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ABSTRACT

How can the stability and efficiency of Artificial Neural Networks (ANNs) be
ensured through a systematic analysis method? This paper seeks to address that
query. While numerous factors can influence the learning process of ANNs, utiliz-
ing knowledge from control systems allows us to analyze its system function and
simulate system responses. Although the complexity of most ANNs is extremely
high, we still can analyze each factor (e.g., optimiser, hyperparameters) by sim-
ulating their system response. This new method also can potentially benefit the
development of new optimiser and learning system, especially when discerning
which components adversely affect ANNs. Controlling ANNs can benefit from
the design of optimiser and learning system, as (1) all optimisers act as controllers,
(2) all learning systems operate as control systems with inputs and outputs, and
(3) the optimiser should match the learning system. We will share the source code
of this work after the paper has been accepted for publication.

1 INTRODUCTION

Controlling artificial neural networks (ANNs) has become an urgent issue on such a dramatically
growing domain. Although ANN models, such as, vision models (e.g., CNN Krizhevsky et al.
[2012], VGG19 Simonyan & Zisserman [2014], ResNet50 He et al. [2016a], EfficientNet Tan &
Le [2019], ViT Dosovitskiy et al. [2020]), language models (e.g., BERT Devlin et al. [2018], GPT
Radford et al. [2018], PaLM Chowdhery et al. [2022]), and generative models (e.g., GAN Good-
fellow et al. [2014], VAE Kingma & Welling [2013], Stable Diffusion Models Ho et al. [2020];
Rombach et al. [2022]), all require input and output, as they aim to map the gap between their
output and the desired output. However, basically, CNN-based vision models prefer SGDM Qian
[1999] optimiser, and generative models tend to rely on AdaM optimiser. Using various architecture
on CNN-based vision models (e.g., from VGG19 to ResNet50, from GAN to CycleGAN Zhu et al.
[2017], and from CNN to FFNN Hinton [2022]) yield significantly varied results for classification
and generation tasks. Two critical questions arise: (1) why some of them satisfy the corresponding
optimiser, (2) based on what to propose an advanced ANN architecture and a proper optimiser.

Compared to existing era-acrossing optimisers, such as SGD Robbins & Monro [1951]; Cotter et al.
[2011]; Zhou & Cong [2017], SGDM Qian [1999]; Liu et al. [2020], AdaM Kingma & Ba [2014];
Bock et al. [2018], PID Wang et al. [2020], and Gaussian LPF-SGD Bisla et al. [2022], we proposed
a FuzzyPID optimiser modified by fuzzy logic to avoid vibration during PID optimiser learning pro-
cess. Referring to Gaussian LPF-SGD (GLFP-SGD), we also proposed two filter processed SGD
methods according to the low and high frequency part during the SGD optimiser learning process:
low-pass-filter SGD (LPF-SGD) and high-pass-filter SGD (HPF-SGD). To achieve stable and con-
vergent performance, we simulate these above optimisers on the system response to analyze their
attributes. When using simple and straightforward architecture (without high techniques, such as,
BN Ioffe & Szegedy [2015], ReLU Nair & Hinton [2010], pooling Wu & Gu [2015], and exponen-
tial or cosine decay Li et al. [2021]), we found their one step system response are always consistent
with their training process. Therefore, we conclude that every optimiser actually can be considered
as a controller that optimise the training process. Results using HPF-SGD indicate that the high
frequency part using SGD optimiser significantly benefits the learning process and the classification
performance.
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To analyze the learning progress of most ANNs, for example, CNN using backpropagation algo-
rithm, FFNN using forward-forward algorithm, and GAN such a generative model using random
noise to generate samples. We assume above three mentioned models here essentially can be repre-
sented by corresponding control systems. But the difficulty is that when using different optimisers,
especially, AdaM, we cannot analyze its stability and convergence, as the complexity is extremely
high. Thus, we use MATLAB Simulink to analyze their system response, as well as their generating
response. Experiment results indicate that advanced architectures and designs of these three ANNs
can improve the learning, such as residual connections (RSs) on ResNets, a higher Threshold on
FFNN, and a cycle loss function on CycleGAN.

Based on the knowledge of control systems Nise [2020], designing proper optimisers (or controllers)
and advanced learning systems can benefit the learning process and complete relevant tasks (e.g.,
classification and generation). In this paper, we design two advanced optimisers and analyze three
learning systems relying on the control system knowledge. The contributions are as follows:

Optimisers are controllers. (1) PID and SGDM (PI controller) optimiser performs more stable
than SGD (P controller), SGDM (PI controller), AdaM and fuzzyPID optimisers on most residual
connection used CNN models. (2) HPF-SGD outperforms SGD and LPF-SGD, which indicates that
high frequency part is significant during SGD learning process. (3) AdaM is an adaptive filter that
combines an adaptive filter and an accumulation adaptive part.

Learning systems of most ANNs are control systems. (1) Most ANNs present perfect consistent
performance with their system response. (2) We can use proper optimisers to control and improve
the learning process of most ANNs.

The Optimiser should match the learning system. (1) RSs based vision models prefer SGDM,
PID and fuzzyPID optimisers. (2) RS mechanism is similar to AdaM. particularly, SGDM optimizes
the weight of models on the time dimension, and RS optimizes the model on the space dimension.
(3) AdaM significantly benefits FFNN and GAN, but PID and FuzzyPID dotes CycleGAN most.

2 PROBLEM STATEMENT AND PRELIMINARIES

ANN Models 

θ(s): CNNs, GANs, 

FFNNs  

Input Output

Desired

Output θ* 

-
Optimizers

{Δ = θ(s)-θ*}

C(s)θ*/s 

Figure 1: The schematic structure of training
ANN models. C(s) is the controller to train the tar-
get ANN model.

To make ANNs more effective and adaptive to
specific tasks, controlling ANNs has become
necessary. We initialize a parameter of a node
in the ANN model as a scalar θ0. After enough
time of updates, the optimal value of θ∗ can
be obtained. We simplify the parameter update
in ANN optimisation as a one-step response
(from θ0 to θ∗ ) in the control system. The
Laplace transform of θ∗ is θ∗/s. We denote the
weight θ(t) at iteration t. The Laplace trans-
form of θ(t) is denoted as θ(s), and that of error
e(t) = θ∗ − θ(t) as E(s):

E(s) =
θ∗

s
− θ(s) (1)

Considering the collaboration of backward and forward algorithms, the Laplace transform of the
training process is

U(s) = (Controller1 + Controller2 · F (s)) · E(s) (2)

F (s) is the forward system which has the capability to affect U(s) beforehand. In our case, u(t)
corresponds to the update of θ(t). Controller1 is the parameter update algorithm for the backward
process, and Controller2 is the parameter update algorithm for the forward process. Therefore, we
replace U(s) with θ(s) and E(s) with (θ∗/s)− θ(s). Equation 2 can be rewritten as

θ(s) = (Controller1 + Controller2 · F (s)) ·
(
θ∗

s
− θ(s)

)
(3)
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Finally, we simplify the formula of training a model as:

θ(s) =
Controller

Controller + 1
· θ

∗

s
(4)

where Controller = Controller1 + Controller2 · F (s). θ∗ denotes the optimal model which we
should get at the end. Simplifying θ(s) further as below:

θ(s) = Controller(s) ·C(s) (5)

where Controller(s) = Controller/(Controller+1), and C(s) = θ∗/s. Based on above analytic
thought, as shown in Figure 1 there are two ways to obtain an optimal θ(s) and to make the training
process better: (1) using a better Controller and (2) constructing a better training or control system
C(s).

3 OPTIMISERS ARE CONTROLLERS

In this section, we review several widely used optimisers, such as SGD Robbins & Monro [1951];
Cotter et al. [2011]; Zhou & Cong [2017], SGDM Qian [1999]; Liu et al. [2020], AdaM Kingma
& Ba [2014]; Bock et al. [2018], PID-optimiser Wang et al. [2020] and Gaussian LPF-SGD Bisla
et al. [2022]. In the training process of most ANNs, there are diverse architectures used to satisfy
various tasks. We analyze the performance of optimisers in terms of one node of backpropagation
based ANN models. Please see the proof in Appendix A.

3.1 ADAM OPTIMISER

AdaM Kingma & Ba [2014] has been used to optimise the learning process of most ANNs, such as
GAN, VAE, Transformer-based models, and their variants. We simplify the learning system of using
AdaM on ANNs as below:

θ(s) =
Kps+Ki

Ms2 + (Kp −Mlnβ1)s+Ki
· θ

∗

s
(6)

where M is an adaption factor which will dynamically adjust the learning during the training pro-
cess, and it can be derived from:

M =
1√∑t

i=0 βt−i
2 (∂Lt/∂θt)2∑t
i=0 βi−1

2

+ ϵ

· 1∑t
i=0 β

i−1
1

(7)

Apart from the adaption part M , AdaM can be thought as the combination of SGDM and an adaptive
filter with the cutoff frequency ωc = ln(β1).

3.2 FILTER PROCESSED SGD OPTIMISER

SGD learning process can be filtered under carefully designed filters. GLPF-SGD Bisla et al. [2022]
used a low pass Gaussian-filter to smooth the training process, as well as actively searching the flat
regions in the Deep Learning (DL) optimisation landscape. Eventually, we simplify the learning
system of using SGD with filters on ANNs as below:

θ(s) =
Gain ·

∏m
i=0 (s+ hi)

Gain ·
∏m

i=0 (s+ hi) +
∏n

j=0 (s+ lj)
· θ

∗

s
(8)

where designed Filter have the order, such as n for the low pass and m for the high pass (hi is the
coefficient of the high pass part and li is the coefficient of the low pass part), and Gain is the gain
factor:

Filter = Gain · (s+ h0)(s+ h1)...(s+ hm)

(s+ l0)(s+ l1)...(s+ ln)
(9)
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3.3 PID AND FUZZYPID OPTIMISER

Based on PID optimiser Wang et al. [2020], we design a PID controller which is optimised by fuzzy
logic to make the training process more stable while keeping the dominant attribute of models. For
instance, the ability to resist the disturbance of the poisoned samples, the quick convergent speed
and the competitive performance.

There are two key factors which affect the performance of the Fuzzy PID optimiser: (1) the selection
of Fuzzy Universe Range [−φ,φ] and (2) Membership Function Type fm.

K̂P,I,D = KP,I,D +∆KP,I,D (10)

∆KP,I,D = Defuzzy(E(s), Ec(s)) ·KP,I,D

Defuzzy(s) = fm(round(−φ,φ, s))
(11)

where ∆KP,I,D refer to the default gain coefficients of KP, KI and KD before modification. E(s)
is the back error, and Ec(s) is the difference product between the Laplace of e(t) and e(t− 1). The
Laplace function of this model θ(s) eventually becomes:

θ(s) =
K̂ds

2 + K̂ps+ K̂i

K̂ds2 + (K̂p + 1)s+ K̂i

· θ
∗

s
(12)

where K̂p, K̂i and K̂d should be processed under the fuzzy logic. By carefully selecting the learning
rate r, θ(s) becomes a stable system.

The PID Ang et al. [2005] and Fuzzy PID Tang et al. [2001] controllers have been used to control
a feedback system by exploiting the present, past, and future information of prediction error. The
advantages of a fuzzy PID controller includes that it can provide different response levels to non-
linear variations in a system. At the same time, the fuzzy PID controller can function as well as a
standard PID controller in a system where variation is predictable.

4 CONTROL SYSTEMS OF ANNS

In this section, to systematically analyze the learning process of ANNs, we introduce three main
common-used control systems that we believe can be respectively connected to backpropagation
based CNNs, forward-forward algorithm based FFNNs, and GANs: (1) backward control system, (2)
forward control system using different hyperparameters, and (3) backward-forward control system
on different optimisers and hyperparameters. Please see the proof in Appendix B.

4.1 BACKWARD CONTROL SYSTEM

Traditional CNNs use the backpropagation algorithm to update initialized weights, and based on er-
rors or minibatched errors between real labels and predicted results, optimisers are used to control on
how the weight should be updated. According to the deduction of PID optimiser Wang et al. [2020],
the training process of Deep Neural Networks (DNNs) can be conducted under a step response of
control systems. However, most common-used optimisers have their limitations, such as (1) SGD
costs a very long term to reach convergence, (2) SGDM also has the side effect of long term con-
vergence even with the momentum accelerating the training, (3) AdaM presents a frequent vibration
during the training because of the merging of momentum and root mean squared propagation (RM-
Sprop), (4) PID optimiser has better stability and convergence speed, but the training process is still
vibrating. This proposed fuzzyPID optimiser can keep the learning process more stable, because it
can be weighted towards types of responses, which seems like an adaptive gain setting on a standard
PID optimiser. Finally, we get the system function θ(s) of ANNs by using FuzzyPID optimisers as
an example below:

θ(s) =
FuzzyPID

FuzzyPID + 1
· θ

∗

s
(13)
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4.2 FORWARD-FORWARD CONTROL SYSTEM

The using of forward-forward computing algorithm was systematically analyzed in forward-forward
neural network Hinton [2022] which aims to track features and figure out how ANNs can extract
them from the training data. The Forward-Forward algorithm is a greedy multilayer learning proce-
dure inspired by Boltzmann machines Hinton et al. [1986] and noisy contrastive estimation Gutmann
& Hyvärinen [2010]. To replace the forward-backward passes of backpropagation with two forward
passes that operate on each other in exactly the same way, but on different data with opposite goals.
In this system, the positive pass operates on the real data and adjusts the weights to increase the good-
ness in each hidden layer; the negative pass operates on the negative data and adjusts the weights
to reduce the goodness in each hidden layer. According to the training process of FFNN, we get its
system function θ(s) as below:

θ(s) =

{(
−(1− λ)

θ∗

s
+ λ

θ∗

s
−
[
θ(s)− Th

s

])}
· Controller (14)

where λ ∈ [0, 1] is the portion of positive samples, and Th is the given Threshold according to
the design Hinton [2022]. Input should contain negative and positive samples, and by adjusting the
Threshold Th, the embedding space can be optimised. In each layer, weights should be updated
on only corresponding errors that can be computed by subtracting the Threshold Th. We finally
simplify θ(s) as:

θ(s) =
1

Controller + 1
·
(
(2λ− 1)θ∗ + Th

s

)
(15)

Because (2λ − 1)θ∗ + Th ≥ 0, the system of FFNN is stable. Additionally, when λ = 0.5 and
Th = 1.0, the learning system of FFNN (the second half part of Equation 15) will become to that
of backpropagation based CNN, as we assume θ∗ ≈ 1.0. When λ = 0.5, the optimal result θ∗ has
no relationship with the learning system.

4.3 BACKWARD-FORWARD CONTROL SYSTEM

GAN is designed to generate samples from the Gaussian noise. The performance of the GAN de-
pends on its architecture Zhou et al. [2023]. The generative network uses random inputs to generate
samples, and the discriminative network aims to classify whether the generated sample can be clas-
sified Goodfellow et al. [2014]. We get its θ(s) as below:

θD(s) = controller · θG(s) · E(s) (16)
θG(s) = controller · E(s) (17)

E(s) =
θ∗D
s

− θD(s) (18)

where θD(s) is the desired Discriminator, θG(s) is the desired Generator. E(s) is the feed-back
error. θ∗G is the optimal solution of the generator, and θ∗D is the optimal solution of the discriminator.

Eventually, we simplify θG(s) and θD(s) as below:

θG(s) =
1

2
·

(
θ∗D

Controller
±
√
(

θ∗D
Controller

)2 − 4

s

)
(19)

θD(s) = θ2G(s) (20)
where if set θG(s) = 0, we get one pole point s = 0. When using SGD as the controller, θG(s) is
a marginally stable system.

5 EXPERIMENTS

5.1 SIMULATION

As we believe that the training process of most ANNs can be modeled as the source response of
control systems, we use Simulink (MATLAB R2022a) to simulate their response to different sources.
For the classification task, because all models aim to classify different categories, we set a step
source as illustrated in Wang et al. [2020]. For the sample generation task, to get a clear generating
result, we use a sinusoidal source.
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5.2 EXPERIMENT SETTINGS

We train our models on the MNIST LeCun et al. [1998], CIFAR10 Krizhevsky et al. [2009], CI-
FAR100 Krizhevsky et al. [2009] and TinyImageNet Le & Yang [2015] datasets. For an apple-to-
apple comparison, our training strategy is mostly adopted from PID optimiser Wang et al. [2020]
and FFNN Hinton [2022]. To optimise the learning process, we (1) firstly use seven optimisers for
the classification task on backpropagation algorithm based ANNs. (2) Secondly, we choose some
important hyperparameters and simulate the learning process of FFNN. (3) Lastly, to improve the
stability and convergence during the training of GAN, we analyze its system response on various op-
timisers. All models are trained on single Tesla V100 GPU. All the hyper-parameters are presented
in Table 3 of Appendix E.

5.2.1 BACKWARD CONTROL SYSTEM

We design one neural network using backpropagation algorithm with 2 hidden layers, setting the
learning rate r at 0.02 and the fuzzy universe range φ at [−0.02, 0.02]. We initialize KP as 1, KI

as 5, and KD as 100. Thus, we compare seven different optimisers: SGD (P controller), SGDM (PI
controller), AdaM (PI controller with an Adaptive Filter), PID (PID controller), LPF-SGD, HPF-
SGD and FuzzyPID (fuzzy PID controller) on the above ANN model. We set Gaussian membership
function as the default membership function. See filter coefficients in Table 4 of Appendix E. In
Table 5 of Appendix E, there is a set of hyperparameters that we have used to trian CIFAR10,
CIFAR100 and TinyImageNet.

5.2.2 FORWARD-FORWARD CONTROL SYSTEM

Following the forward-forward algorithm Hinton [2022], we design one forward-forward neural
network (FFNN) with 4 hidden layers each containing 2000 ReLUs and full connectivity between
layers, by simultaneously feeding positive and negative samples into the model to teach it to dis-
tinguish the handwriting number (MNIST). We also carefully select the proportion of positive and
negative samples. The length of every block is 60.

5.2.3 BACKWARD-FORWARD CONTROL SYSTEM

To demonstrate the relationship between the control system and the learning process of some com-
plex ANNs, we choose the classical GAN Goodfellow et al. [2014]. Both the generator and the
discriminator comprise 4 hidden layers. To verify the influence of different optimisers on GAN, we
employ SGD, SGDM, AdaM, PID, LPF-SGD, HPF-SGD and fuzzyPID to generate the handwriting
number (MNIST). We set the learning rate at 0.0002 and the total number of epochs at 200.

6 RESULTS AND ANALYSIS

In this section, we present simulation performance, classification accuracy, error rate and generation
result, using different optimisers and advanced control systems.

6.1 BACKWARD CONTROL SYSTEM ON CNN

Table 1: The results of ANN based on the backpropogation algorithm on MNIST data. Using the
10-fold cross-validation, the average and standard variance results are shown below.

optimiser SGD SGDM Adam PID LPF-SGD HPF-SGD FuzzyPID
Training Accuracy 91.48±0.03 97.78±0.00 99.46±0.02 99.45±0.01 11.03±0.01 93.35±0.02 99.73±0.09

Testing Accuracy 91.98±0.05 97.11±0.02 97.81±0.10 98.18±0.02 10.51±0.03 93.45±0.09 98.24±0.10

Before doing the classification task, we firstly simulate the step response of backpropagation based
ANNs on each controller (optimiser). As observed in Figure 2b and Figure 2c, AdaM optimiser can
rapidly converge to the optimal but with an obvious vibration. Although FuzzyPID cannot rapidly
converge to the optimal, there is no obvious vibration during the training. Other optimisers, such
as HPF-SGD, SGDM and PID, perform lower than AdaM and FuzzyPID in terms of the training
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(a) The step response of CNN us-
ing different controllers (or opti-
misers).

(b) The training curve of CNN us-
ing different optimisers (or con-
trollers) on MNIST.

(c) The loss curve of CNN using
different optimisers (or controllers)
on MNIST.

Figure 2: The step response, training curve and loss curve using different controllers, such as SGD,
SGDM, AdaM, PID, LPF-SGD, HPF-SGD and FuzzyPID optimisers.

process. In Figure 2a, the response of AdaM controller is faster than others, and FuzzyPID follows
it. However, due to the overshoot on AdaM, the stability of ANN system when using the AdaM
controller tends to be lower. This overshoot phenomenon is reflected on the training process of
Adam optimising in Figure 2b and Figure 2c.

We summarize the result of classifying MNIST in Table 1. Under the same condition, SGD optimiser
reaches the testing accuracy at 91.98%, but other optimisers can reach above 97%. FuzzyPID gets
the highest training and testing accuracy rates using Guassian membership function. In Figure 2, if
considering the rise time, the settling time and the overshoot, the fuzzy optimiser outperforms other
optimisers. A better optimiser (or controller) that has inherited advanced knowledge and sometimes
has been effectively designed is beneficial for the classification performance.

6.2 FORWARD FORWARD CONTROL SYSTEM ON FFNN

(a) The system response
of FFNN on correspond-
ing optimisers.

(b) The loss curve of
FFNN on corresponding
optimisers.

(c) The system response
of FFNN on correspond-
ing hyperparameters.

(d) The loss curve of
FFNN on corresponding
hyperparameters.

Figure 3: The step response and loss curve of FFNN using different controllers and various hyper-
parameters.

Table 2: The error rate (%) of FFNN using different optimisers and various hyperparameters on
MNIST. Using the 10-fold cross-validation, the average and standard variance results are shown
below.

Method

50% P,
50% N,
Th=1.0,
SGD

50% P,
50% N,
Th=1.0,
SGDM

50% P,
50% N,
Th=1.0,
Adam

50% P,
50% N,
Th=1.0,
PID

50% P,
50% N,
Th=1.0,
LPF-SGD

50% P,
50% N,
Th=1.0,
HPF-SGD

50% P,
50% N,
Th=1.0,
FuzzyPID

30% P,
70% N,
Th=1.0,
Adam

70% P,
30% N,
Th=1.0,
Adam

50% P,
50% N,
Th=0.1,
Adam

50% P,
50% N,
Th=10.0,
Adam

Train Error 68.96
±0.79

24.66
±0.23

4.57
±0.23

14.90
±0.11

93.00
±0.15

48.24
±0.14

14.96
±0.19

4.82
±0.09

3.61
±0.08

6.44
±0.10

1.15
±0.05

Test Error 68.85
±0.90

24.02
±0.30

5.00
±0.30

14.38
±0.15

92.89
±0.36

48.45
±0.23

14.43
±0.25

5.31
±0.13

4.37
±0.11

6.52
±0.13

1.35
±0.08

We also simulate the control system of this proposed FFNN and compare its system response on
different hyperparameters. In Figure 3, SGD controller still cannot reach the target, and AdaM
controller reacts fastest approaching to the target. However, SGDM controller lags behind PID in
terms of the step response. Because of the low frequency part of LPF-SGD, it climbs slower than
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HPF-SGD. Although the differential coefficient D of PID optimiser can help reduce overshoot and
overcome oscillation and reduce the adjustment time, its performance cannot catch up with AdaM.
Compared to Table 2, AdaM outperforms other optimisers in terms of error rates, and the perfor-
mance of these seven optimisers are echoing Figure 3a. A higher portion of positive samples can
contribute to the classification, and a higher Threshold can benefit more. For the step response in
Figure 3c, although AdaM ( Threshold = 0.5, portion of positive samples is 70%, and portion
of negative samples is 30%) and AdaM ( Threshold = 0.5, portion of positive samples is 50%,
and portion of negative samples is 50%) rise fatest, the final results in Table 2 present that AdaM
( Threshold = 5.0, portion of positive samples is 50%, and portion of negative samples is 50%)
get a lower error rate.

6.3 BACKWARD-FORWARD CONTROL SYSTEM ON GAN

(a) The first
epoch.

(b) The 50th
epoch.

(c) The
100th epoch.

(d) The
200th epoch.

Figure 4: The generated samples from classical
GAN on corresponding optimisers (from top to
bottom is respectively SGD, SGDM, AdaM, PID,
LPF-SGD, HPF-SGD, and FuzzyPID).

For the sample generation task, we also simu-
late the system response of GANs on each con-
trollers (optimisers) and summarize the result
in Figure 5. Apart from AdaM, LPF-SGD and
HPF-SGD, all controllers have obvious noise,
and interestingly, this phenomenon can be seen
in Figure 4. The generated MNIST using Adam
optimiser has no noise and can be easily rec-
ognized, and not surprised, the source response
of AdaM in Figure 5 can finally converge. Fig-
ure 4 and Figure 5 mutually echo each other.
Eventually, when using classical GAN to gener-
ate samples, AdaM should be the best optimiser
to optimise the update of weights. The gener-
ated MNIST sample sometimes cannot be rec-
ognized, and GAN generates only same sam-
ples. One reason for this can be observed in Fig-
ure 5, where the sinusoidal signals generated by
these four controllers, such as PID, LPF-SGD, HPF-SGD and FuzzyPID move up and down, poten-
tially leading to an unstable and same generation output.

Figure 5: The system response of Classical GAN on different hyperparameters and various optimis-
ers. Optimiser from left to right is respectively SGD, SGDM, AdaM, PID, LPFSGD, HPFSGD, and
FuzzyPID. (Blue is the discriminator, and yellow is the generator)

7 DISCUSSION

7.1 WHY VARIOUS OPTIMISERS ARE CONTROLLERS DURING THE LEARNING PROCESS?

Under the same training condition (e.g., same architecture and hyperparameters), corresponding
optimisers can tackle with specific tasks. Residual connection used vision models prefer SGDM,
HPF-SGD and PID optimisers (Seen from Figure 14 of Appendix F). There is an obvious overshoot
on the step response of AdaM controller (Seen from Figure 10), and a similar vibration can be
found in the testing curve of Figure 14 of Appendix F. The classification task always needs a rapid
response to save learning resources, but if stability and robustness are the priorities, we should set
others as the opimizer, such as PID or FuzzyPID optimiser, which under fuzzy logic adjustment,
demonstrates a superior step response (can be seen from Figure 2a). Moreover, for the generation
task, GAN satisfies AdaM optimiser. We found that the adaptive part of AdaM can rapidly adjust the
learning process. However, other optimisers, such as SGD, SGDM and PID, generate samples with
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obvious noise and output the same samples make the generated sample cannot be recognized easily
(can be seen from Figure 4 and Figure 5). For particular needs (e.g., Image-to-Image Translation),
CycelGAN, this advanced generation system was proposed to generate samples from one data pool
and to improve its domain adaption on the target data pool. Coincidentally, we found that CycleGAN
has a preference for the PID optimiser. Therefore, it is necessary to design a stable and task-satisfied
optimiser on a specificly designed learning system. However, given that the system functions of most
learning systems are extremely complex, simulating their system responses has become a viable way
to analyze them. We conclude that to achieve best performance, every ANN should use the proper
optimiser according to its learning system.

7.2 HOW VARIOUS LEARNING SYSTEMS CAN BE ANALYZED?

Numerous advanced components have enhanced ANNs. Conducting a quantitative analysis on each
of them can pave the way for the development of new optimisers and learning systems. For the clas-
sification task using a backward control system, in one node of the learning system, and in terms
of analyzing a single component, the rise time, peak time, overshoot (vibration), and settling time
Wang et al. [2020]; Nise [2020] can be the metrics to evaluate the performance of such component
on learning systems. To visualize the learning process, FFNN was proposed by Hinton [2022] , and
effectively, this forward-forward-based training system also can achieve competitive performance
compared to backpropagation-based models. The Threshold – one hyperparameter – can signif-
icantly benefit the convergence speed, as it has the effect of proportional adjustment (same as a
stronger P in PID controller). The portion of positive samples can slightly affect the classification
result, as because the proportional adjustment is too weak on FFNN learning system (Seen from
Equation 15). Additionally, the system response on various sources can also serve as a metric to
evaluate the learning system. We conclude that there are two main branches to improve ANNs: (1)
develop a proper optimiser; (2) design a better learning system. On the one hand, for example, the
system response of GAN has high-frequency noise and cannot converge using SGD, SGDM and
PID optimisers (seen from Figure 5). One possible solution is adding an adaptive filter. Thus, AdaM
outperforms other optimisers on generating samples (Seen from Figure 4). The overshoot of AdaM
and SGDM during the learning process of classification tasks can accelerate the convergence, but
its side-effect of vibration brings us to PID and FuzzyPID. Therefore, developing a task-matched
optimiser according to the system response determines the final performance of ANNs. On the other
hand, to satisfy various task requirements, learning systems also should become stable and fast. For
example, θG(s) has two system functions as derived from Eq 19), to offset the side effect by con-
sidering the possible way using extra generator. That can explain why other advanced GANs using
multi-generators (e.g., CycleGAN) can generate high-quality samples than the classical GAN.

8 LIMITATIONS

Although we systematically proved that (1) the optimiser acts as a controller and (2) the learning
system functions as a control system, in this preliminary work, there are three obvious limitations:
a. we cannot analyze larger models due to the complexity introduced by advanced techniques; b. the
system response of some ANNs (e.g., FFNN) may not perfectly align with their real performance;
c. we cannot always derive the solution of complex learning system.

9 CONCLUSION

In this study, we showed comprehensive empirical study investigating the connection between con-
trol systems and various learning systems of ANNs. We provided a systematic analysis method
for several ANNs, such as CNN, FFNN, GAN, CycleGAN, and ResNet on several optimisers:
SGD, SGDM, AdaM, PID, LPF-SGD, HPF-SGD and FuzzyPID. By analyzing the system response
of ANNs, we explained the rationale behind choosing appropriate optimisers for different ANNs.
Moreover, designing better learning systems under the use of proper optimiser can satisfy task re-
quirements. In our future work, we will intend to delve into the the control system of other ANNs,
such as Variational Autoencoders (VAEs), diffusion models, Transformer-based models and so on,
aw well as the development of optimisers, as we believe the principles of control systems can guide
improvements in all ANNs and optimisers.

9
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