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Abstract

Mechanistic models with differential equations are a key component of scientific
applications of machine learning. Inference in such models is usually computation-
ally demanding, because it involves repeatedly solving the differential equation.
The main problem here is that the numerical solver is hard to combine with standard
inference techniques. Recent work in probabilistic numerics has developed a new
class of solvers for ordinary differential equations (ODEs) that phrase the solution
process directly in terms of Bayesian filtering. We here show that this allows
such methods to be combined very directly, with conceptual and numerical ease,
with latent force models in the ODE itself. It then becomes possible to perform
approximate Bayesian inference on the latent force as well as the ODE solution in
a single, linear complexity pass of an extended Kalman filter / smoother — that is,
at the cost of computing a single ODE solution. We demonstrate the expressiveness
and performance of the algorithm by training, among others, a non-parametric

SIRD model on data from the COVID-19 outbreak.

1 Introduction

Mechanistic models based on ordinary differential equa-
tions (ODEs) are popular across a wide range of scientific
disciplines. To increase the descriptive power of such
models, it is common to consider parametrized versions of
ODEs and find a set of parameters such that the dynamics
reproduce empirical observations as accurately as possi-
ble. Algorithms for this purpose typically involve repeated
forward simulations in the context of, e.g., Markov-chain
Monte Carlo or optimization. The need for iterated com-
putation of ODE solutions may demand simplifications in
the model to meet limits in the computational budget.

This work describes an algorithm that merges mechanistic
knowledge in the form of an ODE with a non-parametric
model over the parameters controlling the ODE — a latent
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Figure 1: Inferring an unknown func-
tion with a Gaussian Process and differ-
ent sources of information.

force that represents quantities of interest. The algorithm then infers a trajectory that is informed
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by the observations but also follows sensible dynamics, as defined by the ODE, in the absence of
observations (Figure[I)). The main insight enabling this approach is that if probabilistic ODE solvers
use the language of (extended) Kalman filters, conditioning on observations and solving the ODE
itself is possible in one and the same process of Bayesian filtering and smoothing. Instead of iterated
computation of ODE solutions, a posterior distribution arises from a single forward simulation, which
has complexity equivalent to numerically computing an ODE solution, once, with a filtering-based,
probabilistic ODE solver [32]. Intuitively, one can think of this as opening up the black box ODE
solver and acknowledging that each task — solving the ODE and discovering a latent force — is
probabilistic inference in a state-space model.

The main contribution of this work is formalizing this intuition. Several experiments empirically
prove the efficiency and the expressivity of the resulting algorithm. In particular, a practical model
for the dynamics of the COVID-19 pandemic is considered, in which a non-parametric latent force
captures the effect of policy measures that continuously change the contact rate among the population.

2 Problem setting

Let 7 : [to, tmax] — RY be a process that is observed at a discrete set of points TS = (£, ..., %)

through a sequence of measurements yo.n := (Yo, ..., YN ) € RW+LxE - Agsume that these measure-
ments are subject to additive i.i.d. Gaussian noise, according to the observation model

Yn :Hl’(tn)+6n, EnNN(OaR)7 (1)
forn = 0,..., N and matrices H € R¥*? and R € R¥**_ Further suppose that x(t) solves the ODE
() = fa(t); u(t)), (2)

and satisfies the initial condition z(¢y) = zo € R%. The vector field f : R x R® — R? is assumed
to be autonomous, which is no loss of generality (e.g. [[19]) but simplifies the notation. The latent
force u : [t, tmax] — R’ parametrizes f and shall be unknown.

SIR-type models (e.g. [7]) are a common choice to describe the evo-

lution of the COVID-19 pandemic. In SIR-type models, a population
partitions into a discrete set of compartments. The differential equation

b then describes the transition of counts of individuals between these com-
partments. For example, the SIRD model [[10] formulates the transitions

Infectious . . .
between susceptible, infectious, recovered, and deceased people as

it

R $(t) = ~BW)SWI(1)/P, R =10),
B = 1(t) = B)SH)I(1)/P —~I(t) —nI(t), D(t)=nI(t),

) ) governed by contact rate 5(t) : [to, tmax] — [0, 1], recovery rate v €
Figure 2: SIRD dynamics. [0,1], and mortality rate 5 € [0,1] (Figure[2). S, I, R, and D evolve
over time, but the total population P (as the sum of the compartments)
is assumed to remain constant. In this context, the contact rate 5(t) is the latent force and varies over
time (in the notation from Eq. (), 8 is u). A time-varying contact rate provides a model for the impact
of governmental measures on the dynamics of the pandemic. The experiments in Section [3]isolate the
impact of the contact rate on the course of the infection counts, by assuming that v and 7 are fixed
and known. The method is by no means restricted to inference over a single latent force, as will also
be shown in Section[5.1} In this SIRD setting, the goal is to infer an (approximate) joint posterior over
B(t) and the dynamics of S(t), I(t), R(t), and D(t) as well as to use the reconstructed dynamics
to extrapolate into the future. Section [3|explains the conceptual details, Section ] distinguishes the
method from related work, and Section E]evaluates the performance.

3 Method

This section explains how to infer the unknown process u(t) and the ODE solution z(t) in a single
forward solve. Section [3.1]defines the prior model, Section [3.2]describes the probabilistic numerical
ODE inference setup, and Section [3.3|describes approximate Gaussian filtering and smoothing in this
context. Section 3.4 summarizes the resulting algorithm. The exposition of classic concepts here is
necessarily compact. In-depth introductions can be found, e.g., in the book by Sirkki and Solin [28].



3.1 Gauss—Markov prior

Let v € N. Define two independent Gauss—Markov processes U : [to, tmax] — R? and
X : [to, tmax] = RA+1) that solve the linear, time-invariant stochastic differential equations [25]],

dU(t) = FyU(t) dt + Ly dWy(t),  dX(t) = FxX(t) dt + Lx dWx(2), )

with drift matrices Fy € R and Fx € R +Dxd(v+1) a5 well as dispersion matrices Ly € R*S
and Ly € RIVHDXA Wit [tg, tax] — R® and Wx : [to, tmax] — R? are Wiener processes. U
and X satisfy the Gaussian initial conditions,

U(to) ~ N(mu, Py), X(to) ~N(mx, Px), )

defined by my € RY, Py € R, mx € RY¥HD and Py € RUV+D*d@+D) () models the
unknown function u(t) and can be any Gauss—Markov process that admits a representation as the
solution of a linear SDE with Gaussian initial conditions. X(t) = (X(O)(¢),...,X*)(¢)) € R4~+1)
models the ODE dynamics, in light of which we require X (t) = -4 X (¢) € R, i = 0,..., v.
In other words, the first element in X(¢) is an estimate for (), the second element is an estimate
for %x(t), et cetera. Encoding that the state X consists of a model for x(t) as well as its first v
derivatives imposes structure on Fx and Lx (see e.g. [[18]). Examples include the Matérn, integrated
Ornstein-Uhlenbeck, and integrated Wiener processes; the canonical choice for probabilistic ODE
solvers would be integrated Wiener processes [29} 132} 14} [19]].

The class of Gauss—Markov priors inherits its wide generalizability from Gaussian process models;
recall that Gauss—Markov processes like U and X are Gaussian processes with the Markov property.
While not every Gaussian process with one-dimensional input space is Markovian, a large number
of descriptions of Gauss—Markov processes emerge by translating a covariance function into an
(approximate) SDE representation [28, Chapter 12]. For example, this applies to (quasi-)periodic,
squared-exponential, or rational quadratic kernels; in particular, sums and products of Gauss—Markov
processes admit a state-space representation [30, 28]]. Recent research has considered approximate
SDE representations of general Gaussian processes in one dimension [20]]. With these tools, prior
knowledge over U or X can be encoded straightforwardly into the model.

3.2 Two likelihoods: for observations and for the ordinary differential equation

A functional relationship between the processes U(t), X(¢) and the data yo.y emerges by combining
two likelihood functions: one for the observations yo.n (recall Equation (1)), and one for the
ordinary differential equation. The present section formalizes both. Let 7 = Ty* U T, 7" be
the union of the observation-grid 73", which has been introduced in Section[2} and an ODE-grid

o = (3", ..., t97") . The name “ODE-grid” expresses that this grid contains the locations on

which the ODE information will enter the inference problem, as described below.

TN"® contains the locations of yo.n, in light of which the first of two observation models is
Yo | X(t5%) ~ N (HXO(1%), R) (6)

forn =0,..., N. This is a reformulation of the relationship between process x and observations .
in Eq. (T) in terms of X (instead of =, which is modeled by X(%)). Including this first measurement
model ensures that the inferred solution remains close to the data points. 77" contains the locations
on which U(¢) connects to X(¢) through the ODE. Specifically, the set of random variables Zo.ps €
RMA+1)xd defined as

Zon | X(t507), UE5) ~ 6 (X t27) = £ (XOem); U(9)) ) )

where ¢ is the Dirac delta, describes the discrepancy between the current estimate of the derivative
of the ODE solution (i.e. X(!)) and its desired value (i.e. f(X(?);U)), as prescribed by the vector
field f. If the random variables Zg.y; realize small values everywhere, X (0) golves the ODE as
parametrized by U. This motivates introducing artificial data points 2.5, € R(M+1)*4 that are equal
to zero, zy, =0 € R4, m =0, ..., M. Conditioning the stochastic processes X and U on attaining
this (artificial) zero data ensures that the inferred solution follows ODE dynamics throughout the
domain. Figure [3|shows the discretized state-space model.
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Figure 3: Instance of the described state-space model, visualized as a directed graphical model.
Shaded variables are observed. Either only data, only mechanistic knowledge, or
can be conditioned on during inference (recall Figure E[)

3.3 Approximate inference with an extended Kalman filter

Both X and U enter the likelihood in Eq. (7) through a possibly non-linear vector field f. Therefore,
the posterior distribution (recall zp.ps = 0)

p(U),X(t) | Zo.s = zo:nr, Yo:n = Yo:N) ®)

is intractable, but can be approximated efficiently. Even though the problem is discretized, the
posterior distribution is continuous [28, Chapter 10]. There are mainly two approaches to computing
a tractable approximation of the intractable posterior distribution in Eq. (8): approximate Gaussian
filtering and smoothing [27]], which computes a cheap, Gaussian approximation of this posterior, and
sequential Monte Carlo methods [24]], whose approximate posterior may be more descriptive, but also
more expensive to compute. Like the literature on probabilistic ODE solvers [32} 4], this work uses
approximate Gaussian filtering and smoothing techniques for their low computational complexity.

The continuous-discrete state-space model inherits its non-linearity from the ODE vector field f.
Linearizing f with a first-order Taylor series expansion creates a tractable inference problem; more
specifically, it gives rise to the extended Kalman filter (EKF) [13} 22]. Loosely speaking, if the
random variable Z is large in magnitude, then X and U are poor estimates for the ODE and its
parameter. An EKF update, based on the first-order linearization of f, approximately corrects this
misalignment. If sufficiently many ODE measurements zj.; are available, a sequence of such
updates preserves sensible ODE dynamics over time. An alternative to a Taylor-series linearization
is the unscented transform, which yields the unscented Kalman filter [34, [15]]. The computational
complexity of both algorithms is linear in the number of grid points and cubic in the dimension of the
state-space. Detailed implementation schemes can be found, for instance, in the book by Sarkki [27].

The EKF approximates the filtering distribution
p (U(t), X(t) | Z0:m = 20:m» Y0:n = Yo:n, Such that A A t) . ©)]

m ’'n

It describes the current state of the system given all the previous measurements and allows updates in
an online fashion as soon as new observations emerge. If desired, the Rauch-Tung-Striebel smoother
turns the filtering distribution into an approximation of the full (smoothing) posterior (in Eq. (§)). In
doing so, all observations — that is, measurements according to both Eq. (6) and Eq. (7) — are taken
into account for the posterior distribution at each location . As special cases, this setup recovers: (i)
a Kalman filter/Rauch-Tung-Striebel smoother [16] if the ODE likelihood (Eq. (7)) is omitted; (ii)
an ODE solver [32], if the data likelihood (Eq. (6)) is omitted. In the present setting, however, both
likelihoods play an important role.

3.4 Algorithm and implementation

The procedure is summarized in Algorithm[I} The prediction step is determined by the prior and
is available in closed-form (Appendix [A.2)). At times at which data is observed according to the
linear Gaussian measurement model in Eq. (6, the update step follows the rules of the standard
Kalman filter. Before updating on pseudo-observations according to the ODE likelihood (Eq. (7)),
the non-linear measurement model is linearized at the predicted mean. More details are provided



Algorithm 1 Compute the filtering distribution by conditioning on both yo.x and zg.s.

Input: data yo., time grid 7 = Ty* U Tp", vector field f, mx, Px, mu, Pu
Output: Filtering distribution
Initialize Xy = N(mx, Px) and Uy = N(mU, PU)
fort; € T do
Predict X; from X;_; and predict U; from U;_;

—_—

B
08 G

if t; € Ty* then update X; on y; end if [Eq. (&)1
if t; € T,p" then linearize measurement model and update X; and U; on z; end if [Eq. (7)]

end for

in Appendix |Al The filtering distribution can be turned into a smoothing posterior by running a
backwards-pass with a Rauch-Tung-Striebel smoother (e.g. [27]).

The computational cost of obtaining either, the filtering or the smoothing posterior, are both linear in
the number of grid points and cubic in the dimension of the state-space, i.e. O((N + M) (d3v3 + £3)).
Only a single forward-backward pass is required. If desired, the approximate Gaussian posterior can
be refined iteratively by means of posterior linearization and iterated Gaussian filtering and smoothing,
which yields the maximum-a-posteriori (MAP) estimate [2,131]]. The experiments presented in Section
[5]show how a single forward-backward pass already approximates the MAP estimate accurately.

4 Related work

Latent forces and ODE solvers: The explained method closely relates to probabilistic ODE solvers
and latent force models [37]], especially the kind of latent force model that exploits the state-space
formulation of the prior [9]. The difference is that, in the spirit of probabilistic numerical algorithms,
the mechanistic knowledge in the form of an ODE is injected through the likelihood function instead
of the prior. A similar approach of linking observations to mechanistic constraints has previously
been used in the literature on constrained Gaussian processes [[14] and gradient matching [} [36].
Probabilistic ODE solvers have been used by Kersting et al. [17] for efficient ODE inverse problem
algorithms, but their approach is different to the present algorithm, in which the need for iterated
optimization or sampling is avoided altogether.

Monte Carlo methods: (Markov-chain) Monte Carlo methods are also able to infer a time-dependent
ODE latent force from a set of state observations. Options that are compatible with a setup similar
to the present work would include sequential Monte Carlo techniques [24]], elliptical slice sampling
[23]], or Hamiltonian Monte Carlo [3] (for instance realized as the No-U-Turn sampler [12]). The
shared disadvantage of Monte Carlo methods applied to the resulting ODE inverse problem is that the
complexity of obtaining a single Monte Carlo sample is of the same order of magnitude as computing
the full Gaussian approximation of the posterior distribution. In Appendix [B|we show results from
a parametric version of the SIRD-latent force model (using the No-U-Turn sampler as provided by
NumPyro [26]). This sampler requires thousands of numerical ODE solutions, compared to the
single solve of our method. This fact is also reflected in the wall-clock time needed for both types of
inference. While the MCMC experiment in Appendix [Btakes in the order of hours, each experiment
with our approach takes under one minute to complete. In other words, the algorithm in the present
work poses an efficient yet expressive alternative to Monte Carlo methods for approximate inference
with dynamical systems.

5 Experiments

This section describes three blocks of experiments. The implementation is based on ProbNum [35]]
and all experiments use a conventional, consumer-level CPU. First, a range of artificial datasets is
generated by sampling ODE parameters from a prior state-space model and simulating a solution of
the corresponding ODE. Inference in such a controlled environment allows comparing to the ground
truth, thereby assessing the quality of the approximate inference. We consider three ODE models
to this end. Second, a COVID-19 dataset will probe the predictive performance of the probabilistic
model and the resulting approximate posterior distribution. Third, some changes to the model from
the COVID-19 experiments, for instance, ensuring that the number of case counts must be positive,



will improve the interpretability (for example, of the credible intervals). Controlling the range of
values that the prior state-space can realize introduces additional non-linearity into the model — which
can also be locally approximated by the EKF — and makes the solution more physically meaningful.

5.1 Simulated environments

As a first test for the capabilities of the proposed method, we consider three simulated environments.
To this end, the training data is generated as follows. The starting point is always an initial value
problem with dynamics defined by a vector field f and a Gauss—Markov prior over the dynamics x
and the unknown parameters u of the vector field. Then, (i) we sample the time-varying parameter
trajectories from the Gauss—Markov prior; (ii) we solve the ODE, as parametrized by the sampled
trajectories from (i), using LSODA [11] with adaptive step sizes using SciPy [33]; (iii) we subsample
the ground-truth solution on a uniform grid (which will become Ty"*) to generate artificial state
observations .y ; (iv) we add Gaussian i.i.d. noise to the observations.

The procedure described above generates both a ground truth to compare to and a noisy, artificially
observed data set. Given such a set of observations, Algorithm [I|computes a posterior distribution
over the true trajectories under appropriate model assumptions. In this posterior, we look for the
proximity of the mean estimate to the underlying ground truth; the closer, the better. We measure this
proximity in the root-mean-square error. Furthermore, the width of the posterior (expressed by the
posterior covariance) should deliver an appropriate quantification of the mismatch. We report the
x2-statistic [[I]], which suggests that the posterior distribution is well-calibrated if the y2-statistic is
close to the dimension d of the ground truth. Three mechanistic models serve as examples.

Van-der-Pol: The first of three test problems is the van-der-Pol oscillator [8]]. It has one parameter p
(sometimes referred to as a stiffness constant, because for large u, the van-der-Pol system is stiff).
As a prior over the dynamics we choose a twice-integrated Wiener process with diffusion intensity
0% = 300. The stiffness parameter y is modeled as a Matérn-¥2 process with lengthscale £y = 10
and diffusion intensity o = 0.3. The posterior is computed on a grid from ¢y = 0 0 tiax = 25
units of time with step size At = 0.025.

Lotka-Volterra: The Lotka-Volterra equations [21] describe the change in the size of two populations,
predators and prey. There are four parameters, which we call a, b, ¢, and d, which describe the
interaction and death/reproduction rates of the populations. As a prior over the dynamics we choose a
twice-integrated Wiener process with diffusion intensity % = 10. The four parameters are modeled
as Matérn-32 processes with lengthscales {y, = fy, = fy, = fy, = 40. The diffusion intensities
are of;, = oy = 0.0l and o, = o, = 0.001. The posterior is computed on a grid from ¢y = 0 to

tmax = 60 units of time with step size At = 0.1.

SIRD: As detailed in Section |2} the SIRD model is governed by a contact rate 3(¢). Recall that
we assume a time-dependent S to account for governmental measures in reaction to the spread of
COVID-19. The recovery rate v and fatality rate 7 are fixed at v = 0.06 and = 0.002, like they
will be in the experiments with real data in Sections[5.2)and [5.3|below. As a prior over the dynamics
we choose a twice-integrated Wiener process with diffusion intensity 0% = 50. The contact rate (3
is modeled as a Matérn-32 process with lengthscale £y = 14 and diffusion intensity 0%, = 0.1. The
posterior is computed on a grid from tg = 0 t0 tyax = 100 units of time with step size At = 0.1.

The model allows for straightforward restriction of parameter values by using link functions. The
natural support for the SIRD-contact rate is the interval [0, 1], but U(t), as a Gauss—Markov process,
takes values on the real line. A change in the basis of 3(t) with a logistic sigmoid function ¥ before
it enters the likelihood fixes this misspecification. Similarly, the Lotka-Volterra parameters are
inferred in log-space to ensure positivity. It is an appealing aspect of the EKF that these non-linear
transformations do not require significant adaptation of the algorithm. Instead, the EKF treats it as
merely another level of linearization of Eq. (7). Section[5.3]extends this to the state dynamics.

The results are shown in Figure[d] On all test problems, the algorithm recovers the true states and the
true latent force accurately. The recovery is not exact, which shows how the Gaussian posterior is
only an approximation of the true posterior. The y2-statistic for the van-der-Pol stiffness parameter
is 1.11, which lies in (0.0039, 3.8415), the 90% confidence interval of the X2 distribution with 1
degree of freedom. The root-mean-square error (RMSE) to the truth is 0.14. The x2-statistic for the
Lotka-Volterra parameters is 8.06, which lies in (0.7107,9.4877), the 90% confidence interval of the
x? distribution with 4 degrees of freedom. The RMSE to the truth is 0.04 in log space and 0.018 in
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Figure 4: State recovery in simulated environments. The stiffness parameter of the van-der-Pol
oscillator (top row) and the Lotka-Volterra parameters (middle row) are inferred accurately with
appropriately high certainty. For the SIRD experiment (bottom row), the uncertainty is high, where
low case counts provide little information about the latent contact rate. With more fluctuations in the
observed counts, the approximated contact rate displays more certainty.

linear space. The y2-statistic for the contact rate 3 is 0.91, which lies in (0.0039, 3.8415), the 90%
confidence interval of the x? distribution with 1 degree of freedom. The RMSE to the truth is 0.2 in
logit space and 0.033 in linear space.

5.2 COVID-19 data

We continue with the SIRD model introduced in Eq. (3), now using data collected in Germany
over the period from January 22, 2020, to May 27, 2021. Throughout the pandemic, the German
government has imposed mitigation measures of varying severity. Together with seasonal effects,
summer vacations, etc., they caused a continual change in the contact rate. The next experiments aim
to recover said contact rate (and the SIRD counts) from the German dataset.

The Center for Systems Science and Engineering at the Johns Hopkins University publishes daily
counts of confirmed (y<°"imed) recovered (y=°¥*d), and deceased (y9°°**<) individuals [6]. One
can transform this data to suit the SIRD model

In = yconﬁrmed _ Rn _ Dna Rn — yrecovered Dn — y/deceased. (10)

n n ’ n
The counts I,,, R,,, and D,, are available for each day, starting with January 22, 2020. Assuming a
constant population over time, the numbers of susceptible individuals S, are always evident from the
other quantities, thus left out of the visualizations. We fix the population at P = 83 783 945, based
on public record. We rescale the data to cases per one thousand people (CPT).

As a prior over X(t), due to its popularity in constructing probabilistic ODE solvers [32], we assume a
twice-integrated Wiener process. 5(t) is modelled as a Matérn-3/2 process with length scale ¢, = 75
and diffusion intensity ag = 0.05. The state-space model is straightforwardly extendable to sums
and products of (more) processes [30, 28]]. Inferring parameters that are constant over time, however,
is not straightforward due to potentially singular transition models [27, Section 12.3.1].

As described in Section[5.1] the contact rate is inferred in logit space. We shift the logistic sigmoid
function such that it fulfills ¥(0) = 0.1 in which case the stationary mean U = 0 translates to a

stationary mean 9(U) = 8 = 0.1 of the Matérn process that models the contact rate. The recovery



e O Data (train/val) — Posterior | Posterior contact rate ==== MAP estimate

.
o o® P i
;s / P i
° i i

_ﬂ / i ! i
< i

)
6 o, ‘./

0 Jooese® ©0.0.00.0:000000¢
Jan May Aug Nov

Figure 5: Estimated counts of infectious cases and contact rate based on real COVID-19 data.
The case counts of infectious people are scaled to cases per thousand (cpt). The uncertainty over the
contact rate increases when the case counts are low. After a single forward solve, the inferred mean is
already close to the MAP estimate. The shaded areas show the 95 % credible interval and the dotted
black lines are samples from the posterior.

Table 1: List of selected governmental measures imposed in Germany with the aim to contain the
spread of COVID-19. These events are depicted in Figures[5]and[6](see column ‘Mark’). Links to the
sources are provided in Appendix E}

Mark Governmental Measures

1 Stringent contact restrictions, partial shutdown of public life
3 Continual relaxations of measures
Partial shutdown of public life (‘lockdown light’)
Hard lockdown, stringent contact restrictions
First nationwide decree of restrictions, increased intensification of measures

2

= RV N

rate and mortality rate are considered known and fixed at v = 0.06 and = 0.002 to isolate the
effect of the inference procedure on recovering the evolution of the contact rate U(¢) = 3(¢). We
set the mean of the Gaussian initial conditions to the first data point that is available. The diffusion
intensity of the prior process X(¢) is set to % = 10. The latent process U and all derivatives are
initialized at zero. Note that due to the logistic sigmoid transform, an initial value Uy = 0 amounts to
an initial contact rate 3y = 0.1.

In the present scenario, we cannot take the SIRD model as an accurate description of the underlying
data but merely as a tool that aids the inference engine in recovering physically meaningful states
and forces. In order to account for this model mismatch, the Dirac likelihood from Eq. (/) is relaxed
towards a Gaussian likelihood with measurement noise A?> = 0.01. This equals the data observation
noise and thus balances the respective impact of either (misspecified) source of information. Intu-
itively, adding ODE measurement noise reduces how strictly the vector field dynamics are enforced
during inference and therefore avoids overconfident estimates of 3(¢).

The mesh-size of the ODE is At = 1/24 days, i.e. ODE updates are computed on an hourly basis.
The final 14 observations are excluded from the training set to serve as validation data for evaluating
the extrapolation behavior of the proposed method. Figure [5]shows the results. The mean of the state
X estimates the case counts accurately in both interpolation and extrapolation tasks. The estimated
contact rate rapidly decreases around late March, remains low until fall, increases momentarily, and
is dampened again soon after. This aligns with a set of political measures imposed by the government
(compare Figure[5]to Table[T). The uncertainty over the estimated contact rate is high in the early
beginning when the case counts are still low. It then increases again in summer and with the beginning
of the extrapolation phase.

If the experiment is taken as-is, the credibility intervals of the posterior over X(¢) include negative
numbers (mostly where the case counts are low and the uncertainty high, and when extrapolating).
Of course, in a system that models counts of people in different stages of a disease, negative numbers
should be excluded altogether. The proposed method provides straightforward means to address this
issue. Section [5.3]explains the details.
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Figure 6: Estimated case counts and contact rate, inferred in the logarithmic basis on real COVID-
19 and vaccination data. The case counts of infectious people are scaled to cases per thousand (cpt).
Again, the uncertainty of the contact rate increases where the case counts are low. Now, the posterior
credible interval is restricted to the positive reals. The shaded areas show the 95 % credible interval
and the dotted black lines are samples from the posterior.

5.3 Non-negative state estimates

The following experiment evaluates how the proposed method performs in combination with a state-
space model that constrains the support of the dynamics. Concretely, let X (¢) model the logarithm of
the SIRD dynamics and the respective derivatives. With a slight abuse of notation, we will continue
writing “X” even though it lives in a different space than in the previous sections. The structure of
the dynamic model is the same. The diffusion intensity of the prior process X(¢) is 0% = 0.05. The
diffusion is not comparable to the value in the previous section because the state dynamics moved to
log-space. Using - exp(z(t)) = exp(z(t))i(t), the ODE likelihood becomes

Zm|X1(;LDEaU1(7)P?EaNN(C1_f(CQ; C3)7/\2Id)? (11)

with auxiliary quantities (recall the logistic sigmoid ¥J)

Gui=exp (XO0) ) XO@E), Gi=exp (XO@), G=v(UER). (12

The exponential function introduces an additional non-linearity into the state-space model, which
necessitates smaller step-sizes for the ODE measurements (see below).

The observed case count data yg.y is transformed into the log-space, too, in which we assume
additive, i.i.d. Gaussian noise. On the one hand, transforming the measurements into log-space
implies that the measurement model for the counts remains linear; on the other hand, it imposes a
log-normal noise model (if viewed back in “linear space”). Log-normal noise underlines how the
estimated states cannot be negative. Again, we scale the counts to cases per thousand.

As depicted in Figure [6] the reconstruction of the driving processes in this setting yields results
that at first glance, look similar to the previous experiment. The states match the data points well.
However, the extrapolation is more realistic in that the credible intervals encode that negative values
are impossible (which is due to the log-transform). The mean of the recovered contact rate closely
resembles the estimate of the previous experiment. Again, upon implementation of strict governmental
measures, the uncertainty decreases, whereas in the context of relaxations, the uncertainty is high.

6 Statement on Societal Impact

This work performs methods research to develop an efficient numerical algorithm to infer latent
forces governing ordinary differential equations. As a testbed, we use data from the COVID-19
pandemic. We do so to motivate and visualize the practical value of our methods. The results of this



algorithm, however, should not be taken as policy advice. The model used in the paper is deliberately
simplistic. The presented work therefore should not be misunderstood as epidemiological research.
The machine learning community has, over time, frequently used data of contemporary societal
concern to motivate and test new algorithmic concepts (well-known examples from the UCI collection
include the Wisconsin Breast Cancer Dataset, the mushroom classification dataset, and the German
credit data set). Our work follows in this line. Of course, if this algorithm, or any competitor, is
used to derive policy advice, the underlying differential equation and latent states must be carefully
considered by domain experts, which we are not.

7 Conclusion

By coupling mechanistic and data-driven inference so directly, the algorithm builds on the core
premise of probabilistic numerics — that computation itself is a data source that does not differ,
formally, from observational data. Information from observations and mechanistic knowledge (in the
form of an ODE) can thus be described in the same language of Bayesian filtering and smoothing.
This removes the need for an outer loop over multiple forward solves and thus drastically reduces the
computational cost. Our experimental evaluation corroborates that the resulting approximate posterior
is close to the ground truth and drastically reduces computational cost over Monte Carlo alternatives.
It faithfully captures multiple sources of uncertainty from the data, numerical (discretization) error,
and epistemic uncertainty about the mechanism. We hope this framework helps empower practitioners,
not just by reducing computational burden but also by providing a more flexible modelling platform.
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