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Abstract

Training a precise binary classifier with limited
supervision in weakly supervised learning sce-
narios holds considerable research significance in
practical settings. Leveraging pairwise unlabeled
data with confidence differences has been demon-
strated to outperform learning from pointwise un-
labeled data. We theoretically analyze the various
supervisory signals reflected by confidence differ-
ences in confidence difference (ConfDiff) classifi-
cation and identify challenges arising from noisy
signals when confidence differences are small.
To address this, we partition the dataset into two
subsets with distinct supervisory signals and pro-
pose a consistency regularization-based risk es-
timator to encourage similar outputs for similar
instances, mitigating the impact of noisy supervi-
sion. We further derive and analyze its estimation
error bounds theoretically. Extensive experiments
on benchmark and UCI datasets demonstrate the
effectiveness of our method. Additionally, to ef-
fectively capture the influence of real-world noise
on the confidence difference, we artificially per-
turb the confidence difference distribution and
demonstrate the robustness of our method under
noisy conditions through comprehensive experi-
ments.

1. Introduction
Weakly supervised learning is an essential research field in
machine learning, focusing on training accurate predictive
models under conditions of low supervision or imprecise la-
beling. Due to the difficulty of obtaining precise supervision
in real-world scenarios, weakly supervised learning holds
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significant research value for effectively leveraging limited
available supervision information. Consequently, the field
of weakly supervised learning has increasingly attracted at-
tention from experts and scholars in recent years, leading to
the emergence of many typical weakly supervised learning
methods, such as multi-instance learning (Zhou et al., 2009;
Zhang & Zhou, 2009; Wu et al., 2018; Shi et al., 2020),
positive and unlabeled (PU) learning (Kiryo et al., 2017;
Hammoudeh & Lowd, 2020; Zhao et al., 2022; Luo et al.,
2021; Wang et al., 2023), and others.

A prevalent idea in weakly supervised classification involves
maximizing the utilization of pointwise weakly supervised
information (Feng et al., 2021), thereby prompting the devel-
opment of various techniques based on soft labels (Nguyen
et al., 2014; Xue & Hauskrecht, 2016), mixup (Zhang et al.,
2017; Verma et al., 2019; Yun et al., 2019; Kim et al., 2020;
Hendrycks et al., 2019; Li et al., 2021), and others. Never-
theless, it is undeniable that annotating pointwise informa-
tion in real-world classification problems is a complex and
laborious task, further compounded by the personal biases
of annotators which frequently exacerbate the probability
of inaccuracies. In such scenarios, pairwise comparison
information between data points may be more readily ob-
tainable in real-world settings than pointwise information,
and it often exhibits greater resistance to biases compared
to pointwise semi-supervised information (Bao et al., 2018).
For instance, in medical diagnosis, accurately determining
whether a patient has a disease solely based on their pre-
sented symptoms is challenging. However, comparing the
symptoms of this patient with those of others provides more
accessible information and reduces the probability of misdi-
agnosis. Extensive research has been conducted on pairwise
analysis in numerous binary classification problems, leading
to the development of risk minimization functions capable
of inducing binary classifiers across various combinations
of pairwise similarities, dissimilarities, and unlabeled data
(Bao et al., 2018; Shimada et al., 2021; Lu et al., 2018; 2020;
Wang et al., 2024).

In recent work, pairwise comparison (Pcomp) classification
has shown that in tackling difficult point labeling tasks, peo-
ple can more easily gather comparative information between
two instances, constituting a form of weakly supervised in-
formation (Feng et al., 2021). However, in real-world appli-
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cation scenarios, individuals may not only distinguish which
of two instances is more likely to be classified as positive
over the other but also gauge the extent of the disparity in
their confidence levels regarding positivity. In light of this
framework, Wang et al. introduce a new pairwise weakly su-
pervised classification problem called confidence-difference
(ConfDiff) classification, and propose the corresponding
ConfDiff method (Wang et al., 2024). To establish confi-
dence difference, the ConfDiff method first utilizes binary-
labeled data to train a probability classifier. Subsequently,
pairwise instances are fed into the classifier to generate pos-
terior probabilities, from which confidence differences are
computed based on the differences between these posterior
probabilities. However, through analysis of the various su-
pervised signals in the ConfDiff method, we identify that
the method encourages models to predict opposite classes
for pairwise instances, as supported by both experimental
and theoretical perspectives. This prediction direction is
valid when the confidence difference is large. However,
when the confidence difference is small, the instances may
belong to either the same or different classes, and such a
predictive tendency may lead the model to incorrectly clas-
sify instances from the same class as belonging to different
classes, thereby introducing less reliable supervised signals.

To handle this problem, in this paper, we concentrate on
mitigating the impact of these less reliable supervised sig-
nals when confidence differences are small. Specifically, we
analyze the different supervised signals induced by varying
confidence differences in the ConfDiff method (Wang et al.,
2024). We find that pairwise instances with small confi-
dence differences tend to introduce less reliable supervised
signals, while those with larger confidence differences pro-
vide more reliable supervision. Based on this observation,
we propose a ConfDiff classification method that incorpo-
rates consistency regularization. By partitioning the dataset
based on the reliability of supervised signals, we introduce
a consistency regularization term for the subset with less re-
liable supervised signals, encouraging the model to produce
similar outputs for pairwise instances with small confidence
differences. Meanwhile, for the subset with more reliable
supervised signals, we preserve the benefit of these reliable
supervised signals. Experimental results demonstrate that
our method outperforms existing baselines in most cases
and exhibits strong robustness even under artificial noise
interference.

In summary, this paper’s key contributions can be outlined
as follows:

• We introduce a method for ConfDiff classification
which aims to enhance the accuracy of weakly
supervised classification by constructing risk esti-
mator through Consistency Risk and Consistency
Regularization (CRCR).

• We theoretically analyze various supervised signals re-
flected by different confidence differences in ConfDiff
classification. Additionally, we theoretically estimate
the error bounds of our proposed method.

• We validate the effectiveness of our method through
experiments by comparing it with existing baselines on
datasets of varying scales. In addition, the robustness
of our method is further validated under the influence
of artificially added noise.

2. Preliminaries
In this section, we briefly review the problem definitions of
binary classification, binary classification with soft labels,
and ConfDiff classification.

Formulation of binary classification Binary classifica-
tion is a typical task in the field of supervised learning,
where the goal is to induce a classifier that partitions the
data space into two categories. Formally, let X = Rd and
Y = {−1,+1} be the d-dimensional feature space and la-
bel space, respectively. The dataset DBC = Dp

BC ∪Dn
BC for

binary classification consists of a positive dataset Dp
BC and

a negative dataset Dn
BC:

Dp
BC = {(xp

i ∈ X , ypi = +1)}np

i=1, x
p
i

i.i.d.∼ p(x|y = +1),

Dn
BC = {(xn

i ∈ X , yni = −1)}nn
i=1, x

n
i

i.i.d.∼ p(x|y = −1),

where np and nn denote the number of positive and negative
instances, respectively. Let π denote the positive class prior
p(y = +1) and ℓ : R× Y → R+ be a binary loss function.
Then binary classification induces a classifier g : X → R
from DBC by minimizing the following classification risk:

R(g) =πEp(x|y=+1)[ℓ
(
g(x
)
,+1)]

+ (1− π)Ep(x|y=−1)[ℓ
(
g(x),−1

)
]. (1)

Formulation of binary classification with soft labels In
binary classification, soft labels typically represent the confi-
dence of each sample belonging to the positive class. More-
over, several studies have shown that using soft labels rather
than hard labels can more accurately reflect the data distri-
bution (Szegedy et al., 2016), thus enhancing the accuracy
of training binary classifiers. Formally, let qi denote the
positive confidence of xi, the dataset DBC-soft for binary
classification can be defined as follows:

DBC-soft = {(xi, qi)}ni=1, xi
i.i.d.∼ p(x),

qi = p(yi = +1|xi),

where p(x) = πp(x|y = +1) + (1 − π)p(x|y = −1).
Subsequently, the risk minimization objective function for
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binary classification with soft labels can be reformulated
into the following form:

RBC-soft(g) = Ep(x)[qℓ
(
g(x),+1

)
+ (1− q)ℓ

(
g(x),−1

)
].

(2)

Formulation of confidence-difference (ConfDiff) classifi-
cation Given that pairwise supervision is typically more
accessible than pointwise supervision and it’s feasible not
only to determine which sample in an unlabeled data pair
is more likely positive but also quantify the confidence dif-
ference between them in practical scenarios, ConfDiff clas-
sification precisely serves as a weakly supervised classifi-
cation tailored to address this scenario. It specifically deals
with weakly supervised classification problems where train-
ing data comprises only pairwise unlabeled data and the
confidence difference associated with each pair. Formally,
let ci = c(xi,x

′
i) = p(y′i = +1|x′

i) − p(yi = +1|xi)
be the confidence difference between pairwise unlabeled
data (xi,x

′
i) drawn from an independent and identically dis-

tributed probability density p(x,x′) = p(x)p(x′). Let DCD

denote a pairwise dataset drawn from the pairwise unlabeled
data and the confidence differences between them:

DCD = {
(
(xi,x

′
i), ci

)
}ni=1, xi

i.i.d.∼ p(x), x′
i
i.i.d.∼ p(x).

Recent studies deal with the ConfDiff classification prob-
lem in such challenging scenarios (Wang et al., 2024). They
deduce an unbiased risk estimator for confidence-difference
classification from Eq.1 and train a binary classifier solely
utilizing unlabeled data and confidence differences by mini-
mizing it. The classification risk can be expressed as:

RCD(g) =
1

2
Ep(x,x′)[L(x,x′) + L(x′,x)], (3)

where L(x,x′) =
(
π − c(x,x′)

)
ℓ
(
g(x),+1

)
+
(
1 − π −

c(x,x′)
)
ℓ
(
g(x′),−1

)
. Then Eq.3 can be refined as follows:

RCD(g) =
1

2
Ep(x,x′)[

(
π − c(x,x′)

)
ℓ
(
g(x),+1

)
+
(
1− π − c(x,x′)

)
ℓ
(
g(x′),−1

)
+
(
π + c(x,x′)

)
ℓ
(
g(x′),+1

)
+
(
1− π + c(x,x′)

)
ℓ
(
g(x),−1

)
]. (4)

3. The Proposed Method
In this section, we introduce the proposed ConfDiff method.

3.1. Analysis of the ConfDiff Method

In the ConfDiff method, pairwise instances with small confi-
dence differences |c(x,x′)| are prone to introducing less re-
liable supervised signals, while those with larger confidence

Figure 1. The Accuracy for the binary classifier about different pro-
portion of pairwise data with |c(x,x′)| > 0.5 on two benchmark
datasets MNIST (left) and CIFAR-10 (right). (The value of the
x-axis values ∗min(π, 1− π) denotes the proportion of pairwise
instances with |c(x,x′)| > 0.5.)

differences |c(x,x′)| are considered to provide stronger and
more reliable supervised signals.

To explain this, we consider the general form of many com-
monly used losses for the prediction function g(x) and target
y (Zhang et al., 2021):

L = {ℓ
(
g(x), y

)
|ℓ
(
g(x),y

)
= h

(
g(x)

)
− yg(x)

for some function h}. (5)

Substituting the form of the loss function from Eq.5 into
Eq.4, then the classification risk of ConfDiff method can be
rewritten as follows and the proof details are presented in
the Appendix B:

RCD(g) =
1

2
Ep(x,x′)

[(1
2
− c(x,x′)

)
ℓ
(
g(x),+1

)
+
(1
2
+ c(x,x′)

)
ℓ
(
g(x′),+1

)]
+
1

2
Ep(x,x′)

[(1
2
+ c(x,x′)

)
ℓ
(
g(x),−1

)
+
(1
2
− c(x,x′)

)
ℓ
(
g(x′),−1

)]
+
1

2
Ep(x,x′)

[
(1− 2π)

(
g(x) + g(x′)

)]
, (6)

where the first and second terms denote the pairwise in-
stance (x,x′) contrastive losses for positive and negative
class predictions, respectively; while the third term serves
as a regularization. We first analyze the critical compo-
nents of the first term, where the weights 1

2 − c(x,x′) and
1
2 + c(x,x′) determine the contributions of x and x′ to the
positive class prediction loss, respectively. These weights
demonstrate a natural balance as they sum to 1, with 1

2
acting as a critical threshold that determines prediction di-
rectionality. Since the weights 1

2 − c(x,x′) and 1
2 + c(x,x′)

necessarily fall on opposite sides of this threshold, they cre-
ate a contrastive learning dynamic: when one instance is
pushed toward stronger positive class prediction, the other
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is simultaneously pushed toward weaker positive class pre-
diction (effectively toward the negative class). In other
words, the first loss term ensures that x and x′ adjust their
predictions in opposite directions, thereby emphasizing the
predictive divergence of pairwise instances in the positive
class predictions. Similarly, the second loss term forces
the instances to diverge in their predictions for the negative
class.

Referring to the definition of c(x,x′), the magnitude of
confidence difference |c(x,x′)| naturally reflects the relia-
bility of the supervised signal between pairwise instances.
When |c(x,x′)| is large, there is a strong indication that x
and x′ likely belong to different classes, as their posterior
probability difference exceeds the classification threshold.
Conversely, when |c(x,x′)| is small, the supervised sig-
nal becomes less reliable; x and x′ may belong to either
the same class or different classes, as the posterior differ-
ence is insufficient to provide a precise classification signal.
Therefore, we consider that pairwise instances with larger
|c(x,x′)| tend to provide more reliable supervised signals,
while those with smaller |c(x,x′)| may contribute less reli-
able supervised signals in the existing ConfDiff method.

To further validate this perspective, we conduct experiments
on MNIST and CIFAR-10 datasets by varying the propor-
tion of the pairwise instances with |c(x,x′)| > 0.5, as 0.5
corresponds to the natural classification decision boundary
where the posterior probability difference equals the binary
classification threshold. The empirical results (shown in
Figure 1) illustrate the accuracy under different proportions
of the pairwise instances with |c(x,x′)| > 0.5. We observe
a positive correlation between classification accuracy and
the proportion value. Notably, when the proportion is 0, the
accuracy is approximately 0.5, indicating that the classifier
performs nearly at random. These findings demonstrate
that the pairwise instances with |c(x,x′)| > 0.5 provide
stronger and more reliable supervised signals and dominate
the contribution to RCD.

3.2. CRCR Method

Based on the discussion in Section 3.1, it has been demon-
strated that pairwise instances with larger |c(x,x′)| tend to
provide more reliable supervised signals, while those with
smaller |c(x,x′)| provide less reliable supervised signals.
To address this issue, we propose setting a threshold θ to par-
tition the dataset into two subsets: one containing pairwise
instances with |c(x,x′)| > θ (more reliable supervised sig-
nals, denoted as DS) and the other with |c(x,x′)| ≤ θ (less
reliable supervised signals, denoted as DC). For DC , we
aim to provide additional guidance to direct the predictions
of pairwise instances toward more appropriate outcomes.
Specifically, for pairwise instances with smaller |c(x,x′)|,
we encourage the model to produce more similar outputs

for these pairs, as they likely belong to the same class. To
achieve this, we introduce a consistency regularization term
that promotes alignment between the confidence differences
and the model’s outputs. Meanwhile, for DS , we retain
the original strategy to preserve the effectiveness of the
predictions driven by this strong guidance.

Our objective is to induce a classifier g: Rd → Y from D
by minimizing the expected risk with respect to the data
distribution:

RCRCR(g)

=
1

2
EpDS (x,x′)

[(
π − c(x,x′)

)
ℓ
(
g(x),+1

)
+
(
1− π − c(x,x′)

)
ℓ
(
g(x′),−1

)
+
(
π + c(x,x′)

)
ℓ
(
g(x′),+1

)
+
(
1− π + c(x,x′)

)
ℓ
(
g(x),−1

)]
+αEpDC (x,x′)[

( 1

log (|c(x,x′)|+ ε)

)
· ∥g(x)− g(x′)∥2],

(7)

where α denotes the parameter of the consistency regulariza-
tion term, and ε = 1.1 is a smoothing parameter introduced
to mitigate numerical issues when |c(x,x′)| approaches or
equals zero. Let

∣∣DS
∣∣ = n1 and

∣∣DC
∣∣ = n2. Then the

empirical risk estimator can be expressed as follows:

R̂CRCR(g)

=
1

2n1

n1∑
i=1

(
(π − ci)ℓ

(
g(xi),+1

)
+ (1− π − ci)ℓ

(
g(x′

i),−1
)
+ (π + ci)ℓ

(
g(x′

i),+1
)

+ (1− π + ci)ℓ
(
g(xi),−1

))
+

α

n2

n2∑
i=1

(
1

log (|ci|+ ε)
· ∥(g(xi)− g(x′

i)∥2

)
. (8)

3.3. Analysis of Error Bound

Assuming there exists a constant Cg such that
supg∈G ∥G∥∞ ≤ Cg, and another constant Cℓ such
that sup|z|≤Cg

ℓ(z, y) ≤ Cℓ. Additionally, we presume
the binary loss function ℓ(z, y) to be Lipschitz continuous
with respect to both z and y, and to have a Lipschitz
constant denoted by Lℓ. Rn1

(G) and Rn2
(G) denote the

Rademacher complexity of unlabeled data G with size n1

and n2, respectively.

Theorem 3.1. Let g∗ = arg ming∈GR(g) be the mini-
mizer of the true classification risk in Eq.1 and ĝCRCR =
arg ming∈GR̂CRCR(g) denotes the minimizer of the risk
form in Eq.8. Then for any δ > 0, we believe that the
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following expression holds with a probability at least 1− δ:

R(ĝCRCR)−R(g∗) ≤ (8 + 4β)LℓRn1
(G)

+
6α

log(ε)
Rn2

(G) + 2Cℓ

√
ln(2/δ)

2n1
. (9)

Due to the space limitation, the proof details are presented
in Appendix A. As n1, n2 → ∞, the Rademacher complex-
ities Rn1

(G) and Rn2
(G) decrease to zero, and the third

term involving 1/
√
n1 also diminishes. Furthermore, the

convergence rates of Rn1
(G) and Rn2

(G) are O(1/
√
n1)

and O(1/
√
n2), while the third term’s rate is dominated

by O(1/
√
n1). Consequently, as n → ∞, R(ĝCRCR) →

R(g∗), and the overall convergence rate is characterized by
O
(
max(1/

√
n1, 1/

√
n2)
)
.

3.4. Empirical Risk Correction

It can potentially lead to severe overfitting problems when
the empirical risk becomes negative due to the application
of an unbiased risk estimator. Fortunately, risk correction
functions f(·) can be utilized to mitigate this issue. Ex-
amples include the absolute value function or the rectified
linear unit (ReLU) function. Consequently, the corrected
risk estimator can be expressed as follows:

R̃CRCR(g) =
1

2n1
f
( n1∑
i=1

(π − ci)ℓ
(
g(xi),+1

))
+

1

2n1
f
( n1∑
i=1

(1− π − ci)ℓ
(
g(x′

i),−1
))

+
1

2n1
f
( n1∑
i=1

(π + ci)ℓ
(
g(x′

i),+1
))

+
1

2n1
f
( n1∑
i=1

(1− π + ci)ℓ
(
g(xi),−1

))
+ α

1

n2
f

(
n2∑
i=1

(
1

log (|ci|+ ε)
· ∥(g(xi)− g(x′

i)∥2

))
.

(10)

Additionally, in our experiments, we report results for two
variants of our method that utilizes the absolute value risk
correction function (CRCR-ABS) and ReLU risk correction
function (CRCR-ReLU).

4. Experiments
In this section, we empirically evaluate the proposed CRCR
method.

4.1. Experimental Settings

Datasets To thoroughly evaluate our method, we employ
four popular benchmark datasets, including MNIST (Le-

Cun et al., 1998), Kuzushiji-MNIST (K-MNIST) (Clanuwat
et al., 2018), Fashion-MNIST (F-MNIST)(Xiao et al., 2017)
and CIFAR-10 (Krizhevsky, Technical report, University of
Toronto, 2009). Additionally, experiments are conducted
on two UCI datasets 1, including Optdigits and Pendigits.
Since these datasets contain multiple classes, we categorize
the class labels into positive and negative classes, effectively
transforming them into binary classification datasets. Fur-
thermore, for each dataset, we randomly select m% × n
instances to artificially add noise, where the noise ratio m is
varied over [0, 50, 75, 100]. As a result, in our experiments,
we generate 24 synthetic datasets in total.

Moreover, we choose different models as backbones based
on the varying feature dimensions of each dataset. Specif-
ically, for MNIST, K-MNIST and F-MNIST, we use a 3-
layer multilayer perceptron (MLP) with three hidden layers
of width 300 equipped with the ReLU (Nair & Hinton,
2010) activation function and batch normalization (Ioffe &
Szegedy, 2015). For CIFAR-10, we train a ResNet-34 model
(He et al., 2016) as the backbone. For all UCI datasets, we
use a linear model for training. The detailed information for
each dataset is presented in Table 1.

Baseline methods We employ seven state-of-the-art algo-
rithms for comparison, including four Pcomp methods (i.e.,,
Pcomp-Teacher, Pcomp-ABS, Pcomp-ReLU and Pcomp-
Unbiased) and three ConfDiff methods (i.e.,, ConfDiff-ABS,
ConfDiff-ReLU and ConfDiff-Unbiased). Details of base-
lines are described as follows:

• Pointwise Binary Classification with Pairwise Confi-
dence Comparisons (Pcomp) (Feng et al., 2021): A
weakly supervised learning method that trains a binary
classifier using pairwise comparison data, composed
of unlabeled data pairs where one is more likely to
be positive, instead of using pointwise data. Pcomp
comprises four versions: Pcomp-Teacher, Pcomp-ABS,
Pcomp-ReLU, and Pcomp-Unbiased. We use the code
provided by its authors 2.

• Binary Classification with Confidence Difference
(ConfDiff) (Wang et al., 2024): A weakly supervised
learning method that trains a binary classifier using
pairwise comparison data, which consists of pairwise
unlabeled data where the difference in the probabili-
ties of being positive (confidence difference) is known.
ConfDiff comprises three versions: ConfDiff-ABS,
ConfDiff-ReLU, and ConfDiff-Unbiased. We utilize
the publicly available code online3.

1http://archive.ics.uci.edu/
2https://lfeng1995.github.io/codedata.html
3https://github.com/wwangwitsel/ConfDiff
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Table 1. Detailed characteristics of datasets.
Dataset #Instance #Trainset #Testset #Fea Pos Class Neg Class Backbone
MNIST 70,000 15,000 5,000 28× 28 0,2,4,6,8 1,3,5,7,9 3-layer MLP

F-MNIST 70,000 15,000 5,000 28× 28 0,2,4,6,8 1,3,5,7,9 3-layer MLP
K-MNIST 70,000 15,000 5,000 28× 28 0,2,4,6,8 1,3,5,7,9 3-layer MLP
CIFAR-10 60,000 10,000 5,000 3× 32× 32 2,3,4,5,6,7 0,1,8,9 ResNet-34
Optdigits 5,620 1,200 1,125 62 0,2,4,6,8 1,3,5,7,9 Linear
Pendigits 10,992 2,500 2,199 16 0,2,4,6,8 1,3,5,7,9 Linear

Implementation details For each comparison method
under every experimental configuration, we execute the
code five times, employing the logistic loss function and
Adam optimizer consistently. Specifically, during the train-
ing phase, each run is independently performed for 200
epochs with a batch size of 256. In balanced scenarios (i.e.,,
π = 0.5), the learning rate is set to 10−3 across all datasets,
with weight decay parameters set to 10−5 for MNIST, K-
MNIST, F-MNIST, and CIFAR-10, 10−4 for Optdigits, and
10−3 for Pendigits. In imbalanced scenarios (i.e.,, π = 0.2),
the learning rate is set to 10−4 for MNIST and K-MNIST,
and 10−3 for the remaining datasets, with weight decay
parameters set to 10−4 for K-MNIST and Optdigits, and
10−5 for the remaining datasets. During the pretraining
phase, each run is independently executed for 20 epochs
with a batch size of 256. The learning rate and weight decay
remain consistent with those in the training phase.

4.2. Construction of the confidence differences

In this subsection, we present a method for generating con-
fidence differences to validate the robustness of our method
under noisy conditions.

The confidence differences construction method. The
ConfDiff method generates class posterior probabilities us-
ing a logistic regression-based probabilistic classifier trained
on labeled data and calculates the confidence difference ac-
cording to its definition. Although this generation method
facilitates comprehensive experimental analysis, it fails to
accurately reflect the posterior probability distribution de-
rived from manual annotations in real-world scenarios. To
address this limitation, we propose an enhanced method that
incorporates a posterior probability construction method
based on outlier detection. This integration enables us to
achieve a more uniform and realistic distribution while main-
taining the fundamental definition of confidence differences.
Our method consists of three main components: probabil-
ity density estimation, outlier identification, and posterior
probability rescaling.

First, we apply a Gaussian kernel-based probability density
estimation method to the discrete posterior probabilities:

d̂(xi) =
1

nh
√
2π

n∑
j=1

exp

(
− (xi − xj)

2

2h2

)
, (11)

where d̂(xi) represents the estimated probability density
function at instance xi and exp

(
− (xi−xj)

2

2h2

)
is the standard

Gaussian kernel function. The parameter h denotes the
kernel bandwidth controlling the degree of smoothing and
is adaptively set based on the standard deviation of the
probability distributions.

Next, we identify instances with densities below a threshold
o as outliers, where o is also adaptively determined based on
different probability density distributions. In our work, o is
set at the 2nd percentile of the probability density to avoid
excessive filtering. For the remaining non-outlier instances,
we rescale their posterior probabilities to ensure a more
uniform distribution within the range [0, 1]:

p(yi = +1|xi)

=

{
Scaling (p(yi = +1|xi)) , if d̂(xi) ≤ o
p(yi = +1|xi), otherwise

(12)

where Scaling (·) denotes a scaling function as:

Scaling (pi) =

{
log(pi + ϑ), if pi ≤ 0.5
log(1− pi + ϑ), otherwise

(13)

where ϑ = e−10 is a smoothing parameter. Then, the confi-
dence difference can be calculated according to its definition
c(xi,x

′
i) = p(y′i = +1|x′

i)− p(yi = +1|xi).

Artificially add noise. One straightforward method is to
add noise directly to c. However, it overlooks the intrin-
sic logic behind the original construction of c. To better
simulate real-world conditions, we focus on observing how
noise impacts the posterior probability distribution, thereby
influencing c indirectly. Specifically, we introduce noise
to the posterior probabilities generated by the probabilistic
classifier, which consequently adds noise to c. In the real
world, individuals tend to exhibit smaller judgment biases
towards more similar pairwise instances, while generating
larger biases towards instances with lower similarity. There-
fore, White Gaussian Noise (WGN) is introduced into the
posterior probabilities p(yi = +1|xi) and p(y′i = +1|x′

i)
provided by the probabilistic classifier for the pairwise in-
stance (xi,x

′
i). Subsequently, the noisy posterior proba-

bilities are used to generate the confidence difference, i.e.,,

6
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Table 2. Classification accuracy of each comparing method on six datasets (mean±std) when π = 0.5, where the best performance is
shown in boldface.

m Method MNIST K-MNIST F-MNIST CIFAR-10 Pendigits Optdigits

0

Pcomp-Unbiased 0.815±0.007 0.588±0.087 0.813±0.066 0.752±0.005 0.775±0.018 0.795±0.020
Pcomp-ReLU 0.719±0.108 0.692±0.012 0.614±0.132 0.794±0.009 0.746±0.014 0.766±0.038
Pcomp-ABS 0.830±0.005 0.727±0.015 0.837±0.010 0.828±0.006 0.645±0.059 0.722±0.027

Pcomp-Teacher 0.882±0.024 0.708±0.008 0.887±0.012 0.812±0.010 0.496±0.016 0.507±0.067
ConfDiff-Unbiased 0.723±0.072 0.576±0.029 0.771±0.085 0.848±0.014 0.675±0.071 0.799±0.023

ConfDiff-ReLU 0.929±0.003 0.771±0.025 0.912±0.020 0.848±0.014 0.675±0.071 0.799±0.023
ConfDiff-ABS 0.944±0.003 0.825±0.011 0.952±0.004 0.848±0.014 0.675±0.071 0.799±0.023

CRCR-Unbiased 0.777±0.034 0.769±0.004 0.921±0.009 0.869±0.009 0.756±0.006 0.823±0.023
CRCR-ReLU 0.919±0.019 0.685±0.080 0.925±0.017 0.869±0.009 0.753±0.007 0.823±0.023
CRCR-ABS 0.962±0.006 0.848±0.013 0.955±0.002 0.869±0.009 0.753±0.009 0.823±0.023

50

Pcomp-Unbiased 0.814±0.050 0.606±0.086 0.855±0.061 0.733±0.010 0.760±0.020 0.793±0.022
Pcomp-ReLU 0.849±0.008 0.722±0.003 0.833±0.063 0.810±0.008 0.756±0.036 0.772±0.017
Pcomp-ABS 0.853±0.016 0.730±0.013 0.876±0.015 0.833±0.005 0.676±0.069 0.736±0.017

Pcomp-Teacher 0.898±0.019 0.723±0.018 0.907±0.021 0.812±0.007 0.495±0.017 0.503±0.068
ConfDiff-Unbiased 0.678±0.046 0.602±0.021 0.794±0.034 0.833±0.013 0.675±0.073 0.792±0.021

ConfDiff-ReLU 0.933±0.002 0.766±0.020 0.933±0.012 0.836±0.014 0.675±0.073 0.792±0.021
ConfDiff-ABS 0.937±0.004 0.819±0.007 0.953±0.007 0.834±0.013 0.675±0.073 0.792±0.021

CRCR-Unbiased 0.845±0.043 0.779±0.008 0.928±0.001 0.859±0.003 0.759±0.029 0.821±0.022
CRCR-ReLU 0.923±0.023 0.793±0.019 0.936±0.007 0.860±0.003 0.757±0.030 0.821±0.022
CRCR-ABS 0.961±0.005 0.851±0.010 0.956±0.005 0.860±0.003 0.762±0.033 0.821±0.022

75

Pcomp-Unbiased 0.849±0.010 0.596±0.086 0.832±0.129 0.716±0.006 0.754±0.028 0.794±0.021
Pcomp-ReLU 0.858±0.006 0.728±0.013 0.880±0.012 0.820±0.008 0.743±0.038 0.783±0.018
Pcomp-ABS 0.865±0.008 0.734±0.017 0.874±0.011 0.836±0.003 0.688±0.060 0.743±0.020

Pcomp-Teacher 0.908±0.010 0.735±0.013 0.920±0.018 0.813±0.008 0.495±0.018 0.501±0.069
ConfDiff-Unbiased 0.620±0.084 0.560±0.025 0.650±0.051 0.844±0.008 0.674±0.073 0.795±0.018

ConfDiff-ReLU 0.922±0.019 0.778±0.008 0.931±0.015 0.843±0.009 0.674±0.073 0.795±0.018
ConfDiff-ABS 0.933±0.006 0.817±0.009 0.954±0.004 0.844±0.009 0.674±0.073 0.795±0.018

CRCR-Unbiased 0.797±0.075 0.791±0.010 0.926±0.010 0.858±0.003 0.723±0.033 0.819±0.022
CRCR-ReLU 0.938±0.006 0.792±0.010 0.942±0.005 0.858±0.003 0.721±0.035 0.819±0.022
CRCR-ABS 0.962±0.003 0.851±0.006 0.959±0.001 0.858±0.003 0.756±0.009 0.819±0.022

100

Pcomp-Unbiased 0.832±0.051 0.631±0.079 0.897±0.013 0.708±0.014 0.735±0.024 0.796±0.015
Pcomp-ReLU 0.862±0.015 0.726±0.012 0.883±0.017 0.827±0.004 0.725±0.035 0.787±0.019
Pcomp-ABS 0.865±0.014 0.735±0.009 0.886±0.009 0.837±0.006 0.688±0.059 0.766±0.020

Pcomp-Teacher 0.914±0.011 0.738±0.020 0.921±0.011 0.812±0.010 0.495±0.018 0.499±0.070
ConfDiff-Unbiased 0.631±0.056 0.548±0.022 0.573±0.060 0.835±0.012 0.669±0.070 0.791±0.021

ConfDiff-ReLU 0.920±0.014 0.769±0.008 0.923±0.032 0.834±0.012 0.669±0.070 0.791±0.021
ConfDiff-ABS 0.934±0.006 0.812±0.004 0.953±0.005 0.835±0.012 0.669±0.070 0.791±0.021

CRCR-Unbiased 0.860±0.081 0.804±0.009 0.910±0.030 0.851±0.007 0.751±0.008 0.815±0.019
CRCR-ReLU 0.939±0.006 0.797±0.006 0.941±0.006 0.851±0.007 0.752±0.008 0.815±0.019
CRCR-ABS 0.960±0.002 0.856±0.008 0.960±0.002 0.851±0.007 0.752±0.008 0.815±0.019

c̃i = c̃(xi,x
′
i) = p̃(y′i = +1|x′

i)− p̃(yi = +1|xi), where

p̃(y′i = +1|x′
i) = p(y′i = +1|x′

i) + ζ ′i, ζ ′i ∼ N(0, σ2)

p̃(yi = +1|xi) = p(yi = +1|xi) + ζi, ζi ∼ N(0, σ2),
(14)

where ζ ′i and ζi represent the noise offsets which follow
a standard Gaussian distribution N(0, σ2). In our experi-
ments, we set σ = 1/3.

4.3. Result Analysis

Table 2 and Table 3 present the results of all baselines on
four benchmark datasets and two UCI datasets for class-
balanced (i.e.,, prior = 0.5) and class-imbalanced scenarios
(i.e.,, prior = 0.2), respectively. Overall, our method per-
forms nearly optimally across all scenarios, consistently
achieving nearly the best results using the ABS risk correc-
tion function.

In scenarios with balanced classes, our method outperforms

Pcomp with accuracy improvements ranging from 0.02 to
0.341 across different datasets and surpasses ConfDiff with
improvements ranging from 0.01 to 0.387, as observed from
a baseline perspective. CRCR-ABS outperforms nearly all
baselines, with the only observed exception being the results
of Pcomp-Unbiased on the Pendigits dataset when no artifi-
cial noise is added. This exception may be due to the fact
that the Pcomp method leverages only the information that
one instance is more likely to be positive than another, with-
out requiring knowledge of the exact difference between
them. When no artificial noise is added, Pcomp’s posterior
probability reconstruction function preserves the monotonic
increasing relationship of the posterior probabilities, with-
out altering the relative likelihood of positivity between
instances. Moreover, compared to Pcomp and ConfDiff,
our method demonstrates increasingly stable and consistent
accuracy as the noise ratio increases, with notable improve-
ments in both accuracy and standard deviation, especially
when the noise ratio reaches 100%. This results indicates its
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Table 3. Classification accuracy of each comparing method on six datasets (mean±std) when π = 0.2, where the best performance is
shown in boldface.

m Method MNIST K-MNIST F-MNIST CIFAR-10 Pendigits Optdigits

0

Pcomp-Unbiased 0.744±0.037 0.555±0.076 0.748±0.047 0.634±0.021 0.820±0.025 0.813±0.024
Pcomp-ReLU 0.800±0.000 0.800±0.000 0.800±0.000 0.802±0.003 0.819±0.020 0.816±0.007
Pcomp-ABS 0.804±0.009 0.800±0.000 0.801±0.001 0.833±0.004 0.797±0.023 0.805±0.006

Pcomp-Teacher 0.788±0.074 0.695±0.046 0.883±0.026 0.813±0.020 0.482±0.212 0.684±0.097
ConfDiff-Unbiased 0.743±0.033 0.622±0.077 0.724±0.025 0.812±0.004 0.797±0.028 0.830±0.016

ConfDiff-ReLU 0.800±0.000 0.800±0.000 0.846±0.064 0.800±0.000 0.797±0.028 0.830±0.016
ConfDiff-ABS 0.910±0.015 0.841±0.014 0.940±0.010 0.800±0.001 0.797±0.028 0.830±0.016

CRCR-Unbiased 0.816±0.043 0.597±0.055 0.886±0.009 0.841±0.012 0.823±0.005 0.838±0.017
CRCR-ReLU 0.929±0.055 0.814±0.031 0.930±0.049 0.801±0.001 0.817±0.012 0.830±0.008
CRCR-ABS 0.916±0.022 0.856±0.006 0.922±0.007 0.812±0.017 0.784±0.024 0.825±0.005

50

Pcomp-Unbiased 0.742±0.015 0.547±0.038 0.768±0.070 0.623±0.017 0.818±0.025 0.810±0.027
Pcomp-ReLU 0.800±0.000 0.801±0.002 0.800±0.000 0.801±0.003 0.806±0.023 0.821±0.007
Pcomp-ABS 0.824±0.029 0.800±0.000 0.809±0.006 0.833±0.006 0.801±0.030 0.811±0.010

Pcomp-Teacher 0.822±0.061 0.707±0.062 0.902±0.014 0.797+0.033 0.483±0.211 0.682±0.096
ConfDiff-Unbiased 0.694±0.030 0.640±0.043 0.711±0.018 0.805±0.006 0.797±0.029 0.834±0.015

ConfDiff-ReLU 0.800±0.000 0.800±0.000 0.821±0.046 0.800±0.001 0.797±0.029 0.834±0.015
ConfDiff-ABS 0.891±0.025 0.818±0.010 0.938±0.014 0.801±0.002 0.797±0.029 0.834±0.015

CRCR-Unbiased 0.794±0.043 0.623±0.079 0.880±0.016 0.789±0.035 0.795±0.025 0.843±0.023
CRCR-ReLU 0.908±0.063 0.815±0.015 0.936±0.043 0.811±0.025 0.808±0.021 0.838±0.014
CRCR-ABS 0.916±0.013 0.830±0.029 0.950±0.011 0.850±0.017 0.822±0.019 0.835±0.011

75

Pcomp-Unbiased 0.753±0.031 0.535±0.048 0.775±0.059 0.616±0.038 0.817±0.017 0.813±0.030
Pcomp-ReLU 0.804±0.009 0.804±0.007 0.800±0.000 0.805±0.012 0.822±0.020 0.827±0.008
Pcomp-ABS 0.863±0.014 0.800±0.000 0.828±0.016 0.832±0.005 0.803±0.038 0.813±0.009

Pcomp-Teacher 0.840±0.061 0.714±0.055 0.908±0.019 0.793±0.044 0.482±0.211 0.680±0.096
ConfDiff-Unbiased 0.704±0.058 0.630±0.026 0.745±0.088 0.804±0.004 0.796±0.031 0.830±0.016

ConfDiff-ReLU 0.800±0.000 0.800±0.000 0.800±0.000 0.800±0.000 0.796±0.031 0.830±0.016
ConfDiff-ABS 0.862±0.030 0.806±0.005 0.921±0.023 0.800±0.001 0.796±0.031 0.830±0.016

CRCR-Unbiased 0.792±0.047 0.640±0.028 0.861±0.033 0.772±0.020 0.811±0.030 0.836±0.022
CRCR-ReLU 0.901±0.055 0.817±0.024 0.801±0.001 0.828±0.024 0.827±0.008 0.836±0.017
CRCR-ABS 0.914±0.008 0.819±0.022 0.947±0.006 0.853±0.004 0.819±0.011 0.839±0.012

100

Pcomp-Unbiased 0.752±0.021 0.540±0.069 0.834±0.034 0.643±0.053 0.805±0.024 0.817±0.027
Pcomp-ReLU 0.845±0.040 0.808±0.010 0.814±0.019 0.806±0.005 0.808±0.020 0.834±0.008
Pcomp-ABS 0.871±0.006 0.801±0.001 0.844±0.015 0.835±0.003 0.803±0.029 0.823±0.012

Pcomp-Teacher 0.869±0.068 0.711±0.062 0.922±0.011 0.787±0.033 0.482±0.211 0.681±0.096
ConfDiff-Unbiased 0.772±0.056 0.693±0.028 0.748±0.101 0.810±0.007 0.796±0.028 0.831±0.017

ConfDiff-ReLU 0.800±0.000 0.800±0.000 0.800±0.000 0.800±0.001 0.796±0.028 0.831±0.016
ConfDiff-ABS 0.814±0.006 0.801±0.002 0.870±0.043 0.801±0.001 0.796±0.028 0.831±0.016

CRCR-Unbiased 0.790±0.036 0.639±0.059 0.838±0.056 0.780±0.014 0.797±0.018 0.837±0.026
CRCR-ReLU 0.905±0.059 0.808±0.007 0.903±0.039 0.800±0.001 0.800±0.014 0.838±0.020
CRCR-ABS 0.926±0.010 0.828±0.025 0.958±0.009 0.841±0.005 0.810±0.006 0.839±0.019

ability to produce more competitive results in the presence
of artificial noise interference.

In scenarios with imbalanced classes, Pcomp-ReLU and
ConfDiff-ReLU tend to exhibit random outcomes when
confronted with imbalanced data augmented with artificial
noise. This phenomenon may be attributed to the introduced
noise, which significantly increases the likelihood of predic-
tions where one instance in a pair is incorrectly predicted
to be more likely positive than the other, contrary to the
actual scenario. Such contradictions become significantly
more pronounced as class imbalance and noise ratio in-
crease. Compared to these methods, our method shows
advantages in both accuracy mean and variance. From
the dataset perspective, CRCR-ABS significantly outper-
forms other methods on the MNIST, K-MNIST, F-MNIST,
and CIFAR-10 datasets in the presence of artificial noise,
while maintaining strong competitiveness on the Pendigits
and Optdigits datasets. CRCR-Unbiased shows promising
results without artificial noise; however, the experiments

clearly demonstrate that its training challenges on complex
and noisy datasets often lead to a notable decline in perfor-
mance. This findings further underscore the effectiveness
of CRCR-ABS in maintaining robust performance when
dealing with complex datasets.

Such contradictions become significantly more pronounced
as class imbalance and noise ratio increase. Compared
to these methods, our approach shows advantages in both
accuracy mean and variance. From the dataset perspective,
CRCR ABS significantly outperforms other methods on the
MNIST, K-MNIST, F-MNIST, and CIFAR-10 datasets in
the presence of artificial noise, while maintaining strong
competitiveness on the Pendigits and Optdigits datasets.
CRCR Unbiased shows promising results without artificial
noise; however, the experiments clearly demonstrate that its
training challenges on complex and noisy datasets often lead
to a notable decline in performance. These findings further
underscore the effectiveness of CRCR ABS in maintaining
robust performance when dealing with complex datasets.
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Figure 2. Sensitivity analysis of parameters α (top) and θ (bottom)
on four benchmark datasets when π = 0.5 (left) and π = 0.2
(right).

4.4. Parameter Sensitivity

In this subsection, we conduct experiments with different
thresholds θ for partitioning subsets and the parameter α for
the consistency term, and the results are shown in Figure 2.

About different threshold θ To evaluate the sensitiv-
ity of the threshold θ, we vary its value within the range
{0.1, 0.2, . . . , 1} on four distinct benchmark datasets (i.e.,,
MNIST, K-MNIST, F-MNIST and CIFAR-10). The results
reveal that the accuracy peaks for all datasets when θ = 0.4
with π = 0.5, and when θ = 0.2 or 0.3 with π = 0.2. This
observation may be attributed to the distribution of confi-
dence differences resembling a normal distribution. A low
threshold results in numerous inaccurate predictions within
the subset DS utilized for risk consistency, while a high
threshold leads to a scarcity of samples within DS , thus di-
minishing the available supervisory information. Therefore,
we empirically recommend setting the threshold at θ = 0.4
when π = 0.5, and θ = {0.2, 0.3} when π = 0.2.

About different parameter α To assess the sensitivity
of the parameter α, we vary its values across the range
{10i|i = −3, . . . ,+3} on four benchmark datasets. Our
analysis reveals that α shows increased sensitivity on the
larger-scale CIFAR-10 dataset when π = 0.5, while main-
taining relatively stable performance on the smaller-scale
datasets. Moreover, α leads to a consistent trend in accu-
racy variation across the four datasets when π = 0.2. No-
tably, it achieves relatively optimal results when α = 1 with
π = 0.5, and α = 10 with π = 0.2. Thus, we recommend
setting α = 1 or 10 in experimental setups.

4.5. Ablation Study

In this subsection, we conduct ablation studies on vari-
ous strategies by setting corresponding parameters to zero.

Specifically, setting α = 0 and θ = 0 represent versions
without consistency strategy and without subset segmenta-
tion strategy, respectively. The experimental results, pre-
sented in Figure 2, demonstrate that our proposed subset
segmentation strategy and consistency term contribute to
performance improvement to some extent in the context of
confidence difference classification under artificially added
noise.

5. Conclusion
In this paper, we propose a novel ConfDiff classification
method based on consistency risk and consistency regular-
ization to address the challenge of noisy supervised signals
in ConfDiff classification. We conduct a theoretical analy-
sis of various supervised signals associated with different
confidence differences. Based on this analysis, the ConfDiff
dataset is partitioned into two subsets according to the re-
liability of the supervised information. For the subset with
more reliable supervision, we employ consistency risk to
preserve precise supervised information. Conversely, for
the subset with less reliable supervision, we leverage con-
sistency regularization to mitigate the impact of erroneous
predictions. Extensive experimental results demonstrate that
CRCR outperforms state-of-the-art baselines and exhibits
strong robustness, even when artificial noise is introduced.
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Impact Statement
The confidence difference classification proposed in this
paper has the potential to significantly improve decision
accuracy in real-world applications. It addresses potential
noise impacts present in real-world data and holds substan-
tial practical significance, especially in weakly supervised
domains. This method is applicable to various fields, in-
cluding medical diagnosis, rehabilitation assessment, and
financial risk management.

However, it is important to acknowledge that the confidence
differences used in our method may be affected by inherent
data biases in real-world scenarios. Furthermore, while we
demonstrate the effectiveness of our method in weakly super-
vised settings, there remains a risk of excessive dependence
on algorithms for decision-making, which could potentially
overlooking the cultivation of individual decision-making
capabilities and autonomy.
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A. Proof of Theorem 3.1
In this appendix, we provide the proof of the Theorem 3.1 and the corresponding technical lemmas.

Lemma A.1. The Rademacher complexity ℜ̄n(LCRCR ◦ G) on D for ConfDiff data with noise of size n can be defined as
follows:

ℜ̄n(LCRCR ◦ G) ≤ 2LℓRn1(G) +
α

log (ε)
Rn2(G) (15)

The proof of Lemma A.1:

ℜ̄n(LCRCR ◦ G) =EDn1
Eσ[sup

g∈G

1

n1

n1∑
i=1

σiLS
CRCR(g;xi,x

′
i)]

+ EDn2
Eσ[sup

g∈G

1

n2

n2∑
i=1

σiLC
CRCR(g;xi,x

′
i)]

=EDn1
Eσ[sup

g∈G

1

n1

n1∑
i=1

1

2
σi((π − ci)ℓ(g(xi),+1) + (1− π − ci)ℓ(g(x

′
i),−1)

+ (π + ci)ℓ(g(x
′
i),+1) + (1− π + ci)ℓ(g(xi),−1))]

+ EDn2
Eσ[sup

g∈G

1

n2

n2∑
i=1

ασi
1

log (|ci|+ ε)
· ∥(g(xi)− g(x′

i)∥2]

=EDn1
Eσ[sup

g∈G

1

n1

n1∑
i=1

σi

∥∥▽LS
CRCR(g;xi,x

′
i)
∥∥
2
g(xi)]

+ EDn2
Eσ[sup

g∈G

1

n2

n2∑
i=1

σi

∥∥▽LC
CRCR(g;xi,x

′
i)
∥∥
2
g(xi)] (16)

where ∥∥▽LS
CRCR(g;xi,x

′
i)
∥∥
2

=
1

2

∥∥▽((π − ci)ℓ(g(xi),+1) + (1− π − ci)ℓ(g(x
′
i),−1) (17)

+(π + ci)ℓ(g(x
′
i),+1) + (1− π + ci)ℓ(g(xi),−1)

)∥∥
2

≤1

2

(∥∥▽((π − ci)ℓ(g(xi),+1)
)∥∥

2
+
∥∥▽((1− π − ci)ℓ(g(x

′
i),−1)

)∥∥
2

+
∥∥▽((π + ci)ℓ(g(x

′
i),+1)

)∥∥
2
+
∥∥▽((1− π + ci)ℓ(g(xi),−1)

)∥∥
2

)
≤1

2
|π − ci|Lℓ +

1

2
|1− π − ci|Lℓ +

1

2
|π + ci|Lℓ +

1

2
|1− π + ci|Lℓ

≤2Lℓ (18)

and,

∥∥▽LC
CRCR(g;xi,x

′
i)
∥∥
2
=α

∥∥∥∥▽ 1

log (|ci|+ ε)
· ∥(g(xi)− g(x′

i)∥2

∥∥∥∥
2

≤α
1

log (|ci|+ ε)
· g(xi)− g(x′

i)

∥g(xi)− g(x′
i)∥2

≤ α

log (ε)
(19)
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Replacing the corresponding term in Eq.16 with Eq.18 and Eq.19, we can prove the Lemma A.1:

ℜ̄n(LCRCR ◦ G) ≤2LℓEDn1
Eσ[sup

g∈G

1

n1

n1∑
i=1

σig(xi)] +
α

log (ε)
EDn2

Eσ[sup
g∈G

1

n2

n2∑
i=1

σig(xi)]

≤2LℓRn1
(G) + α

log (ε)
Rn2

(G) (20)

Lemma A.2.

sup
g∈G

∣∣∣R(g)− R̂CRCR(g)
∣∣∣ ≤ (4 + 2β)LℓRn1

(G) + 3α

log(ε)
Rn2

(G) + Cℓ

√
ln(2/δ)

2n1
(21)

The proof of Lemma A.2:

sup
g∈G

∣∣∣R(g)− R̂CRCR(g)
∣∣∣ ≤ sup

g∈G

∣∣∣R(g)− E[R̂CRCR(g)]
∣∣∣+ sup

g∈G

∣∣∣E[R̂CRCR(g)]− R̂CRCR(g)
∣∣∣ (22)

We first discuss the first term (the bias term). Since RCD(g) is an unbiased risk estimator of R(g), we have:∣∣∣R(g)− E[R̂CRCR(g)]
∣∣∣ = ∣∣∣R(g)−RCD(g) +RCD(g)− E[R̂CRCR(g)]

∣∣∣
≤ |R(g)−RCD(g)|+

∣∣∣RCD(g)− E[R̂CRCR(g)]
∣∣∣

=
∣∣∣RCD(g)− E[R̂CRCR(g)]

∣∣∣
≤
∣∣∣RCD(g;DS)− E[R̂CD(g;DS)]

∣∣∣+ α
∣∣∣·EDC

[
R̂eg(g)

]∣∣∣ (23)

where R̂eg(g) = α
n2

∑n2

i=1

(
1

log(|ci|+ε) · ∥g(xi)− g(x′
i)∥2

)
is the regularization term.

Let p(x,x′) denote the original distribution, and pDS (x,x′) denote the conditional distribution of DS . We can define the
density ratio as: w(x,x′) = p(x,x′)

pDS (x,x′) . Assuming there exists a constant β > 0 such that w(x,x′) = p(x,x′)
pDS (x,x′) ≤ β for all

(x,x′) ∈ DS . Under this assumption, following the theoretical framework proposed by (Cortes et al., 2010), we can derive
the following generalization bound for the weighted ConfDiff risk estimation error:

sup
g∈G

∣∣∣RCD(g)− E[R̂CD(g;DS)]
∣∣∣ ≤ 2βRn1

(G) + Cℓ

√
ln(2/δ)

2n1
(24)

For the regularization term
∣∣∣EDC

[
R̂eg(g)

]∣∣∣, we have:

sup
g∈G

∣∣∣EDC

[
R̂eg(g)

]∣∣∣ ≤ 1

log(ε)
Rn2(G) (25)

In summary, the bias term satisfies:∣∣∣R(g)− E[R̂CRCR(g)]
∣∣∣ ≤ ∣∣∣RCD(g)− E[R̂CD(g;DS)]

∣∣∣+ α
∣∣∣EDC

[
R̂eg(g)

]∣∣∣
≤ 2βLℓRn1

(G) + Cℓ

√
ln(2/δ)

2n1
+

α

log(ε)
Rn2

(G) (26)
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Then we discuss the second term. Since the quantity supg∈G

∣∣∣E[R̂CRCR(g)]− R̂CRCR(g)
∣∣∣ is difficult to handle directly, let

S, S′ are two independent samples of the same size (Mohri et al., 2012), we upper bound it by:

sup
g∈G

∣∣∣E[R̂CRCR(g)]− R̂CRCR(g)
∣∣∣ ≤ ES

[
sup
g∈G

(
ES′ [R̂CRCR,S′(g)]− R̂CRCR,S(g)

)]
= ES,S′

[
sup
g∈G

(
R̂CRCR,S′(g)− R̂CRCR,S(g)

)]
= ES,S′

[
sup
g∈G

1

n

n∑
i=1

(ℓCRCR(g, z
′
i)− ℓCRCR(g, zi))

]

= ES,S′,σ

[
sup
g∈G

1

n

n∑
i=1

σi (ℓCRCR(g, z
′
i)− ℓCRCR(g, zi))

]

≤ ES′,σ

[
sup
g∈G

1

n

n∑
i=1

σiℓCRCR(g, z
′
i)

]
+ ES,σ

[
sup
g∈G

1

n

n∑
i=1

(−σi)ℓCRCR(g, zi)

]

= 2ESEσ

[
sup
g∈G

1

n

n∑
i=1

σiℓCRCR(g, zi)

]
= 2ℜ̄n(LCRCR ◦ G)

≤ 4LℓRn1
(G) + 2α

log (ε)
Rn2

(G) (27)

Then the upper bound of the Lemma A.2 can be expressed as:

sup
g∈G

∣∣∣R(g)− R̂CRCR(g)
∣∣∣ ≤ sup

g∈G

∣∣∣R(g)− E[R̂CRCR(g)]
∣∣∣+ sup

g∈G

∣∣∣E[R̂CRCR(g)]− R̂CRCR(g)
∣∣∣

≤ 2βLℓRn1
(G) + Cℓ

√
ln(2/δ)

2n1
+

α

log(ε)
Rn2

(G) + 4LℓRn1
(G) + 2α

log (ε)
Rn2

(G)

= (4 + 2β)LℓRn1(G) +
3α

log(ε)
Rn2(G) + Cℓ

√
ln(2/δ)

2n1
(28)

The proof of Theorem 3.1:

R(ĝCRCR)−R(g∗) =
(
R(ĝCRCR)− R̂CRCR(ĝCRCR)

)
+
(
R̂CRCR(ĝCRCR)− R̂CRCR(g

∗)
)

+
(
R̂CRCR(g

∗)−R(g∗)
)

≤
(
R(ĝCRCR)− R̂CRCR(ĝCRCR)

)
+
(
R̂CRCR(g

∗)−R(g∗)
)

≤2 sup
g∈G

∣∣∣R(g)− R̂CRCR(g)
∣∣∣

≤(8 + 4β)LℓRn1
(G) + 6α

log(ε)
Rn2

(G) + 2Cℓ

√
ln(2/δ)

2n1
(29)

B. Proof of Eq. 6
In this appendix, we provide the proof of the Eq. 6.
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Substituting the form of the loss function from Eq.5 into Eq.3, then we can obtain:

RCD(g) =
1

2
Ep(x,x′)

[(
π − c(x,x′)

)
ℓ
(
g(x),+1

)
+
(
1− π − c(x,x′)

)
ℓ
(
g(x′),−1

)
+
(
π + c(x,x′)

)
ℓ
(
g(x′),+1

)
+
(
1− π + c(x,x′)

)
ℓ
(
g(x),−1

)]
=

1

2
Ep(x,x′)

[(
π − c(x,x′)

)(
h(g(x))− g(x)

)
+
(
1− π − c(x,x′)

)(
h(g(x′)) + g(x′)

)
+
(
π + c(x,x′)

)(
h(g(x′))− g(x′)

)
+
(
1− π + c(x,x′)

)(
h(g(x)) + g(x)

)]
=

1

2
Ep(x,x′)

[
h
(
g(x)

)
+
(
1− 2π + 2c(x,x′)

)
g(x)

+h
(
g(x′)

)
+
(
1− 2π − 2c(x,x′)

)
g(x′)

]
=

1

2
Ep(x,x′)

[
h
(
g(x)

)
+ 2c(x,x′)g(x) + h

(
g(x′)

)
− 2c(x,x′)g(x′)

]
+
1

2
Ep(x,x′)

[
(1− 2π

)(
g(x) + g(x′)

)]
=

1

2
Ep(x,x′)

[
h
(
g(x)

)
+ 2c(x,x′)g(x) + h

(
g(x′)

)
− 2c(x,x′)g(x′)

+c(x,x′)h
(
g(x)

)
− c(x,x′)h

(
g(x)

)
+

1

2
g(x)− 1

2
g(x)

+c(x,x′)h
(
g(x′)

)
− c(x,x′)h

(
g(x′)

)
+

1

2
g(x′)− 1

2
g(x′)

]
+
1

2
Ep(x,x′)

[
(1− 2π

)(
g(x) + g(x′)

)]
=

1

2
Ep(x,x′)

[1
2
h
(
g(x)

)
− c(x,x′)h

(
g(x)

)
− 1

2
g(x) + c(x,x′)g(x)

+
1

2
h
(
g(x′)

)
+ c(x,x′)h

(
g(x′)

)
− 1

2
g(x′)− c(x,x′)g(x′)

]
+
1

2
Ep(x,x′)

[
(1− 2π

)(
g(x) + g(x′)

)]
=

1

2
Ep(x,x′)

[1
2
h
(
g(x)

)
− c(x,x′)h

(
g(x)

)
− 1

2
g(x) + c(x,x′)g(x)

+
1

2
h
(
g(x′)

)
+ c(x,x′)h

(
g(x′)

)
− 1

2
g(x′)− c(x,x′)g(x′)

]
+
1

2
Ep(x,x′)

[1
2
h
(
g(x)

)
+ c(x,x′)h

(
g(x)

)
+

1

2
g(x) + c(x,x′)g(x)

+
1

2
h
(
g(x′)

)
− c(x,x′)h

(
g(x′)

)
+

1

2
g(x′)− c(x,x′)g(x′)

]
+
1

2
Ep(x,x′)

[
(1− 2π

)(
g(x) + g(x′)

)]
=

1

2
Ep(x,x′)

[(1
2
− c(x,x′)

)
ℓ
(
g(x),+1

)
+
(1
2
+ c(x,x′)

)
ℓ
(
g(x′),+1

)]
+
1

2
Ep(x,x′)

[(1
2
+ c(x,x′)

)
ℓ
(
g(x),−1

)
+
(1
2
− c(x,x′)

)
ℓ
(
g(x′),−1

)]
+
1

2
Ep(x,x′)

[
(1− 2π

)(
g(x) + g(x′)

)]
. (30)

Then Eq. 6 is proven.
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