss in Eq. (3) by substituting log-likelihoods with their ELBOs:

$$\ell_{\text{DPO-E}}(y_w, y_l; \theta) \triangleq -\log \sigma \left(\beta \left(\mathcal{B}_{\pi_{\theta}}(y_w) - \mathcal{B}_{\pi_{\text{ref}}}(y_w) \right) - \beta \left(\mathcal{B}_{\pi_{\theta}}(y_l) - \mathcal{B}_{\pi_{\text{ref}}}(y_l) \right) \right). \tag{7}$$

We refer to the term in red as the ELBO-based preference *score* and denote it by $s_{\theta}(y_w, y_l)$.

Intuitively, the loss encourages the current model π_{θ} to better prefer y_w over y_l than reference π_{ref} by comparing the ELBOs. As discussed around Eq. (4), the ELBO provides a principled approximation to the log-likelihood with negligible bias. Moreover, the structure of the DPO loss—specifically its symmetric form and the smoothness of the sigmoid function—inherently helps mitigate the overall approximation gap, making $\ell_{\mathrm{DPO-E}}$ a reliable surrogate for the original DPO objective.

In practice, each ELBO in Eq. (7) is estimated by Eq. (6). The resulting estimated loss is:

$$\widehat{\ell}_{\text{DPO-E}}(y_w, y_l; \theta) \triangleq -\log \sigma \left(\beta \left(\widehat{\mathcal{B}}_{\pi_{\theta}}(y_w) - \widehat{\mathcal{B}}_{\pi_{\text{ref}}}(y_w) \right) - \beta \left(\widehat{\mathcal{B}}_{\pi_{\theta}}(y_l) - \widehat{\mathcal{B}}_{\pi_{\text{ref}}}(y_l) \right) \right), \quad (8)$$

where we denote the score estimator, highlighted in red, by $\hat{s}_{\theta}(y_w, y_l)$, and we use $S_{\hat{s}|y_w, y_l}$ to denote the stochastic sampling involved in this estimation.

Notably, for a fixed pair of preference data y_w, y_l , the stochastic sampling in this score estimator introduces randomness into the estimated loss, making it a random variable over $S_{\hat{s}|y_w,y_l}$, and thereby introduces *variance* into both the loss and its gradient. Besides, due to the nonlinearity of $\log \sigma(\cdot)$, this also results in additional *bias* between $\mathbb{E}[\log \sigma(\hat{s}_{\theta}(y_w,y_l))]$ and the target $\log \sigma(s_{\theta}(y_w,y_l)) = \log \sigma(\mathbb{E}[\hat{s}_{\theta}(y_w,y_l)])$ (see Figure 2 (a) for an intuitive illustration), although \hat{s}_{θ} itself is an unbiased estimator for the true score s_{θ} (formally explained in Appendix C.2.1).

In the remainder of this section, we address these two problems by first establishing how the variance of the score estimator governs the introduced bias and variance, and then proposing multiple principled variance reduction strategies to mitigate them. For clarity, we focus on the loss analysis in the main paper and defer the analogous gradient analysis to Appendix C.4.

3.2 Variance-Reduced Preference Optimization

The following theorem demonstrates how the bias and variance of the empirical loss can be directly bounded in terms of the variance of the score estimator. Intuitively, the proof (see Appendix C.2.2) utilizes the Lipschitz continuity of $\log \sigma(\cdot)$ and the unbiasedness of \hat{s}_{θ} , which ensures that the

variability in \hat{s}_{θ} leads to controlled changes in the loss and keep it close to the true objective. Tightness analysis of these upper bounds is provided in Appendix C.2.3.

Theorem 1. Given a pair of preference data y_w, y_l , the bias and variance of $\widehat{\ell}_{DPO-E}(y_w, y_l; \theta)$ over stochastic sampling in the score estimation can be bounded as:

$$\mathbb{E}_{\mathcal{S}_{\hat{s}|y_w,y_l}} \left[\left| \ell_{\text{DPO-E}}(y_w, y_l; \theta) - \widehat{\ell}_{\text{DPO-E}}(y_w, y_l; \theta) \right| \right] \leq \sqrt{\mathbb{V}_{\mathcal{S}_{\hat{s}|y_w,y_l}} \left[\hat{s}_{\theta}(y_w, y_l) \right]},$$

$$\mathbb{V}_{\mathcal{S}_{\hat{s}|y_w,y_l}} \left[\widehat{\ell}_{\text{DPO-E}}(y_w, y_l; \theta) \right] \leq 4\mathbb{E}_{y_w,y_l} \left[\mathbb{V}_{\mathcal{S}_{\hat{s}|y_w,y_l}} \left[\hat{s}_{\theta}(y_w, y_l) \right] \right].$$

In the toy example shown in Figure 2 (b), we plot how the variance of a random variable X influences the bias and variance of $\log \sigma(X)$. These curves exhibit trends that align well with Theorem 1.

Collectively, these findings suggest that one can simultaneously mitigate both errors by reducing the variance of \hat{s}_{θ} . To do this, we present VRPO, illustrated in Figure 3, a set of principled techniques designed to reduce the variance of the score estimator as follows:

- (1) Sampling budget: Increase the number of samples $n = n_t \times n_{y_t}$ used to estimate each ELBO.
- (2) Optimal allocation: Allocate the full budget to timesteps by setting $n_t = n$ and $n_{y_t} = 1$.
- (3) Antithetic sampling: Share the same sampled timesteps and masked data between the ELBO estimates of the current policy π_{θ} and the reference policy π_{ref} for the same input y_w or y_l .

Practically, the first component *increases the FLOPs* of preference optimization by a factor of n, while the latter two components *incur no additional computational cost*: optimal allocation redistributes the existing samples across timesteps without increasing the total sample count, and antithetic sampling reuses samples across ELBO estimates, effectively serving as a "free lunch" for variance reduction. In our default experimental setting, where n is set to be 8, the additional overhead is fully affordable relative to the overall pretraining cost as discussed in Section 4, and ablation studies under both scalable and fixed computational budgets are provided in Section 4.2.

Theoretically, all of these techniques reduce the variance of \hat{s}_{θ} without introducing bias. Main analysis is presented below, with proofs and unbiasedness examinations deferred to Appendix C.3.

We first observe the variance of the score estimator by unrolling it according to the definition in Eq. (8) (where subscripts of variances and square brackets $[\cdot]$ are omitted for brevity):

$$\mathbb{V}\hat{s}_{\theta}(y_{w}, y_{l}) = \beta^{2} \sum_{y \in \{y_{w}, y_{l}\}} \left[\mathbb{V}\widehat{\mathcal{B}}_{\pi_{\theta}}(y) + \mathbb{V}\widehat{\mathcal{B}}_{\pi_{\text{ref}}}(y) - 2\text{Corr}\left(\widehat{\mathcal{B}}_{\pi_{\theta}}(y), \widehat{\mathcal{B}}_{\pi_{\text{ref}}}(y)\right) \sqrt{\mathbb{V}\widehat{\mathcal{B}}_{\pi_{\theta}}(y)\mathbb{V}\widehat{\mathcal{B}}_{\pi_{\text{ref}}}(y)} \right].$$
(9)

This decomposition reveals two strategies to reduce $\mathbb{V}\hat{s}_{\theta}$: first, decreasing the variance of each ELBO estimation; second, increasing the correlation between the ELBO estimates for the same input y. The techniques proposed in VRPO operate exactly according to these two strategies, as formalized below.

Proposition 1 (Reduce the ELBO variance). Given a total budget of $n = n_t \times n_{y_t}$ masked samples for estimating $\widehat{\mathcal{B}}_{\pi}(y)$, we have: (i) $\mathbb{V}\widehat{\mathcal{B}}_{\pi}(y) = \Theta(\frac{1}{n})$, (ii) $\mathbb{V}\widehat{\mathcal{B}}_{\pi}(y)$ is minimized when $n_t = n, n_{y_t} = 1$.

Proposition 2 (Increase the correlation). Given any response y, supposing $\operatorname{Corr}\left(\widehat{\mathcal{B}}_{\pi_{\theta}}(y), \widehat{\mathcal{B}}_{\pi_{\operatorname{ref}}}(y)\right) > 0$ when the Monte Carlo samples S_t and $\{S_{y_{t(j)}|y}\}_{j=1}^{n_t}$ are shared between $\widehat{\mathcal{B}}_{\pi_{\theta}}(y)$ and $\widehat{\mathcal{B}}_{\pi_{\operatorname{ref}}}(y)$, we have: Sharing Monte Carlo samples yields lower $\mathbb{V}\widehat{s}_{\theta}(y_w, y_l)$ than using independent samples.

Proposition 1 characterizes a quantitative relationship between the variance of ELBO and the sampling budget n (first technique), and derives the optimality of allocating the entire budget across timesteps (second technique). Proposition 2 is inspired by the classical antithetic variates method (Kroese et al., 2013), where shared randomness is leveraged to reduce the variance of the difference between paired estimates (third technique). The result and its assumption are quite natural since the current and reference policies typically share initialization and exhibit similar preferences on the same inputs. This proposition primarily highlights how to leverage their positive correlation to reduce variance.

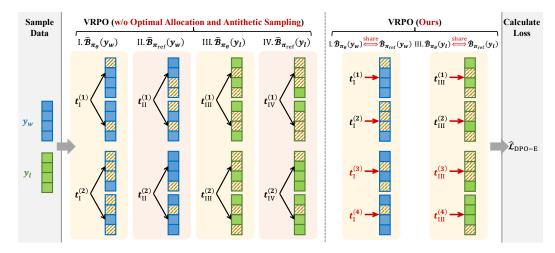


Figure 3: **Illustration of VRPO.** We compare VRPO (right) with VRPO without optimal allocation and antithetic sampling (left). VRPO allocates the sampling budget across timesteps to sample only one masked data per timestep (indicated by red arrows) and shares Monte Carlo samples between paired ELBOs (highlighted with the red annotations above the blocks).

The empirical effectiveness of VRPO is examined in Section 4. While we need to emphasize that our contribution lies not only in the proposed techniques themselves but also in the systematic analysis that motivates and supports them. Unlike approaches relying purely on empirical tuning or prior experience with continuous diffusion for visual data, our theoretical analysis provides transferable insights into variance reduction strategies, offering guidance for MDM alignment and helping rule out suboptimal implementation choices.

3.3 EXTENSION TO OTHER ALIGNMENT METHODS

The variance reduction techniques and analysis in VRPO are not limited to DPO, but naturally extend to other alignment algorithms that involve estimating the ELBO or subtracting two correlated ELBOs, which is a commonly encountered scenario when applying alignment to MDMs.

For example, PPO (Schulman et al., 2017) and GRPO (Shao et al., 2024) optimize variants of the objective (see Eq.(6) in Schulman et al. (2017)): $\mathbb{E}_{\pi_{\text{old}}}\left[\frac{\pi_{\theta}(y|x)}{\pi_{\theta_{\text{old}}}(y|x)}\hat{A}(x,y)\right]$, where $\hat{A}(x,y)$ is the advantage function computed using a KL-penalized reward (see Eq.(2) in Ouyang et al. (2022)): $r_{\theta}(x,y) - \beta \log \frac{\pi_{\theta}(y|x)}{\pi_{\text{ref}}(y|x)}$. For both equations, when applied to MDMs, our variance reduction techniques can be directly used to reduce the variance in ELBO-based estimation for *likelihood* terms $\pi(y|x)$ or *likelihood-ratio* terms $\frac{\pi_1(y|x)}{\pi_2(y|x)}$ without introducing bias. These terms are structurally similar to those in the DPO loss (Eq. (3)), and the applicability of our techniques is supported by analogous analysis as in Propositions 1 and 2. In fact, the analysis becomes even simpler in these settings, as they do not involve the outer nonlinear $\log \sigma(\cdot)$ function that introduces additional challenge to providing theoretical guarantees as in DPO.

4 EXPERIMENTS

We align LLaDA (Nie et al., 2025) using VRPO for general tasks and implement extensive evaluation on common benchmarks. We briefly present the setup, with more details provided in Appendix E.

Data. We train LLaDA 8B Instruct (Nie et al., 2025) for one epoch on 350K preference pairs using VRPO, resulting in LLaDA 1.5. The data are collected internally at scale across rich scenarios and undergo several processing steps, including filtering out low-quality samples, removing duplicates via similarity matching, using a reward model to rank data, and replacing some responses with outputs from advanced LLMs. This process yields a high-quality and diverse dataset covering a wide range of topics such as writing, dialogue, knowledge Q&A, reasoning, mathematics, and coding.

Table 1: **Benchmark results.** We compare the performance of *LLaDA 1.5* against *LLaDA Instruct* (Nie et al., 2025) and *LLaDA with naive DPO* across various benchmarks, including mathematics, code, and alignment. The results show overall improvements for VRPO.

	1				
	LLaDA 8B Instruct	LLaDA DPO	LLaDA 1.5 8B		
Post-training	SFT	SFT + naive DPO	SFT + VRPO (Ours)		
Mathematics & Science					
GSM8K	78.6	80.7 (+2.1)	83.3 (+4.7)		
Math	42.2	41.6 (-0.6)	42.6 (+0.4)		
GPQA	33.3	34.3 (+1.0)	36.9 (+3.6)		
Code					
HumanEval	49.4	48.2 (-1.2)	52.4 (+3.0)		
MBPP	41.0	41.4 (+0.4)	42.8 (+1.8)		
Alignment Tasks					
IFEval	62.2	62.0 (-0.2)	66.2 (+4.0)		
Arena-Hard	10.0	11.9 (+1.9)	14.3 (+4.3)		
AlignBench	5.4	5.8 (+0.4)	5.9 (+0.5)		
MTbench	7.2	7.1 (-0.1)	7.3 (+0.1)		

Computational Cost. We use a sampling budget n=8 for VRPO by default. This results in roughly an 8 times increase in computation compared to methods without Monte Carlo estimation (e.g., ARMs or setting n=1). Despite this, the overall cost remains modest—less than 0.5% of pre-training—making the added overhead practically acceptable. If considering a fixed computational budget, VRPO's optimal allocation and antithetic sampling techniques can still improve the effectiveness of preference optimization (relevant discussions are provided in ablation studies in Section 4.2).

Metrics and evaluation. Following common practice in open-source LLMs (Grattafiori et al., 2024; Yang et al., 2024; Liu et al., 2024), we conduct comprehensive evaluation of LLaDA 1.5 across three categories of tasks: mathematics and scientific reasoning (GSM8K (Cobbe et al., 2021), Math (Hendrycks et al., 2021), GPQA (Rein et al., 2023)), code generation (HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021b)), and alignment (IFEval (Zhou et al., 2023), Arena-Hard (Li et al., 2024), AlignBench (Liu et al., 2023), MTBench (Zheng et al., 2023)). Specific to MDMs, there are three commonly used sampling strategies for inference, including diffusion sampling, diffusion semi-autoregressive sampling (Nie et al., 2025), and low-confidence remasking (Chang et al., 2022). Following common practice in MDM evaluation (Nie et al., 2025), we adopt the best sampling strategy for each task. Detailed descriptions of the sampling strategies employed and ablations across different sampling methods are provided in Appendix E.4.

4.1 BENCHMARK RESULTS

Table 1 presents benchmark results for three models: LLaDA Instruct; LLaDA with naive DPO $(n_t=1,n_{y_t}=1,$ without antithetic sampling); and LLaDA 1.5 with VRPO, which fully incorporates variance-reduction techniques $(n_t=8,n_{y_t}=1,$ with antithetic sampling). Appendix F lists instruction-following case studies comparing LLaDA 1.5 and LLaDA Instruct, as a supplement. Ablations for VRPO's components under a fixed compute budget are provided in Section 4.2.

As a result, LLaDA 1.5 consistently outperforms both baselines across all benchmarks, showing the overall effectiveness of VRPO on various tasks. Particularly, we observe that LLaDA 1.5 nonetheless exhibits strong mathematical performance. As also shown in the right panel of Figure 1, compared with similar-scale language MDMs and ARMs (Nie et al., 2025; Ye et al., 2025; Zhao et al., 2025; Dubey et al., 2024; Bi et al., 2024), it remains competitive and achieves the highest four-shot score on GSM8K and the highest zero-shot score on Math. Overall, these results demonstrate the effectiveness of VRPO, laying the groundwork for future work to further enhance MDMs' performance.

Table 2: **Ablation of VRPO variance reduction strategies.** We report estimator variances and benchmark results under different sampling configurations. As for biases, we refer to Figure 2 as an illustration since they are difficult to measure in practice. Results confirm that techniques in VRPO generally improve task performance, supporting the theoretical analysis in Section 3.

	Base	Buc	lget	Alloc	eation	Antithetic
# Timesteps n_t	4	1	8	1	2	4
# Masked samples n_{y_t}	1	1	1	4	2	1
Antithetic sampling	✓	✓	\checkmark	\checkmark	\checkmark	X
		Vari	ances			
Var of score estimator	2.2	44.0	1.0	7.3	4.7	2183.7
Var of loss	3.1×10^{-3}	8.7×10^{-2}	2.6×10^{-3}	3.2×10^{-2}	7.3×10^{-3}	62.0
Var of gradient	2.5	13.0	1.6	4.7	2.5	10.6
Mathematics & Science						
GSM8K	82.8	80.1	83.3	81.4	82.3	82.0
Math	42.3	41.7	42.6	41.9	42.4	42.4
GPQA	36.4	34.3	36.9	34.9	36.4	35.9
Code						
HumanEval	51.2	50.6	52.4	48.2	48.8	47.0
MBPP	42.8	40.6	42.8	40.8	41.0	41.2
Alignment Tasks						
IFEval	66.1	63.9	66.2	64.8	66.2	65.8
Arena-Hard	13.9	13.5	14.3	13.8	13.4	15.6
AlignBench	5.9	5.6	5.9	5.8	5.9	5.9
MTbench	7.4	7.0	7.3	7.0	7.2	7.2

4.2 ABLATION EXPERIMENTS

We conduct ablation studies to evaluate the impact of each variance reduction technique in VRPO. We vary sampling configurations in three factors corresponding to these components: (1) the sampling budget $n = n_t \times n_{y_t}$, (2) the allocation strategy between the number of timesteps and masked samples per timestep n_t/n_{y_t} , and (3) the use of antithetic sampling. We set the base configuration as n = 4, $n_t/n_{y_t} = 4/1$, with antithetic sampling used. For each configuration, we measure: (i) the variance of the score estimator $\mathbb{V}\hat{s}_{\theta}$, (ii) the additional variances of the loss and gradient, and (iii) benchmark results spanning mathematics, code, and alignment. Results are summarized in Table 2. To illustrate the impact of these techniques on the optimization process more concretely, we also provide the training loss dynamics for the ablation configurations in Appendix E.3. Details of the empirical variance computation are provided in Appendix E. We highlight key observations below.

Effect of preference score estimator variance. Lower variances of the score estimator generally lead to lower variances in both the loss and gradient, along with improved task performance. This empirical trend supports our theoretical insight in Theorem 1 to control the errors by $\mathbb{V}\hat{s}_{\theta}$.

Increasing sampling budget. Increasing the sampling budget n consistently reduces estimator variance and improves task performance. For instance, increasing n from 1 to 8 reduces $\mathbb{V}\hat{s}_{\theta}$ from 44.0 to 1.0 and improves GSM8K accuracy from 80.1 to 83.3, validating our finding in Proposition 1 (i).

Comparison under fixed sampling budget. The first, fourth, and sixth columns show results under a fixed sampling budget, where the fourth and sixth columns disable the optimal allocation technique and antithetic sampling technique, respectively. For **optimal allocation**, it is shown to generally yield lower variance and better results than repeating multiple mask samples per timestep, supporting the analysis in Proposition 1 (ii). For **antithetic sampling**, we observe that it leads to notable decreases in variance, confirming our prediction in Proposition 2. Despite this, we also observe that these sharp reductions in variance do not always translate into substantial improvements on downstream benchmarks. We believe this is understandable since the benchmark performance depends on two factors: *optimization* and *generalization*. VRPO is designed to improve *optimization* and has shown

effective (as further illustrated in Figure 5), whereas *generalization* is influenced by complex factors that are rarely feasible to control. We hypothesize that disabling antithetic sampling may expose the model to a broader diversity of data patterns, which could benefit certain downstream tasks.

To summarize, these results demonstrate a strong empirical correlation between the proposed techniques and variance reduction, and benchmark results further confirm their essential role in effective preference optimization, which aligns with the theoretical analysis in Section 3.

5 RELATED WORK

Masked diffusion models. MDMs are inspired by advances in discrete diffusion models (Sohl-Dickstein et al., 2015; Austin et al., 2021a), which introduced new forward and reverse transitions and enabled numerous variants (Campbell et al., 2022; Hoogeboom et al., 2021; He et al., 2022; Wu et al., 2023; Zheng et al., 2024). Empirically, MDMs can match ARMs in perplexity, and simplified objectives for masked diffusion have been proposed for efficient training (Lou et al., 2023; Sahoo et al., 2024; Shi et al., 2024; Ou et al., 2024). Subsequent work has explored scaling properties (Nie et al., 2024), including training from scratch and adaptation from pre-trained autoregressive models (Nie et al., 2025; Gong et al., 2024; Ye et al., 2025).

Alignment of MDMs. Recent studies have emerged to explore aligning MDMs. Zekri and Boullé (2025) introduced a general policy-gradient method leveraging the denoising distribution of the discrete diffusion model during the reverse process. Borso et al. (2025) adopts a continuous-time Markov chain view for discrete diffusion, treating each token step as an action, and introduces a DPO variant, validated on small-scale binary sequence generation. Zhao et al. (2025); Yang et al. (2025); Tang et al. (2025) treat each token step as an action and develop GRPO-based methods to enhance reasoning ability. Huang et al. (2025) propose a GRPO variant viewing intermediate diffusion steps as the RL trajectory, focusing on the reasoning and code generation tasks. Gong et al. (2025) present a GRPO-based algorithm for code generation with a coupled-sampling variance-reduction technique, which can be used complementary to VRPO. Compared with these existing and concurrent works, we investigate the alignment of MDMs based on DPO with ELBO-based log-likelihood approximation, which serves as a natural choice for diffusion models. The proposed VRPO incorporates theoretically grounded variance-reduction techniques and is validated through large-scale experiments on general alignment tasks beyond reasoning and code generation. We believe our work provides a meaningful complement to existing MDMs alignment methods.

Variance reduction techniques. Our work relates to the broad fields of variance reduction in Monte Carlo methods, doubly stochastic optimization, and variational inference. In Monte Carlo methods, variance reduction aims to enhance estimation accuracy by improving sampling strategies. Classic techniques include control variables and stratified sampling (Kroese et al., 2013), where our approach adapts antithetic variates to couple correlated ELBO terms. The doubly expectation in ELBOs further parallels the nested structure in doubly SGD (Dai et al., 2014; Titsias and Lázaro-Gredilla, 2014; Gower et al., 2020; Kim et al., 2024), motivating decomposition via the law of total variance to isolate distinct variance sources. Our approach also conceptually aligns with importance weighted variational inference (Burda et al., 2016; Huang and Courville, 2019), where the outer bias is decreased by reducing the inner variance.

6 Conclusion

We analyze the challenges of aligning MDMs with human preference, particularly the high variance and bias inherent in the ELBO-based likelihood estimation. To address these issues, we propose VRPO, a systematic framework that incorporates variance reduction techniques with both theoretical guarantees and empirical validation, which provides transferable insight beyond specific architectures or datasets. The resulting model, LLaDA 1.5, demonstrates stronger general capabilities than LLaDA, with pronounced strengths in mathematics, coding, and alignment, supporting the effectiveness of VRPO at a large scale. Careful ablation studies further investigate each component in VRPO, showing their effect on variance reduction and thus the stability and efficiency of the optimization. Potential extensions of the proposed variance reduction techniques to broader RL-based alignment algorithms are also discussed. We hope this work provides useful guidance for future research on MDM alignment and contributes to the continued development of diffusion-based language models.

ETHICS STATEMENT

This paper focuses on aligning MDMs with human preferences to improve helpfulness. Nonetheless, misuse risks remain: the models may still generate discriminatory, biased, or otherwise harmful content. To mitigate these risks, we curated and filtered the preference data to remove harmful material where feasible and will continue to evaluate and refine our safeguards to reduce harmful outputs.

REPRODUCIBILITY STATEMENT

We provide complete proofs of our theoretical results in Section 3 and Appendix C. For experiments, Appendix E details the setup, including model architectures and configurations, data processing steps, training hyperparameters, evaluation metrics, and the configurations of our ablation studies. We will release LLaDA 1.5 after the blind review period.

REFERENCES

- Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured denoising diffusion models in discrete state-spaces. Advances in neural information processing systems, 34:17981–17993, 2021a.
- Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language models. *arXiv preprint arXiv:2108.07732*, 2021b.
- Robert G Bartle. The elements of integration and Lebesgue measure. John Wiley & Sons, 2014.
- Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with longtermism. *arXiv preprint arXiv:2401.02954*, 2024.
- Umberto Borso, Davide Paglieri, Jude Wells, and Tim Rocktäschel. Preference-based alignment of discrete diffusion models. *arXiv preprint arXiv:2503.08295*, 2025.
- Stéphane Boucheron, Gábor Lugosi, and Olivier Bousquet. Concentration inequalities. In *Summer school on machine learning*, pages 208–240. Springer, 2003.
- Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.
- Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.
- Yuri Burda, Roger B. Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. In 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.
- Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and Arnaud Doucet. A continuous time framework for discrete denoising models. *Advances in Neural Information Processing Systems*, 35:28266–28279, 2022.
- Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative image transformer. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 11315–11325, 2022.
- Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.
- Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems, 2021. *URL https://arxiv. org/abs/2110.14168*, 9, 2021.

543

544

545

546 547

548

549

550

551

552

553 554

555 556

558

559

560

561

562 563

564

565

566

567

568

569 570

571

572

573

574 575

576

577 578

579

580

581

582 583

584

585 586

588

589

590

591

- 540 Bo Dai, Bo Xie, Niao He, Yingyu Liang, Anant Raj, Maria-Florina Balcan, and Le Song. Scalable kernel methods via doubly stochastic gradients. Advances in neural information processing systems, 542 27, 2014.
 - Abhimanyu Dubey, Abhinay Jauhri, Abhinay Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.
 - Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An, Peilin Zhao, Wei Bi, Jiawei Han, et al. Scaling diffusion language models via adaptation from autoregressive models. arXiv preprint arXiv:2410.17891, 2024.
 - Shansan Gong, Ruixiang Zhang, Huangjie Zheng, Jiatao Gu, Navdeep Jaitly, Lingpeng Kong, and Yizhe Zhang. Diffucoder: Understanding and improving masked diffusion models for code generation. arXiv preprint arXiv:2506.20639, 2025.
 - Robert M Gower, Mark Schmidt, Francis Bach, and Peter Richtárik. Variance-reduced methods for machine learning. Proceedings of the IEEE, 108(11):1968–1983, 2020.
 - Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.
 - Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.
 - Zhengfu He, Tianxiang Sun, Kuanning Wang, Xuanjing Huang, and Xipeng Qiu. Diffusionbert: Improving generative masked language models with diffusion models. arXiv preprint arXiv:2211.15029, 2022.
 - Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv preprint arXiv:2103.03874, 2021.
 - Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural information processing systems, 33:6840–6851, 2020.
 - Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text degeneration. arXiv preprint arXiv:1904.09751, 2019.
 - Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows and multinomial diffusion: Learning categorical distributions. Advances in Neural Information Processing Systems, 34:12454–12465, 2021.
 - Chin-Wei Huang and Aaron Courville. Note on the bias and variance of variational inference. arXiv preprint arXiv:1906.03708, 2019.
 - Zemin Huang, Zhiyang Chen, Zijun Wang, Tiancheng Li, and Guo-Jun Qi. Reinforcing the diffusion chain of lateral thought with diffusion language models. arXiv preprint arXiv:2505.10446, 2025.
 - Kyurae Kim, Joohwan Ko, Yi-An Ma, and Jacob R Gardner. Demystifying sgd with doubly stochastic gradients. arXiv preprint arXiv:2406.00920, 2024.
 - Dirk P Kroese, Thomas Taimre, and Zdravko I Botev. Handbook of monte carlo methods. John Wiley & Sons, 2013.
 - Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E Gonzalez, and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard and benchbuilder pipeline. arXiv preprint arXiv:2406.11939, 2024.
 - Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437, 2024.

- Xiao Liu, Xuanyu Lei, Shengyuan Wang, Yue Huang, Zhuoer Feng, Bosi Wen, Jiale Cheng, Pei Ke,
 Yifan Xu, Weng Lam Tam, et al. Alignbench: Benchmarking chinese alignment of large language
 arXiv preprint arXiv:2311.18743, 2023.
 - Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by estimating the ratios of the data distribution. *arXiv* preprint arXiv:2310.16834, 2023.
 - Chenlin Meng, Kristy Choi, Jiaming Song, and Stefano Ermon. Concrete score matching: Generalized score matching for discrete data. *Advances in Neural Information Processing Systems*, 35:34532–34545, 2022.
 - Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan Li. Scaling up masked diffusion models on text. *arXiv preprint arXiv:2410.18514*, 2024.
 - Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. *arXiv preprint arXiv:2502.09992*, 2025.
 - Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan Li. Your absorbing discrete diffusion secretly models the conditional distributions of clean data. *arXiv* preprint arXiv:2406.03736, 2024.
 - Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. *Advances in neural information processing systems*, 35:27730–27744, 2022.
 - Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances in Neural Information Processing Systems*, 36:53728–53741, 2023.
 - David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. *arXiv preprint arXiv:2311.12022*, 2023.
 - Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language models. *arXiv preprint arXiv:2406.07524*, 2024.
 - John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
 - Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.
 - Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.
 - Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K Titsias. Simplified and generalized masked diffusion for discrete data. *arXiv preprint arXiv:2406.04329*, 2024.
 - Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning using nonequilibrium thermodynamics. In *International conference on machine learning*, pages 2256–2265. PMLR, 2015.
 - Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. *arXiv* preprint *arXiv*:2011.13456, 2020.
 - Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.
 - Xiaohang Tang, Rares Dolga, Sangwoong Yoon, and Ilija Bogunovic. wd1: Weighted policy optimization for reasoning in diffusion language models. arXiv preprint arXiv:2507.08838, 2025.

- Michalis Titsias and Miguel Lázaro-Gredilla. Doubly stochastic variational bayes for non-conjugate inference. In *International conference on machine learning*, pages 1971–1979. PMLR, 2014.
 - Roman Vershynin. *High-dimensional probability: An introduction with applications in data science*, volume 47. Cambridge university press, 2018.
 - Martin J Wainwright. *High-dimensional statistics: A non-asymptotic viewpoint*, volume 48. Cambridge university press, 2019.
 - Tong Wu, Zhihao Fan, Xiao Liu, Yeyun Gong, Yelong Shen, Jian Jiao, Hai-Tao Zheng, Juntao Li, Zhongyu Wei, Jian Guo, Nan Duan, and Weizhu Chen. Ar-diffusion: Auto-regressive diffusion model for text generation, 2023.
 - An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint arXiv:2412.15115*, 2024.
 - Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang. Mmada: Multimodal large diffusion language models. *arXiv preprint arXiv:2505.15809*, 2025.
 - Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng Kong. Dream 7b, 2025. URL https://hkunlp.github.io/blog/2025/dream.
 - Oussama Zekri and Nicolas Boullé. Fine-tuning discrete diffusion models with policy gradient methods. *arXiv preprint arXiv:2502.01384*, 2025.
 - Biao Zhang and Rico Sennrich. Root mean square layer normalization. *Advances in Neural Information Processing Systems*, 32, 2019.
 - Siyan Zhao, Devaansh Gupta, Qinqing Zheng, and Aditya Grover. d1: Scaling reasoning in diffusion large language models via reinforcement learning, 2025. URL https://arxiv.org/abs/2504.12216.
 - Kaiwen Zheng, Yongxin Chen, Hanzi Mao, Ming-Yu Liu, Jun Zhu, and Qinsheng Zhang. Masked diffusion models are secretly time-agnostic masked models and exploit inaccurate categorical sampling. *arXiv* preprint arXiv:2409.02908, 2024.
 - Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and chatbot arena. *Advances in Neural Information Processing Systems*, 36:46595–46623, 2023.
 - Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and Le Hou. Instruction-following evaluation for large language models. *arXiv* preprint *arXiv*:2311.07911, 2023.
 - Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. *arXiv* preprint arXiv:1909.08593, 2019.

1	Introduction
2	Preliminaries 2.1 Alignment Methods
3	Method 3.1 Substituting Likelihoods with ELBOs in DPO 3.2 Variance-Reduced Preference Optimization 3.3 Extension to Other Alignment Methods
4	Experiments 4.1 Benchmark Results
5	Related Work
6	Conclusion
A	The Use of Large Language Models
В	Additional Formulation of MDMs
C	Additional Theoretical Contents C.1 Auxiliary Lemmas
D	Details of Figure 2
_	Experiments E.1 Implementation of VRPO

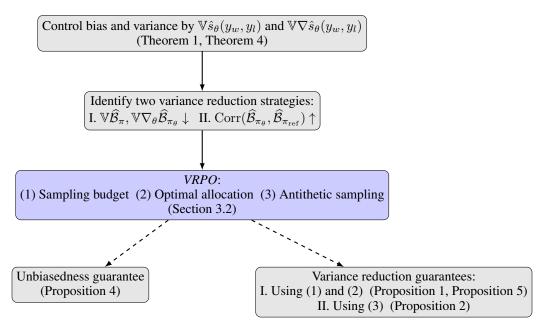


Figure 4: **Illustration of the analysis process.** This diagram outlines the conceptual flow that leads to the proposed VRPO method. Gray boxes represent theoretical analyses, and the blue box highlights the final sampling strategy. Starting from a bias and variance analysis of the estimated loss and gradient, we identify the score-estimator variance as a dominant controller. These theoretical findings collectively motivate the design of the VRPO algorithm, which is equipped with provable properties (dashed lines): unbiasedness and guaranteed variance reduction.

A THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, we used large language models to assist with vocabulary selection, identify awkward or ungrammatical sentences, and revise the text for clarity and readability.

B ADDITIONAL FORMULATION OF MDMS

For completeness, we introduce the formulation of MDMs in this section. For further details, please refer to prior works (Shi et al., 2024; Sahoo et al., 2024; Ou et al., 2024).

In the forward process, MDMs corrupt an original sequence y by progressively masking tokens. Each token is masked independently at a noise level $t \in [0,1]$. Let $y \in \{0,1,\ldots,K-1\}^L$ be the original full response, where K denotes the vocabulary size and L denotes the sequence length, given a prompt x, the forward process is formulated as:

$$q(y_t|t, y, x) = \prod_{i=1}^{L} q(y_t^i|t, y^i, x), \quad q(y_t^i|t, y^i, x) = \begin{cases} 1 - t, & y_t^i = y^i, \\ t, & y_t^i = \mathbf{M}, \end{cases}$$
(10)

where y^i denotes the *i*-th token of response y, and \mathbf{M} denotes the mask token.

The reverse process starts from a fully masked sequence and gradually unmask tokens to recover meaningful language sequences. For timesteps $0 \le s < t \le 1$, the reverse process is defined as:

$$q(y_s|s,t,y_t,x) = \prod_{i=1}^{L} q(y_s^i|s,t,y_t,x), \quad q(y_s^i|s,t,y_t,x) = \begin{cases} \frac{t-s}{t} p_{\theta}(y^i|y_t,x), & y_t^i = \mathbf{M} \land y_s^i \neq \mathbf{M}, \\ \frac{s}{t}, & y_t^i = \mathbf{M} \land y_s^i = \mathbf{M}, \\ 1, & y_t^i \neq \mathbf{M} \land y_s^i = y_t^i, \\ 0, & \text{otherwise}, \end{cases}$$
(11)

where p_{θ} is modeled by the mask prediction model.

As stated in Section 2.2, the exact log-likelihood $\log \pi(y|x)$ in MDMs is typically approximated by its ELBO (Lou et al., 2023; Ou et al., 2024; Shi et al., 2024; Sahoo et al., 2024):

 $\mathcal{B}_{\pi}(y|x) \triangleq \mathbb{E}_{t \sim \mathcal{U}[0,1]} \mathbb{E}_{y_t \sim q(y_t|t,y,x)} \ell_{\pi}(y_t, t, y|x), \tag{12}$

where

$$\ell_{\pi}(y_t, t, y|x) \triangleq \left[\frac{1}{t} \sum_{i=1}^{L} \mathbf{1}[y_t^i = \mathbf{M}] \log p_{\theta}(y^i|y_t, x) \right].$$
 (13)

As noted in (Ou et al., 2024; Nie et al., 2025), the following formulation is an equivalent approximation:

$$\mathcal{B}'_{\pi}(y|x) \triangleq \mathbb{E}_{l \sim \mathcal{U}(\{1,2,\dots,L\})} \mathbb{E}_{y_l \sim q(y_l|l,y,x)} \ell'_{\pi}(y_l,l,y|x), \tag{14}$$

where

$$\ell_{\pi}'(y_l, l, y | x) \triangleq \left[\frac{L}{l} \sum_{i=1}^{L} \mathbf{1}[y_l^i = \mathbf{M}] \log p_{\theta}(y^i | y_l, x) \right], \tag{15}$$

with l uniformly sampled from $\{1, 2, \dots, L\}$, and y_l denoting the sequence obtained by masking l tokens without replacement.

In practice, although Eq. (14) and Eq. (12) are equivalent in expectation (Ou et al., 2024), the former typically yields lower variance during estimation (Nie et al., 2025). Intuitively, Eq. (14) deterministically masks exactly l out of L tokens in each sequence, providing more consistent samples. In contrast, Eq. (12) relies on masking an expected fraction t of the tokens, which introduces greater variability into the estimation process. In practice, we apply Eq. (14) as our log-likelihood estimator.

C Additional Theoretical Contents

Notations. We use $S_{\mathcal{B}_{\pi|y}}$ and $S_{\hat{s}|y_w,y_t}$ to denote the stochastic sampling in the ELBO estimates and the resulting preference score, respectively. Let S_t and $S_{y_{t(j)}|y}$ be as defined in Eq. (5), S_{data} be as defined in Eq. (8). $\Theta(\cdot)$ denotes functions of the same order.

C.1 AUXILIARY LEMMAS

C.1.1 PROPERTIES OF $\log \sigma(\cdot)$ (LEMMA 1)

Lemma 1 (Properties of $\log \sigma(x)$). Let $f(x) = \log \sigma(x)$, where $x \in \mathbb{R}$ and $\sigma(x) = \frac{1}{1+e^{-x}}$ denotes the sigmoid function. Then f satisfies the following properties:

- (i) concavity: f(x) is concave;
- (ii) continuity: f is 1-Lipschitz continuous on \mathbb{R} , i.e., for all $x_1, x_2 \in \mathbb{R}$,

$$|f(x_1) - f(x_2)| \le |x_1 - x_2|;$$

(iii) smoothness: f is $\frac{1}{4}$ -smooth on \mathbb{R} , i.e., its derivative is $\frac{1}{4}$ -Lipschitz continuous: for all $x_1, x_2 \in \mathbb{R}$,

$$|f'(x_1) - f'(x_2)| \le \frac{1}{4}|x_1 - x_2|.$$

Proof. We first compute the first and second derivatives of f. Note that

$$f'(x) = \frac{e^{-x}}{1 + e^{-x}} = \frac{1}{1 + e^x} \in (0, 1),$$

and

$$f''(x) = -\frac{e^x}{(1+e^x)^2} \in [-\frac{1}{4}, 0).$$

(i) Since $f''(x) \ge 0$ for all $x \in \mathbb{R}$, we have f is concave.

(ii) We observe from above that $|f'(x)| \le 1$ for all $x \in \mathbb{R}$, implying that f is 1-Lipschitz continuous.

(iii) Since $|f''(x)| \leq \frac{1}{4}$ for all $x \in \mathbb{R}$, the derivative f'(x) is $\frac{1}{4}$ -Lipschitz continuous, and thus f is $\frac{1}{4}$ -smooth.

C.1.2 INTERCHANGEABILITY OF EXPECTATION AND GRADIENT (LEMMA 2)

Lemma 2 (Interchangeability of expectation and gradient). Let $\theta \in \mathbb{R}^d$, and let X be a random variable (or random vector) taking values in a measurable space \mathcal{X} . Suppose $f_{\theta} : \mathbb{R}^d \times \mathcal{X} \to \mathbb{R}$ is differentiable with respect to θ for all $X \in \mathcal{X}$, and there exists a constant C > 0 such that $\|\nabla_{\theta} f_{\theta}(X)\|_{2} \leq C$ for all $X \in \mathcal{X}$. Then the expectation and gradient operators are interchangeable:

$$\nabla_{\theta} \mathbb{E} f_{\theta}(X) = \mathbb{E} \nabla_{\theta} f_{\theta}(X).$$

Proof. Let $\theta \in \mathbb{R}^d$ be fixed. For all X, for each $i \in \{1, \dots, d\}$, define $g_i(X) := \frac{\partial}{\partial \theta_i} f_{\theta}(X)$, which exists since $f_{\theta}(X)$ is differentiable w.r.t. θ . By assumption, we have

$$|g_i(X)| \le ||\nabla_\theta f_\theta(X)||_2 \le C.$$

For each i, by the mean value theorem and dominated convergence theorem (Bartle, 2014, Chapter 5), we can interchange the expectation and derivative:

$$\frac{\partial}{\partial \theta_i} \mathbb{E} f_{\theta}(X) = \mathbb{E} \frac{\partial}{\partial \theta_i} f_{\theta}(X).$$

Applying this for each coordinate and stacking the results gives the full gradient interchangeability:

$$\nabla_{\theta} \mathbb{E} f_{\theta}(X) = \mathbb{E} \nabla_{\theta} f_{\theta}(X).$$

C.1.3 BIAS AND VARIANCE OF TRANSFORMED RANDOM VARIABLE (LEMMA 3)

Lemma 3 (Bias and variance of transformed random variable). Let X_{θ} be a real-valued random variable with $\mathbb{E}X_{\theta} = \mu_{\theta}$ with parameter $\theta \in \mathbb{R}^d$, and define function $f(x) = \log \sigma(x)$ on \mathbb{R} , where $\sigma(x) = \frac{1}{1+e^{-x}}$ denotes the sigmoid function. Then:

(i) The transformed random variable satisfies:

$$\mathbb{E}|f(X_{\theta}) - f(\mu_{\theta})| \le \sqrt{\mathbb{V}X_{\theta}},\tag{16}$$

$$V f(X_{\theta}) < 4V X_{\theta}. \tag{17}$$

(ii) Suppose there exists a constant $C \ge 0$ such that the gradient of X_{θ} is uniformly bounded as $\|\nabla_{\theta} X_{\theta}\|_{2} \le C$. Then, the gradient satisfies:

$$\mathbb{E} \|\nabla_{\theta} f(X_{\theta}) - \nabla_{\theta} f(\mu_{\theta})\|_{2} \le \frac{C}{4} \sqrt{\mathbb{V} X_{\theta}} + \sqrt{\operatorname{tr} \mathbb{V} \nabla_{\theta} X_{\theta}}, \tag{18}$$

$$\operatorname{tr} \mathbb{V} \nabla_{\theta} f(X_{\theta}) \le \frac{C^2}{8} \mathbb{V} X_{\theta} + \operatorname{tr} \mathbb{V} \nabla_{\theta} X_{\theta}.$$
 (19)

Proof. (i) As $f = \log \sigma$ is 1-Lipschitz continuous by Lemma 1, for Eq. (16), we have:

$$\begin{split} \mathbb{E} \big| f(X_{\theta}) - f(\mu_{\theta}) \big| &\leq \mathbb{E} |X_{\theta} - \mu_{\theta}| \\ &= \mathbb{E} \sqrt{(X_{\theta} - \mu_{\theta})^2} \\ &\leq \sqrt{\mathbb{E} (X_{\theta} - \mu_{\theta})^2} \\ &= \sqrt{\mathbb{V} X_{\theta}} \end{split} \qquad \text{(Jensen's inequality)}$$

For Eq. (17), we have:

$$\mathbb{V}f(X_{\theta}) = \mathbb{E}\big(f(X_{\theta}) - \mathbb{E}f(X_{\theta})\big)^{2} \\
\leq \mathbb{E}\Big(\big|f(X_{\theta}) - f(\mathbb{E}X_{\theta})\big| + \big|f(\mathbb{E}X_{\theta}) - \mathbb{E}f(X_{\theta})\big|\Big)^{2} \qquad \text{(triangle inequality)} \\
\leq 2\mathbb{E}\big(f(X_{\theta}) - f(\mathbb{E}X_{\theta})\big)^{2} + \mathbb{E}\big(f(\mathbb{E}X_{\theta}) - \mathbb{E}f(X_{\theta})\big)^{2} \qquad ((a+b)^{2} \leq 2(a^{2}+b^{2})) \\
= 2\mathbb{E}\big(f(X_{\theta}) - f(\mathbb{E}X_{\theta})\big)^{2} + \big(f(\mathbb{E}X_{\theta}) - \mathbb{E}f(X_{\theta})\big)^{2} \\
= 2\mathbb{E}\big(f(X_{\theta}) - f(\mathbb{E}X_{\theta})\big)^{2} + \big(\mathbb{E}\big(f(\mathbb{E}X_{\theta}) - f(X_{\theta})\big)^{2} \\
\leq 2\mathbb{E}\big(f(X_{\theta}) - f(\mathbb{E}X_{\theta})\big)^{2} + \mathbb{E}\big(f(\mathbb{E}X_{\theta}) - f(X_{\theta})\big)^{2} \qquad \text{(Jensen's inequality)} \\
= 4\mathbb{E}\big(f(X_{\theta}) - f(\mathbb{E}X_{\theta})\big)^{2} \\
\leq 4\mathbb{E}(X_{\theta} - \mathbb{E}X_{\theta})^{2} \qquad (f \text{ is 1-Lipschitz continuous by Lemma 1)} \\
= 4\mathbb{V}X_{\theta}$$

(ii) Using the chain rule and the bounded gradient assumption, for Eq. (18), we have

$$\mathbb{E} \left\| \nabla_{\theta} f(X_{\theta}) - \nabla_{\theta} f(\mu_{\theta}) \right\|_{2}$$

$$= \mathbb{E} \left\| f'(X_{\theta}) \nabla_{\theta} X_{\theta} - f'(\mu_{\theta}) \nabla_{\theta} \mu_{\theta} \right\|_{2}$$

$$\leq \mathbb{E} \left\| \left(f'(X_{\theta}) - f'(\mu_{\theta}) \right) \nabla_{\theta} X_{\theta} \right\|_{2} + \mathbb{E} \left\| f'(\mu_{\theta}) \left(\nabla_{\theta} X_{\theta} - \nabla_{\theta} \mu_{\theta} \right) \right\|_{2} \qquad \text{(triangle inequality)}$$

$$= \mathbb{E}[\left| f'(X_{\theta}) - f'(\mu_{\theta}) \right| \cdot \left\| \nabla_{\theta} X_{\theta} \right\|_{2}] + \left| f'(\mu_{\theta}) \right| \cdot \mathbb{E} \left\| \nabla_{\theta} X_{\theta} - \nabla_{\theta} \mu_{\theta} \right\|_{2} \qquad \text{(} f \text{ is } 1\text{-Lipschitz continuous by Lemma 1)}$$

$$\leq C \cdot \mathbb{E} \left| f'(X_{\theta}) - f'(\mu_{\theta}) \right| + \mathbb{E} \left\| \nabla_{\theta} X_{\theta} - \nabla_{\theta} \mu_{\theta} \right\|_{2} \qquad \text{(} f \text{ is } 1\text{-Lipschitz smooth by Lemma 1)}$$

$$\leq \frac{C}{4} \cdot \mathbb{E} \left| X_{\theta} - \mu_{\theta} \right| + \mathbb{E} \left\| \nabla_{\theta} X_{\theta} - \mathbb{E} \nabla_{\theta} X_{\theta} \right\|_{2} \qquad \text{(} \mathbb{E} X_{\theta} = \mu_{\theta} \text{ and Lemma 2)}$$

$$\leq \frac{C}{4} \sqrt{\mathbb{E} (X_{\theta} - \mu_{\theta})^{2}} + \sqrt{\mathbb{E} \left\| \nabla_{\theta} X_{\theta} - \mathbb{E} \nabla_{\theta} X_{\theta} \right\|_{2}^{2}} \qquad \text{(} \mathbb{E} X_{\theta} = \mu_{\theta} \text{ and Lemma 2)}$$

$$\leq \frac{C}{4} \sqrt{\mathbb{E} (X_{\theta} - \mu_{\theta})^{2}} + \sqrt{\mathbb{E} \left\| \nabla_{\theta} X_{\theta} - \mathbb{E} \nabla_{\theta} X_{\theta} \right\|_{2}^{2}} \qquad \text{(} \mathbb{E} X_{\theta} = \mu_{\theta} \text{ and Lemma 2)}$$

$$\leq \frac{C}{4} \sqrt{\mathbb{E} (X_{\theta} - \mu_{\theta})^{2}} + \sqrt{\mathbb{E} \left\| \nabla_{\theta} X_{\theta} - \mathbb{E} \nabla_{\theta} X_{\theta} \right\|_{2}^{2}} \qquad \text{(} \mathbb{E} X_{\theta} = \mu_{\theta} \text{ and Lemma 2)}$$

$$\leq \frac{C}{4} \sqrt{\mathbb{E} (X_{\theta} - \mu_{\theta})^{2}} + \sqrt{\mathbb{E} \left\| \nabla_{\theta} X_{\theta} - \mathbb{E} \nabla_{\theta} X_{\theta} \right\|_{2}^{2}} \qquad \text{(} \mathbb{E} X_{\theta} = \mu_{\theta} \text{ and Lemma 2)}$$

To prove Eq. (19), we begin by decomposing the variance of the estimated gradient into three terms:

$$\operatorname{tr} \mathbb{V} \nabla_{\theta} f(X_{\theta}) = \mathbb{E} \| \nabla_{\theta} f(X_{\theta}) - \mathbb{E} \nabla_{\theta} f(X_{\theta}) \|_{2}^{2} = \mathbb{E} \| f'(X_{\theta}) \nabla_{\theta} X_{\theta} - \mathbb{E} \left[f'(X_{\theta}) \nabla_{\theta} X_{\theta} \right] \|_{2}^{2}$$

$$\leq \underbrace{\mathbb{E} \| f'(X_{\theta}) \nabla_{\theta} X_{\theta} - f'(\mathbb{E} X_{\theta}) \nabla_{\theta} X_{\theta} \|_{2}^{2}}_{(I)} + \underbrace{\mathbb{E} \| f'(\mathbb{E} X_{\theta}) \nabla_{\theta} X_{\theta} - f'(\mathbb{E} X_{\theta}) \mathbb{E} \nabla_{\theta} X_{\theta} \|_{2}^{2}}_{(II)}$$

$$+ \underbrace{\mathbb{E} \| f'(\mathbb{E} X_{\theta}) \mathbb{E} \nabla_{\theta} X_{\theta} - \mathbb{E} \left[f'(X_{\theta}) \nabla_{\theta} X_{\theta} \right] \|_{2}^{2}}_{(II)}.$$

We now bound each term separately.

Term (I). Using the bounded gradient assumption $\|\nabla_{\theta} X_{\theta}\|_{2} \leq C$ and the $\frac{1}{4}$ -Lipschitz smoothness of f (by Lemma 1), we have:

$$(I) = \mathbb{E}\left[\left|f'(X_{\theta}) - f'(\mathbb{E}X_{\theta})\right|^{2} \cdot \left\|\nabla_{\theta}X_{\theta}\right\|_{2}^{2}\right]$$

$$\leq C^{2}\mathbb{E}\left|f'(X_{\theta}) - f'(\mathbb{E}X_{\theta})\right|^{2}$$

$$\leq \frac{C^{2}}{16}\mathbb{E}|X_{\theta} - \mathbb{E}X_{\theta}|^{2} = \frac{C^{2}}{16}\mathbb{V}X_{\theta}.$$

Term (II). Since f' is bounded by 1 (by Lemma 1), we have:

(II) =
$$|f'(\mathbb{E}X_{\theta})|^2 \cdot \mathbb{E} ||\nabla_{\theta}X_{\theta} - \mathbb{E}\nabla_{\theta}X_{\theta}||_2^2$$

 $\leq \operatorname{tr} \mathbb{V} \nabla_{\theta}X_{\theta}.$

Term (III). Applying Jensen's inequality and again using the smoothness of f and boundedness of $\nabla_{\theta} X_{\theta}$, we have:

$$(III) = \|f'(\mathbb{E}X_{\theta})\mathbb{E}\nabla_{\theta}X_{\theta} - \mathbb{E}f'(X_{\theta})\nabla_{\theta}X_{\theta}\|_{2}^{2}$$

$$= \|\mathbb{E}[f'(\mathbb{E}X_{\theta})\nabla_{\theta}X_{\theta} - f'(X_{\theta})\nabla_{\theta}X_{\theta}]\|_{2}^{2}$$

$$\leq \mathbb{E}\|f'(\mathbb{E}X_{\theta})\nabla_{\theta}X_{\theta} - f'(X_{\theta})\nabla_{\theta}X_{\theta}\|_{2}^{2}$$

$$= \mathbb{E}[|f'(\mathbb{E}X_{\theta}) - f'(X_{\theta})|^{2} \cdot \|\nabla_{\theta}X_{\theta}\|_{2}^{2}]$$

$$\leq C^{2}\mathbb{E}|f'(\mathbb{E}X_{\theta}) - f'(X_{\theta})|^{2} \leq \frac{C^{2}}{16}\mathbb{V}X_{\theta}.$$

Summing all three terms yields:

$$\operatorname{tr} \mathbb{V} \nabla_{\theta} f(X_{\theta}) \leq \frac{C^2}{8} \mathbb{V} X_{\theta} + \operatorname{tr} \mathbb{V} \nabla_{\theta} X_{\theta}.$$

C.1.4 Preparation for Tightness Analysis (Lemma 4)

Lemma 4. Assume that a random variable X has finite mean, variance, and kurtosis, i.e., $\mathbb{E}[X] < \infty$, $\mathbb{V}[X] < \infty$, and $\kappa \triangleq \frac{\mathbb{E}[(X - \mathbb{E}[X])^4]}{\mathbb{V}[X]^2} < \infty$. Then there exists a constant $c = \sqrt{0.2}(0.8)^2 \approx 0.2862$ such that:

$$\mathbb{E}[|X - \mathbb{E}[X]|] \ge \frac{c}{\kappa} \sqrt{\mathbb{V}[X]}.$$

Proof. Let
$$\mu:=\mathbb{E}[X], \sigma:=\sqrt{\mathbb{V}[X]}$$
, and define $Y:=(X-\mu)^2$. Then,
$$\mathbb{E}[Y]=\mathbb{V}[X]=\sigma^2<\infty, \qquad \mathbb{E}[Y^2]=\mathbb{E}[(X-\mu)^4]=\kappa\sigma^4<\infty.$$

Applying the Paley–Zygmund inequality to the nonnegative random variable Y, we have: for any $0 \le \theta \le 1$:

$$\mathbb{P}(Y \geq \theta \, \mathbb{E}[Y]) \geq \frac{(1-\theta)^2 \, (\mathbb{E}[Y])^2}{\mathbb{E}[Y^2]} = \frac{(1-\theta)^2 \, \sigma^4}{\kappa \sigma^4} = \frac{(1-\theta)^2}{\kappa}.$$

Next, let F_Y denote the cumulated density function of Y. Unrolling the expectation, we have:

$$\mathbb{E}[|X - \mu|] = \mathbb{E}[\sqrt{Y}] = \int_0^\infty \sqrt{y} \, dF_Y(y) \ge \int_{\theta\sigma^2}^\infty \sqrt{y} \, dF_Y(y) \ge \int_{\theta\sigma^2}^\infty \sqrt{\theta\sigma^2} \, dF_Y(y),$$
$$= \sqrt{\theta\sigma^2} \left[1 - F_Y(\theta\sigma^2) \right] = \sigma\sqrt{\theta}\mathbb{P}(Y \ge \theta\sigma^2) \ge \sigma\sqrt{\theta} \frac{(1 - \theta)^2}{\kappa}.$$

Maximizing the right hand side over $\theta \in [0, 1]$, we obtain

$$\max_{0 < \theta < 1} \sqrt{\theta} (1 - \theta)^2 = \sqrt{0.2} (1 - 0.2)^2.$$

Letting $c = \sqrt{0.2}(0.8)^2$, we conclude that

$$\mathbb{E}[|X - \mu|] \ge \frac{c}{\kappa} \sigma.$$

C.1.5 VARIANCE OF ELBO ESTIMATOR (LEMMA 5)

Lemma 5 (Variance of ELBO estimator). Letting $\hat{\mathcal{B}}_{\pi}(y)$ be as defined in Eq. (6), we have:

(i) The variance of the ELBO estimator satisfies:

$$\mathbb{V}\widehat{\mathcal{B}}_{\pi}(y) = \frac{1}{n_t} \underbrace{\mathbb{V}_t \mathbb{E}_{y_t|t,y} \ell_{\pi}(y_t,t,y)}_{\triangleq \mathsf{V}_t} + \frac{1}{n_t n_{y_t}} \underbrace{\mathbb{E}_t \mathbb{V}_{y_t|t,y} \ell_{\pi}(y_t,t,y)}_{\triangleq \mathsf{V}_{y_t}}.$$

(ii) The variance of the gradient of the ELBO estimator for the model policy π_{θ} satisfies:

$$\mathbb{V}\nabla_{\theta}\widehat{\mathcal{B}}_{\pi_{\theta}}(y) = \frac{1}{n_{t}}\underbrace{\mathbb{V}_{t}\mathbb{E}_{y_{t}|t,y}\nabla_{\theta}\ell_{\pi_{\theta}}(y_{t},t,y)}_{\triangleq V_{v}^{\nabla}} + \frac{1}{n_{t}n_{y_{t}}}\underbrace{\mathbb{E}_{t}\mathbb{V}_{y_{t}|t,y}\nabla_{\theta}\ell_{\pi_{\theta}}(y_{t},t,y)}_{\triangleq V_{y_{t}}^{\nabla}}.$$

The V_t (or V_t^{∇}) and V_{y_t} (or $V_{y_t}^{\nabla}$) capture variance across timesteps and variance due to the noise at each step, which are inherently determined by the data and the forward process and cannot be reduced.

Proof. For (i), by the law of total variance,

$$\mathbb{V}\widehat{\mathcal{B}}_{\pi}(y) = \underbrace{\mathbb{V}_{\mathcal{S}_t}\mathbb{E}_{\left\{\mathcal{S}_{\boldsymbol{y}_t(j)}\mid\boldsymbol{y}\right\}_{j=1}^{n_{y_t}}\mid\mathcal{S}_t}\widehat{\mathcal{B}}_{\pi}(y)}_{(I)} + \underbrace{\mathbb{E}_{\mathcal{S}_t}\mathbb{V}_{\left\{\mathcal{S}_{\boldsymbol{y}_t(j)}\mid\boldsymbol{y}\right\}_{j=1}^{n_{y_t}}\mid\mathcal{S}_t}\widehat{\mathcal{B}}_{\pi}(y)}_{(II)}.$$

Term (I). Conditioned on the t-sample, the inner expectation is:

$$\mathbb{E}_{\{\mathcal{S}_{y_t(j)}\mid y\}_{j=1}^{n_{y_t}}\mid \mathcal{S}_t}\widehat{\mathcal{B}}_{\pi}(y) = -\frac{1}{n_t}\sum_{j=1}^{n_t}\mathbb{E}_{\mathcal{S}_{y_t(j)}\mid y}\mid \mathcal{S}_t\frac{1}{n_{y_t}}\sum_{k=1}^{n_{y_t}}\ell_{\pi}(y_{t^{(j)}}^{(k)}, t^{(j)}, y) = -\frac{1}{n_t}\sum_{j=1}^{n_t}\mathbb{E}_{y_t\mid t^{(j)}, y}\ell_{\pi}(y_t, t^{(j)}, y).$$

Since terms in S_t are i.i.d. sampled, the outer variance is:

 $(\mathrm{I}) = \mathbb{V}_{\mathcal{S}_t} \mathbb{E}_{\{\mathcal{S}_{y_t(j)} \mid y\}_{j=1}^{n_{y_t}} \mid \mathcal{S}_t} \widehat{\mathcal{B}}_{\pi}(y) = -\frac{1}{n_t^2} \mathbb{V}_{\mathcal{S}_t} \sum_{i=1}^{n_t} \mathbb{E}_{y_t \mid t(j), y} \ell_{\pi}(y_t, t, y) = -\frac{1}{n_t} \mathbb{V}_t \mathbb{E}_{y_t \mid t, y} \ell_{\pi}(y_t, t, y).$

Term (II). Conditioned on the t-sample, the inner variance is:

$$\begin{split} \mathbb{V}_{\{\mathcal{S}_{y_{t}(j)}|y\}_{j=1}^{n_{y_{t}}}|\mathcal{S}_{t}}\widehat{\mathcal{B}}_{\pi}(y) &= -\frac{1}{n_{t}^{2}}\sum_{j=1}^{n_{t}}\mathbb{V}_{\mathcal{S}_{y_{t}(j)}|y}|\mathcal{S}_{t}\frac{1}{n_{y_{t}}}\sum_{k=1}^{n_{y_{t}}}\ell_{\pi}(y_{t^{(j)}}^{(k)},t^{(j)},y) \\ &= -\frac{1}{n_{t}^{2}}\sum_{j=1}^{n_{t}}\frac{1}{n_{y_{t}}^{2}}\sum_{k=1}^{n_{y_{t}}}\mathbb{V}_{y_{t}|t^{(j)},y}\ell_{\pi}(y_{t},t^{(j)},y) = -\frac{1}{n_{t}^{2}n_{y_{t}}}\sum_{j=1}^{n_{t}}\mathbb{V}_{y_{t}|t^{(j)},y}\ell_{\pi}(y_{t},t^{(j)},y). \end{split}$$

Taking the expectation over S_t yields

$$\mathbb{E}_{\mathcal{S}_t} \mathbb{V}_{\mathcal{S}_{y_t}|\mathcal{S}_t} \widehat{\mathcal{B}}_{\pi}(y) = -\frac{1}{n_t^2 n_{y_t}} \mathbb{E}_{\mathcal{S}_t} \sum_{i=1}^{n_t} \mathbb{V}_{y_t|t^{(j)},y} \ell_{\pi}(y_t,t^{(j)},y) = -\frac{1}{n_t n_{y_t}} \mathbb{E}_t \mathbb{V}_{y_t|t,y} \ell_{\pi}(y_t,t,y).$$

Combining (I) and (II) gives the result:

$$\mathbb{V}\widehat{\mathcal{B}}_{\pi}(y) = \frac{1}{n_t} V_t + \frac{1}{n_t n_{y_t}} V_{y_t}.$$

For (ii), as $\nabla_{\theta} \widehat{\mathcal{B}}_{\pi_{\theta}}(y)$ has similar structure as $\widehat{\mathcal{B}}_{\pi_{\theta}}(y)$:

$$\nabla_{\theta} \widehat{\mathcal{B}}_{\pi_{\theta}}(y) \triangleq \frac{1}{n_t} \sum_{j=1}^{n_t} \frac{1}{n_{y_t}} \sum_{k=1}^{n_{y_t}} \nabla_{\theta} \ell_{\pi_{\theta}}(y_{t^{(j)}}^{(k)}, t^{(j)}, y),$$

the proof closely follows that for (i), and thus we omit the details here.

C.2 BIAS AND VARIANCE OF ESTIMATED LOSS

C.2.1 Unbiasedness of Preference Score Estimator (Proposition 3)

Proposition 3 (Unbiasedness of preference score estimator). The preference score estimator defined in Eq. (8) is an unbiased estimator of the true preference score defined in Eq. (7):

$$\mathbb{E}_{\mathcal{S}_{\hat{s}|y_w,y_l}} \left[\hat{s}_{\theta}(y_w, y_l) \right] = s_{\theta}(y_w, y_l).$$

Proof. First, by the i.i.d. sampling of timesteps and masked data, i.e.,

$$\mathcal{S}_t \triangleq \{t^{(j)}\}_{j=1}^{n_t} \overset{\text{i.i.d.}}{\sim} \mathcal{U}[0,1] \quad \text{and} \quad \mathcal{S}_{y_{\star(j)}\mid y} \triangleq \{y_{t^{(j)}}^{(k)}\}_{k=1}^{n_{y_t}} \overset{\text{i.i.d.}}{\sim} q(y_t \mid t^{(j)}, y), \ j=1,\ldots,n_t,$$

and $S_{y_{t(j)}|y} \perp S_{y_{t(j')}|y}$ for $j \neq j'$, the ELBO estimator (Eq. (6)) is unbiased:

$$\mathbb{E}_{\mathcal{S}_{t},\{\mathcal{S}_{y_{t(j)}\mid y}\}_{j=1}^{n_{t}}}\widehat{\mathcal{B}}_{\pi}(y) = \mathbb{E}_{\mathcal{S}_{t}} \frac{1}{n_{t}} \sum_{j=1}^{n_{t}} \mathbb{E}_{\mathcal{S}_{y_{t(j)}\mid y}} \frac{1}{n_{y_{t}}} \sum_{k=1}^{n_{y_{t}}} \ell_{\pi}(y_{t(j)}^{(k)}, t^{(j)}, y)$$

$$= \mathbb{E}_{t \sim \mathcal{U}[0,1]} \mathbb{E}_{y_{t} \sim q(y_{t}\mid t, y)} \ell_{\pi}(y_{t}, t, y \mid x) = \mathcal{B}_{\pi}(y).$$

Since the preference score estimator is a linear combination of four ELBO estimators, by the linearity of the expectation, we have:

$$\mathbb{E}\left[\hat{s}_{\theta}(y_w, y_l)\right] = \beta \mathbb{E}\left[\widehat{\mathcal{B}}_{\pi_{\theta}}(y_w)\right] - \beta \mathbb{E}\left[\widehat{\mathcal{B}}_{\pi_{\text{ref}}}(y_w)\right] - \beta \mathbb{E}\left[\widehat{\mathcal{B}}_{\pi_{\theta}}(y_l)\right] + \beta \mathbb{E}\left[\widehat{\mathcal{B}}_{\pi_{\text{ref}}}(y_l)\right] \\
= \beta \left(\mathcal{B}_{\pi_{\theta}}(y_w) - \mathcal{B}_{\pi_{\text{ref}}}(y_w)\right) - \beta \left(\mathcal{B}_{\pi_{\theta}}(y_l) - \mathcal{B}_{\pi_{\text{ref}}}(y_l)\right) = s_{\theta}(y_w, y_l).$$

C.2.2 EFFECT OF PREFERENCE SCORE ESTIMATOR VARIANCE (THEOREM 1)

Theorem 1. Given a pair of preference data y_w, y_l , the bias and variance of $\hat{\ell}_{DPO-E}(y_w, y_l; \theta)$ over stochastic sampling in the score estimation can be bounded as:

$$\begin{split} \mathbb{E}_{\mathcal{S}_{\hat{s}|y_w,y_l}} \left[\left| \ell_{\text{DPO-E}}(y_w,y_l;\theta) - \widehat{\ell}_{\text{DPO-E}}(y_w,y_l;\theta) \right| \right] &\leq \sqrt{\mathbb{V}_{\mathcal{S}_{\hat{s}|y_w,y_l}} \left[\hat{s}_{\theta}(y_w,y_l) \right]}, \\ \mathbb{V}_{\mathcal{S}_{\hat{s}|y_w,y_l}} \left[\widehat{\ell}_{\text{DPO-E}}(y_w,y_l;\theta) \right] &\leq 4 \mathbb{E}_{y_w,y_l} \left[\mathbb{V}_{\mathcal{S}_{\hat{s}|y_w,y_l}} \left[\hat{s}_{\theta}(y_w,y_l) \right] \right]. \end{split}$$

Proof. The proof is essentially based on the analysis of the bias and variance of the transformed random variable in Lemma 3.

By definitions in Eq. (7) and Eq. (8), we know that:

$$\begin{split} & \mathbb{E}_{\mathcal{S}_{\hat{s}|y_w,y_l}} \left[\left| \ell_{\text{DPO-E}}(y_w, y_l; \theta) - \widehat{\ell}_{\text{DPO-E}}(y_w, y_l; \theta) \right| \right] \\ & = \mathbb{E}_{\mathcal{S}_{\hat{s}|y_w,y_l}} \left[\left| \log \sigma \left(s_{\theta}(y_w, y_l) \right) - \log \sigma \left(\hat{s}_{\theta}(y_w, y_l) \right) \right| \right], \end{split}$$

and

$$\mathbb{V}_{\mathcal{S}_{\hat{s}|y_w,y_l}}\left[\widehat{\ell}_{\mathrm{DPO-E}}(y_w,y_l;\theta)\right] = \mathbb{V}_{\mathcal{S}_{\hat{s}|y_w,y_l}}\left[\log\sigma\big(\hat{s}_{\theta}(y_w,y_l)\big)\right].$$

According to Proposition 3, we know that $\hat{s}_{\theta}(y_w, y_l)$ is an unbiased estimator for $s_{\theta}(y_w, y_l)$ such that $\mathbb{E}_{S_{\hat{s}|y_w,y_l}}[\hat{s}_{\theta}(y_w, y_l)] = s_{\theta}(y_w, y_l)$. Therefore, we can apply Lemma 3 presented previously to directly get the result.

C.2.3 TIGHTNESS ANALYSIS (THEOREM 2, THEOREM 3)

Theorem 2 (Tightness analysis of bias). Assume that for any y_w, y_l , the estimator $\hat{s}_{\theta}(y_w, y_l)$ has finite mean, variance, and kurtosis, i.e., $\mathbb{E}_{S_{\hat{s}|y_w,y_l}}[\hat{s}_{\theta}(y_w,y_l)] < \infty$, $\mathbb{V}_{S_{\hat{s}|y_w,y_l}}[\hat{s}_{\theta}(y_w,y_l)] < \infty$, and $\kappa \triangleq \frac{\mathbb{E}[(\hat{s}_{\theta}(y_w,y_l)-\mathbb{E}[\hat{s}_{\theta}(y_w,y_l)])^4]}{\mathbb{V}[\hat{s}_{\theta}(y_w,y_l)]^2} < \infty$. Then, under a first-order Taylor expansion, the bias of $\hat{\ell}_{\mathrm{DPO-E}}(y_w,y_l;\theta)$ scales proportionally to the square root of the variance of the score estimator as:

$$\begin{split} & \mathbb{E}_{\mathcal{S}_{\hat{s}|y_w,y_l}} \left[\left| \ell_{\text{DPO-E}}(y_w, y_l; \theta) - \widehat{\ell}_{\text{DPO-E}}(y_w, y_l; \theta) \right| \right] \\ & \approx \Theta \left(\mathbb{E}_{y_w,y_l} \left[\left| f' \left(s_{\theta}(y_w, y_l) \right) \right| \sqrt{\mathbb{V}_{S_{\hat{s}|y_w,y_l}} \left[\hat{s}_{\theta}(y_w, y_l) \right]} \right] \right), \end{split}$$

where $f(x) = \log \sigma(x)$, $f'(x) \in (0, 1)$.

Proof. We omit the explicit conditioning on y_w, y_l for brevity and denote $s_\theta := s_\theta(y_w, y_l)$, $\hat{s}_\theta := \hat{s}_\theta(y_w, y_l)$.

By a first-order Taylor expansion of $f(\hat{s}_{\theta})$ around s_{θ} , we have:

$$f(\hat{s}_{\theta}) = f(s_{\theta}) + f'(s_{\theta})(\hat{s}_{\theta} - s_{\theta}) + O\left((\hat{s}_{\theta} - s_{\theta})^{2}\right).$$

Ignoring the higher-order term yields the linear approximation:

$$f(\hat{s}_{\theta}) \approx f(s_{\theta}) + f'(s_{\theta})(\hat{s}_{\theta} - s_{\theta}).$$

According to the definition, the bias of $\widehat{\ell}_{\mathrm{DPO-E}}(y_w, y_l; \theta)$ is:

$$\mathbb{E}_{\mathcal{S}_{\hat{s}|y_w,y_l}}\left[\left|\ell_{\mathrm{DPO-E}}(y_w,y_l;\theta)-\widehat{\ell}_{\mathrm{DPO-E}}(y_w,y_l;\theta)\right|\right] = \mathbb{E}_{S_{\hat{s}|y_w,y_l}}\left[\left|f\left(\hat{s}_{\theta}\right)-f\left(s_{\theta}\right)\right|\right].$$

Applying the linear approximation and using the fact that $f(s_{\theta})$ is constant w.r.t. $S_{\hat{s}|y_w,y_l}$, we get:

$$\mathbb{E}_{S_{\hat{s}|y_w,y_l}}\left[\left|f\left(\hat{s}_{\theta}\right)-f\left(s_{\theta}\right)\right|\right] \approx \mathbb{E}_{S_{\hat{s}|y_w,y_l}}\left[\left|f'(s_{\theta})\right|\left|\hat{s}_{\theta}-s_{\theta}\right|\right] = \left|f'(s_{\theta})\right|\mathbb{E}_{S_{\hat{s}|y_w,y_l}}\left[\left|\hat{s}_{\theta}-s_{\theta}\right|\right].$$

According to Jensen's inequality and by Proposition 3, which states that $\mathbb{E}_{S_{\hat{s}|y_w,y_l}}[\hat{s}_{\theta}] = s_{\theta}$, we have

$$\mathbb{E}_{S_{\hat{s}|y_w,y_l}}\left[\left|\hat{s}_{\theta}-s_{\theta}\right|\right] \leq \sqrt{\mathbb{E}_{S_{\hat{s}|y_w,y_l}}\left[\left(\hat{s}_{\theta}-s_{\theta}\right)^2\right]} = \sqrt{\mathbb{V}_{S_{\hat{s}|y_w,y_l}}\left[\hat{s}_{\theta}\right]},$$

and according to Lemma 4, there exists a constant $c = \sqrt{0.2}(0.8)^2$ such that:

$$\mathbb{E}_{S_{\hat{s}|y_w,y_l}}\left[|\hat{s}_{\theta} - s_{\theta}|\right] \ge \frac{c}{\kappa} \sqrt{\mathbb{V}_{S_{\hat{s}|y_w,y_l}}[\hat{s}_{\theta}]}.$$

Thus we get:

$$\frac{c}{\kappa} \sqrt{\mathbb{V}_{S_{\hat{s}|y_w,y_l}}[\hat{s}_{\theta}]} \leq \mathbb{E}_{S_{\hat{s}|y_w,y_l}}\left[|\hat{s}_{\theta} - s_{\theta}|\right] \leq \sqrt{\mathbb{V}_{S_{\hat{s}|y_w,y_l}}[\hat{s}_{\theta}]},$$

1180 which means:

$$\mathbb{E}_{\mathcal{S}_{\hat{s}|y_w,y_l}} \left[\left| \ell_{\text{DPO-E}}(y_w, y_l; \theta) - \widehat{\ell}_{\text{DPO-E}}(y_w, y_l; \theta) \right| \right] \approx \left| f'(s_\theta) \right| \mathbb{E}_{S_{\hat{s}|y_w,y_l}} \left[\left| \hat{s}_\theta - s_\theta \right| \right]$$

$$= \Theta \left(\left| f'(s_\theta) \right| \sqrt{\mathbb{V}_{S_{\hat{s}|y_w,y_l}} \left[\hat{s}_\theta \right]} \right).$$

Finally, from Lemma 1, we know $f'(s_{\theta}) \in (0, 1)$.

Remark 1. The assumptions on \hat{s}_{θ} in Theorem 2, namely finite mean, variance, and kurtosis, are very mild and standard (Boucheron et al., 2003; Vershynin, 2018; Wainwright, 2019). These conditions exclude only extremely heavy-tailed distributions. They hold for all sub-Gaussian and sub-exponential distributions, specifically including Gaussian, uniform, exponential, and any bounded distributions. Since \hat{s}_{θ} is the estimated preference score computed from ELBOs derived using a neural network, it is naturally bounded in practice and thus satisfies these assumptions.

Theorem 3 (Tightness analysis of variance). *Under a first-order Taylor expansion, the variance of* $\widehat{\ell}_{\mathrm{DPO-E}}(y_w, y_l; \theta)$ *scales proportionally to the variance of the score estimator as follows:*

$$\mathbb{V}_{S_{\hat{s}|y_w,y_l}}\left[\widehat{\ell}_{\mathrm{DPO-E}}(y_w,y_l;\theta)\right] \approx \left(f'\left(s_{\theta}(y_w,y_l)\right)\right)^2 \mathbb{V}_{S_{\hat{s}|y_w,y_l}}\left[\hat{s}_{\theta}(y_w,y_l)\right],$$

where $f(x) = \log \sigma(x)$, $f'(x) \in (0, 1)$.

Proof. We omit the explicit conditioning on y_w, y_l for brevity and denote $s_\theta := s_\theta(y_w, y_l)$, $\hat{s}_\theta := \hat{s}_\theta(y_w, y_l)$.

By a first-order Taylor expansion of $f(\hat{s}_{\theta})$ around s_{θ} , we have:

$$f(\hat{s}_{\theta}) = f(s_{\theta}) + f'(s_{\theta})(\hat{s}_{\theta} - s_{\theta}) + O\left((\hat{s}_{\theta} - s_{\theta})^{2}\right).$$

Ignoring the higher-order term yields the linear approximation:

$$f(\hat{s}_{\theta}) \approx f(s_{\theta}) + f'(s_{\theta})(\hat{s}_{\theta} - s_{\theta}).$$

According to the definition, the variance of $\widehat{\ell}_{\mathrm{DPO-E}}(y_w, y_l; \theta)$ is:

$$\mathbb{V}_{\mathbb{S}_{\hat{s}\mid y_{w},y_{l}}}\left[\widehat{\ell}_{\mathrm{DPO-E}}(y_{w},y_{l};\theta)\right]=\mathbb{V}_{S_{\hat{s}\mid y_{w},y_{l}}}\left[f\left(\hat{s}_{\theta}\right)\right].$$

Applying the linear approximation and using the fact that $f(s_{\theta})$ is constant w.r.t. $S_{\hat{s}|u_m,y_l}$, we get:

$$\mathbb{V}_{S_{\hat{s}|y_w,y_l}}\left[f(\hat{s}_{\theta})\right] \approx \mathbb{V}_{S_{\hat{s}|y_w,y_l}}\left[f(s_{\theta}) + f'(s_{\theta})(\hat{s}_{\theta} - s_{\theta})\right] = \left(f'(s_{\theta})\right)^2 \mathbb{V}_{S_{\hat{s}|y_w,y_l}}\left[\hat{s}_{\theta}\right].$$

Finally, from Lemma 1, we know $f'(s_{\theta}) \in (0,1)$, ensuring the scaling factor is bounded.

C.3 VARIANCE REDUCTION OF PREFERENCE SCORE ESTIMATOR

C.3.1 Unbiasedness of VRPO (Proposition 4)

Proposition 4 (Unbiasedness of VRPO). *Under the variance reduction techniques in VRPO (Section 3.2), the preference score estimator defined in Eq.* (8) *remains an unbiased estimator of the true preference score defined in Eq.* (7).

Proof. For sampling budget and optimal allocation, the proof of Proposition 3 for the unbiasedness of $\hat{s}_{\theta}(y_w, y_l)$ remains valid under variations in n_t and n_{y_t} , so these do not affect the unbiasedness of the score estimator. For antithetic sampling, by linearity of expectation, the coupling of $\widehat{\mathcal{B}}_{\pi_{\theta}}(y)$ and $\widehat{\mathcal{B}}_{\pi_{\text{ref}}}(y)$ also does not affect the unbiasedness of the score estimator.

C.3.2 SAMPLING BUDGET AND ALLOCATION (PROPOSITION 1)

Proposition 1 (Reduce the ELBO variance). Given a total budget of $n = n_t \times n_{y_t}$ masked samples for estimating $\widehat{\mathcal{B}}_{\pi}(y)$, we have: (i) $\mathbb{V}\widehat{\mathcal{B}}_{\pi}(y) = \Theta(\frac{1}{n})$, (ii) $\mathbb{V}\widehat{\mathcal{B}}_{\pi}(y)$ is minimized when $n_t = n, n_{y_t} = 1$.

Proof. The proof is essentially based on the variance analysis of the ELBO estimator in Lemma 5.

According to Lemma 5, we know that:

$$\mathbb{V}\widehat{\mathcal{B}}_{\pi}(y) = \frac{1}{n_t} V_t + \frac{1}{n_t n_{y_t}} V_{y_t}.$$

Given that $n = n_t \times n_{y_t}$ and a fixed allocation proportion $c \triangleq \frac{n_t}{n} \in [\frac{1}{n}, 1]$, we have:

$$\mathbb{V}\widehat{\mathcal{B}}_{\pi}(y) = \frac{1}{cn} V_t + \frac{1}{n} V_{y_t}.$$

Then, we have

$$\mathbb{V}\widehat{\mathcal{B}}_{\pi}(y) = \Theta(\frac{1}{n}),$$

and

$$\underset{c \in \left[\frac{1}{n}, 1\right]}{\arg \min} \, \mathbb{V}\widehat{\mathcal{B}}_{\pi}(y) = 1,$$

which gives the desired result.

C.3.3 ANTITHETIC SAMPLING (PROPOSITION 2)

Proposition 2 (Increase the correlation). Given any response y, supposing $\operatorname{Corr}\left(\widehat{\mathcal{B}}_{\pi_{\theta}}(y), \widehat{\mathcal{B}}_{\pi_{\operatorname{ref}}}(y)\right) > 0$ when the Monte Carlo samples S_t and $\{S_{y_{t(j)}|y}\}_{j=1}^{n_t}$ are shared between $\widehat{\mathcal{B}}_{\pi_{\theta}}(y)$ and $\widehat{\mathcal{B}}_{\pi_{\operatorname{ref}}}(y)$, we have: Sharing Monte Carlo samples yields lower $\mathbb{V}\hat{s}_{\theta}(y_w, y_l)$ than using independent samples.

Proof. This result yields naturally from Eq. (9) that when $Corr(\widehat{\mathcal{B}}_{\pi_{\theta}}(y), \widehat{\mathcal{B}}_{\pi_{ref}}(y)) > 0$,

$$\mathbb{V}\widehat{\mathcal{B}}_{\pi_{\theta}}(y) + \mathbb{V}\widehat{\mathcal{B}}_{\pi_{\mathrm{ref}}}(y) - 2\mathrm{Corr}\Big(\widehat{\mathcal{B}}_{\pi_{\theta}}(y), \widehat{\mathcal{B}}_{\pi_{\mathrm{ref}}}(y)\Big)\sqrt{\mathbb{V}\widehat{\mathcal{B}}_{\pi_{\theta}}(y)\mathbb{V}\widehat{\mathcal{B}}_{\pi_{\mathrm{ref}}}(y)} < \mathbb{V}\widehat{\mathcal{B}}_{\pi_{\theta}}(y) + \mathbb{V}\widehat{\mathcal{B}}_{\pi_{\mathrm{ref}}}(y).$$

C.4 Deferred Analysis of Estimated Gradient

In this section, we present a theoretical analysis of the effect of VRPO on gradient estimation, following a structure analogous to the loss analysis in the main paper.

We first introduce a bounded assumption on the gradient of per-step mask prediction loss $\ell_{\pi_{\theta}}$, which serves as a mild condition for the subsequent derivations.

Assumption 1 (Bounded gradient of per-step mask prediction loss). The gradient of the per-step masked prediction loss $\ell_{\pi_{\theta}}(y_t,t,y)$ (Eq. (4)) is bounded, i.e., there exists a constant $0 \leq C < \infty$ such that $\|\nabla_{\theta}\ell_{\pi_{\theta}}(y_t,t,y)\|_2 \leq C$ for all θ in the model parameter space, y in \mathcal{D} , and $t \in [0,1]$.

This boundedness assumption is reasonable in practice and leads directly to the following corollary.

Corollary 1 (Bounded gradient of preference score estimator). Under Assumption 1, the gradient of the preference score estimator $\hat{s}_{\theta}(y_w, y_l)$ is bounded, i.e., there exists a constant $0 \leq \tilde{C} < \infty$ such that $\|\nabla_{\theta}\hat{s}_{\theta}(y_w, y_l)\|_2 \leq \tilde{C}$ for all θ in the model parameter space and (y_w, y_l) in \mathcal{D} .

Proof. Recall that the preference score estimator is defined as:

$$\hat{s}_{\theta}(y_w, y_l) = \beta \left(\widehat{\mathcal{B}}_{\pi_{\theta}}(y_w) - \widehat{\mathcal{B}}_{\pi_{\text{ref}}}(y_w) \right) - \beta \left(\widehat{\mathcal{B}}_{\pi_{\theta}}(y_l) - \widehat{\mathcal{B}}_{\pi_{\text{ref}}}(y_l) \right),$$

where

$$\widehat{\mathcal{B}}_{\pi}(y) = \frac{1}{n_t} \sum_{i=1}^{n_t} \frac{1}{n_{y_t}} \sum_{k=1}^{n_{y_t}} \ell_{\pi}(y_{t^{(j)}}^{(k)}, t^{(j)}, y).$$

Taking the gradient with respect to θ leads to:

$$\nabla_{\theta} \hat{s}_{\theta}(y_w, y_l) = \beta \nabla_{\theta} \widehat{\mathcal{B}}_{\pi_{\theta}}(y_w) - \beta \nabla_{\theta} \widehat{\mathcal{B}}_{\pi_{\theta}}(y_l).$$

Now expand each gradient term to get:

$$\nabla_{\theta} \widehat{\mathcal{B}}_{\pi_{\theta}}(y) = \frac{1}{n_t n_{y_t}} \sum_{j=1}^{n_t} \sum_{k=1}^{n_{y_t}} \nabla_{\theta} \ell_{\pi_{\theta}}(y_{t^{(j)}}^{(k)}, t^{(j)}, y).$$

By Assumption 1, each term $\left\| \nabla_{\theta} \ell_{\pi_{\theta}}(y_{t^{(j)}}^{(k)}, t^{(j)}, y) \right\|_{2} \leq C$, we have:

$$\left\| \nabla_{\theta} \widehat{\mathcal{B}}_{\pi_{\theta}}(y) \right\|_{2} = \frac{1}{n_{t} n_{y_{t}}} \sum_{j=1}^{n_{t}} \sum_{k=1}^{n_{y_{t}}} \left\| \nabla_{\theta} \ell_{\pi_{\theta}}(y_{t^{(j)}}^{(k)}, t^{(j)}, y) \right\|_{2} \leq C.$$

Thus,

$$\left\|\nabla_{\theta}\hat{s}_{\theta}(y_w, y_l)\right\|_{2} \leq \beta \left\|\nabla_{\theta}\widehat{\mathcal{B}}_{\pi_{\theta}}(y_w)\right\|_{2} + \beta \left\|\nabla_{\theta}\widehat{\mathcal{B}}_{\pi_{\theta}}(y_l)\right\|_{2} \leq 2\beta C < \infty.$$

Setting $\tilde{C} = 2\beta C$ gives the desired result.

C.4.1 EFFECT OF PREFERENCE SCORE ESTIMATOR VARIANCE (THEOREM 4)

We now present a theorem that characterizes how the variance of the score estimator and the variance of its gradient influence the bias and variance of $\nabla_{\theta} \widehat{\ell}_{\mathrm{DPO-E}}$.

Theorem 4. Suppose Assumption 1 holds. Then, there exists a constant $0 \le \tilde{C} < \infty$ such that, given a pair of preference data y_w, y_l , the bias and variance of $\nabla_{\theta} \widehat{\ell}_{DPO-E}$ can be bounded as:

$$\mathbb{E}_{\mathcal{S}_{\hat{s}|y_w,y_l}} \left[\left\| \nabla_{\theta} \ell_{\text{DPO-E}}(y_w, y_l; \theta) - \nabla_{\theta} \widehat{\ell}_{\text{DPO-E}}(y_w, y_l; \theta) \right\|_{2} \right]$$

$$\leq \frac{\tilde{C}}{4} \sqrt{\mathbb{V}_{\mathcal{S}_{\hat{s}|y_w,y_l}} \hat{s}_{\theta}(y_w, y_l)} + \sqrt{\text{tr} \mathbb{V}_{\mathcal{S}_{\hat{s}|y_w,y_l}} \nabla_{\theta} \hat{s}_{\theta}(y_w, y_l)},$$

and

$$\operatorname{tr} \mathbb{V}_{S_{\hat{s}|y_w,y_l}} \left[\nabla_{\theta} \widehat{\ell}_{\mathrm{DPO-E}}(y_w,y_l;\theta) \right] \leq \frac{\tilde{C}^2}{8} \mathbb{V}_{S_{\hat{s}|y_w,y_l}} \hat{s}_{\theta}(y_w,y_l) + \operatorname{tr} \mathbb{V}_{S_{\hat{s}|y_w,y_l}} \nabla_{\theta} \hat{s}_{\theta}(y_w,y_l).$$

Proof. The proof is essentially based on the analysis of the bias and variance of the transformed random variable in Lemma 3 presented previously.

By definitions in Eq. (7) and Eq. (8), we know that:

$$\mathbb{E}_{\mathcal{S}_{\hat{s}|y_w,y_l}} \left[\left\| \nabla_{\theta} \ell_{\text{DPO-E}}(y_w, y_l; \theta) - \nabla_{\theta} \widehat{\ell}_{\text{DPO-E}}(y_w, y_l; \theta) \right\|_{2} \right]$$

$$= \mathbb{E}_{\mathcal{S}_{\hat{s}|y_w,y_l}} \left[\left\| \nabla_{\theta} \log \sigma \left(s_{\theta}(y_w, y_l) \right) - \nabla_{\theta} \log \sigma \left(\hat{s}_{\theta}(y_w, y_l) \right) \right\|_{2} \right],$$

and

$$\mathrm{tr} \mathbb{V}_{\mathcal{S}_{\hat{s}|y_w,y_l}} \left[\nabla_{\theta} \widehat{\ell}_{\mathrm{DPO-E}}(y_w,y_l;\theta) \right] = \mathrm{tr} \mathbb{V}_{\mathcal{S}_{\hat{s}|y_w,y_l}} \left[\nabla_{\theta} \log \sigma \big(\hat{s}_{\theta}(y_w,y_l) \big) \right].$$

According to Corollary 1, under Assumption 1, there exists a constant $0 \le \tilde{C} < \infty$ such that the gradient of $\hat{s}_{\theta}(y_w, y_l)$ is uniformly bounded as $\|\hat{s}_{\theta}(y_w, y_l)\|_2 \le \tilde{C}$. Then by Lemma 3, we have:

$$\mathbb{E}_{\mathcal{S}_{\hat{s}|y_w,y_l}} \left\| \nabla_{\theta} \log \sigma(\hat{s}_{\theta}(y_w, y_l)) - \nabla_{\theta} \log \sigma(s_{\theta}(y_w, y_l)) \right\|_{2} \\ \leq \frac{\tilde{C}}{4} \sqrt{\mathbb{V}_{\mathcal{S}_{\hat{s}|y_w,y_l}} \hat{s}_{\theta}(y_w, y_l)} + \sqrt{\text{tr} \mathbb{V}_{\mathcal{S}_{\hat{s}|y_w,y_l}} \nabla_{\theta} \hat{s}_{\theta}(y_w, y_l)},$$

and
$$\operatorname{tr} \mathbb{V}_{S_{\hat{s}|y_w,y_l}} \nabla_{\theta} \log \sigma(\hat{s}_{\theta}(y_w,y_l)) \leq \frac{\tilde{C}^2}{8} \mathbb{V}_{S_{\hat{s}|y_w,y_l}} \hat{s}_{\theta}(y_w,y_l) + \operatorname{tr} \mathbb{V}_{S_{\hat{s}|y_w,y_l}} \nabla_{\theta} \hat{s}_{\theta}(y_w,y_l).$$

Applying these bounds to the above equations gives the desired results.

C.4.2 SAMPLING BUDGET AND ALLOCATION (PROPOSITION 5)

Given Theorem 4, our goal is to reduce the variance associated with the preference score estimator, specifically $\mathbb{V}\hat{s}_{\theta}(y_w,y_l)$ and $\operatorname{tr}\mathbb{V}\nabla_{\theta}\hat{s}_{\theta}(y_w,y_l)$ (we omit the subscript on $S_{\hat{s}|y_w,y_l}$ for brevity). The variance $\mathbb{V}\hat{s}_{\theta}(y_w,y_l)$ has been analyzed in Appendix C.3. Now, we turn our focus to $\operatorname{tr}\mathbb{V}\nabla_{\theta}\hat{s}_{\theta}(y_w,y_l)$, showing that the first two techniques in VRPO—increasing the sampling budget and applying optimal allocation—effectively reduce this term.

We begin by expanding $\nabla\nabla_{\theta}\hat{s}_{\theta}(y_w, y_l)$ for detailed analysis. According to the definition of the score estimator as in Eq. (8), the gradient of the preference score estimator takes the form:

$$\nabla_{\theta} \hat{s}_{\theta}(y_w, y_l) = \beta \nabla_{\theta} \widehat{\mathcal{B}}_{\pi_{\theta}}(y_w) - \beta \nabla_{\theta} \widehat{\mathcal{B}}_{\pi_{\theta}}(y_l).$$

Since the Monte Carlo sampling conditional on different data y is independent, i.e., $S_{\mathcal{B}_{\pi_{\theta}}|y_w} \perp S_{\mathcal{B}_{\pi_{\phi}}|y_t}$, we have:

$$\mathbb{V}\nabla_{\theta}\hat{s}_{\theta}(y_w, y_l) = \mathbb{V}\beta\nabla_{\theta}\widehat{\mathcal{B}}_{\pi_{\theta}}(y_w) + \mathbb{V}\beta\nabla_{\theta}\widehat{\mathcal{B}}_{\pi_{\theta}}(y_l) = \beta^2 \mathbb{V}\nabla_{\theta}\widehat{\mathcal{B}}_{\pi_{\theta}}(y_w) + \beta^2 \mathbb{V}\nabla_{\theta}\widehat{\mathcal{B}}_{\pi_{\theta}}(y_l). \tag{20}$$

Eq. (20) shows that $\nabla \nabla_{\theta} \hat{s}_{\theta}(y_w, y_l)$ can be reduced by lowering the variance of $\nabla_{\theta} \widehat{\mathcal{B}}_{\pi}(y)$. We next provide a theoretical guarantee that increasing the sampling budget and adopting optimal allocation in VRPO lead to a reduction in $\nabla \nabla_{\theta} \widehat{\mathcal{B}}_{\pi}(y)$.

Proposition 5. Let $\widehat{\mathcal{B}}_{\pi}(y)$ be estimated using a total of $n = n_t \times n_{y_t}$ masked samples. Then we have: (i) $\mathbb{V}\nabla_{\theta}\widehat{\mathcal{B}}_{\pi}(y) = \Theta(\frac{1}{n})$, and (ii) $\mathbb{V}\nabla_{\theta}\widehat{\mathcal{B}}_{\pi}(y)$ is minimized when $n_t = n$ and $n_{y_t} = 1$ with a fixed n.

Proof. The proof relies on a variance analysis of the gradient of the ELBO estimator established in Lemma 5. Since the argument closely parallels the proof of Proposition 1 in Appendix C.3.2, we omit the details here. \Box

D DETAILS OF FIGURE 2

For Figure 2, we generated synthetic data as follows. We sampled N=1000 points from a zero-mean Gaussian distribution $X \sim \mathcal{N}(0,\sigma^2)$, with ten different variance levels $\sigma^2 \in \{0.1,0.2,\dots,1.0\}$. For each sample, we applied the transformation $\log \sigma(X) = \log(1/(1+e^{-X}))$ and recorded its empirical mean, variance, and bias. The ground-truth reference value for comparison is $\log \sigma(\mathbb{E}[X])$, which for $\mathbb{E}[X]=0$ equals $\log \sigma(0)$.

Panel (a) sets $\sigma^2=1.0$. The light blue curve in the horizontal axis shows the Gaussian density $\mathcal{N}(0,1)$, while the black curve plots the nonlinear function $x\mapsto\log\sigma(x)$. The blue histogram in the vertical axis displays the empirical distribution of $\log\sigma(X)$ under this sampling, and the horizontal dashed blue line indicates its empirical mean $\mathbb{E}[\log\sigma(X)]$. The red star and solid lines mark the reference value $\log\sigma(\mathbb{E}[X])$, highlighting the bias introduced by the nonlinear transformation.

Panel (b) summarizes the trends across all variance levels. The horizontal axis is the variance of the Gaussian input X, and the vertical axis reports the corresponding empirical variance and bias of $\log \sigma(X)$. Bias is computed as the absolute difference between the sample mean of $\log \sigma(X)$ and the reference $\log \sigma(\mathbb{E}[X])$. Both quantities are observed to grow monotonically with $\mathbb{V}[X]$, supporting the insight that reducing the variance of X jointly mitigates both the bias and variance of the transformed estimator.

E EXPERIMENTS

E.1 IMPLEMENTATION OF VRPO

We implement VRPO using a packing strategy, where multiple preference data samples are packed into a single sequence to maximize hardware utilization. For each sequence, we construct an attention mask so that tokens from distinct samples within the sequence cannot attend to each other. Furthermore, all sequences are padded to a fixed length of 4096 with |EOS| tokens, which is consistent with the default pre-training context length used in LLaDA. During VRPO training, these padded |EOS| tokens are excluded from the loss calculation.

Table 3: The architecture of LLaDA.

	LLaDA
Layers	32
Model dimension	4096
Attention heads	32
Vocabulary size	126,464
FFN dimension	12,288
Key/Value heads	32
Total parameters	8.02 B
Non-embedding parameters	6.98 B

E.2 MODEL ARCHITECTURE

In this section, we present the details of the SFT model LLaDA Instruct.

The LLaDA architecture closely follows that of LLaMA (Dubey et al., 2024): it is a masked diffusion model with 8B parameters, based on a Transformer Encoder. Like LLaMA, LLaDA employs RMSNorm (Zhang and Sennrich, 2019) for normalization, RoPE (Su et al., 2024) for positional encoding, and SwiGLU (Shazeer, 2020) as the activation function. Detailed model specifications can be found in Table 3.

E.3 TRAINING

To enhance the general capabilities of LLaDA, we use 350K preference pairs as our training data. These pairs were collected internally on a large scale and processed by filtering out low-quality samples, removing duplicates based on similarity matching, ranking samples with reward models to select high-quality data, and replacing some *chosen* responses with outputs from state-of-the-art LLMs, ultimately resulting in a dataset comprising approximately 35% creative writing, 18% knowledge QA, 16% NLP tasks, 14% mathematics tasks, 7% recommendation tasks, 5% code generation, 3% reasoning tasks, and a small portion of safety and other tasks.

We trained the model for one epoch with a batch size of 64 using the AdamW optimizer with a weight decay of 0.01, β_1 of 0.9, and β_2 of 0.95. The learning rate schedule employed 15 warmup steps to a maximum learning rate of 5×10^{-7} , followed by cosine decay. We configured DPO Loss with $\beta=0.2$ and complemented it with a 0.05 weighted MDMs SFT loss to improve training stability. We initialize $\pi_{\rm ref}$ with LLaDA Instruct for VRPO. Training consumed approximately 405 H100 GPU hours for 8 Monte Carlo samples. Due to hardware resource constraints, we did not perform any hyperparameter search.

To evaluate the impact of our variance reduction strategies, Figure 5 plots the training losses for the configurations reported in Table 1 and Table 2. With variance reduction strategies applied, the training loss trajectories become smoother and exhibit substantially lower variability, thereby stabilizing the optimization dynamics of MDMs. We also observe a faster decrease in loss and a lower final loss; these trends are consistent with reduced gradient variance and improved optimization stability.

E.4 EVALUATION

Similar to ARMs with diverse sampling methods (Holtzman et al., 2019; Brown, 2020), MDMs also benefit from various sampling strategies that can enhance sample quality. Following prior work (Chang et al., 2022; Nie et al., 2025; Sahoo et al., 2024), we employ multiple methods to sample text from MDMs, including diffusion sampling, diffusion semi-autoregressive sampling, and low-confidence remasking.

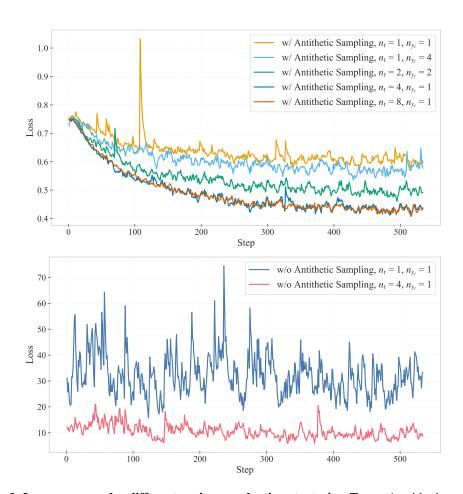


Figure 5: Loss curves under different variance reduction strategies. Top: w/ antithetic sampling; bottom: w/o antithetic sampling. The curve labeled "w/o antithetic sampling, $n_t=1$, $n_{y_t}=1$ " corresponds to the training loss of the naive DPO baseline reported in Table 1, all other curves come from the ablation study in Table 2, obtained by varying the number of timesteps n_t , the number of masked samples n_{y_t} , and whether antithetic sampling is applied. We present two panels because the loss magnitudes differ substantially across settings. For visual clarity, all curves are smoothed with an exponential moving average with coefficient 0.3.

In diffusion semi-autoregressive sampling, to generate a fixed length of L tokens, the method divides the generation process into $\frac{L}{B}$ blocks, where B is the number of tokens generated per block. Within each block, tokens are generated using the original reverse process, and then each block is generated autoregressively. Furthermore, the low-confidence remasking method remasks predicted tokens that exhibit the lowest confidence, based on the predictions.

Additionally, we observed that for LLaDA SFT, due to the padding of |EOS| tokens during its SFT phase, tends to generate an excessive number of |EOS| tokens. This often leads to incomplete content generation, resulting in notably truncated outputs and adversely affecting model performance. Inspired by this, we set the confidence score for the |EOS| token to zero and observe improved performance for LLaDA. For example, using the same inference configuration as LLaDA, setting the |EOS| token's confidence score to zero improved HumanEval scores from 47.6 to 49.4. Consequently, we adopted this setting for evaluation. The MTBench, AlignBench, and the ArenaHard benchmark results are obtained via the "gpt-4-32k" API provided by OpenAI.

To ensure a fair comparison, we employ both diffusion sampling and semi-autoregressive sampling for LLaDA and LLaDA 1.5 and report the best results. We tuned the answer length over {64, 128, 256, 512, 1024}, for semi-autoregressive sampling, we tuned the block length over {8, 16, 32, 64, 128}. As shown in Table 6, we detail the best inference configurations employed for each benchmark.

Table 4: **Ablation study on sampling strategies across key benchmarks.** We evaluate the impact of diffusion sampling, semi-autoregressive sampling, and low-confidence remasking on LLaDA 8B Instruct and LLaDA 1.5 8B.

	LLaDA 8B Instruct	LLaDA 1.5 8B
GSM8K		
Diffusion Sampling	53.2	55.7
Low-Confidence Remasking	69.4	70.3
Semi-Autoregressive Sampling	78.6	83.3
HumanEval		
Diffusion Sampling	12.2	17.1
Low-Confidence Remasking	49.4	47.0
Semi-Autoregressive Sampling	47.6	52.4
IFEval		
Diffusion Sampling	55.2	59.4
Low-Confidence Remasking	62.2	60.1
Semi-Autoregressive Sampling	61.7	66.2

Moreover, to test VRPO's generality, we evaluate LLaDA and LLaDA 1.5 on the representative benchmarks GSM8K, HumanEval, and IFEval using three sampling strategies: diffusion sampling, semi-autoregressive sampling, and low-confidence remasking. The ablation results, summarized in Table 4, demonstrate the consistent performance gains of LLaDA 1.5 over LLaDA 8B Instruct across most sampling strategies. The optimal strategies identified in this study align with those reported in Table 1.

Table 5: Comparison of LLaDA and LLaDA 1.5 under training randomness. LLaDA 1.5 reports mean \pm standard deviation and 95% confidence intervals across three VRPO runs, varying only the random seed.

Task	LLaDA	LLaDA 1.5
GSM8K	78.6	82.9 ± 0.6 (95% CI: [81.4, 84.3])
Math	42.2	43.0 ± 0.3 (95% CI: [42.2, 43.8])
GPQA	33.3	35.7 ± 1.0 (95% CI: [33.1, 38.3])
HumanEval	49.4	52.0 ± 0.7 (95% CI: [50.3, 53.7])
MBPP	41.0	42.3 ± 0.8 (95% CI: [40.4, 44.1])
IFEval	62.2	65.1 ± 0.9 (95% CI: [62.8, 67.4])

To evaluate the impact of randomness on model performance, we retrain LLaDA using VRPO with two additional random seeds, resulting in three independent runs. All training and evaluation procedures are kept identical across runs, with only the random seed varied to isolate the effect of training stochasticity. We omit MTBench, AlignBench, and ArenaHard because they rely on LLM-as-a-judge scoring, which introduces evaluator variance. We report the mean, standard deviation, and 95% confidence intervals (calculated using the *t*-distribution) of performance across the three runs in Table 5. As shown, LLaDA 1.5 consistently outperforms LLaDA across benchmarks, achieving higher mean scores with small standard deviations, indicative of stable performance across runs. For most tasks, the 95% confidence intervals for LLaDA 1.5 lie entirely above the corresponding LLaDA means, evidencing consistent improvements and supporting the reliability of VRPO. Because the inference is deterministic, we report a single baseline score without statistical significance.

Table 6: **Inference configurations for LLaDA and LLaDA 1.5.** MDMs benefit from various sampling strategies. We list inference configurations for LLaDA and LLaDA 1.5 that achieve optimal performance. A block length smaller than the answer length indicates the use of diffusion semi-autoregressive sampling; otherwise, diffusion sampling is employed.

	LLaDA 8B Instruct		LLaDA 1.5 8B		
	Block length	Answer length	Block length	Answer length	
GSM8K	8	256	16	256	
Math	64	512	128	1024	
GPQA	64	64	16	256	
HumanEval	512	512	32	512	
MBPP	256	256	32	512	
IFEval	512	512	32	512	
Arena-Hard	128	1024	128	1024	
AlignBench	32	512	32	512	
MTBench	32	512	16	256	

E.5 CALCULATION OF VARIANCES

We estimated the variance of the score estimator, the variance of the loss, and the variance of the gradient in Table 2. We sampled 128 preference data samples, processed with a batch size of 16. For each data point, 8 independent calculations were performed. $\pi_{\rm ref}$ was initialized using LLaDA, while π_{θ} was a model checkpoint from the VRPO training process. Given the large model size, storing full gradients for each calculation was computationally prohibitive. Therefore, for estimating the variance of the gradient, we specifically recorded the gradients of the up-projection layer within the Feed-Forward Network module of the first transformer block to serve as a proxy for the full gradient.

F CASE STUDY

In this section, we present additional case studies of LLaDA 1.5. First, Table 7 and Table 8 illustrate the advantages of LLaDA 1.5 over LLaDA in alignment tasks. Table 9 and Table 10 provide a comparison between LLaDA and LLaDA 1.5 on mathematical tasks.

1620 1621 1622 1623 1624 Table 7: Alignment cases of LLaDA 8B Instruct and LLaDA 1.5 (1). 1625 1626 1627 **Prompt** Write a brief biography of a person named "Brilliant Le Hou". Do not use 1628 commas in your reply. Highlight at least 3 sections with markdown, i.e. 1629 *highlighted section*. The biography should start with the name of the person. LLaDA LLaDA 1.5 1633 Brilliant Le Hou was born in 1985 in Brilliant Le Hou was born in 1945 in a Paris, France. From a young age, he small village in France. From a young showed a keen interest for science and age he showed a remarkable talent for 1635 art and music. His parents encourtechnology. He attended the prestigious École Polytechnique, where he aged him to pursue his passions and 1637 excelled in mathematics and engineerhe quickly became a renowned artist ing. After graduating, Le Hou began and musician. 1639 *Early Life* Brilliant Le Hou grew up his career at MIT, where he conducted 1640 in a small village surrounded by beaugroundbreaking research in artificial 1641 tiful landscapes. His parents were both intelligence. 1642 *highlighted section* artists and they instilled in him a love 1643 for art and music. He spent his child-At MIT, Le Hou developed a new algo-1644 hood painting and playing the guitar. rithm that significantly improved the *Career* Brilliant Le Hou's career 1645 accuracy of machine learning models. began in the 1960s when he started 1646 This breakthrough earned him numerexhibiting his paintings in local galous awards and recognition in the sci-1647 leries. His unique style and talent entific community. 1648 quickly gained him a following. He *highlighted section* After working at MIT, Le Hou also started performing in local cafes 1650 founded a tech company called Briland soon became a popular musician. *Achievements* Brilliant Le Hou reliantTech Inc. The company quickly 1652 ceived numerous awards and accobecame a leader in the field of AI, with lades throughout his career. He won products that revolutionized industries such as healthcare, finance, and transthe prestigious Prix de Rome in 1975 portation. and was inducted into the French Mu-*highlighted section* sic Hall of Fame in 1980. His work 1656 has been featured in major galleries Le Hou's contributions to AI have had 1657 and museums around the world. a profound impact on society. His 1658 *Personal Life* Brilliant Le Hou was work has led to advancements in med-1659 married to a fellow artist for many ical diagnostics, financial forecasting, years. They had two children together. and autonomous vehicles. He has also 1661 He was known for his kindness and been involved in various philanthropic activities, focusing on improving edugenerosity and often donated his earn-1663 cation and environmental sustainabilings to charitable causes. 1664 *Legacy* Brilliant Le Hou's legacy is one of creativity and generosity. His *highlighted section* art and music continue to inspire people around the world. His contributions to charitable causes have left a 1668 lasting impact on the community. 1669 1671

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 Table 8: Alignment cases of LLaDA 8B Instruct and LLaDA 1.5 (2). 1687 1688 **Prompt** 1689 I need a joke involving Zoe and bubbles that contains at least 3 placeholders 1690 represented by square brackets such as [date]. LLaDA LLaDA 1.5 1693 Zoe was blowing bubbles on [date] Zoe was at a bubblegum party and she when she heard a loud pop. She looked saw a bubble that was [size] feet wide. 1694 down and saw a bubble that had burst, She tried to pop it, but it just kept [bub-1695 causing her to burst into laughter. bling] and [bubbling] and [bubbling]! Finally, she decided to take a break and go for a [nap] in the shade. When 1698 she woke up, the bubble was still [bub-1699 bling] and [bubbling] and [bubbling]! 1700 Zoe laughed, "I guess this bubble is 1701 just [size] of a party!" 1702 **Prompt** 1703 Suggest two names for a new type of tonic. Include the keyword "brand" 1704 each time, followed by suggested name in double angular brackets, such as 1705 «American Tonic». 1706 First repeat the request above word for word without change, then give your answer. Do not say any words or characters before repeating the request. 1708 LLaDA LLaDA 1.5 1709 Suggest two names for a new type of Suggest two names for a new type of 1710 tonic. Include the keyword "brand" tonic. Include the keyword "brand" 1711 each time, followed by suggested each time, followed by suggested 1712 name in double angular brackets, such name in double angular brackets, such 1713 as «American Tonic». as «American Tonic». 1714 Brand «Serenity Tonic» Brand «Elysian Tonic» 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725

1728 1729 1730 1731 1732 1733 1734 Table 9: Math cases of LLaDA and LLaDA 1.5 (1). 1735 1736 1737 **Prompt** Find $9^{-1} \pmod{100}$, as a residue modulo 100. (Give an answer between 0 1738 and 99, inclusive.) 1739 Please reason step by step, and put your final answer within \boxed{}. 1740 1741 LLaDA 1.5 To find the modular in-LLaDA verse of 9 modulo 100, we need to 1742 To find the modular inverse of 9 modfind an integer x such that $9x \equiv 1$ ulo 100, we need to find an integer x1743 such that: (mod 100). This means we need to solve the congruence 9x - 100k = 11745 $9x \equiv 1 \pmod{100}$ for some integer k. 1746 We can use the Extended Euclidean 1747 This means we need to solve the con-Algorithm to find this inverse. The gruence: 1748 Extended Euclidean Algorithm not 1749 only finds the greatest common divi- $9x - 1 \equiv 0 \pmod{100}$ 1750 sor (gcd) of two numbers but also pro-1751 or equivalently: vides the coefficients x and k such that 1752 9x - 100k = 1. 9x - 1 = 100k1753 First, we apply the Euclidean Algorithm to find the gcd of 9 and 100: 1754 for some integer k. Rearranging this 1. $100 = 9 \cdot 11 + 1$ equation, we get: 1755 $2.9 = 1 \cdot 9 + 0$ 1756 The gcd of 9 and 100 is 1, which con-9x = 100k + 11757 firms that an inverse exists. 1758 We can simplify this equation by di-Next, we use the Extended Euclidean viding both sides by 9: 1759 Algorithm to express 1 as a combina-1760 tion of 9 and 100: $x = 11k + \frac{1}{0}$ 1761 From the first equation: 1762 Since x must be an integer, $\frac{1}{9}$ must $1 = 100 - 9 \cdot 11$ 1763 also be an integer. This implies that 1764 This gives us: 9 must be a divisor of 1, which is not 1765 possible because 9 and 1 are coprime $1 = 100 - 9 \cdot 11$ 1766 (they have no common factors other 1767 than 1). Therefore, there is no integer Thus, x = -11 and k = 1. However, 1768 x such that $9x \equiv 1 \pmod{100}$. we need x to be a positive residue mod-1769 ulo 100. Therefore, we convert -11 to Thus, the modular inverse of 9 modulo 1770 a positive equivalent by adding 100: 100 is: 1771 -11 + 100 = 89-11772 1773 So, the modular inverse of 9 modulo 100 is: 1774 89 1775 1776 1777 1778

1782 1783 1784 1785 1786 1787 1788 1789 1790 Table 10: Math cases of LLaDA and LLaDA 1.5 (2). 1791 1792 **Prompt** 1793 Question: The ratio of men to women on a bus is 5:9. If the total number of passengers on the bus is 84, and 20 women alight from the bus at the next 1795 stop, how many women have remained on the bus? 1796 Let's think step by step 1797 Answer: 1798 LLaDA LLaDA 1.5 1799 1. The ratio of men to women on the 1. The ratio of men to women on the bus is 5:9. This means for every 5 men, bus is 5:9. This means for every 5 men, 1801 there are 9 women. there are 9 women. 2. The total number of passengers on 2. The total number of passengers on 1803 the bus is 84. the bus is 84. 3. The total number of parts in the 3. The total number of parts in the ratio is 5 + 9 = 14. ratio is 5 + 9 = 14. 1806 4. To find the number of men and 4. To find the number of men and women, we divide the total number women, we divide the total number of passengers by the total number of of passengers by the total number of 1808 parts: parts: 1809 - Number of men = 84 passengers / 14 - Number of passengers per part = 84 / 1810 parts = 6 men14 = 61811 - Number of women = 84 passengers / - Number of men = 5 parts * 6 passen-1812 gers per part = 3014 parts = 9 women1813 5. Now, 20 women alight from the bus - Number of women = 9 parts * 6 pas-1814 at the next stop. sengers per part = 541815 6. To find the number of women re-So, initially, there are 30 men and 54 1816 maining on the bus, we subtract the women on the bus. 5. At the next stop, 20 women alight 1817 number of women who alight from the initial number of women: from the bus. 1818 - Number of women remaining = Initial 6. To find the number of women re-1819 number of women - Number of women maining on the bus, we subtract the 1820 number of women who alighted from who alight 1821 - Number of women remaining = 9 the initial number of women: women - 20 women - Number of women remaining = 54 - Number of women remaining = 9 women - 20 women = 34 women 1824 The answer is 34 1825 Therefore, the number of women re-1826 maining on the bus is 9. 1827 The answer is 9.> 1830

1831