
A Metropolis-Hastings Algorithm for Task Allocation

Doha Hamza∗ , Sarah Toonsi†, Jeff S. Shamma∗†

Abstract—We consider a robot-location assignment
problem. The problem is confounded by a location network
that restricts robots’ motion to neighboring locations. The
problem can be optimally solved using a centralized Hun-
garian algorithm. We propose a distributed game-theoretic
algorithm, based on the Metropolis-Hastings mechanism,
to eliminate the need for a central coordinator. Agents
are activated at random. Agents compare their action,
location, against a neighboring one based on the location
network. If the new location represents an improvement in
agent’s utility, they move with probability one, otherwise,
they move with a probability proportional to the difference
in the two locations’ utilities. Our algorithm converges to
the optimal assignment of robots to locations. We provide
extensive simulations, compare with previous work, and
demonstrate the versatility of the proposed algorithm to
various task allocation scenarios.

Keywords—Task allocation, game-theoretic algorithm,
distributed learning, Metropolis-Hastings algorithm.

I. INTRODUCTION

Assignment problems often form building blocks for
more complex tasks [1]. We consider a distributed task
assignment problem in multi-agent robotic systems. Our
setup is in a bounded geographical area with a nite
number of locations. The locations are interconnected
by a network, called the location network so that
agents can only move between neighboring locations,
i.e. locations connected by an edge in the location
graph. Such a setup mimics many realistic multi-agent
systems such as formation assignment [2] where a
robot’s next action is constrained by its current location.
Furthermore, the graphical relations among the nodes
can be generalized to represent the physical proximity
of locations or it may represent relations among tasks so
that tasks connected by an edge may be accomplished
together. Agents in our model are dynamic, and keep
exploring better opportunities through their neighboring
locations. This is a generalization of models where
the agents are effectively static, e.g. remote sensing
satellites observing locations on earth [3].

The assignment of a particular robot to a specic
location yields a utility value that depends on both the
agent and the location. Our goal is to nd the optimal

∗CEMSE division, King Abdullah University of Science and Tech-
nology (KAUST), Thuwal, KSA.

†Industrial and Enterprise Systems Engineering (ISE), University
of Illinois Urbana-Champaign, Illinois, USA.

Emails:doha.hamzamohamed@kaust.edu.sa, stoonsi2@illinois.edu,
jshamma@illinois.edu.

The research reported in this publication was supported by funding
from KAUST.

one-on-one assignment of robots to locations so that the
global score, the sum of robots’ utilities, is maximized.
The problem can be solved using a centralized Hungar-
ian algorithm [4]. In this case, the centralized solution is
indifferent to the location gure, i.e. the neighborhoods
of the locations, since it assumes a global coordinator
with full information of the network and the utility
matrix. The centralized solution converges in O(N3)
where N is the number of robots/locations.

Centralized solutions converge quickly but require
heavy message exchanging and global computations
which makes them generally infeasible and many times
impractical [1]. Furthermore, distributed algorithms are
scalable and robust as they can adjust to agent failures
and a dynamic changing environment [5]. Many works
in the literature recognize the need for distributed task
assignment. We list a few next.

A. Related Literature

A distributed version of the Hungarian algorithm
is presented in [1]. In that work, at every iteration,
multiple autonomous agents perform one of two tasks:
1) Exchange information with their neighbors, and 2)
perform identical computation routines. The goal is to
gather enough information, from neighbors, so that each
robot can perform the Hungarian algorithm by itself. We
are, however, seeking a distributed algorithm with more
limited information exchange. Agents need not gather
information about the state of the whole network, they
only exchange local information and compare only two
actions at any given time. Furthermore, in our game-
theoretic setup, agents are myopic, meaning they only
seek to optimize their own benet in the network. They
are also assumed to be simple entities with limited
computational and memory capabilities so that only
basic calculations can be made. In the numerical results
section, we compare the performance of our algorithm
against the centralized Hungarian algorithm. Our algo-
rithm is shown to reach the optimal global value despite
limited information and coordination among the agents.

In [3], a multi-agent task assignment problem is
considered where agents - satellites- are static, hence
they have pre-dened admissible task sets. It is required
to nd the optimal assignment of agents to locations so
that the sum of the individual task utilities is maximized.
The authors exploit the submodular features of the
objective function to solve the problem efciently using
a global greedy and a distributed greedy algorithm. In
our setup, agents are dynamic, hence they potentially
can be assigned to any location, which makes our
formulation more general. Also, we do not make any

2021 60th IEEE Conference on Decision and Control (CDC)
December 13-15, 2021. Austin, Texas

978-1-6654-3659-5/21/$31.00 ©2021 IEEE 4539

2
0
2
1
6
0
th
IE
E
E
C
o
n
fe
re
n
ce
o
n
D
ec
is
io
n
an
d
C
o
n
tr
o
l
(C
D
C
)
|9
7
8
-1
-6
6
5
4
-3
6
5
9
-5
/2
1
/$
3
1
.0
0
©
2
0
2
1
IE
E
E
|D
O
I:
1
0
.1
1
0
9
/C
D
C
4
5
4
8
4
.2
0
2
1
.9
6
8
3
5
7
5

Authorized licensed use limited to: University of Illinois. Downloaded on May 14,2023 at 15:45:48 UTC from IEEE Xplore. Restrictions apply.

assumptions on the objective function. Our algorithm
will work for any setting in which agents may not even
have knowledge of the value of the global assignment
but can track changes in the global objective due to
their actions and those of their neighbors. The global
greedy algorithm in [3], as the name implies, requires
global information and is suboptimal to the centralized
Hungarian method. The distributed greedy algorithm
proposed by the authors is suitable for their setup but in
our dynamic environment, will yield suboptimal assign-
ments since the robot may get stuck in a local maximum
or a neighborhood where no greedy improvements exist
around it. This is not a challenge in our setup since
agents can err and have a non-zero probability to make
suboptimal decisions. Indeed, our simulations show that
the proposed Metropolis-Hastings Algorithm (MHA)
outperforms the distributed greedy algorithm.

There are many dimensions to the task allocation
problem [6]. One such different dimension is the one
considered in [7] where a distributed auction-like algo-
rithm is presented to provide an almost optimal solution
to a task allocation problem. The assignment problem
presented in [7] is a one-to-many assignment of robots
to tasks where 1) the tasks form a number of disjoint
groups, and 2) each robot has an upper bound on the
number of tasks it can perform within the whole mission
as well as within a certain task group. While the original
problem we pose is not under the same assumptions
as [7], we do adapt our model to show its inherent
exibility and applicability to many task assignment
problems as well as its ability to solve problems that
traditionally required a lot of information exchange.

To summarize, we propose a distributed game-
theoretic algorithm, based on the Metropolis-Hastings
algorithm, to solve a one-on-one assignment problem
for tasks and robots. The game-theoretic modeling ne-
cessitates that agents are self-centric and only aim to
maximize their own utility. The learning rule used by
the proposed MHA is very simple and only requires
local information to compute the difference in utility
between the agent’s current and recommended actions.
Despite severe information and computational limita-
tions, the algorithm is shown to achieve the globally
optimal assignment. This is in contrast with previous
works in the literature where either a lot of information
exchange is required or sophisticated computations limit
the applicability of the proposed distributed algorithms.

In section II we discuss our model and formulate our
optimization problem, in section III, we formulate the
robot-task assignment problem as a game and present
the MHA. Section IV shows some variations to speed
up the MHA and also various applications for it. We do
extensive numerical simulations in section V to validate
our theoretical work. Finally, section VI concludes this
paper.

Fig. 1: A possible trajectory for robot r5. The gure shows

the evolving neighborhoods of r5 as it moves through different

locations. At location 5, r5 can only communicate with

locations {2, 3, 6}.

II. SYSTEM MODEL

We consider a set of locations, L and a set of
robots R within a bounded and known geographical
area. The number of robots is not necessarily equal to
the number of locations. However, for comparing with
other algorithms that require an equal number of robots
and locations, we assume an equal number of robots and
locations, without loss of generality. Robot i receives a
value uij when assigned to location j. The utilities are
encoded in matrix U =< uij >

1.

Locations are interconnected by a pre-dened loca-
tion network, L. Once situated at a certain location, a
robot can only communicate with robots at its location
or at nearby locations.

Denition 1. A location matrix L is a square matrix of
dimension |L|. We say that location j can communicate
with location j′ if Ljj′ = 1, otherwise Ljj′ = 0.

We will also sometimes represent L as a graph
with vertices indicating the different locations and edges
between vertices connected locations. We use the terms
location matrix/location graph interchangeably. We also
make the following denition:

Denition 2. A neighborhood of location j, N (j), is a
collection of node/nodes that communicate with location
j, i.e. the non-zero elements of row Ljj′ ∀j

′ ∈ L.

Fig. 1 shows a sample example of our model with
6 locations. Most robots start at locations 1 and 4, and
then -through local interactions with neighbors- spread
through the network exploring possible enhancements
to their utilities. In this Fig., for example, N (6) = {5}.
Agents in our model are mobile, hence they have
evolving action sets -locations2. For example, when r5
is situated at l1, it can explore locations in N (1), and at
l6, it can only explore locations in N (6). We compare
this to the work in [3], where the agents are static and
the action sets are xed.

1Although no agent knows such a matrix, we use this matrix
to solve for the optimal assignment of a given network using the
Hungarian algorithm. This is to compare with our approach.

2We formulate the assignment problem as a game in which the
action sets are the robots’ location choice. Hence we use the terms
actions and locations interchangeably.

4540

Authorized licensed use limited to: University of Illinois. Downloaded on May 14,2023 at 15:45:48 UTC from IEEE Xplore. Restrictions apply.

We dene an assignment matrix µ. Element µij = 1
if robot i is assigned to location j, µij = 0, otherwise.
Sometimes we use the notation µ(i) to denote the
location assigned to ri and use µ(j) to denote the robot
assigned to lj . We assume the following:

Assumption 1. The graph associated with locations is
fully connected, i.e. robots move from one location to
the other in nite time.

For Fig. 1, the associated matrix U is as follows:

U =

















3 4 2 8 5 9

4 6 7 8 9 10

1 4 5 6 7 8

15 2 6 10 8 7

1 3 4 8 9 16

9 6 4 5 3 2

















where the encircled numbers denote the optimal match-
ing obtained using the Hungarian algorithm.

A. Optimization Problem

Given a location graph L, we want to optimize the
following:

max
µij

φ =
∑

i∈R

∑

j∈L

µijuij (1)

s.t.
∑

j

µij = 1, ∀i ∈ R (2)

∑

i

µij = 1, ∀j ∈ L (3)

µij ∈ {0, 1}, ∀i ∈ R and ∀j ∈ L (4)

we are after the optimal assignment µ that maximizes
the global score, φ. The constrained optimization prob-
lem in (1) can be solved using a centralized Hungarian
Algorithm. However, the communication overhead can
be prohibitive. Hence, we propose a distributed, low-
information and low-complexity algorithm to solve this
optimization problem. We explore this next.

B. About the Metropolis-Hastings Algorithm

We give a brief summary of the algorithm used to
solve our problem. The Metropolis-Hastings Algorithm
(MHA) was introduced in [8] and generalized in [9].
The algorithm is used in Monte Carlo Markov Chain
(MCMC) simulations. The algorithm samples from a
probability distribution, called a target distribution, from
which direct sampling is difcult. Given a nite state
space and a desired distribution π, the algorithm’s
sampling rule constructs a Markov chain with a tran-
sition matrix p with π as its stationary distribution. The
transition probability between two states a and a′, paa′ ,
is assumed of the form:

paa′ = qaa′αaa′

where qaa′ is the “acceptance probability” and αaa′

is the “recommended probability”. One popular choice
for acceptance probabilities qaa′ , called the Metropolis
choice, is:

qaa′ = min{1,
πa′αa′a

πaαaa′

},

where this choice of qaa′ ensures that the transition
probabilities satisfy the detailed balance equations and
also that the Markov chain is irreducible. Hence, the
MHA guarantees existence and uniqueness of the sta-
tionary distribution of its induced Markov chain, π.

The MHA is a staple in MCMC simulations and
statistics [10]. It remains popular today but also found
a new application in game theory since the work of
[11]. This work introduced a simple, but clever, trick to
use MHA to nd the optimal global score of players’
actions, maxa φ(a), for some collective action of agents
a, by letting the acceptance probabilities be:

qaa′ = min{1, e(φ(a
′)−φ(a))/T αa′a

αaa′

}. (5)

Adopting this acceptance probability guarantees that the
unique stationary distribution of the underlying Markov
chain is a Gibbs distribution of the form:

πa =
eφ(a)/T

Z
(6)

for some constant Z =


a′∈A
φ(a′) and T , a parameter

called the temperature. T induces a regular perturbed
Markov process pT . According to [12], for sufciently
large iterations, one could interpret πa to equal the
probability that the current action of the players at = a.
As T → 0, all the weight of the stationary distribution
is on the joint actions that maximize the global score.
So although the MHA assigns a non-zero probability to
every action a′ from any neighboring action in N (a),
as the temperature decreases, only the state(s) which
maximizes the global score will occur often, a so-called
stochastically stable state(s). The following denition is
due to Young [13]:

Denition 3. A state a ∈ A is stochastically stable
relative to a regular perturbed Markov process pT if
limT→0 π

T
a > 0.

Rather than sampling from a target distribution, the
game-theoretic approach focuses on a target state: The
maximizer of the global action score. This solution is
facilitated through local interaction (see Remark 1).

III. A GAME THEORETIC FORMULATION

We formulate the robot assignment problem as a
game G = (R, L,A,U), where R represents the agents
or players set, L is the underlying location graph. At
any instance t, ri selects a feasible location, action ati
from its action set Ai

3. A =
∏

i Ai is the resulting

3Because of the underlying graph L, the agent is generally making
a selection from a smaller set At

i = N (ati) which is changing
according to the evolving play. However, to simplify the notation,
we will only use Ai since At

i ⊆ Ai. We will also sometimes drop
the time index t when we simply want to focus on the value attained
for a certain action.

4541

Authorized licensed use limited to: University of Illinois. Downloaded on May 14,2023 at 15:45:48 UTC from IEEE Xplore. Restrictions apply.

action set of the agents. Note that L together with A
determine the current neighborhoods of the agents, i.e.
at+1
i ∈ N (ati). It is convenient to use the notation at

−i
to denote the actions of players, other than i, at time t.

The utility the agents receive from selecting a partic-
ular location depends also on the choice of other agents,
hence the game formulation. Here is an example of how
this might happen: Consider the current placement of
robots shown in the example in Fig. 1, r2 and r4 both
select l4 and u24 = 8 while u44 = 10. However, since
we stipulate that only one robot is to be assigned to a
given location, the winner in this case is r4 since this
selection improves the global utility.

We now explicitly use φ(a) to denote the global
utility attained for the collective action a ∈ A of agents.
We are after the action which maximizes φ(.). The fol-
lowing dynamic, based on the Metropolis-Hastings al-
gorithm, converges to the optimal assignment of robots
to locations and lingers there most of the time:

1) Initialization: All players are randomly dispersed on
the available locations.

2) Activate an agent i from the set R -at random.
3) Activated agent selects an action -at random- from its

current neighboring set, i.e. a
temp
i ∈ N (ati), while

at+1
−i = at

−i, i.e. all other players repeat previous
action.

4) Let at = (ati, a
t
−i), and atemp = (atemp

i , at
−i).

Player i calculates the following acceptance prob-
ability:

q(at, atemp) = min{1, e
(φ(atemp)−φ(at))

T
|N (atemp

i)|

|N (ati)|
}.

(7)
5) Agent i ips a coin according to the probability

q(at, atemp). If q(at, atemp) = 1, this means atemp

represents a clear improvement for i, otherwise i will
transition to state at+1 with probability q(at, atemp).

6) If i transitions to a
temp
i , then the action is updated

so that at+1
i = a

temp
i .

7) If i has the highest utility at at+1
i , then it is assigned.

A re-assignment of the winner occurs at ati.
8) Repeat.

Remark 1. We note how robots can calculate the
difference in global utility φ(atemp) − φ(at) in (7) to
evaluate q(at, atemp). Since agents only move one at a
time, then the difference in global utility is due to the
difference in action between a

temp
i and ati and its impact

on global utility. Without loss of generality, suppose
a
temp
i = l2 and ati = l3, then:

φ(atemp)−φ(at) = max
ai′=2

ui′2+max
ai′=3

i′ 6=i

ui′3−max
ai′=2

i′ 6=i

ui′2−max
ai′=3

ui′3

(8)

where the rst term in (8) is the possible utility if ri
moves to l2 under the action a

temp
i . The second term

represents the utility at l3 if ri moves. The third term
is the existing utility at l2, without ri. The fourth term

Algorithm 1 Pseudo code for the MHA

1: Initialize with arbitrary placement of robots
2: loop
3: Activate ri-at random
4: ri selects any action a

temp
i ∈ N (ati)

5: at+1
−i = at

−i

6: ri calculates q(a
t, atemp) according to (7)

7: if RAND[0, 1] ≤ q(at, atemp) then
8: at+1

i ← a
temp
i

9: µ(at+1
i) = argmaxai′=at+1

i
ui′at+1

i

10: µ(ati) = argmaxai′=at
i
ui′at

i

11: end if
12: end loop

is the existing utility at l3, with ri being there. Clearly,
only local information is needed to evaluate (8).

According to the MHA dynamic, there is a non-zero
probability for agents to make a suboptimal decision, for
example by moving to a state at+1

i with a lower utility
than their current utility. However, these decisions help
the agents explore the whole terrain of choices. They
eventually will settle into the optimal assignment.

Theorem 1. Given two agents’ actions a = (ai, a−i)
and a′ = (a′i, a−i) and T > 0, the transition probabil-
ities:

paa′ =

{

1
|N (a′

i
)|
e(φ(a

′)−φ(a))/T if e(φ(a
′)−φ(a))/T |N (ai)|

|N (a′

i
)|
≤ 1

1
|N (ai)|

o.w.

(9)

guarantee the unique stationary distribution of the
underlying Markov chain is a Gibbs distribution of the
form in (6).

Proof: The choice of paa′ as in (9) guarantees that
the detailed balance property applies to the Markov
chain induced by MHA, this guarantees the existence
of a stationary distribution as in (6). Irreducibility
of the Markov chain follows from the fact that the
sampler assigns a non-zero probability to any action in
the neighboring action set. Irreducibility guarantees the
uniqueness of the stationary distribution. [8], [9].

Lemma 1. Using the learning rule of Theorem 1, the
stochastically stable state of MHA is the optimal state,
a∗, the solution to the constrained problem in (1).

Proof: The Gibbs distribution in (6) is centered at
the state of the maximum global score. As T → 0,
πa → 0 ∀ a 6= a∗. According to [13], over the long run,
states that are not stochastically stable will be observed
infrequently compared to states that are, provided that
T is small. The unique stochastically stable state will
be observed almost all of the time when T is small.

Fig. 2 shows a run of MHA on a 4-node network
which is connected as a line. The optimal is calculated
using the centralized Hungarian method. The results

4542

Authorized licensed use limited to: University of Illinois. Downloaded on May 14,2023 at 15:45:48 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: A run of MHA on a line topology network. The robots

spend most of their time at the optimal state.

clearly validate lemma 1.

IV. MHA: A VERSATILE LEARNING ALGORITHM

We show here various variations to our original setup
to demonstrate the adaptability of the MHA.

A. Convergence Rate and Accelerating MHA

The convergence rate of the MHA depends on the
target distribution and is in general difcult to charac-
terize [14]. In our case, this target distribution is not
known apriori as it is the subject of our optimization.
Nevertheless, there are various methods by which we
can accelerate the convergence of MHA.

We note in Algorithm 1 that only one agent is
active at a time. However, as highlighted in Remark
1 and equation (8), the difference in global utility is
only due to changes in utility based on the player’s
recommended action and its current action. This hints
at the possibility of activating more than one agent
at a given time, provided that the agents’ considered
actions ati and a

temp
i do not overlap. Fig. 4 represents

a sample on the example we presented in Fig. 1. In the
numerical results section, we also show one extreme
case of activating all agents at the same time, whether
actions are overlapping or not. The MHA is quite robust
to such uncoordinated play.

The work in [15] highlights that the convergence
rate of MHA depends also on the temperature T . Fixed,
large values of T lead to rapid exploration of the state
space. However, such agent behavior typically doesn’t
settle into an optimal conguration since inferior actions
tend to be accepted and agents’ motions are volatile.
Small values of T , on the other hand, lead to greedy
exploitation. However, the MHA may get stuck because
the probability of accepting inferior actions is small.

Hence, in [15], one possibility to speed up the
convergence is to make the learning rate variable by

Fig. 3: Using the same network as Fig. 1, it is possible for

three agents to be activated at the same time. Robots’ current

and temporary actions are highlighted using the same colored

circles.

Fig. 4: Highlighting the difculty the robot faces to reach a

better assignment if the temperature is small. The utility values

are in green. The robot could improve its utility drastically

from 4 to 10 if it managed to get to location 3. However, this

is extremely unlikely to happen with a small T value due to

the bottle neck location l2.

starting with a small nominal value for T and then
increasing the value, and hence the exploration, if no
improvement is encountered for N times, where N is
a pre-dened variable. To maintain cohesion among the
nodes, the learning rate then undergoes an exponential
decay to its nominal value. In the numerical results
section, we explore the impact of a variable temperature
on the convergence of MHA.

The work in [16] takes a different approach by
studying the transient behavior of the Markov chain re-
sulting from the MHA learning rule and other stochastic
learning algorithms. Starting from an initial condition,
that work identies the subset of state space, called
cycles, that have a small hitting time and long exit times.
This approach is useful when the lifetime of the network
is smaller than the convergence time of the learning
mechanism. We cite this work here to emphasize that
techniques exist to analyze the transient behavior of the
MHA and other learning algorithms.

B. Extension to Multi-task and Multi-robot Assignments

We examine here the possible extension to the multi-
task (A robot can be assigned to many tasks) or multi-
robot (many robots simultaneously assigned to a single
task) scenarios. This occurs often in the task assignment
literature. For example in [17], a multi-task scenario is
considered. Each robot ri can perform a maximum of
mi tasks. Tasks also form disjoint groups, so that ri
can perform at most mik tasks of the k-th task group,
Tk, where there are nt task groups. So the optimization

4543

Authorized licensed use limited to: University of Illinois. Downloaded on May 14,2023 at 15:45:48 UTC from IEEE Xplore. Restrictions apply.

problem becomes:

max
µij

φ =
∑

i∈R

∑

j∈L

µijuij

s.t.
∑

i

µij = 1, ∀j ∈ L

∑

j

µij ≤ mi, ∀i ∈ J

∑

j∈Tk

µij ≤ mik, ∀i ∈ R and, ∀k = 1, ..., nt

µij ∈ {0, 1}, ∀i ∈ R and ∀j ∈ L

We can adapt the MHA to this setup. We start with a
feasible assignment of robots to tasks. When a robot
gets activated with a task(s): The agent calculates the
marginal value of adding the task following the total and
task group constraints. This process eventually leads the
system to the global optimal assignment as long as we
can track the change in global utility due to any agent’s
current and temporal action.

V. NUMERICAL RESULTS

We start with a comparison with the work in [3]
which considers a static task assignment problem sim-
ilar to ours. By static, we mean that the agents -
satellites- are immobile and have constrained action
sets. This means certain tasks are not compatible with
the agents but those sets are xed. The authors propose
greedy solutions to solve their problem using rst a
global greedy approach, which enumerates the maxi-
mum element in matrix U , assigns the robot-task pair
which attains this value, and then keeps assigning pairs
in decreasing order of the utility until it is done. This
is suboptimal to the centralized Hungarian algorithm
but converges very quickly. The authors also consider
a distributed version of the greedy algorithm in which
agents calculate their marginal contribution to a task,
i.e. the added value they bring when assigned to a
given task. Agents then propose to the target with the
maximum marginal contribution. Conicting proposals
are resolved arbitrarily among the robots. Fig. 5 reports
our results. The location graph is shown on top and the
achieved relative reward using all approaches is shown
on the bottom. Both greedy algorithms converge fast
but the performance of the distributed greedy algorithm
is always suboptimal to our approach. By insisting
that robots only propose to locations with maximum
marginal contribution, the algorithm gets stuck in sub-
optimal assignments because there is no improvement in
the immediate neighborhood. While the global greedy
converges fast, it is suboptimal and centralized.

In Fig. 6, we explore the impact of varying the
temperature on the performance of MHA. As outlined
in [15], a varying temperature provides the best per-
formance. In the variable rate scheme, we start with
a large temperature to allow the agents to explore the
network, and then the temperature is lowered so that

Fig. 5: Comparing MHA with the global and distributed

greedy algorithms of [3].

Fig. 6: Impact of varying the learning rate on the MHA.

only the optimal payoff is maintained. A constant large
value for the temperature results in a noisy performance
while a small value may make the algorithm stuck in a
local optimal for a long time.

In Fig. 7, we compare MHA with the algorithm pro-
posed in [17]. The algorithm in [17] uses a consensus-
like distributed algorithm to reach an almost optimal
assignment. In the bidding process of each agent, the
latest price of each task is propagated to each agent so

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of Iterations

0

100

200

300

400

500

600

700

800

900

1000

T
o

ta
l
R

e
w

a
rd

Consensus Algorithm

MHA

Fig. 7: A comparison with the multi-task scenario of [17]

where the number of robots = 20, the number of tasks = 60,

the number of task subsets = 20 and mik = 3.

4544

Authorized licensed use limited to: University of Illinois. Downloaded on May 14,2023 at 15:45:48 UTC from IEEE Xplore. Restrictions apply.

that the agent can decide whether to bid on the task.
One version of the algorithm considers a sequential
activation of agents, but it is assumed that agents always
have access to the latest network-wide price of all
tasks. This is one reason why the algorithm in [17]
converges very fast versus our algorithm, as shown
in Fig. 7. However, despite the strong information
disadvantage, MHA is well on track to achieve the
performance of the consensus algorithm. In fact, in less
than 100 iterations, MHA achieves more than 50% of
the performance achieved by the consensus algorithm.
It is also possible to modify MHA using the techniques
discussed previously to achieve better convergence.

Also, we used PX4 SITL in Gazebo to simulate six
drones (agents) on a location graph similar to Fig. 1.
Drones y at different altitudes to avoid collision. A
demonstration video of the simulation is available at
https://youtu.be/G5DSbMg6EtA. We assume the nodes
form a wireless network where each node can only
communicate with its neighbors. An agent chooses
a neighbor at random and connects to that neighbor
channel. Any given node channel can provide agents
with the value of the currently winning score.

Using local clocks along with a predened waiting
time and order, algorithm 1 can be easily implemented
in any multi-agent setup. To demonstrate the versatil-
ity of the algorithm, we simulated some runs while
activating more than one agent, starting with non-
overlapping actions and then moving to the extreme case
where all agents move at the same time. The results of
the real-time implementation are shown in Fig. 8. A
single agent activation provides the best performance
with minimal noisy performance. The reasonably good
performance with all agents’ activation is a testament
to the robustness of MHA to lack of synchronization.

Fig. 8: A real time implementation of MHA using a single

agent activation, non-overlapping simultaneous agent activa-

tion, and all-agent-activation versions of MHA

VI. CONCLUSION

We proposed a game-theoretic learning algorithm
for robotic task assignment with an underlying lo-
cation graph restricting robot motion. The algorithm
is based on the Metropolis-Hastings mechanism used

in MCMC simulations. We showed that our proposed
low-information distributed algorithm will reach the
globally optimal state. Extensive simulations veried
our approach. We also showed various ways to improve
the performance of the proposed algorithm and to widen
its applicability to various task assignment problems.

REFERENCES

[1] Smriti Chopra, Giuseppe Notarstefano, Matthew Rice, and
Magnus Egerstedt, “A distributed version of the hungarian
method for multirobot assignment,” IEEE Transactions on

Robotics, vol. 33, no. 4, pp. 932–947, 2017.

[2] H. Jaleel and J. S. Shamma, “Distributed optimization for
robot networks: From real-time convex optimization to game-
theoretic self-organization,” Proceedings of the IEEE, vol. 108,
no. 11, pp. 1953–1967, 2020.

[3] Guannan Qu, Dave Brown, and Na Li, “Distributed greedy
algorithm for multi-agent task assignment problem with sub-
modular utility functions,” Automatica, vol. 105, pp. 206–215,
2019.

[4] Rainer E Burkard and Eranda Cela, “Linear assignment
problems and extensions,” in Handbook of combinatorial

optimization, pp. 75–149. Springer, 1999.

[5] Nathan Michael, Michael M Zavlanos, Vijay Kumar, and
George J Pappas, “Distributed multi-robot task assignment and
formation control,” in 2008 IEEE International Conference on

Robotics and Automation. IEEE, 2008, pp. 128–133.

[6] Brian P Gerkey and Maja J Matarić, “A formal analysis
and taxonomy of task allocation in multi-robot systems,” The

International journal of robotics research, vol. 23, no. 9, pp.
939–954, 2004.

[7] G Ayorkor Korsah, Anthony Stentz, and M Bernardine Dias,
“A comprehensive taxonomy for multi-robot task allocation,”
The International Journal of Robotics Research, vol. 32, no.
12, pp. 1495–1512, 2013.

[8] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N
Rosenbluth, Augusta H Teller, and Edward Teller, “Equation
of state calculations by fast computing machines,” The journal

of chemical physics, vol. 21, no. 6, pp. 1087–1092, 1953.

[9] W Keith Hastings, “Monte carlo sampling methods using
markov chains and their applications,” 1970.

[10] David B Hitchcock, “A history of the metropolis–hastings
algorithm,” The American Statistician, vol. 57, no. 4, pp. 254–
257, 2003.

[11] Daniel Pickem, Magnus Egerstedt, and Jeff S Shamma,
“A game-theoretic formulation of the homogeneous self-
reconguration problem,” in 2015 54th IEEE Conference on

Decision and Control (CDC). IEEE, 2015, pp. 2829–2834.

[12] Jason R. Marden and Jeff S. Shamma, “Revisiting log-
linear learning: Asynchrony, completeness and payoff-based
implementation,” Games and Economic Behavior, vol. 75, no.
2, pp. 788 – 808, 2012.

[13] H Peyton Young, “The evolution of conventions,” Economet-

rica: Journal of the Econometric Society, pp. 57–84, 1993.

[14] Heikki Haario, Eero Saksman, and Johanna Tamminen, “An
adaptive metropolis algorithm,” Bernoulli, vol. 7, no. 2, pp.
223–242, 04 2001.

[15] D. Pickem, Self-recongurable Multi-Robot Systems, Ph.D.
thesis, Georgia Institute of Technology, Atlanta, 2016.

[16] Hassan Jaleel and Jeff S Shamma, “Transient response analysis
of metropolis learning in games,” IFAC-PapersOnLine, vol. 50,
no. 1, pp. 9661–9667, 2017.

[17] Lingzhi Luo, Nilanjan Chakraborty, and Katia Sycara,
“Provably-good distributed algorithm for constrained multi-
robot task assignment for grouped tasks,” IEEE Transactions

on Robotics, vol. 31, no. 1, pp. 19–30, 2014.

4545

Authorized licensed use limited to: University of Illinois. Downloaded on May 14,2023 at 15:45:48 UTC from IEEE Xplore. Restrictions apply.

