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ABSTRACT

Knowledge tracing (KT) aims to predict students’ future knowledge levels based
on their historical interaction sequences. Most KT methods rely on interaction
data between students and questions to assess knowledge states and these ap-
proaches typically assume that the interaction data is reliable. In fact, on the
one hand, factors such as guessing or slipping could inevitably bring in noise in
sequences. On the other hand, students’ interaction sequences are often sparse,
which could amplify the impact of noise, further affecting the accurate assess-
ment of knowledge states. Although data augmentation which is always adopted
in KT could alleviate data sparsity, it also brings noise again during the process.
Therefore, denoising strategy is urgent and it should be employed not only on the
original sequences but also on the augmented sequences. To achieve this goal, we
adopt a plug and play denoising framework in our method. The denoising tech-
nique is adopted not only on the original and the augmented sequences separately
during the data augmentation process, but also we explore the hard noise through
the comparison between the two streams. During the denoising process, we em-
ploy a novel strategy for selecting data samples to balance the hard and soft noise
leveraging Singular Value Decomposition (SVD). This approach optimizes the
ratio of explicit to implicit denoising and combines them to improve feature rep-
resentation. Extensive experiments on four real-world datasets demonstrate that
our method not only enhances accuracy but also maintains model interpretability.

1 INTRODUCTION

With the rise of online education, Knowledge tracing (KT) task has drawn wide concern and has
become a major challenge (Embretson & Reise, 2000). It aims to predict the probability of a
learner’s mastery on the knowledge points based on the sequence of correct and incorrect responses
across multiple historical learning tasks (Yin et al., 2023; Liu et al., 2023a; Long et al., 2021),
enabling dynamic tracing of the learner’s knowledge state.

...Original 
Sequence

...Denoising 
Sequence

0.680.54 0.56 0.72

0.28 0.61 0 0.78

Hard weightSoft weight No weight

Weight

Response

Weight

1q 2q mq nq

t+1q

'
1q

'
2q

'
mq

'
nq

Online System

1q 2q mq nq t+1q...

Questions

Repeats

Answers

1q 2q mq nq

3 2 3 9 1 57 2

Figure 1: The difference in knowledge states between the original interaction sequence and the
denoised sequence after multiple student responses, as well as the impact on future questions.

Although existing KT methods have achieved some success in forecasting students’ future perfor-
mance on questions (Wang et al., 2023; Corbett & Anderson, 1994), they are still influenced by
noise. Taken Figure 1 as an example, in traditional KT methods, the influence weights learned from
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the original interaction sequences on the final question may be incorrect due to some factors, e.g., the
mistake made by the carelessness of the student or the unreliable knowledge states. These outliers
can be regarded as noise inevitable in interactions. Furthermore, sparse problem which always ex-
isted in interaction sequences could amplify the impact of noise and affect the representation of the
students’ final knowledge states. To address this issue, recent researches have utilized various deep
models (Nakagawa et al., 2019; Wang et al., 2024; Liu et al., 2023b) to capture the sequentiality
within sequences to against the risk of noise and employed contrastive learning for data augmen-
tation to mitigate the problem of data sparsity. These approaches aim to uncover unique learning
patterns or regularities among students, but they are always not involved in the noise generated in
data augmentation, which is harmful to learn robust sequence representations, too.

In Figure 1, we assume that each question is answered some times. Question q1 was answered
correctly three times at first and incorrectly two times latter, indicating that q1 has been gradually
mastered. Based on this, the impact of the incorrect responses should be reduced on the target
question. While for question qm, it was answered correctly nine times and incorrectly once. This
single incorrect response very likely might be a mistake, so we want to treat it as noise and ignore
its impact on the target question. The comparison shows that the answers to the target question
are completely different before and after denoising. Without denoising, the noise might lead to a
decline in the student’s knowledge states, resulting in incorrect answers. Besides noise, sparse is
also an important problem in KT. Previous methods which leverage the data augmentation strategy
may amplify the influence of noise due to the unreliability in original sequences, which is harmful to
the performance of the model. Considering the two problems, we proposed the Sequence Denoising
with Self-Augmentation for Knowledge Tracing method, which aims to address the noise in both
the original sequences and augmented sequences from the explicit and implicit perspectives.

Specifically, after data augmentation to expand sparse interaction sequences, we employ a combined
strategy of soft and hard denoising (Lin et al., 2023a; Yuan et al., 2021). Intuitively, the sample that
is off center has the high probability is the outlier, that is to say, the noise usually has the high
sharpness. To measure the degree of outlier, inspired by Singular Value Decomposition (SVD)
(Zhai et al., 2024), we adopt the singular value to reflect the informative signals. Obviously, the
larger the singular value, the more smooth. To make full use of the singular value, on the one hand,
we maximize the largest singular value to reduce the sharpness, then the impact of noise could
be weakend. On the other hand, to fully explore the noise, considering that the augmented data
are randomly generated, the greater the feature difference, the more likely it is to be hard noise.
Therefore, we not only leverage the SVD as the regularization to reduce the impact of noise, but
also is helpful to the mining of noisy samples. Specifically, we apply SVD to explicitly explore the
hard sequence data, while performing implicit denoising on the remaining data, and then merged
the denoised sequences. This approach not only enhances the robustness of the model in noisy
environments but also improves its interpretability.

The main contributions are summarized as follows. Firstly, we introduce a denoising module that
combines explicit and implicit denoising methods and integrate them for the first time in the Knowl-
edge Tracing (KT) task. This not only improves the prediction accuracy but also enhances the in-
terpretability of the model. Secondly, our method is based on data augmentation, which has already
been utilized in KT. We further utilize data augmentation to denoise both the original sequence and
the augmented sequence and combine them to obtain a better data representation, which improves
the reliability of the data while addressing the issue of data sparsity. Thirdly, we make use of Sin-
gular Value Decomposition (SVD) (Chen et al., 2019) not only for individual data sequences as a
regularization term, but also to distinguish between explicit and implicit denoising samples, effec-
tively extracting the underlying patterns and structures from the data and improving the data quality.

2 RELATED WORK

Knowledge Tracing KT methods were generally divided into two main categories: traditional ma-
chine learning methods and deep learning methods (Zhou et al., 2024; Abdelrahman et al., 2023).
Among traditional approaches, Bayesian Knowledge Tracing (BKT) (Corbett & Anderson, 1994)
stood out as a seminal method, leveraging the Hidden Markov Model (HMM) to sequentially model
and interpret the student learning process. Other important methods included Performance Factors
Analysis (PFA) (Pavlik et al., 2009) and Item Response Theory (IRT) (Reise, 2014), which focused
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Figure 2: The overall framework of CL4KT-DA. The left side represents the overall model architec-
ture, while the right side details the denoising module we proposed.

on different factors affecting performance. Recently, the advent of deep neural networks brought sig-
nificant advancements with Deep Knowledge Tracing (DKT), which showed notable improvements
in performance. Based on this, Self-Attentive Knowledge Tracing (SAKT) introduced attention
mechanisms (Vaswani, 2017; Pandey & Karypis, 2019), allowing for the identification of correla-
tions between different concepts and addressing data sparsity issues. Furthermore, contrastive learn-
ing for Knowledge Tracing (CL4KT) (Lee et al., 2022; Liu et al., 2020a) incorporated contrastive
learning methods (Robinson et al., 2021) to enhance historical interaction sequences through ef-
fective data augmentation (Dang et al., 2023; Liu et al., 2020b). However, previous methods have
used data augmentation to tackle data sparsity, they have not fully addressed the potential noise in-
troduced by such augmentation. Addressing noise within sequences remains an often-overlooked
issue, which can significantly affect model performance.

Sequence Denoising Recent KT studies have explored many methods to learn better feature rep-
resentations. However, in practice, historical sequences usually contain some inherently noisy
items (such as guessing or slipping) (Zhang et al., 2023), which are always ignored, resulting in
inaccurate final predictions. Although few approaches utilize denoising to achieve better data rep-
resentation in KT field, the denoising methods are widely applied in sequence-related tasks, which
could inspire our research. Some studies addressed this challenge in a ”soft” way (Zhang et al.,
2022), trying to implicitly reduce the noise on the learned sequence representation, i.e., assigning
lower weights to those interactions that are less important relative to the final interactions, but in this
way, noise still existed in sequence and may affect performance. Furthermore, some studies directly
use explicit denoising (Tong et al., 2021; Han et al., 2023) to delete irrelevant items in the sequence.
However, the historical sequence usually contains some interactions that are irrelevant to the next
interaction, which may not be inherent noise, so eliminating them without carefully selected may
lose useful information. Inspired by these observations, we want to combine explicit and implicit
denoising, balancing the influence of primary and secondary features on the next interaction. This
strategy not only ensures performance but also enhances the model’s interpretability.

3 TWO-STREAM DENOISING MODEL

Figure 2 offers a detailed overview of the CL4KT-DA model, which integrates the CL4KT frame-
work with our denoising module. Notably, we employed only the data augmentation from CL4KT.
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3.1 PROBLEM DEFINITION

The student’s historical learning interactions are defined as V , where V = (v1, v2, ..., vm, vn, ..., vt).
Each interaction consists of a tuple: vt = (qt, rt). Where qt represents the tth question, and rt
represents the response result, which is either 0 or 1, with 1 indicating a correct response and 0
indicating an incorrect response. Given the interaction sequence and the next question qt+1, KT
aims to determine the probability of correctly answering the next question:

r̂t+1 = p(rt+1 = 1|v1, v2, ..., vt, qt+1). (1)

3.2 MODEL ARCHITECTURE

Data-Augmentation Due to the complexity and uniqueness of the KT task, directly applying ex-
isting data augmentation methods from CV (Chen et al., 2020; Hochreiter & Schmidhuber, 1997)
and NLP (Gao et al., 2021) is challenging. Therefore, we follow the data augmentation approach
in contrastive learning and use various data augmentation methods to generate relevant views of
students’ learning histories. These methods include: 1. Question Masking: Replacing some ques-
tions in the original history with a special mask without changing their responses. 2. Interaction
Cropping: Randomly extracting a subsequence from the original history. 3. Question Replacement:
Transforming the original question into a simpler or more difficult one based on its response. 4.
Interaction Shuffling: Reordering interactions within a subsequence of the original history. Each
of these data augmentation methods is applied with different probabilities. Ultimately, this results
in augmented question sequences: Q+

1 = (q+1 , q
+
2 , ..., q

+
m, q+n , ..., q

+
t ) and interaction sequences:

V +
1 = (v+1 , v

+
2 , ..., v

+
m, v+n , ..., v

+
t ).

Embedding Layer We initially map the original questions and interactions, as well as the aug-
mented IDs, to dense embedding vectors qui , q

+
ui

, vui and v+ui
∈ Rs , where s represents the dimen-

sion of the embedding vectors and Wq , Wq+ , Wv and Wv+ are the trainable matrices. Consequently,
the embeddings of the questions and interactions are initialized as follows:

qui
= qiWq, vui

= viWv.

q+ui
= q+i Wq+ , v+ui

= v+i Wv+ .
(2)

Denoising Module To obtain better sequence representations, we applied data augmentation to both
question and interaction sequences. However, since the original sequences may contain inherent
noise, the same denoising process was applied to both the augmented and original sequences. On
one hand, the augmented and original sequences usually share similar data distributions and noise
characteristics. On the other hand, the augmented sequences provide richer and more diverse data,
helping prevent the model from overly focusing on specific noise patterns. This approach allows
us to effectively remove noise while preserving data diversity, thereby improving the quality of
sequence representations. In the denoising process, we adopted the denoising method fden proposed
in (Zhang et al., 2022; Lin et al., 2023b). This method utilizes information from both augmented
and original sequences to generate noiseless sub-sequences through a specific denoising mechanism.
Specifically, fden filters noise by leveraging intra-sequence information:

qd = fden(qui |qi ,Θdq ), vd = fden(vui |vi ,Θdv ),

q+d = fden(q
+
ui
|q+

i
,Θdq ), v

+
d = fden(v

+
ui
|v+

i
,Θdv ).

(3)

where Θdq
and Θdv

represent the parameters of fden. To identify the main learning patterns and
rules in historical interactions and extract more accurate features, we combine explicit denoising
with implicit denoising, unlike previous approaches that considered only one type of denoising.
Using only explicit denoising can eliminate inherent noise but might mistakenly remove interactions
with low similarity to the target interaction. On the contrary, using only implicit denoising merely
reduces the weights of unrelated interactions, leading to incomplete noise removal. In our method,
we make use of the fusion of the denoised augmented sequence obtained from Eq.(3) with the
denoised sequence to obtain new problem and interaction sequences:

q
′

d = qd + λ · q+d , v
′

d = vd + λ · v+d . (4)

where λ is a trade-off parameter to balance the contribution of the augmented sequence when gen-
erating the final sequence representation.
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In order to ensure that the explicit and implicit denoising samples we selected have high representa-
tiveness and signal-to-noise ratio, we need to select a sample subset for weighted fusion. To ensure
that the model is not adversely affected by implicit noise, inspired by (Chen et al., 2019), we incor-
porate an SVD-based loss function into the training process to softly reduce the noise. This loss is
specifically designed to reduce the impact of noise, allowing the model to focus more on capturing
general features and latent patterns while enhancing data quality.

Ldes = − δ1∑D
j=1 δj

. (5)

where δj represents the maximum singular value, D denotes the size of the singular value matrix.

Besides the implicit denoising, due to the singular value could reflect the informative signal, SVD
is also leveraged to the explicit denoising process. We use it to select a sample subset and quantify
the denoising effect, thereby identifying samples that retain the main information and remove noise.
By comparing the original sequences and the augmented sequences, the higher the difference, the
higher the probability of noise. Therefore, we first convert the original problem and interactive
embeddings as well as the problem and interactive embeddings after noise reduction into a matrix
and decompose them to obtain the reconstruction features:

qmi = Uqi · Σqi · V ⊤
qi , qm

′

d = Uq
′
d
· Σq

′
d
· V ⊤

q
′
d

. (6)

vmi = Uvi · Σvi · V ⊤
vi , vm

′

d = Uv
′
d
· Σv

′
d
· V ⊤

v
′
d

. (7)

Then, we calculate the singular value difference of the question and interaction matrices respectively.
The larger the difference value, the less similar the features are, and classify this as noise data.
We compare the original embeddings of questions and interactions with the denoised embeddings,
looking for significant differences between matrices. We select samples with larger differences
for explicit denoising, and the remaining samples with smaller differences for implicit denoising.
This approach avoids excessive denoising and ensures data integrity. To choose an appropriate
threshold, we integrate the differences of the question and interaction to measure the signal-to-noise
distribution. The higher the noise, the higher the threshold ρ.

∆ques = α ·
||Σqd ||2 −

∣∣∣∣∣∣Σq
′
d

∣∣∣∣∣∣
2

max(||Σqd ||2 ,
∣∣∣∣∣∣Σq

′
d

∣∣∣∣∣∣
2
)
+ (1− α) · (1− cos(θqd,q′d

)), (8)

∆inter = β ·
||Σvd ||2 −

∣∣∣∣∣∣Σv
′
d

∣∣∣∣∣∣
2

max(||Σvd ||2 ,
∣∣∣∣∣∣Σv

′
d

∣∣∣∣∣∣
2
)
+ (1− β) · (1− cos(θvd,v′

d
)), (9)

∆global = γ ·∆ques + (1− γ) ·∆inter, (10)

ρ = µ(∆global) + k · σ(∆global) ·H(∆global). (11)

α and β are hyperparameters used to measure the proportion of the influence of singular values
and eigenvectors. qd, q

′

d and vd, v
′

d are the angles between the corresponding eigenvector spaces. γ
represents the proportion of weights of problems and interactions. Samples are classified according
to the value of. Samples with high values correspond to those significantly affected by noise and
will undergo explicit denoising. H represents the calculation of information entropy, and k is a
regulating coefficient used to measure the overall uncertainty of the data.

Specifically, we choose the top- ⌊ρ/4⌋ samples for explicit denoising and we use the mask to explic-
itly denoise the sampled data. In order to balance the main and secondary features, the remaining
sequence is fused with the original sequence for implicit denoising, resulting in the final representa-
tion of the question and interaction:

maskq[j] =

{
1, if j /∈ τ

′

ques[: ⌊ρ/4⌋]
0, if j ∈ τ

′

ques[: ⌊ρ/4⌋]
, maskv[j] =

{
1, if j /∈ τ

′

inter[: ⌊ρ/4⌋]
0, if j ∈ τ

′

inter[: ⌊ρ/4⌋]
. (12)
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q̃i = maskq · q
′

d, ṽi = maskv · v
′

d. (13)
where maskq and maskv respectively indicate the portions of the question sequence and interaction
sequence that require explicit denoising. We also select ⌊ρ/4⌋ data in the sequence for the fusion
operation of explicit and implicit denoising to ensure the reliability and diversity of the data.

Additionally, in order to better explore the implicit denoising, we follow the two Transformer en-
coders used in the baseline: a question encoder gQ and an interaction encoder gV . These extract
embedded representations from given sequences of questions hQ

t = gQt (q̃1:t;m) and interactions
hV
t = gVt (ṽ1:t;m). The m represents the attention mask controlling the attention modules.

hQ
t+1 = gQt+1(q̃1:t+1;mc), hV

t = gVt (ṽ1:t;mc). (14)

where mc denotes a causal mask having the effect of zeroing out the attention weights of the sub-
sequent positions. Additionally, we employ an extra Transformer encoder, fKR (referred to as the
knowledge retriever), to combine the representations of questions and interactions for predicting the
next response. Specifically, the knowledge retriever captures relevant questions from the history and
references their response results to identify the next response.

h̃t+1 = fKR(q = hQ
t+1, k = hQ

1:t, v = hV
1:t;mc). (15)

Where h̃t+1 is the output vector, we concatenate h̃t+1 with qt+1 and pass it through a two-layer fully
connected network, using the sigmoid function to generate the predicted probability r̂t+1 ∈ [0, 1].

Lpre =
∑
t

−(rt log r̂t + (1− rt)log(1− r̂t)). (16)

The overall loss for the model is then obtained by combining this SVD-based loss with the primary
loss function, resulting in a comprehensive measure of model performance.

Ltotal = Lpre + η · Ldes. (17)

Here η is a hyperparameter that we set to 0.01. This will be discussed in the ablation experiments.

4 EXPERIMENTS

Datasets and Baselines We use four widely-used public datasets to evaluate the performance of the
model including Algebra051, Algebra061, Assistment092 and Slepemapy3. These methods not
only include DKT (Piech et al., 2015), DKT+ (Yeung & Yeung, 2018), DKVMN (Zhang et al.,
2017) which leveraging the deep learning for KT, but also contain SAKT (Vaswani, 2017; Pandey
& Karypis, 2019),AKT (Ghosh et al., 2020), CL4KT (Lee et al., 2022) and DTransformer (Yin
et al., 2023) which leveraged the attention mechanism into KT task.

Experimental Setup and Results We adopt the data augmentation parameters from CL4KT for
fairness in the experiments. To rigorously evaluate the model’s performance, we apply five-fold
cross-validation by dividing the data into five subsets and sequentially assessing the model’s perfor-
mance on each subset. We also adopt the baseline strategy of applying early stopping when the AUC
on the validation set does not increase over 10 epochs, providing a reliable quantitative evaluation.
This experiment is conducted on an NVIDIA 3090 GPU with 24GB of memory.

Table 1 summarizes the evaluation results. After integrating the denoising module, our method
achieved the best performance across all four datasets. We also tested other denoising methods on
the baseline models: -ID represents implicit denoising, -ED represents explicit denoising, and -DA
represents our combined method. The results show that neither implicit nor explicit denoising alone
matches the performance of our combined method. Explicit denoising tends to degrade performance
due to excessive filtering, while implicit denoising struggles to handle sparse interactions, negatively
impacting the representation of knowledge states. Specifically, due to the sparse student interaction
data, using only explicit denoising for DKT-ED may lead to over-denoising, especially in a base
model like DKT, where the risk of performance degradation is greater. Our method effectively
solves these denoising issues, boosting performance.

1https://pslcdatashop.web.cmu.edu/KDDCup
2https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data
3https://opendatacommons.org/licenses/odbl/1-0/
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Table 1: Comparison of AUC and RMSE performance across four datasets for different models.

Datasets Algebra05 Algebra06 Assistment09 Slepemapy
Metrics AUC RMSE AUC RMSE AUC RMSE AUC RMSE

DKT 0.7636 0.3921 0.7316 0.3908 0.6891 0.4609 0.6986 0.3978
DKT-ED 0.7422 0.3967 0.7165 0.3944 0.6660 0.4675 0.6659 0.4013
DKT-ID 0.7642 0.3908 0.7324 0.3908 0.6909 0.4617 0.6992 0.4036
DKT-DA 0.7665 0.3896 0.7341 0.3914 0.6917 0.4601 0.7024 0.3961

AKT 0.7725 0.3898 0.7474 0.3896 0.7504 0.4438 0.7070 0.3939
AKT-ED 0.7936 0.3837 0.7564 0.3850 0.7578 0.4421 0.7630 0.3794
AKT-ID 0.7923 0.3831 0.7595 0.3841 0.7567 0.4395 0.7469 0.3849
AKT-DA 0.7952 0.3809 0.7633 0.3856 0.7588 0.4388 0.7636 0.3787
CL4KT 0.7891 0.3815 0.7733 0.3791 0.7624 0.4333 0.7218 0.3926

CL4KT-ED 0.7969 0.3782 0.7812 0.3749 0.7719 0.4281 0.7487 0.3856
CL4KT-ID 0.7982 0.3775 0.7921 0.3725 0.7824 0.4241 0.7390 0.3863
CL4KT-DA 0.7998 0.3766 0.7930 0.3718 0.7834 0.4229 0.7608 0.3795

Table 2: To assess robustness, we added Gaussian noise to explicit, implicit, and our method.

Datasets Algebra05 Algebra05 Algebra05 Algebra06 Algebra06 Algebra06
Metrics AUC RMSE AUC RMSE AUC RMSE AUC RMSE AUC RMSE AUC RMSE

Noise ratio 0% 10% 20% 0% 10% 20%
CL4KT 0.7891 0.3815 0.7850 0.3834 0.7809 0.3853 0.7733 0.3791 0.7643 0.3839 0.7568 0.3883

CL4KT-ED 0.7969 0.3782 0.7573 0.3897 0.7568 0.3902 0.7812 0.3749 0.7456 0.3857 0.7440 0.3873
CL4KT-ID 0.7982 0.3775 0.7897 0.3800 0.7899 0.3796 0.7921 0.3725 0.7814 0.3784 0.7809 0.3774
CL4KT-DA 0.7998 0.3766 0.7913 0.3789 0.7904 0.3781 0.7930 0.3718 0.7827 0.3764 0.7819 0.3770

Denoising Robustness Analysis Table 2 illustrates the impact of different denoising methods on
model performance under Gaussian noise. Gaussian noise is introduced to simulate the random
behavior of students during answering, allowing us to assess the robustness of the model. The ex-
perimental results indicate that as the noise intensity increases, the model’s performance gradually
declines. We compared two datasets with shorter runtimes. For the baseline model CL4KT, per-
formance degrades more significantly as the noise ratio rises, attributed to the model’s sensitivity
to noisy data, which impacts predictive accuracy. In contrast, our denoising module shows greater
stability under varying noise conditions. This is mainly because explicit denoising alone can lead
to the loss of important behavioral information crucial for accurate predictions. Implicit denoising
reduces the impact of noisy data and better reflects students’ true behavioral patterns. However, re-
lying solely on implicit denoising may inadequately address certain low-probability behaviors that
significantly affect the student’s knowledge state updates. Our combined approach, integrating both
explicit and implicit denoising methods, balances these challenges, enhancing model interpretability
and stability while ensuring accurate performance. This demonstrates the robustness of our denois-
ing strategy in handling diverse noise levels while maintaining reliable results.

Table 3: This table compares the performance of our denoising method with combined data aug-
mentation versus separate denoising.

Datasets Algebra05 Algebra06 Assistment09 Slepemapy
Metrics AUC RMSE AUC RMSE AUC RMSE AUC RMSE

CL4KT-SDS 0.7929 0.3791 0.7891 0.3789 0.7761 0.4301 0.7548 0.3857
CL4KT-FDS 0.7998 0.3766 0.7930 0.3718 0.7834 0.4229 0.7608 0.3795

Data Fusion Comparative Analysis In this section, we compare different data fusion methods. To
validate our method’s effectiveness. As shown in the table 3, CL4KT-FDS represents denoising
after feature fusion, while CL4KT-SDS indicates denoising the augmented and original sequences
separately before feeding them into the model. Combining the augmented sequence with the orig-
inal sequence and then denoising produces better results compared to denoising the original and
augmented sequences separately and then inputting them into the model. This improvement occurs
because the augmented and original sequences contain distinct feature information. The fused se-
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quence retains the key information from the original sequence while utilizing the additional context
and features from the augmented sequence, enabling the model to more comprehensively understand
the student’s knowledge state. On the other hand, feeding the sequences into the model separately
may cause the model to overly rely on data from a single source. Since the original sequence in-
herently contains noise, the augmented sequence might amplify this noise, making it harder for the
model to fully identify and mitigate all noise.
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Figure 3: Comparison of feature distributions before and after denoising of questions and interac-
tions in the four datasets.

Denoising Visualization Analysis Figure 3 presents the feature distributions of question and inter-
action sequences across the four datasets. We utilize kernel density plots to visualize these distribu-
tions both before and after applying our denoising method. The pre-denoising plots reveal irregular
and jagged curves, particularly in the Slepemapy dataset, which may be attributed to lower data
similarity and highlights the presence of significant noise or an uneven sample distribution. This
irregularity can obscure meaningful patterns and affect the overall analysis. Conversely, the post-
denoising plots exhibit much smoother curves with reduced noise interference, suggesting that the
data distribution becomes more continuous and closely aligned with the true underlying distribution.
This improvement implies that our denoising method effectively reduces noise and better captures
the intrinsic patterns, thereby enhancing the quality of the feature representation and the reliability
of the subsequent analysis.
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Figure 4: Knowledge state prediction heatmaps and attention visualization, used to compare the
impact of historical interactions on future questions with and without denoising.

Table 4: The impact of denoising loss Ldes on
the model AUC and RMSE in four datasets.

Datasets Algebra05 Algebra06 Assistment09 Slepemapy

Metrics AUC RMSE AUC RMSE AUC RMSE AUC RMSE

η = 0 0.7929 0.3791 0.7891 0.3789 0.7761 0.4301 0.7548 0.3857

η = 0.01 0.7998 0.3766 0.7934 0.3722 0.7833 0.4239 0.7611 0.3793

Case Studies and Ablation analysis Figure 4
shows the knowledge state prediction results be-
fore and after denoising, as well as the atten-
tion weights assigned to the questions and inter-
actions. Comparing (a) and (b), it is observed that
the heatmap before denoising has more lighter ar-
eas, indicating a larger discrepancy between pre-
dicted and actual values, which suggests the pres-
ence of noise in the sequence. Our denoising
method effectively reduces the impact of this noise. (c) and (d) display the changes in attention
weights before and after denoising. For example, in the red-boxed region, a feature has a higher
weight before denoising, but becomes lighter after denoising, indicating that the model recognizes
it as noise. This shows that after denoising, the model is able to capture underlying patterns in the
data and make more accurate predictions.
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Table 5: Impact of different λ values on model
AUC and RMSE across four datasets.

Datasets Metrics 0 0.01 0.1 0.5

Algebra05
AUC 0.7967 0.7998 0.7962 0.7954

RMSE 0.3790 0.3766 0.3780 0.3806

Algebra06
AUC 0.7836 0.7930 0.7821 0.7755

RMSE 0.3773 0.3718 0.3766 0.3793

Assistment09
AUC 0.7815 0.7834 0.7743 0.7539

RMSE 0.4260 0.4229 0.4294 0.4346

Slepemapy
AUC 0.7498 0.7608 0.7433 0.7417

RMSE 0.3862 0.3795 0.3886 0.3898

To validate each component’s effectiveness, we
compare the impact of denoising loss on the
model. The goal is to use it to constrain noise
in features, making the data smoother. As shown
in the table 4, removing Ldes has a noticeable ef-
fect on the model, which suggests that constrain-
ing noise allows for more accurate identification
of anomalies in the sequence.

Parameter Sensitivity Analysis To evaluate the
denoising effect of augmented sequences, We test
λ values of 0, 0.01, 0.1 and 0.5. The results in-
dicate that combining augmented data with the
original sequence improves performance, but an
inappropriate ratio can negatively impact the model. The model primarily relies on real data, with
augmented data serving as a supplement. Over-reliance on augmented data may amplify noise and
affect the learning process. Therefore, we choose λ to be 0.01 for our model.

Table 6 presents the parameter selection for the division of explicit denoising samples. We test ρ-
value coefficients of 0, 0.25, 0.5 and 1. A coefficient of 0 indicates no explicit denoising, while
a coefficient of 1 indicates no implicit denoising, effectively creating a spectrum of denoising ap-
proaches. After conducting multiple experiments, we determine that a ρ-value coefficient of 1/4
yielded the best performance, as it struck an optimal balance between explicit and implicit denois-
ing. This selection not only significantly improves model accuracy but also enhances the overall
interpretability and robustness of the results.

Table 6: Comparison of the effects of different ρ coefficients in four datasets.

Datasets Algebra05 Algebra06 Assistment09 Slepemapy
Metrics AUC RMSE AUC RMSE AUC RMSE AUC RMSE

0 0.7982 0.3775 0.7921 0.3725 0.7824 0.4241 0.7390 0.3863
ρ/4 0.7998 0.3766 0.7930 0.3718 0.7834 0.4229 0.7608 0.3795
ρ/2 0.7947 0.3793 0.7839 0.3780 0.7761 0.4301 0.7472 0.3859
ρ 0.7969 0.3782 0.7812 0.3749 0.7719 0.4281 0.7487 0.3856
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Figure 5: Comparison of AUC and RMSE of different denoising sample selection methods on dif-
ferent datasets.

Denoising Sample Selection Strategy As shown in Figure 5, we compared SVD-based and
similarity-based denoising methods for fusing augmented and original sequences. SVD outperforms
the similarity-based method, which requires manual sample adjustments, leading to instability and
lower interpretability. SVD, on the other hand, adapts sample size automatically, improving perfor-
mance and interpretability.

5 CONCLUSIONS

In this paper, we present a plug and play framework for KT that incorporates a denoising module.
To address the noise problem and interaction sparsity, we apply both explicit and implicit denoising
during the data augmentation preocess, effectively reducing noise in both augmented and original
data, which enhances sequence representations. Our comprehensive experiments demonstrate that
our model significantly outperforms current state-of-the-art methods in terms of prediction accuracy
and data representation quality.
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