
Auditing Fairness under Unobserved Confounding

Yewon Byun Dylan Sam Michael Oberst Zachary C. Lipton Bryan Wilder

Machine Learning Department, Carnegie Mellon University

Abstract

A fundamental problem in decision-making
systems is the presence of inequity across de-
mographic lines. However, inequity can be
difficult to quantify, particularly if our notion
of equity relies on hard-to-measure notions
like risk (e.g., equal access to treatment for
those who would die without it). Auditing
such inequity requires accurate measurements
of individual risk, which is difficult to esti-
mate in the realistic setting of unobserved
confounding. In the case that these unobserv-
ables “explain” an apparent disparity, we may
understate or overstate inequity. In this paper,
we show that one can still give informative
bounds on allocation rates among high-risk in-
dividuals, even while relaxing or (surprisingly)
even when eliminating the assumption that
all relevant risk factors are observed. We uti-
lize the fact that in many real-world settings
(e.g., the introduction of a novel treatment)
we have data from a period prior to any al-
location, to derive unbiased estimates of risk.
We demonstrate the effectiveness of our frame-
work on a real-world study of Paxlovid alloca-
tion to COVID-19 patients, finding that ob-
served racial inequity cannot be explained by
unobserved confounders of the same strength
as important observed covariates.

1 INTRODUCTION

A fundamental problem in decision-making systems
across a variety of domains, such as healthcare, hous-
ing assistance, and lending, is the presence of inequities
across demographic lines (Nelson, 2002; Artiga et al.,
2020; Buchmueller and Levy, 2020; Shinn and Richard,
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2022; Wilkey et al., 2022). To reduce such inequity,
it is essential that we can first measure and quantify
it appropriately. In this paper, we consider settings
where we desire a resource to be allocated at equal
rates (across groups) to those who would otherwise
experience adverse events, a formalization of the idea
that we want to allocate to “high-risk” individuals. In
healthcare, these members could be individuals who
would die without treatment, or in housing, individuals
who would become homeless if not provided housing
assistance. We refer to the rate of allocation to these
types of individuals as the “treatment rate among the
needy” (see Definition 1).1 This notion is counterfac-
tual and difficult to measure—for instance, once an
individual is treated, we cannot say what would have
happened had they been denied treatment.

Equity, quantified in these terms, can be estimated
from data, but only if we observe all confounders—
variables that influence both the decision to allocate
and the outcome under no allocation (e.g., variables
that influence both the allocation of housing assistance
and the risk of otherwise being homeless). Our work
fits in the broader literature on causal fairness, a litera-
ture that has produced a variety of causality-informed
measures of equity, which we further discuss in Section
2. Throughout the literature, it is frequently assumed
that all confounders are observed, permitting the iden-
tification of causal fairness measures from data (Kusner
et al., 2017; Nilforoshan et al., 2022).2

However, in reality, resources are often allocated based
on indicators of need or risk that we do not observe
(“unobserved confounders”), which could lead us to
understate or overstate the amount of inequity. On the
one hand, similar rates of allocation across groups could

1There is a wealth of literature on causal measures of
fairness, and our chosen metric, when used to quantify
inequity, can be seen as a special case of counterfacutal
equalized odds, or more specifically, the “opportunity rate”
as defined in Definition 4.2 of Mishler et al. (2021).

2There are exceptions to this pattern—Rambachan and
Coston (2022), for instance, is closer in spirit to our work,
proposing a sensitivity analysis framework for causal fair-
ness metrics under unobserved confounding. We discuss
differences to our approach in detail in Section 2.
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Without conditioning
Best Case (Upper Bound) = 3/3
Worst Case (Lower Bound) = 0/3

With conditioning
Best Case (Upper Bound) =3/3

Treatment Rate = 0.4
Mortality Rate = 0.3

A conceptual diagram to build intuition for our main partial identification result. Let the treatment rate P(T=0)=0.4 and mortality rate 
P(Y(0)=1)=0.3. We denote upper (blue) /lower (red) bounds on treatment rate among the needy P(T=1 | Y(0)=1, X). In the marginal case 
(top), we see that the bounds are vacuous.  However, when we exploit covariate information (e.g., selecting 2 samples from X=0 and 2 
samples from X=1), we observe that the bounds are much tighter and meaningful.

Individuals 
with X = 0Condition on X

3/3 3/3

0/3 2/3
Upper Bound

Lower Bound

Tighter bounds!

Individuals 
with X = 1

Best case scenario

Worst case scenario

Dies without treatment

Lives without treatment

Best case scenario

Worst case scenario

Dies without treatment

Lives without treatment

Figure 1: A conceptual figure to build intuition for our main partial identification result (Theorem 1). For
simplicity, let the treatment rate P (T = 0) = 0.3 and mortality rate P (Y (0) = 1) = 0.3. We denote upper (blue)
/lower (red) bounds on treatment rate among the needy P (T = 1|Y (0) = 1, X). In the marginal case (left), we
see that the bounds are vacuous. However, when we exploit covariate information (right) (e.g., selecting 2 samples
from X=0 and 1 sample from X=1), we observe that the bounds are much tighter.

mask inequity, given unobserved differences in need.
On the other hand, these differences could explain
apparent inequities in allocation across groups.

To make progress in the face of unobserved confound-
ing, we utilize the fact that in many real-world settings,
we have data from settings where no individuals re-
ceived resources (e.g., a time period prior to a new
drug entering the market, or a similar region where
housing assistance is unavailable). Such data allows us
to derive unbiased estimates of what would happen to
individuals without the allocation of resources, under
an assumption that this baseline risk generalizes to the
setting where resources are available. Unfortunately, if
unobserved confounders exist, we still cannot identify
rates of allocation to needy individuals.

In this setting, we first show that one can derive bounds
on the treatment rate among the needy, even with-
out any assumptions on the strength of unobserved
confounders. Figure 1 builds intuition for this result,
which is given in Theorem 1. We also provide bias-
corrected estimators for our bounds that are consistent
and asymptotically normal, and extend recent results
in the partial identification literature to handle the
non-smooth nature of our estimators (Theorem 2). As
a result, our bounds can incorporate machine learning
(ML) estimators that converge at slower than para-
metric rates, while retaining the benefit of asymptotic
normality (e.g., confidence intervals). Finally, we derive
bounds that incorporate assumptions on the plausible
strength of unobserved confounding (Theorem 3), with
corresponding estimators that attain similar asymp-
totic properties to those discussed above.

We then demonstrate the effectiveness of our framework
on real-world data, to audit inequities in the alloca-
tion of Paxlovid – a potentially life-saving treatment for
COVID-19 patients. Here, we are able to identify racial
inequity in the allocation of Paxlovid among COVID-
19 outpatients. We observe that even if unobserved
confounders had effects on allocation and outcomes

similar to that of important observed covariates (Cen-
ters for Disease Control and Prevention, 2023), the
treatment rate among the needy for Black patients is
demonstrably lower than the rate for White and Asian
patients.

Finally, we evaluate on semi-synthetic and synthetic
tasks using US Census data (Ding et al., 2021), where
we know the ground truth counterfactual outcomes.
Here, our approach successfully bounds the ground-
truth treatment rates among needy individuals, given
knowledge of the unobserved confounding strength.
Our bounds also contain the actual rates far more of-
ten than an ablation that does not incorporate bias
correction. In short, our work provides principled con-
ditions under which machine learning estimators can
be used as a tool to identify inequity in the allocation
of important resources.

2 RELATED WORK

Fairness and Causality The literature on fairness
and decision-making is vast, and we will not claim
to summarize it here. Of particular relevance to our
work is the literature on causal fairness, where fairness
metrics are defined with respect to e.g., counterfac-
tual outcomes. Even in this sub-literature, there are a
wealth of ways to characterize fairness, such as coun-
terfactual fairness (Kusner et al., 2017) and variants
thereof,3 counterfactual equalized odds (Mishler et al.,
2021), and so on. Our choice of metric is similar in
spirit to counterfactual equalized odds, and is precisely
equivalent to the notion of “opportunity rate” given
by Mishler et al. (2021) (see Def. 4.2 of that work).

There are a variety of research directions pursued in the
causal fairness literature, such as learning predictive
models that lead to fair decisions, or giving conditions

3See Nilforoshan et al. (2022) and Section 4.4.1 of Plecko
and Bareinboim (2022) for discussions of the nuances of
various definitions of counterfactual fairness.
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under which various notions of causal fairness can be
“identified” from data—that is, written in terms of the
observed distribution, instead of counterfactual out-
comes. Our work is most similar to a nascent line of
work considering scenarios where these measures cannot
be identified, but can nonetheless be bounded. Closest
to our work is that of Rambachan and Coston (2022),
who provide bounds on causal fairness measures under
a different sensitivity analysis framework. Their frame-
work assumes a bound on the differences in conditional
means of potential outcome, whereas our results are
derived from bounds on treatment propensities (see Sec-
tion 4.4). However, the most notable distinction from
their work is that we additionally derive bounds that
partially identify inequity without any assumptions on
the strength of confounders, under our assumption on
the availability of pre- and post-treatment periods.

Partial Identification and Sensitivity Analysis
In statistics and econometrics, partial identification
refers to the derivation of bounds on causal quantities
when the exact value cannot be identified from assump-
tions (Manski, 2003). Sensitivity analysis often refers
to the derivation of bounds under assumptions about
the “strength” of unobserved confounding. Sensitivity
analysis has been pursued under a variety of models,
dating back to Cornfield et al. (1959). We will not at-
tempt to summarize the literature here, except to note
a few ideas that we draw upon. First, one insight in
our analysis is that incorporating covariate information
can improve the tightness of our bounds, an insight
similarly leveraged in recent work (Yadlowsky et al.,
2018; Levis et al., 2023). Second, our sensitivity model
can be viewed as a variant of the sensitivity model in-
troduced by Tan (2006), although our causal quantity
of interest differs substantially, requiring the derivation
of novel bounds. Finally, we draw inspiration from the
sensitivity analysis literature to assess the plausibility
of our sensitivity parameters via an informal compar-
ison to the strength of observed confounders (Frank,
2000; Hsu and Small, 2013).

3 PRELIMINARIES

Notation We use upper-case letters to denote ran-
dom variables (e.g., X), and lower-case letters to de-
note their realizations (e.g., x). We use X ∈ X to
denote covariates, T ∈ {0, 1} to denote treatment, and
Y ∈ {0, 1} to denote a binary outcome. We let Y = 1
denote an adverse outcome (e.g., mortality), and Y = 0
denote a benign outcome (e.g., survival). We addition-
ally define the potential outcome Y (0) as the outcome
of each individual without treatment.

Given our interest in identifying inequity across differ-
ent subpopulations, we use G ∈ {1, . . . ,K} to denote

subpopulation membership, where group membership
is a known function of X. We define some quantities
(e.g., Definition 1 and some bounds) in terms of the
overall population for simplicity of notation, where the
extension to group-wise quantities is straightforward.

We further use D ∈ {0, 1} to denote whether a sample
belongs to pre-treatment or post-treatment data. Pre-
treatment data (D = 0) is drawn from a setting where
the resource is not available (e.g., a time period before
a drug entered the market) and post-treatment data
(D = 1) from a setting where the resource is available.
We consider our data to be drawn from a common distri-
bution P , where P (· | D = 0) and P (· | D = 1) denote
pre- and post-treatment distributions respectively.

Availability of Treatment and Outcome Data
During the pre-treatment period (D = 0), the treat-
ment is not available by definition, and so D = 0 =⇒
T = 0. In post-treatment data (where D = 1), we do
not assume access to outcome data—for instance, the
outcome of interest may be a long-term outcome not
immediately measurable in the post-treatment period.
As a result, when D = 1, we set Y to an arbitrary
value. Because T is fixed when D = 0, and because Y
is unknown when D = 1, we observe data as follows

(X,T, Y ) =

{
(X, 0, Y ) if D = 0 (pre-treatment)

(X,T,∼) if D = 1 (post-treatment)

where ∼ indicates that Y is not observed.

4 ANALYSIS OF INEQUITY

4.1 Equity in Treatment Allocation

We first define a notion of effective allocation.

Definition 1 (Treatment Rate Among the Needy).

P (T = 1 | Y (0) = 1, D = 1) (1)

(1) captures the proportion of individuals who receive
treatment once it is available (D = 1), among those who
would experience an adverse event Y (0) = 1 if they do
not receive treatment. This is similar to the notion of
“opportunity rate” in the work of Mishler et al. (2021).
Definition 1 suggests a measure of inequity in treatment
allocation, when applied to specific subgroups.

Definition 2. We define inequity in treatment rate
among the needy for a pair of subpopulations g ̸= g′ as

|P (T = 1|Y (0) = 1, D = 1, G = g)

− P (T = 1|Y (0) = 1, D = 1, G = g′)| (2)

When Y corresponds to mortality, Definition 2 captures
the notion that patients who would die if treatment
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were withheld should receive a potentially life-saving
intervention at equal rates across subgroups G.4

4.2 Identification under Strong Assumptions

We note that it is not possible to directly estimate (1)
and (2). In the post-treatment setting, we never observe
the outcome Y . Further, we can never simultaneously
observe T = 1 and Y (0), which necessitates the use of
strong additional assumptions to re-write this quantity
in terms of quantities that we do observe. For instance,
one could estimate (1) directly if one were willing to
assume that X captures all variables that influence
both treatment assignment and Y (0), often referred to
as the assumption of no unmeasured confounding.

Assumption 1 (No Unmeasured Confounding). The
untreated outcome is independent of treatment in the
post-treatment period, given observed covariates, i.e.,

Y (0) ⊥ T | X,D = 1

A main thesis of this work is that Assumption 1 may not
be realistic in most real-world settings. Assumption 1
is violated if treatment is allocated on the basis of
variables other than X, which in turn provide more
information on how likely a patient is to experience
an adverse outcome without treatment. Given that
this assumption may not violated in practice, we will
later discuss bounding (1) under a weakened version
of Assumption 1 (Section 4.4), and even in the case
where we drop Assumption 1 entirely (Section 4.3).

For now, we state assumptions relating the pre- and
post-treatment periods, which we maintain throughout.

Assumption 2 (Consistency). In pre-treatment data,
we directly observe the untreated potential outcome,
i.e., D = 0 =⇒ Y = Y (0).

Assumption 2 is analogous to the assumption of consis-
tency in causal inference and captures the fact that no
treatment is available in the pre-treatment period, so
all outcomes are untreated outcomes by definition.

Assumption 3 (Covariate Stability). Within each sub-
group, the distribution of covariates of needy patients
is the same across pre- and post-treatment periods, i.e.,

X ⊥ D | Y (0) = 1, G
4We note that one could define other metrics based on

potential outcomes, such as seeking equal allocation across
individuals who would not only die if treatment were with-
held, but who would also survive if given treatment, e.g.,
P (T = 1 | Y (0) = 1, Y (1) = 0). However, for novel treat-
ments (like Paxlovid in our example) treatment guidelines
often focus on treating high-risk patients in the absence of
definitive evidence that some patients have substantially
different responses to treatment. Moreover, estimating
or bounding such quantities would require substantially
stronger assumptions than those presented here.

Assumption 3 is a relatively weak assumption, where
the observable characteristics X of needy patients
(where Y (0) = 1) are distributed the same across the
pre- and post-treatment periods.

Given these assumptions, one can directly identify the
treatment rate among the needy from (1).

Proposition 1. Under Assumptions 1 to 3, (1) (condi-
tioned on G) can be written as the following functional
of the observed distribution P

P (T = 1 | Y (0) = 1, D = 1, G = g) (3)

= E[P (T = 1 | X,D = 1) | Y = 1, D = 0, G = g]

This result (with some notational differences) is a
known fact in the literature (Coston et al., 2020; Mish-
ler et al., 2021). For completeness, we provide the
proof in Appendix A.2. Notably, as discussed above,
this result requires the hard-to-justify assumption that
there are no unmeasured confounding variables (As-
sumption 1). In the following sections, we develop
bounds under different relaxations of this assumption.

4.3 Partial Identification under Arbitrary
Unmeasured Confounding

To begin, we consider the case where we consider As-
sumption 1 to be unrealistic and drop it entirely. We
demonstrate that it is still possible to obtain informa-
tive bounds on the treatment rate in (1) that can be
estimated from data, and provide intuition as to why
informative bounds are possible to obtain. We proceed
under one additional assumption linking the pre- and
post-treatment periods.

Assumption 4 (Stable Baseline Risk). Across the
pre- and post-treatment periods, the conditional base-
line risk (i.e., the risk of an adverse outcome without
treatment) does not change, i.e.,

Y (0) ⊥ D | X

This is the key assumption relating the pre- and post-
treatment periods, which allows us to estimate the
baseline risk in the post-treatment period, by lever-
aging data from pre-treatment period. We expect it
to be satisfied when the underlying mechanistic or bi-
ological determinants or risk are unchanged around
the time period a treatment was introduced. To build
further intuition, we depict a causal graph (Figure 2)
where Assumptions 3 and 4 hold, but no unmeasured
confounding (Assumption 1) fails to hold.

To build intuition for our first main result, consider
an extreme case where all individuals will die without
treatment. Here, the treatment rate among the needy is
simply given by the observed treatment rate. Our result
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gives informative bounds in less extreme scenarios: For
instance, suppose we knew that out of 100 patients, 90
would die if untreated, and that we have treated 50
patients. In this case, the worst-case scenario is that
we have treated all 10 patients who would not die if
untreated, but we must have treated at least 40 of the
patients who would die if untreated.

To begin to formalize this idea, consider the simplified
scenario where Y (0) ⊥ D, a stronger version of As-
sumption 4. Further, observe that P (T = 1, Y (0) = 1 |
D = 1) ≤ P (T = 1 | D = 1), which yields

P (T = 1|Y (0) = 1, D = 1) ≤ P (T = 1 | D = 1)

P (Y (0) = 1 | D = 0)

where we switch D = 1 for D = 0 in the denomi-
nator due to the assumed independence. Note that
P (T = 1 | D = 1) and P (Y (0) = 1 | D = 0) are both
observable (in the post- and pre- periods respectively).
Unfortunately, this bound may be vacuous on its own
(e.g. if P (Y (0) = 1) is small). We can sharpen it by
noting that the same inequality holds at every value of
the covariates X, under Assumption 4, such that

P (T = 1|Y (0) = 1, D = 1, X) ≤ P (T = 1|X,D = 1)

P (Y (0) = 1|X,D = 0)
.

Now, given calibrated classifiers for the treatment and
outcome (to estimate the numerator and denominator),
the bound will become tighter. Averaging over the
appropriate distribution for X then yields a tighter
overall bound. To further build intuition, see Figure 1.
This idea is formalized in the following theorem.

Theorem 1 (Bounds under arbitrary unmeasured con-
founding). Consider the setting described in Section 3.
Under Assumptions 2, 3 and 4, and if there exists a
positive constant γ such that P (Y (0) = 1 | D = 1, X =
x) > γ, then

ψl ≤ P (T = 1|Y (0) = 1, D = 1) ≤ ψu

where

ψl := E[max{θl1(X), θl2(X)}]
ψu := E[min{θu1 (X), θu2 (X)}]

θl1(X) :=
P (D = 0|X)

P (Y = 1, D = 0)

(
P (T = 1|D = 1, X)

+ P (Y |D = 0, X = x)− 1
)

θl2(X) := 0

θu1 (X) :=
P (D = 0|X)P (T = 1|D = 1, X)

P (Y = 1, D = 0)

θu2 (X) :=
P (D = 0|X)P (Y = 1|D = 0, X)

P (Y = 1, D = 0)

X Y

TCD

Figure 2: A causal graph consistent with Assumptions 3
and 4, even given unobserved (light gray) confounders
C. Dark gray variables are observed. This causal struc-
ture is sufficient, but not necessary, for our assumptions
to hold: See Appendix A.1 for more details.

The proof is given in Appendix A.3. At a high level, we
first derive bounds (ψl, ψu) on the quantity of interest.
The max/min structure in each bound arises from the
complementary fact that the probabilities are upper-
and lower-bounded by both a quantity we develop and
by 1 and 0 (respectively). The max/min takes the
tighter of these two bounds at every level of the co-
variates. The underlying intuition for our result is
that we incorporate information about X in our bound,
and estimate these quantities (e.g., θl1(X), θl2(X)) with
machine learning (ML) models. With these estimates,
we compute the expectation over the conditional dis-
tribution over X to produce our bounds ψl and ψu.
This results in a tighter bound, when compared to
using population-level bounds, e.g., only looking at the
marginals over T and Y .

We remark that Theorem 1 expresses our upper and
lower bounds only in terms of functions of the observed
data, i.e., potential outcomes do not appear in the ex-
pression. This establishes that the bounds are identified
from the observed data (and without any assumption
on the presence of confounders).

Estimation of Partial Identification Bounds
Given the identification results in Theorem 1, we are
ready to construct estimators of the upper and lower
bounds ψu, ψl. We define the following short-hand for
the relevant conditional distributions

µ(x) := E[Y | D = 0, X = x] (4)

π(x) := E[T | D = 1, X = x] (5)

g(x) := E[D = 0 | X = x] (6)

These conditional expectations can be estimated by
training classifiers µ̂, π̂ on the pre- and post-treatment
data respectively, and ĝ to distinguish the two. These
are referred to as “nuisance functions”, quantities that
we have to estimate as part of estimating our bounds,
but which are not of intrinsic interest. The simplest
strategy would be to “plug-in” such estimators wher-
ever the corresponding conditional expectation appears
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in the expression for ψl or ψu. However, it is difficult
to provide guarantees for this plug-in estimator, as
ML models generally converge slower than O(n−

1
2 ),

creating substantial bias in our estimate of the bound.

Our proposed method is instead based on influence
functions and semiparametric estimation to find and
subtract a first-order approximation to the bias of the
plug-in estimator. The corresponding estimators will
then converge at O(n−

1
2 ) rates even if the ML mod-

els converge more slowly (as nonparametric methods
typically will) and enable us to give valid confidence
intervals based on asymptotic normality.

To present our estimator for the upper bound, define
du(x) ∈ argmin{θu1 (x), θu2 (x)} to be the identity of a

bound achieving the minimum value at x, with d̂u(x)
being the same quantity estimated from the plugin
estimate of θ̂. Our proposed estimator is

φu(P, d) := θud(X)(X) + λud(X)(X,Y,D, T ) (7)

ψ̂u(P̂ ) := EP̂

[
φ(P̂ , d̂u)

]
where we will employ the common strategy of estimat-
ing the expectations and the nuisance functions in θ̂
and λ̂ on independent samples (averaging over K-fold
cross-validation). We now present the detailed con-
struction and analysis of this estimator, including the
bias-correction term λ and asymptotic guarantees. Our
estimator for the lower bound is defined analogously,
using an argmax.

Bias-corrected estimators The influence function
can be used to provide a first-order approximation to
the bias of the estimator; subtracting off this bias will
(hopefully) leave a remainder that depends in second
order on error of the nuisance functions. Let θu1 =
E[θu1 (X)] and θu2 = E[θu2 (X)]. We now derive the
influence functions corresponding to θu1 and θu2 .
Lemma 1. The influence functions for θu1 and θu2 are
given by

IF (θu1 ) =

1

P (Y = 1, D = 0)

(
− 1[Y = 1, D = 0]

P (Y = 1, D = 0)
EP [g(X)π(X)]+

+ g(X)π(X) + 1[D = 1](T − π(X))
g(X)

1− g(X)
+

+ π(X)(1[D = 0]− g(X))
)

IF (θu2 ) =
1[D = 0]

P (Y = 1, D = 0)

(
µ(X)

− E[µ(X)|D = 0]

(
1[Y = 1]

P (Y = 1|D = 0)

)
+ (Y − µ(X))

)
.

To obtain first-order bias-corrected estimators, we set
λu in (7) to the values

λu1 = IF (θu1 ) and λu2 = IF (θu2 ).

Similarly, let θl1 = E[θl1(X)] and θl2 = E[θl2(X)]. Then,
we can derive their influence functions as follows

Lemma 2. The influence functions for θl1 and θl2 are
given by

IF (θl1) = IF (θu1 ) +
1

P (Y = 1, D = 0)

(−1[Y = 1, D = 0]

P (Y = 1, D = 0)

· EP [g(X)(µ(X)− 1)] + 1[D = 0](Y − 1)
)

IF (θl2) = 0.

To obtain first-order bias-corrected estimators, we set

λl1 = IF (θl1) and λl2 = 0.

We leave the proofs of the influence functions and bias-
corrected estimators of our upper and lower bounds to
Appendix A.5 and A.6, respectively.

Asymptotics for nonsmooth bounds Providing
inferential guarantees for our final bounds is compli-
cated by the fact that each is the expectation of a
nonsmooth function, i.e., averaging over a max or min
operator. As we have derived influence functions for the
smooth functions θl1 and θl2, simple asymptotic normal-
ity results (albeit for weaker bounds) can be obtained
by dropping the min and max, averaging only over one
or the other separately. These can be obtained via
standard techniques, and are given in Appendix A.4.

For the stronger nonsmooth bounds, we will need an
additional assumption to guarantee asymptotic normal-
ity and provide valid confidence intervals. Our results
build on a framework introduced by Levis et al. (2023)
in the context of estimating bounds in instrumental
variable models. They show that bounds with a similar
expectation-of-max of structure can be estimated un-
der a margin condition which requires that the terms
appearing in the max (or min) are separated with suffi-
ciently high probability. We generalize their framework
beyond the instrumental variable setting to provide
conditions for estimation of any expectation-of-max
structure where the terms inside the max admit first-
order bias-corrected estimators. Suppose we want to
estimate a bound of the form E[maxj=1...J θj(X)] (in
general, we can allow more than two components, al-
though this is all we use so far). We adopt a margin
assumption similar to Levis et al. (2023), itself inspired
by similar assumptions used in a variety of other statis-
tical settings (Audibert and Tsybakov, 2007; Luedtke
and Van Der Laan, 2016; Kennedy et al., 2020).

Assumption 5. For some fixed α > 0,
P
[
minj ̸=d(X) θd(X)(X)− θj(d(X)) ≤ t

]
≲ tα

This condition will be satisfied when the distribution
of θd(X)(X) − θj(d(X)) has bounded density near 0.
With this condition, we obtain the following result for
the stronger estimator of the upper bound.
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Theorem 2 (Asymptotic Normality of Estimators).

Let θ̂ denote the plugin estimate of any of the individual
components of each bound. Under the conditions that
Assumption 5 is satisfied, µ and g are lower bounded,
and each θ̂ is consistent (i.e., ||θ̂ − θ|| = oP (1)), the
error of the estimator satisfies.

ψ̂u − ψu = OP

(
||θ̂uj − θuj ||1+α∞

+ max
j=1,...,J

EP [θ̂
u
j + λ̂uj − θuj ]

)
+OP (n

− 1
2 )

Provided that π̂ and ĝ converge at a oP (n
− 1

4 ) rate, and

the plugin estimators satisfy ||θ̂uj − θuj ||1+α∞ = oP (n
− 1

2 ),

then ψ̂u is asymptotically normal with
√
n(ψ̂u − ψu) → N(0, V ar(φ(P, d))).

The full proof is contained in Appendix B. The error
in our bias-corrected estimator of θu1 reduces to a sum
of (i) a term on the order of P (Y = 1, D = 0)− P̂ (Y =
1, D = 0), which converges at a parametric rate and (ii)
a product of differences in (π̂−π) and (ĝ− ĝ). As such,
we only require each of these estimators to converge
at the slower rate of oP (n

− 1
4 ) to achieve our fast rate.

The plugin estimators θ̂ may also converge at slower
rates depending on α in the margin condition, e.g., if
α ≥ 1 then oP (n

− 1
4 ) suffices for them as well.

As asymptotic normality holds, we can construct stan-
dard confidence intervals for the relevant estimator
ψ̂. First, we can obtain a consistent estimator of the
variance of ψ̂ as

σ̂2 =
1

n

n∑
i=1

ψ̂(Xi)−
1

n

n∑
j=1

ψ̂(Xj)

2

,

which results in a confidence interval

ĈIψl,ψu =

[
ψ̂l − z1−α/2

σ̂l√
n
, ψ̂u + z1−α/2

σ̂u√
n

]
,

where σ̂l and σ̂u are the estimated standard deviations
of ψl and ψu. Therefore, we can use our estimators,
and their corresponding confidence intervals to pro-
vide confidence bounds on the treatment allocation
rates of interest. When these intervals are disjoint and
non-overlapping across groups, our results suggest the
presence of inequity (i.e., when our assumptions hold).

4.4 Sensitivity Analysis under Bounded
Confounding

If it is plausible to impose an assumption that con-
founding in treatment assignment is bounded, we can
in turn obtain tighter bounds on our estimand of in-
terest. We introduce a sensitivity parameter γ that

captures the extent of the impact of the potential out-
come Y (0) on treatment assignment, similar in spirit
to the sensitivity model used by Tan (2006), adapted
to our problem setting. This model allows us to, un-
der the assumption that confounding is limited, assess
whether there are verifiable discrepancies in allocation
rates across subgroups. With this framework, we can
vary γ over a range of values to determine to how much
confounding our finding is robust.

Definition 3. We define a sensitivity parameter γ as

1

γ
≤ P (T = 1|Y (0) = 0, D = 1, X)

P (T = 1|Y (0) = 1, D = 1, X)
≤ γ.

We note that γ = ∞ is equivalent to arbitrary unmea-
sured confounding. In this scenario, we can recover the
result in Theorem 1. Assuming a finite value of γ, we
obtain the following stronger upper and lower bounds:

Theorem 3 (Bounds with γ). Using Definition 3, we
achieve the following set of bounds

ψl,γ ≤ P (T = 1|Y (0) = 1, D = 1, X) ≤ ψu,γ

where

ψl,γ := E[max{θl,γ1 , θl,γ2 }]
ψu,γ := E[min{θu,γ1 , θu,γ2 }]

θl,γ1 := θl1

θl,γ2 :=
P (T=1|D=1,X)

P (Y (0)=1|D=1,X)+γ(1−P (Y (0)=1|D=1,X))

θu,γ1 :=
P (T=1|D=1,X)

P (Y (0)=1|D=1,X)+ 1
γ
(1−P (Y (0)=1|D=1,X))

θu,γ2 := θu2

We defer the proof to Appendix A.8. This is again
similar in style to Theorem 1, where we incorporate co-
variate information to achieve tigther bounds ψl,γ and
ψu,γ . We note that these bounds converge to our earlier
ones as γ → ∞, and at γ = 1 (i.e., no confounding with
respect to Y (0)), which implies point identification at
P (T = 1|Y (0) = 1, D = 1, X) = P (T = 1|D = 1, X).
Notably, the lower bound takes a max over a new quan-
tity (that is dependent on γ) as well as the two terms
appearing in the bound in Theorem 1 (valid without
any assumption on confounding).

We present a high-level overview of methods and re-
sults for the construction of estimators for the bounds
in Theorem 3, with details in Appendix A.9. The pic-
ture is very similar to before: we can construct first
order bias-corrected estimators for each term appearing
inside the max and min, by adding the expectation
(over P̂ ) of the influence functions we have derived.
One option, requiring fewer assumptions, is to take ex-
pectations over each term individually and then choose
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the stronger of the bounds after averaging (applying a
multiple-comparisons correction such as union bound
to the level of the CIs). Under Assumption 5, we fur-
ther obtain that the expectation-of-max estimator is
also asymptotically normal with sufficiently fast conver-
gence rates for the estimators of the nuisance functions,
which we defer to Appendix B.

4.5 Benchmarking Sensitivity Analysis

The sensitivity parameter γ is an assumption, not some-
thing we can estimate from data. To assess the plausi-
bility of different γ values, we can compute an analo-
gous γ′ for an observed random variable (e.g., diabetes)
which is held out of the covariate set X. This quantity
can be estimated from data to perform benchmarking.

Similarly, we determine this value of γ′ by training a
discriminative model to compute the following inequal-
ity, where X ′ denotes all covariates X except Z,

1

γ′
≤ P (T = 1|Z = 0, D = 1, X ′)

P (T = 1|Z = 1, D = 1, X ′)
≤ γ′,

where Z is the random variable that represents if the
patient has the covariate of interest and where Z /∈ X ′.

5 RESULTS

We apply our analysis framework to understand treat-
ment allocation inequity in the real-world setting of
Paxlovid allocation for high-risk COVID-19 outpatients,
as well as semi-synthetic and synthetic settings, to
demonstrate that our approach indeed successfully cap-
tures the ground-truth rates for treatment among the
needy, when controlling for the true amount of unob-
served confounding. 5 In our experiments, we use a
logistic regression model for our estimators. For each es-
timator, we perform cross-fitting/sample-splitting over
5 disjoint folds. In all of our reported bounds, we use a
95% confidence interval; in the case where our bounds
use two quantities, we use a 97.5% confidence interval
for each, so that the resulting confidence interval is
95% (via an application of the union bound).

5.1 Dataset and Cohort Definition

We use the NCATS NC3 cohort (Haendel et al., 2020),
consisting of national line-level data of 18, 438, 581 total
patients, including 7, 149, 421 confirmed COVID-19
positive patients, pooled from 76 different data sharing
centers across the United States. We focus our analysis
on outpatients with a positive SARS-CoV-2 test result,
satisfying eligibility requirements (see Appendix C).

5We release our code at
https://github.com/lasilab/inequity-bounds.git.
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Figure 3: Upper (solid) and lower (dashed) bounds for
P (T = 1|Y (0) = 1, D = 1, G = g) are computed for
each racial group g, with varying values of γ ∈ [1, 1.05].
The shaded area represents a 95% confidence interval.

5.2 Real-world Study Results

Under bounded unobserved confounding as in Defi-
nition 3, with parameter γ, we are able to identify
non-overlapping bounds for our quantity of interest
P (T = 1|Y (0) = 1, D = 1) for particular subgroups.
We identify non-overlapping bounds between Black and
White patients (γ ≤ 1.12) as well as Black and Asian
patients (γ ≤ 1.2). Hence, treatment rates for Black
patients that would die without treatment are strictly
lower than treatment rates for White and Asian pa-
tients, up to γ = 1.12, γ = 1.2 respectively, highlight-
ing substantial inequity. For a better interpretation
of γ, we perform the following benchmarking analysis.

5.3 Benchmarking Sensitivity Analysis

In our benchmarking, we select diabetes as our covari-
ate of interest, based on its well-documented association
with high risk of severe COVID-19 (Centers for Dis-
ease Control and Prevention, 2023). We again proceed
by training a classifier to predict treatment, letting
Z be diabetes and X ′ be all other covariates. Then,
we compute the following ratio on post-treatment test
data, using counterfactual features of having diabetes
(Z = 1) or not having diabetes (Z = 0) for each patient:

1

γ′
≤ P (T = 1|Z = 0, D = 1, X ′)

P (T = 1|Z = 1, D = 1, X ′)
≤ γ′.

We observe that the smallest value of γ′ that satisfies
the above equation for all post-treatment test data is
1.09. Therefore, our result in identifying disparities in
allocation (for example, non-overlapping bounds for (1)
Black and White γ ≈ 1.12 and (2) Black and Asian
γ ≈ 1.2 ) is robust to an unobserved confound-
ing variable that exhibits an influence on COVID-19
treatment allocation up to the impact of a patient’s

https://github.com/lasilab/inequity-bounds.git
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Figure 4: (Semi-Synthetic Data) Upper and lower
bounds for treatment rate among the needy, with 95%
confidence intervals, for each racial group g, with vary-
ing values of γ ∈ [1, 2] (true value of γ = 1.5).

diabetes, which is evidenced to be associated with high
risk of severe COVID-19 (Centers for Disease Control
and Prevention, 2023).

5.4 Semi-synthetic and Synthetic Settings

We generate a semi-synthetic task from the Folktables
dataset comprised of US Census data (Ding et al.,
2021). In these tasks, we know the ground truth rates
of treatment among the needy, so we can study whether
our bounds are indeed valid and compare them to other
naive approaches. Here, we use two racial groups of
White and Black patients, and we simulate both Y
and T . We define Y = T ∗ Y (1) + (1 − T ) ∗ Y (0)
and sample Y (0) ∼ Bernoulli(σ(|x|1 + 2)) and Y (1) ∼
Bernoulli(σ(|x|1+2)/2), where σ represents the sigmoid
function. To produce a known value of γ, we use
Y (0) to confound the generation of T . We sample
T ∼ Bernoulli(p). For White patients, p = σ(|x|1 − 1)
and for Black patients, p = σ(|x|1 − 2). If Y (0) = 1,
we divide p by 1.5, making γ = 1.5.

We generate our fully synthetic task in a similar fashion,
where our covariates are sampled from a 2D Gaussian of
N (0, 0.2)×N (0, 0.1). In this task, we control γ = 1.5,
similar to the semi-synthetic task.

In our semi-synthetic experiments, we observe that
our estimates of our bounds successfully capture
the true treatment rates among the needy, given
the true amount of unobserved confounding (i.e., γ =
1.5) (Figure 4). To the best of our knowledge, no
other approach provides valid bounds in this setting.
To illustrate the benefit of our approach over simpler
plugin estimates, we run synthetic experiments (Figure
5) over 100 different trials given limited data (4000 ∼
20000 samples). We capture the rates at which our
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Figure 5: (Synthetic Data) Accuracy of our bias-
corrected bounds compared to their naive plugin coun-
terparts in capturing the true treatment rates. We
use the derived 95% confidence interval from our bias-
corrected estimates for both methods.

bounds and the naive plugins capture the true rates
given the actual value of γ = 1.5. We observe that our
bounds capture the true rates at a significantly
higher rate given limited data compared to naive
plug-in based approaches.

6 DISCUSSION

In this work, we introduce a principled approach that
uses machine learning to audit need-based inequity un-
der unobserved confounding. We introduce a causal no-
tion of equity whereby allocation rates should be equal-
ized across groups when conditioning on the population
who would suffer an adverse outcome without resource
allocation. We demonstrate that our approach can
robustly quantify need-based inequity, even in the pres-
ence of unobserved confounding factors. We provide
bias-corrected estimators for our bounds that satisfy
desirable statistical properties, even when the underly-
ing ML models converge at slow rates. Furthermore,
we apply our method to analyze a real-world case study
of Paxlovid allocation to high-risk COVID-19 outpa-
tients, motivated by several recent studies that have
demonstrated racial disparities in treatment allocation
(Sullivan et al., 2022; Tarabichi et al., 2023; Wiltz et al.,
2022; Kuehn, 2022), and we find that observed inequity
between racial groups cannot be explained by unob-
served confounders at the same influence of important
observable covariates. More broadly, we remark that
our setting and design are quite general and have wide
potential applications; they can easily be applied to
different applications such as the creation of new ser-
vices, government programs, and so on. Equivalently,
it can be applied to policies, benefits, or treatments
that roll out in one location and not the other.
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X Y0

T T = 0CD

Figure 6: Example of a single-world intervention graph (SWIG) (Richardson and Robins, 2013), mirroring Figure 2,
that satisfies Assumptions 3 and 4, but where unobserved confounding is present. Note that we use Y0 in lieu of
Y (0) for consistency with typical SWIG notation, but these notations are equivalently representing the potential
outcome under T = 0. We use node-splitting notation, where all outgoing edges from T propagate the chosen
value T = 0, all incoming edges go to T , and there is no connection between T and T = 0. This graph illustrates
causal relationships in the ‘single world’ where we intervene upon T and set it to the chosen value.

A Additional Proofs & Statements

In this section, we provide additional remarks as well as the omitted proofs for the Propositions, Lemmas, and
Theorems in the main paper, except for Theorem 2. The proof of Theorem 2 is separately located in Appendix B.

A.1 Representing Assumptions in a Causal Graph

In Figure 2 we gave an illustrative causal graph, and claimed that this causal structure is sufficient, but not
necessary, for our assumptions to hold. A more precise characterization is given here, using the framework of
single-world intervention graphs (SWIGs), developed by Richardson and Robins (2013). Single-world intervention
graphs are a useful tool for relating assumptions that use potential outcome notation to those which use the
framework of causal directed acyclic graphs.

Figure 6 applies the intervention T = 0 to the causal graph given in Figure 2, via a ‘node splitting’ operation
(see Richardson and Robins (2013) for more details), where the node T is split, all incoming edges go to T , and
all outgoing edges propagate the value T = 0, yielding Y0 instead of Y in this example. This graph allows us
to characterize the causal relationships between the potential outcome Y0 and other variables, in the ‘single
world’ where we intervene upon T and set it to the desired value T = 0. Note that in the resulting graph, the
nodes T and T = 0 are not connected. From d-separation in the graph given in Figure 6, we can observe that
both Assumption 3 and Assumption 4 hold, namely that

X ⊥ D | Y0 and Y0 ⊥ D | X,

where the former implies Assumption 3 and the latter is equivalent to Assumption 4. However, our assumptions
are only a subset of the implications of this causal structure. For instance, this causal structure would imply
similar relationships for Y1, which does not appear in our assumptions. Hence our claim that this causal structure
is sufficient, but not necessary, for our assumptions to hold.

A.2 Proof of Proposition 1

Proposition 1. Under Assumptions 1 to 3, (1) (conditioned on G) can be written as the following functional of
the observed distribution P

P (T = 1 | Y (0) = 1, D = 1, G = g) (3)

= E[P (T = 1 | X,D = 1) | Y = 1, D = 0, G = g]
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Proof.

P (T = 1 | Y (0) = 1, D = 1, G = g)

=

∫
x

P (T = 1 | X = x, Y (0) = 1, D = 1, G = g)

· P (X = x | Y (0) = 1, D = 1, G = g)dx

=

∫
x

P (T = 1 | X = x,D = 1)

· P (X = x | Y = 1, D = 0, G = g)dx

where the first equality follows from standard rules of probability, and the second equality invokes our three
assumptions given above.

A.3 Proof of Theorem 1

Theorem 1 (Bounds under arbitrary unmeasured confounding). Consider the setting described in Section 3.
Under Assumptions 2, 3 and 4, and if there exists a positive constant γ such that P (Y (0) = 1 | D = 1, X = x) > γ,
then

ψl ≤ P (T = 1|Y (0) = 1, D = 1) ≤ ψu

where

ψl := E[max{θl1(X), θl2(X)}]
ψu := E[min{θu1 (X), θu2 (X)}]

θl1(X) :=
P (D = 0|X)

P (Y = 1, D = 0)

(
P (T = 1|D = 1, X)

+ P (Y |D = 0, X = x)− 1
)

θl2(X) := 0

θu1 (X) :=
P (D = 0|X)P (T = 1|D = 1, X)

P (Y = 1, D = 0)

θu2 (X) :=
P (D = 0|X)P (Y = 1|D = 0, X)

P (Y = 1, D = 0)

Proof. First, we remark that

P (T = 1|D = 1, X) = P (Y (0) = 1|D = 1, X)P (T = 1|Y (0) = 1, D = 1, X)

+ P (Y (0) = 0|D = 1, X)P (T = 1|Y (0) = 0, D = 1, X)

We can rearrange this equation, giving us that

P (T =1|Y (0) = 1, D = 1, X) =

P (T = 1|D = 1, X)− P (Y (0) = 0|D = 1, X)P (T = 1|Y (0) = 0, D = 1, X)

P (Y (0) = 1|D = 1, X)

Then, we observe that 0 ≤ P (T = 1|Y (0) = 0, D = 1, X) ≤ 1, which gives us that

P (T = 1|Y (0) = 1, D = 1, X) ≤ P (T = 1|D = 1, X)

P (Y (0) = 1|D = 1, X)
,

P (T = 1|Y (0) = 1, D = 1, X) ≥ P (T = 1|D = 1, X)− P (Y (0) = 0|D = 1, X)

P (Y (0) = 1|D = 1, X)
.

Next, we remark that our quantity of interest is given by

P (T = 1|Y (0) = 1, D = 1) = EX [P (T = 1|Y (0) = 1, D = 1, X)|Y (0) = 1, D = 0],
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where we can switch from D = 1 to D = 0 in our conditional expectation due to Assumption 3. Then, we note
that in our estimate of P (T = 1|Y (0) = 1, D = 1, X), we can apply simple [0, 1] bounds since it is a probability.
Therefore, we get that our target is now given by

E

[
max

{
0,
P (T = 1|D = 1, X)− P (Y (0) = 0|D = 1, X)

P (Y (0) = 1|D = 1, X)

}
| Y = 1, D = 0

]
≤ P (T = 1|Y (0) = 1, D = 1) ≤ E

[
min

{
1,

P (T = 1|D = 1, X)

P (Y (0) = 1|D = 1, X)

}
| Y = 1, D = 0

]

Finally, we can convert this to be computed over the unconditional expectation as follows. The upper bound is
given by a min over two terms. The term involving 1 simplifies to

E[1|Y = 1, D = 0] =

∫
x

1 · P (x|Y = 1, D = 0)

=

∫
x

P (Y = 1, D = 0|x) P (x)

P (Y = 1, D = 0)

=
1

P (Y = 1, D = 0)
E [P (Y = 1, D = 0|X)]

=
1

P (Y = 1, D = 0)
E [P (Y = 1|D = 0, X) · P (D = 0|X)]

The other term is given by

E

[
P (T = 1|D = 1, X)

P (Y (0) = 1|D = 1, X)
| Y = 1, D = 0)

]

Note that with Assumption 4, we can replace the denominator with P (Y (0) = 1|D = 0, X) as Y (0) and D are
independent conditioning on covariates X. Then, we have that

E

[
P (T = 1|D = 1, X)

P (Y (0) = 1|D = 1, X)
| Y = 1, D = 0

]
= E

[
P (T = 1|D = 1, X)

P (Y (0) = 1|D = 0, X)
| Y = 1, D = 0

]
=

∫
x

P (T = 1|D = 1, X)

P (Y (0) = 1|D = 0, X)
P (Y = 1, D = 0|x) P (x)

P (Y = 1, D = 0)

=
1

P (Y = 1, D = 0)
E

[
P (T = 1|D = 1, X)

P (Y (0) = 1|D = 0, X)
P (Y = 1, D = 0|X)

]
=

1

P (Y = 1, D = 0)
E [P (D = 0|X)P (T = 1|D = 1, X)]

Next, we can consider the lower bound. The lower bound is given by a max of two terms. The zero term is
trivially 0. The other term is given by

E

[
P (T = 1|D = 1, X)− P (Y (0) = 0|D = 1, X)

P (Y = 1|D = 0)
| Y = 1, D = 0

]

We can again switch D = 1 to D = 0 in both the Y (0) term in the numerator and in the term in the denominator
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using Assumption 4. Then, we get that

E

[
P (T = 1|D = 1, X)− P (Y (0) = 0|D = 0, X)

P (Y = 1|D = 0)
| Y = 1, D = 0

]
=

∫
x

P (T = 1|D = 1, X)− P (Y (0) = 0|D = 0, X)

P (Y = 1|D = 0)

· P (Y = 1, D = 0|x) P (x)

P (Y = 1, D = 0)

=
1

P (Y = 1, D = 0)
E
[
P (D = 0|X)

P (T = 1|D = 1, X)− P (Y (0) = 0|D = 0, X)

P (Y = 1|D = 0, X)

]
=

1

P (Y = 1, D = 0)
E
[
P (D = 0|X)

P (T = 1|D = 1, X) + P (Y (0) = 1|D = 0, X)− 1

P (Y = 1|D = 0, X)

]

as desired.

A.4 Analysis of Plugin Estimators

We now present some analysis of a standard plugin estimator, which will be useful in proofs in error analysis of
our corrected estimators. At a high level, this section demonstrates that a simple plugin estimator for the (ratio)

estimand of E
[
π(X)
µ(X)

]
achieves a rate that is a combination of the rates of our estimators of π and µ, plus an

additional term that is the variance of our plugin estimator.

First, we will prove a technical lemma that bounds the expected error of a ratio estimator that directly takes a
ratio of plugins.

Lemma 3. Let R = π
µ , and R̂ = π̂

µ̂ . Then, we have that

|Ex∼P [R]− Ex∼P [R̂]| ≤
2

δ2
(Ex∼P [|π − π̂|] + Ex∼P [|µ̂− µ|]) ,

for some 0 ≤ δ ≤ µ, µ̂.

Proof. We first observe that

|Ex∼P [R]− Ex∼P [R̂]| ≤ Ex∼P

[
|R− R̂|

]
= Ex∼P

[
|πµ̂− π̂µ

µµ̂
|
]

≤ 1

δ2
Ex∼P [|πµ̂− π̂µ|]

Let x be an arbitrary data point. We observe that

min{πµ− π̂µ̂, π̂µ̂− πµ}+ πµ̂− π̂µ ≤ πµ̂− π̂µ ≤ +max{πµ− π̂µ̂, π̂µ̂− πµ}+ πµ̂− π̂µ,

since one of πµ− π̂µ̂, π̂µ̂− πµ must be non-positive, and one must be non-negative.

We first consider the term of πµ− π̂µ̂. This satisfies that

πµ− π̂µ̂+ πµ̂− π̂µ = µ(π − π̂) + µ̂(π − π̂) = (µ+ µ̂)(π − π̂)

Then, noting that µ, µ̂ ∈ [0, 1], we have that

|πµ− π̂µ̂+ πµ̂− π̂µ| ≤ 2|π − π̂|
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Next, we can consider the other case of the term π̂µ̂− πµ. We have that

π̂µ̂− πµ+ πµ̂− π̂µ = (µ̂− µ)(π + π̂),

and with π, π̂ ∈ [0, 1], we get that

|π̂µ̂− πµ+ πµ̂− π̂µ| ≤ 2|π + π̂|,

Therefore, we observe that

|πµ̂− π̂µ| ≤ 2max{|µ̂− µ|, |π − π̂|}
Ex∼P [|πµ̂− π̂µ|] ≤ 2Ex∼P [max{|µ̂− µ|, |π − π̂|}]

≤ 2 (Ex∼P [|π − π̂|] + Ex∼P [|µ̂− µ|])

Plugging us in gives us the result that

|Ex∼P [R]− Ex∼P [R̂]| ≤
2

δ2
(Ex∼P [|π − π̂|] + Ex∼P [|µ̂− µ|])

Now, we can consider the estimator EP̂ [
T

µ̂(X) ]. To verify consistency, note that as P̂ → P and µ̂→ µ we have

EP̂

[
T

µ̂(X)

]
→ EP

[
T

µ(X)

]
and using iterated expectation yields that

ET,X∼P

[
T

µ(X)

]
= EX∼P

[
E[T |X]

µ(X)

]
= EX∼P

[
π(X)

µ(X)

]
.

Next, we analyze the total expected error of this estimator. To start with, note that

EP̂

[
T

µ̂(X)

]
− EX∼P

[
π(X)

µ(X)

]
=

(
EP̂

[
T

µ̂(X)

]
− EP

[
T

µ̂(X)

])
+

(
EP

[
T

µ̂(X)

]
− EP

[
π(X)

µ(X)

])
.

Provided that we employ sample splitting, so that µ̂ is trained on an independent sample from the samples used
to estimate the expectation P̂ , the first term is easily controlled in terms of the variance of T

µ(X) . Specifically,

suppose that P̂ is estimated using n samples. We have that

E

[∣∣∣∣EP̂ [ T

µ̂(X)

]
− EP

[
T

µ̂(X)

]∣∣∣∣] = E

[∣∣∣∣EP̂ [ T

µ̂(X)

]
− E

[
EP̂

[
T

µ̂(X)

]∣∣∣∣]]

≤

√
Var

[
EP̂

[
T

µ̂(X)

]]
=

√√√√Var
[

T
µ̂(X)

]
n

where the first equality follows because EP̂

[
T

µ̂(X)

]
is an unbiased estimator for EP

[
T

µ̂(X)

]
, the second line follows

by Cauchy-Schwartz, and the third because the samples in P̂ are independent.

For the second term, note that since ET,X∼P

[
T

µ(X)

]
= EX∼P

[
E[T |X]
µ(X)

]
, we can apply Lemma 3 with π̂ = π to

obtain that ∣∣∣∣EP [ T

µ̂(X)

]
− EP

[
π(X)

µ(X)

]∣∣∣∣ ≤ 2

γ2
EP [|µ(X)− µ̂(X)|].

Combining the bounds on the first and second terms using the triangle inequality yields

E

[∣∣∣∣EP̂ [ T

µ̂(X)

]
− EX∼P

[
π(X)

µ(X)

]∣∣∣∣] ≤
√√√√Var

[
T

µ̂(X)

]
n

+
2

γ2
EP [|µ(X)− µ̂(X)|].
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Note that a high-probability bound could be obtained by using a Bernstein bound for the first term combined
with any high-probability generalization guarantee for the ML model in the second term.

An analogous argument for the alternate plugin estimator EP̂

[
π̂(X)
µ̂(X)

]
yields the bound on its expected error

E

[∣∣∣∣EP̂ [π(X)

µ̂(X)

]
− EX∼P

[
π(X)

µ(X)

]∣∣∣∣] ≤
√√√√Var

[
π̂(X)
µ̂(X)

]
n

+
2

γ2
(EP [|µ(X)− µ̂(X)|] + EP [|π(X)− π̂(X)|]) .

Comparing these two bounds, we observe a form of bias-variance tradeoff. In the second bound, we accumulate
additional potential error from the estimation of π̂ instead of directly plugging in the samples T . However, we
often expect that π̂ will have lower variance than T since estimated treatment probabilities will take less extreme
values than binary treatment indicators, in which case the variance term will be smaller for the second estimator.

A.5 Proof of Lemma 1

Next, we will derive the influence functions for our upper bounds under no additional assumptions. Recall that
our estimands are given by

θu1 (X) :=
P (D = 0|X)P (T = 1|D = 1, X)

P (Y = 1, D = 0)
, θu2 (X) :=

P (D = 0|X)P (Y = 1|D = 0, X)

P (Y = 1, D = 0)

Our relevant conditional distributions (i.e., our nuisance functions) are given by

µ(X) := E[Y = 1|D = 0, X = x], π(X) := E[T = 1|D = 1, X = x], g(x) := E[D = 0|X = x]

We now proceed to derive the influence functions for our upper bound under no additional assumptions.

Lemma 1. The influence functions for θu1 and θu2 are given by

IF (θu1 ) =

1

P (Y = 1, D = 0)

(
− 1[Y = 1, D = 0]

P (Y = 1, D = 0)
EP [g(X)π(X)]+

+ g(X)π(X) + 1[D = 1](T − π(X))
g(X)

1− g(X)
+

+ π(X)(1[D = 0]− g(X))
)

IF (θu2 ) =
1[D = 0]

P (Y = 1, D = 0)

(
µ(X)

− E[µ(X)|D = 0]

(
1[Y = 1]

P (Y = 1|D = 0)

)
+ (Y − µ(X))

)
.

Proof. First, we will derive the influence function for θu1 .
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IF (θu1 ) =IF

(
1

P (Y = 1, D = 0)

)
EP [g(X)π(X)] +

1

P (Y = 1, D = 0)
IF (EP [g(X)π(X)])

= −1[Y = 1, D = 0]− P (Y = 1, D = 0)

P (Y = 1, D = 0)2
EP [g(X)π(X)]

+
1

P (Y = 1, D = 0)

∑
x

(1[X = x]− p(x))(g(x)π(x))

+
1

P (Y = 1, D = 0)

∑
x

p(x)

(
1[X = x]

P (X = x)
(1[D = 0]− g(x))

)
π(x)

+
1

P (Y = 1, D = 0)

∑
x

p(x)g(x)

(
1[D = 1, X = x]

P (D = 1, X)
(T − π(x))

)
= − 1[Y = 1, D = 0]

P (Y = 1, D = 0)2
EP [g(X)π(X)] +

EP [g(X)π(X)]

P (Y = 1, D = 0)

+
g(X)π(X)

P (Y = 1, D = 0)
− E[g(X)π(X)]

P (Y = 1, D = 0)

+
π(X)(1[D = 0]− g(X))

P (Y = 1, D = 0)

+
1[D = 1](T − π(X))

P (Y = 1, D = 0)

g(X)

1− g(X)

=
1

P (Y = 1, D = 0)

(
− 1[Y = 1, D = 0]

P (Y = 1, D = 0)
EP [g(X)π(X)]

+g(X)π(X) + 1[D = 1](T − π(X))
g(X)

1− g(X)
+ π(X)(1[D = 0]− g(X))

)

Next, we derive the influence function for θu2 .

IF (θu2 ) = IF

(
1

P (Y = 1|D = 0)
E[µ(X)|D = 0]

)
=

1

P (Y = 1 | D = 0)

(
−1 · IF (E[Y | D = 0])

P (Y = 1 | D = 0)
E[µ(X) | D = 0] + IF (E[µ(X) | D = 0])

)

=
1

P (Y = 1 | D = 0)

−1 · 1[D=0]
P (D=0) (Y − E[Y | D = 0])

P (Y = 1 | D = 0)
E[µ(X) | D = 0]

+IF (
∑
x,d

p(x, d)
1[d = 0]

p(d)
µ(x))


=

1

P (Y = 1 | D = 0)

(
−1 · 1[D = 0] (Y − E[Y | D = 0])

P (Y = 1 | D = 0)P (D = 0)
E[µ(X) | D = 0]

+
∑
x,d

IF (p(x, d))
1[d = 0]

p(d)
µ(x)

+
∑
x,d

p(x, d)1[d = 0]IF

(
1

p(d)

)
µ(x) +

∑
x,d

p(x, d)1[d = 0]
1

p(d)
IF (µ(x))



This further simplifies as



Yewon Byun, Dylan Sam, Michael Oberst, Zachary C. Lipton, Bryan Wilder

IF (θu2 ) =
1

P (Y = 1 | D = 0)

(
−1 · 1[D = 0] (Y − E[Y | D = 0])

P (Y = 1 | D = 0)P (D = 0)
E[µ(X) | D = 0]

+
∑
x,d

(1[X = x,D = d]− p(x, d))
1[d = 0]

p(d)
µ(x)

−
∑
x,d

p(x, d)1[d = 0]
1[D = d]− p(d)

p(d)
2 µ(x)

+
∑
x,d

p(x, d)1[d = 0]
1

p(d)

1[D = 0, X = x]

P (D = 0 | X)P (X)
(Y − E[Y | D = 0, X])



We’ll consider each of the four terms, one at a time, and ignore the initial P (Y = 1 | D = 0)
−1

term for now.

−1 · 1[D = 0] (Y − E[Y | D = 0])

P (Y = 1 | D = 0)P (D = 0)
E[µ(X) | D = 0]

= −1 · 1[D = 0]

P (D = 0)

Y − E[Y | D = 0]

P (Y = 1 | D = 0)
E[µ(X) | D = 0]

Now we will consider the second term

∑
x,d

(1[X = x,D = d]− p(x, d))
1[d = 0]

p(d)
µ(x) =

∑
x

(1[X = x,D = 0]− p(x,D = 0))
µ(x)

p(d = 0)

=
∑
x

1[X = x,D = 0]

p(D = 0)
µ(x)−

∑
x

p(x,D = 0)
µ(x)

p(D = 0)

=
1[D = 0]

p(D = 0)
µ(X)− E[µ(X) | D = 0]

Now we will consider the third term

−
∑
x,d

p(x, d)1[d = 0]
1[D = d]− p(d)

p(d)
2 µ(x) = −

∑
x

p(x,D = 0)
1[D = 0]− p(D = 0)

p(D = 0)
2 µ(x)

= −
∑
x

p(x | D = 0)
1[D = 0]− p(D = 0)

p(D = 0)
µ(x)

= −
(
1[D = 0]

p(D = 0)
− 1

)
E[µ(X) | D = 0]

Now we will consider the fourth term, where we (in the first line) replace all instances of d (lowercase) with 0, and
remove the sum over d, which eliminates the 1[d = 0] term. Similarly in the next line we remove the indicator
X = x by replacing all instances of x with X, and removing the sum over X.
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∑
x,d

p(x, d)1[d = 0]
1

p(d)

1[D = 0, X = x]

P (D = 0 | X)P (X)
(Y − E[Y | D = 0, X])

=
∑
x

p(x,D = 0)
1

p(D = 0)

1[D = 0, X = x]

P (D = 0 | X)P (X)
(Y − E[Y | D = 0, X])

= p(X | D = 0)
1[D = 0]

P (D = 0 | X)P (X)
(Y − E[Y | D = 0, X])

= 1[D = 0]
p(X,D = 0)

p(D = 0)P (D = 0 | X)P (X)
(Y − E[Y | D = 0, X])

= 1[D = 0]
p(D = 0 | X)

p(D = 0)P (D = 0 | X)
(Y − E[Y | D = 0, X])

=
1[D = 0]

P (D = 0 | X)

p(D = 0 | X)

p(D = 0)
(Y − E[Y | D = 0, X])

Putting it all together gives us the following

IF (θu2 ) =
1

P (Y = 1 | D = 0)

(
−1 · 1[D = 0]

P (D = 0)

Y − E[Y | D = 0]

P (Y = 1 | D = 0)
E[µ(X) | D = 0]

+
1[D = 0]

p(D = 0)
µ(X)− E[µ(X) | D = 0]

−
(
1[D = 0]

p(D = 0)
− 1

)
E[µ(X) | D = 0]

+
1[D = 0]

P (D = 0 | X)

p(D = 0 | X)

p(D = 0)
(Y − E[Y | D = 0, X])

)
which simplifies with some cancellations in the second and third lines

IF (θu2 ) =
1

P (Y = 1 | D = 0)

(
−1 · 1[D = 0]

P (D = 0)

Y − E[Y | D = 0]

P (Y = 1 | D = 0)
E[µ(X) | D = 0]

+
1[D = 0]

p(D = 0)
(µ(X)− E[µ(X) | D = 0])

+
1[D = 0]

P (D = 0 | X)

p(D = 0 | X)

p(D = 0)
(Y − E[Y | D = 0, X])

)
This further simplifies by factoring out the term involving E[µ(X) | D = 0]

IF (θu2 ) =
1[D = 0]

P (Y = 1, D = 0)

(
µ(X)− E[µ(X) | D = 0]

(
1 +

Y − E[Y | D = 0]

P (Y = 1 | D = 0)

)
+ (Y − E[Y |D = 0, X])

)

This further simplifies by E[Y |D = 0] = P (Y = 1|D = 0) and P (Y=1|D=0)
P (Y=1|D=0) = 1.

IF (θu2 ) =
1[D = 0]

P (Y = 1, D = 0)

(
µ(X)− E[µ(X) | D = 0]

(
Y

P (Y = 1 | D = 0)

)
+ (Y − E[Y |D = 0, X])

)
This gives us the following final result

IF (θu2 ) =
1[D = 0]

P (Y = 1, D = 0)
µ(X)

− 1[D = 0]

P (Y = 1, D = 0)
E[µ(X) | D = 0]

(
1[Y = 1]

P (Y = 1 | D = 0)

)
+

1[D = 0]

P (Y = 1, D = 0)
(Y − E[Y |D = 0, X])
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Next, we move on to discussing our estimator of this upper bound, using our derived influence function. Our
procedure (as is standard in literature (Kennedy, 2022)) is to use a first order correction of our simple plugin
estimator by adding in the expectation of our influence function.

Proposition 2. Our one-step estimator of θu2 is given by

θ̂u2 = 1.

Proof. We compute the one-step estimator as

θ̂u2 (P̂ ) = θu2 (P̂ ) + EP̂ [IF (θ
u
2 (P̂ )].

The first term is given by

θu2 (P̂ ) =
1

P̂ (Y = 1|D = 0)
EP̂ [µ̂(X)|D = 0]

and the second term is given by

EP̂ [IF (θ
u
2 (P̂ )] = EP̂

[
1[D = 0]

P̂ (Y = 1, D = 0)
µ̂(X)

]

− EP̂

[
1[D = 0]

P̂ (Y = 1, D = 0)
EP̂ [µ̂(X) | D = 0]

(
1[Y = 1]

P̂ (Y = 1 | D = 0)

)]

+ EP̂

[
1[D = 0]

P̂ (Y = 1, D = 0)
(Y − EP̂ [Y |D = 0, X])

]

The first two terms cancel out, using the same logic (that we used to cancel terms out for proving that an influence
function has mean zero).

Therefore, we get that

θ̂u2 (P̂ ) =
1

P̂ (Y = 1|D = 0)
EP̂ [µ̂(X)|D = 0] + EP̂

[
1[D = 0]

P̂ (Y = 1, D = 0)
(Y − µ̂(X))

]

=
1

P̂ (Y = 1|D = 0)
EP̂ [(µ̂(X) + Y − µ̂(X))|D = 0]

=
1

P̂ (Y = 1|D = 0)
EP̂ [Y |D = 0] = 1.

Thus, the estimator for this term is constant.

Proposition 3. Our one-step estimator of θ̂u1 (P̂ ) is given by

θ̂u1 (P̂ ) = EP

[
ĝ(X)π̂(X)

P̂ (Y = 1, D = 0)
+
π̂(X)(1[D = 0]− ĝ(X))

P̂ (Y = 1, D = 0)

]

+ EP

[
1[D = 1](T − π̂(X))

P̂ (Y = 1, D = 0)

ĝ(X)

1− ĝ(X)

]

Proof. We can compute our one-step estimator by θ̂u1 (P̂ ) = θu1 (P̂ ) + EP̂ [IF (θ
u
1 (P̂ ))].

The first term is given by

θu1 (P̂ ) =
1

P̂ (Y = 1, D = 0)
EP̂ [ĝ(X)π̂(X)]
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The second term is given by

EP̂ [IF (θ
u
1 (P̂ ))] = EP̂

[
− 1[Y = 1, D = 0]

P̂ (Y = 1, D = 0)
2EP̂ [ĝ(X)π̂(X)] +

ĝ(X)π̂(X)

P̂ (Y = 1, D = 0)
+
π̂(X)(1[D = 0]− ĝ(X))

P̂ (Y = 1, D = 0)

]

+ EP̂

[
1[D = 1](T − π̂(X))

P̂ (Y = 1, D = 0)

ĝ(X)

1− ĝ(X)

]

We remark that the first part here is given by

EP̂

[
− 1[Y = 1, D = 0]

P̂ (Y = 1, D = 0)
2EP̂ [ĝ(X)π̂(X)]

]
= −EP̂

[
EP̂ [ĝ(X)π̂(X)]|Y = 1, D = 0

]
= EP̂ [ĝ(X)π̂(X)] = θu1 (P̂ )

which cancels out with the first term above. Thus, we derive the estimator as

θ̂u1 (P̂ ) = EP̂

[
ĝ(X)π̂(X)

P̂ (Y = 1, D = 0)
+
π̂(X)(1[D = 0]− ĝ(X))

P̂ (Y = 1, D = 0)

]
+ EP̂

[
1[D = 1](T − π̂(X))

P̂ (Y = 1, D = 0)

ĝ(X)

1− ĝ(X)

]

= EP̂

[
π̂(X)(1[D = 0])

P̂ (Y = 1, D = 0)

]
+ EP̂

[
1[D = 1](T − π̂(X))

P̂ (Y = 1, D = 0)

ĝ(X)

1− ĝ(X)

]

Next, we perform error analysis for our derived one-step estimator of the upper bound.

Lemma 4 (Error of one-step estimator of upper bound under arbitrary unobserved confounding). Let the error
of our one-step estimator be given by

R(P̂ , P ) = θu1 (P̂ )− θu1 (P ) + EP

[
IF (θu1 (P̂ ))

]
(8)

Then, we have that

R(P̂ , P ) = oP (n
− 1

2 ),

when our estimates of π and g converge at rates of oP (n
− 1

4 ).
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Proof.

R(P̂ , P ) = θu1 (P̂ )− θu1 (P ) + EP

[
IF
(
θu1 (P̂ )

)]
=

EP̂ [ĝ(X)π̂(X)]

P̂ (Y = 1, D = 0)
− EP [g(X)π(X)]

P (Y = 1, D = 0)
+

1

P̂ (Y = 1, D = 0)
EP

[
− 1[Y = 1, D = 0]

P̂ (Y = 1, D = 0)
EP̂ [ĝ(X)π̂(X)]

+ĝ(X)π̂(X) + 1[D = 1](T − π̂(X))
ĝ(X)

1− ĝ(X)
+ π̂(X)(1[D = 0]− ĝ(X))

]
=

EP̂ [ĝ(X)π̂(X)]

P̂ (Y = 1, D = 0)
− EP [g(X)π(X)]

P (Y = 1, D = 0)
− P (Y = 1, D = 0)

P̂ (Y = 1, D = 0)

EP̂ [P̂ (X)π̂(X)]

P̂ (Y = 1, D = 0)

+
1

P̂ (Y = 1, D = 0)
EP

[
ĝ(X)π̂(X) + 1[D = 1](T − π̂(X))

ĝ(X)

1− ĝ(X)
+ π̂(X)(1[D = 0]− ĝ(X))

]
=

(
1− P (Y = 1, D = 0)

P̂ (Y = 1, D = 0)

)
EP̂ [ĝ(X)π̂(X)]

P̂ (Y = 1, D = 0)
− EP [g(X)π(X)]

P (Y = 1, D = 0)

+
1

P̂ (Y = 1, D = 0)
EP

[
ĝ(X)π̂(X) + 1[D = 1](T − π̂(X))

ĝ(X)

1− ĝ(X)
+ π̂(X)(1[D = 0]− ĝ(X))

]
=

(
1− P (Y = 1, D = 0)

P̂ (Y = 1, D = 0)

)
EP̂ [ĝ(X)π̂(X)]

P̂ (Y = 1, D = 0)
− EP [g(X)π(X)]

P (Y = 1, D = 0)

+
1

P̂ (Y = 1, D = 0)
EP

[
ĝ(X)π̂(X) + (1− g(X))(π(X)− π̂(X))

ĝ(X)

1− ĝ(X)
+ π̂(X)(g(X)− ĝ(X))

]
where we have used that EP [T1[D = 1]] = EP [1[T = 1, D = 1]] = EP [P (T = 1, D = 1 | X)] = EP [P (T = 1 | D =
1, X)P (D = 1 | X)] = EP [T (X)(1− g(X))]. Now, to deal with the first few terms, we are going to add zero (on
the second line after the equality below).

θu1 (P̂ )− θu1 (P ) + EP

[
IF
(
θu1 (P̂ )

)]
=

(
1− P (Y = 1, D = 0)

P̂ (Y = 1, D = 0)

)
EP̂ [ĝ(X)π̂(X)]

P̂ (Y = 1, D = 0)

− EP [g(X)π(X)]

P (Y = 1, D = 0)
+

EP [g(X)π(X)]

P̂ (Y = 1, D = 0)
+

EP [g(X)π(X)]

P̂ (Y = 1, D = 0)
+

EP [ĝ(X)π̂(X)]

P̂ (Y = 1, D = 0)

+
1

P̂ (Y = 1, D = 0)
EP

[
(1− g(X))(π(X)− π̂(X))

ĝ(X)

1− ĝ(X)
+ π̂(X)(g(X)− ĝ(X))

]
. The second line after the equality can be re-written as

− EP [g(X)π(X)]

P (Y = 1, D = 0)
+

EP [g(X)π(X)]

P̂ (Y = 1, D = 0)
+

EP [g(X)π(X)]

P̂ (Y = 1, D = 0)
+

EP [ĝ(X)π̂(X)]

P̂ (Y = 1, D = 0)

= −

(
1− P (Y = 1, D = 0)

P̂ (Y = 1, D = 0)

)
EP [g(X)π(X)]

P (Y = 1, D = 0)
+

1

P̂ (Y = 1, D = 0)
EP [g(X)π(X)− ĝ(X)π̂(X)]

So that the entire expression can be written as

θu1 (P̂ )− θu1 (P ) + EP

[
IF
(
θu1 (P̂ )

)]
=

(
1− P (Y = 1, D = 0)

P̂ (Y = 1, D = 0)

)(
EP̂ [ĝ(X)π̂(X)]

P̂ (Y = 1, D = 0)
− EP [g(X)π(X)]

P (Y = 1, D = 0)

)

+
1

P̂ (Y = 1, D = 0)
EP [g(X)π(X)− ĝ(X)π̂(X)]

+
1

P̂ (Y = 1, D = 0)
EP

[
(1− g(X))(π(X)− π̂(X))

ĝ(X)

1− ĝ(X)
+ π̂(X)(g(X)− ĝ(X))

]
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The first line is a product of estimation error of P (Y = 1, D = 0) and the estimation error of the original plug-in
estimator. We remark that the estimation error of of this product overall achieves a fast rate of oP (n

−1/2),
assuming that our estimator of P (Y = 1, D = 0) has a rate of oP (n

−1/2), which is relatively straightforward since
it can be estimated by a simple sample average of the indicator variable 1[Y = 1, D = 0].(

1− P (Y = 1, D = 0)

P̂ (Y = 1, D = 0)

)
︸ ︷︷ ︸

=OP (n−1/2)

(
EP̂ [ĝ(X)π̂(X)]

P̂ (Y = 1, D = 0)
− EP [g(X)π(X)]

P (Y = 1, D = 0)

)
︸ ︷︷ ︸

=oP (1)

= oP

(
n−1/2

)
(9)

Finally, we can analyze the last two lines from above. Ignoring the EP and the common multiplier of 1
P̂ (Y=1,D=0)

,

we have that

g(X)π(X)− ĝ(X)π̂(X) + (1− g(X))(π(X)− π̂(X))
ĝ(X)

1− ĝ(X)
+ π̂(X)(g(X)− ĝ(X))

= (1− g(X))ĝ(X)(π(X)− π̂(X)) + (1− ĝ(X))g(X)(π̂(X)− π(X))

where we can ignore the 1
(1−ĝ(X)) in the denominator. This further simplifies as

= (π̂(X)− π(X))
[
(1− ĝ(X))g(X)− (1− g(X))ĝ(X))

]
= (π̂(X)− π(X))(g(X)− ĝ(X))

We can observe that this is given by a product-of-errors structure in terms of our estimator of π and of g. This in
turn, implies that our overall estimator has asymptotic normality (and converges at a rate of oP (n

−1/2)) if our
estimators of π(X) and g(X) converge at oP (n

−1/4) rates.

A.6 Proof of Lemma 2

Next, we will derive the influence functions for our lower bounds under no additional assumptions. Recall that
our estimands are given by

θl1(X) :=
P (D = 0|X)

P (Y = 1, D = 0)

(
P (T = 1|D = 1, X) + P (Y |D = 0, X = x)− 1

)
, θl2(X) := 0

Our relevant conditional distributions (i.e., our nuisance functions) are given by

µ(X) := E[Y = 1|D = 0, X = x], π(X) := E[T = 1|D = 1, X = x], g(x) := E[D = 0|X = x]

We now proceed to derive the influence functions for our lower bound under no additional assumptions.

Lemma 2. The influence functions for θl1 and θl2 are given by

IF (θl1) = IF (θu1 ) +
1

P (Y = 1, D = 0)

(−1[Y = 1, D = 0]

P (Y = 1, D = 0)

· EP [g(X)(µ(X)− 1)] + 1[D = 0](Y − 1)
)

IF (θl2) = 0.

Our estimand for our lower bound will be as follows,

θl1 = E

[
π(X)

µ(X)
− (1− µ(X))

µ(X)

∣∣∣∣Y = 1, D = 0

]
= E

[
π(X)

µ(X)

∣∣∣∣Y = 1, D = 0

]
− E

[
(1− µ(X))

µ(X)

∣∣∣∣Y = 1, D = 0

]
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Looking at the second term,

E

[
(1− µ(X))

µ(X)

∣∣∣∣Y = 1, D = 0

]
=

∫
x

p(x|Y = 1, D = 0)
1− µ(x)

µ(x)
dx

=

∫
x

P (Y = 1, D = 0|x) p(x)

P (Y = 1, D = 0)

1− µ(x)

µ(x)
dx

=
1

P (Y = 1, D = 0)
E

[
P (Y = 1|D = 0, x)P (D = 0|X)

1− P (Y = 1|D = 0, x)

P (Y = 1|D = 0, x)

]
=

1

P (Y = 1, D = 0)
E [P (D = 0|X)(1− P (Y = 1|D = 0, x))]

=
1

P (Y = 1, D = 0)
E [P (D = 0|X)(1− µ(x))]

=
1

P (Y = 1, D = 0)
E [g(X)(1− µ(X))]

where we let g(x) = p(D = 0|X). Putting it together with the first term,

θl1 =
E[π(X)|D = 0]

P (Y = 1|D = 0)
− E [P (D = 0|X)(1− µ(X))]

P (Y = 1, D = 0)

=
E[g(X)π(X)]

P (Y = 1, D = 0)
− 1

P (Y = 1, D = 0)
E [g(X)(1− µ(X))]

=
E[(π(X) + µ(X)− 1)g(X)]

P (Y = 1, D = 0)

Now, we will derive the influence function for our lower bound θl1. First, we observe that the influence function of
θl1 can be written as follows

IF (θl1) = IF (θu1 ) + IF

(
EP [(µ(X)− 1)g(X)]

P (Y = 1, D = 0)

)
(10)

Taking the second term, we have that

IF

(
EP [(µ(X)− 1)g(X)]

P (Y = 1, D = 0)

)
= IF (

1

P (Y = 1, D = 0)
)EP [g(X)(µ(X)− 1)] +

1

P (Y = 1, D = 0)
IF [EP [g(X)(µ(X)− 1)]]

= −1[Y = 1, D = 0]− P (Y = 1, D = 0)

P (Y = 1, D = 0)
2 EP [g(X)(µ(X)− 1)]

+
1

P (Y = 1, D = 0)

∑
x

(1[X = x]− p(x))(g(x)(µ(x)− 1))

+
1

P (Y = 1, D = 0)

∑
x

p(x)

(
1[X = x]

P (X = x)
(1[D = 0]− g(x))

)
(µ(x)− 1)

+
1

P (Y = 1, D = 0)

∑
x

p(x)g(x)

(
1[D = 0, X = x]

P (D = 0, X)
(Y − µ(x))

)

where in the last term, we cancel out 1, since IF (1) = 0. Further simplifying gives,
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IF

(
EP [(µ(X)− 1)g(X)]

P (Y = 1, D = 0)

)
=

−1[Y = 1, D = 0]

p(Y = 1, D = 0)
2 EP [g(X)(µ(X)− 1)] +

1

P (Y = 1, D = 0)
EP [g(X)(µ(X)− 1)]

+
g(X)(µ(X)− 1)

P (Y = 1, D = 0)
− EP [g(X)(µ(X)− 1)]

P (Y = 1, D = 0)

+
(µ(X)− 1)(1[D = 0]− g(X))

P (Y = 1, D = 0)

+
1[D = 0](Y − µ(X))

P (Y = 1, D = 0)

with some cancellations in the first and second line, and some re-ordering of the third and fourth terms, we can
then write that

IF

(
EP [(µ(X)− 1)g(X)]

P (Y = 1, D = 0)

)
=

1

P (Y = 1, D = 0)

(
−1[Y = 1, D = 0]

P (Y = 1, D = 0)
EP [g(X)(µ(X)− 1)]

+g(X)(µ(X)− 1) + 1[D = 0](Y − µ(X)) + (µ(X)− 1)(1[D = 0]− g(X)))

=
1

P (Y = 1, D = 0)

(
−1[Y = 1, D = 0]

P (Y = 1, D = 0)
EP [g(X)(µ(X)− 1)] + 1[D = 0](Y − 1)

)
Therefore, the final influence function is given by

IF (θl1) = IF (θu1 ) +
1

P (Y = 1, D = 0)

(
−1[Y = 1, D = 0]

P (Y = 1, D = 0)
EP [g(X)(µ(X)− 1)] + 1[D = 0](Y − 1)

)
Now, we will compute the one-step estimator as follows.

Proposition 4. Our one-step estimator of θl1 is given by

θ̂l1(P̂ ) =
1

P̂ (Y = 1, D = 0)

(
1[D = 1](T − π(X))

g(X)

1− g(X)
+ 1[D = 0]π(X) + 1[D = 0](Y − 1)

)
.

Proof. We compute the one-step estimator as θ̂l1(P̂ ) = θl1(P̂ ) + EP̂ [IF (θ
l
1(P̂ ))].

The first term is given by

θl1(P̂ ) =
E[g(X)(π(X) + µ(X)− 1)]

P (Y = 1, D = 0)

and the second term is given by

EP̂ [IF (θ
l
1(P̂ ))] =

1

P̂ (Y = 1, D = 0)

(
−1[Y = 1, D = 0]

P̂ (Y = 1, D = 0)
EP̂ [ĝ(X)(π̂(X))]

+ĝ(X)π̂(X) + 1[D = 1](T − π̂(X))
ĝ(X)

1− ĝ(X)
+ π̂(X)(1[D = 0]− ĝ(X))

)
+

1

P̂ (Y = 1, D = 0)

(
−1[Y = 1, D = 0]

P̂ (Y = 1, D = 0)
EP̂ [ĝ(X)(µ̂(X)− 1)]

+ĝ(X)(µ̂(X)− 1) + 1[D = 0](Y − µ̂(X)) + (µ̂(X)− 1)(1[D = 0]− ĝ(X)))
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We see that the first and third term cancels out with θl1(P̂ ). Thus, we have that

θ̂l1(P̂ ) =
1

P̂ (Y = 1, D = 0)

(
ĝ(X)π̂(X) + 1[D = 1](T − π̂(X))

ĝ(X)

1− ĝ(X)
+ π̂(X)(1[D = 0]− ĝ(X))

)
+

1

P̂ (Y = 1, D = 0)
(ĝ(X)(µ̂(X)− 1) + 1[D = 0](Y − µ̂(X)) + (µ̂(X)− 1)(1[D = 0]− ĝ(X)))

=
1

P̂ (Y = 1, D = 0)

(
1[D = 1](T − π̂(X))

ĝ(X)

1− ĝ(X)
+ 1[D = 0]π̂(X)

+1[D = 0](Y − µ̂(X)) + 1[D = 0](µ̂(X)− 1))

Therefore, our first-order unbiased estimator is given by

θ̂l1(P̂ )

=
1

P̂ (Y = 1, D = 0)

(
1[D = 1](T − π̂(X))

ĝ(X)

1− ĝ(X)
+ 1[D = 0]π̂(X) + 1[D = 0](Y − µ̂(X) + µ̂(X)− 1)

)
=

1

P̂ (Y = 1, D = 0)

(
1[D = 1](T − π̂(X))

ĝ(X)

1− ĝ(X)
+ 1[D = 0]π̂(X) + 1[D = 0](Y − 1)

)
.

Lemma 5 (Error of one-step estimator of lower bound under arbitrary unobserved confounding). Let the error
of our one-step estimator be given by

R(P̂ , P ) = θl1(P̂ )− θl1(P ) + EP

[
IF (θl1(P̂ ))

]
Then, we have that

R(P̂ , P ) = oP (n
− 1

2 ),

when our estimates of g and π converge at rates of oP (n
− 1

4 )

Proof. We will analyze the remainder term of the one-step estimator. We leverage the fact that θl1 is the sum of
an additional term and θu2 and that influence functions are additive:

R(P̂ , P ) = θl1(P̂ )− θl1(P ) + EP [IF (θ
l
1(P̂ ))]

= θu2 (P̂ )− θu2 (P ) + EP [IFθ
u
2 (P̂ )]

+ EP̂

[
ĝ(X)(µ̂(X)− 1)

P̂ (Y = 1, D = 0)

]
− EP

[
g(X)(µ(X)− 1)

P (Y = 1, D = 0)

]

+
1

P̂ (Y = 1, D = 0)
EP

[
−1[Y = 1, D = 0]

P̂ (Y = 1, D = 0)
EP̂ [ĝ(X)(µ̂(X)− 1)] + 1[D = 0](Y − 1)

]

We note that from our error analysis in Lemma 4, the error term from the terms involving θu2 all converge at

fast rates when our estimates of π and g converge at rates of oP (n
− 1

4 ). Thus, it suffices to look at the remaining
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terms (and drop the asymptotic term after the first line):

R(P̂ , P ) = oP (n
− 1

2 )

+ EP̂

[
ĝ(X)(µ̂(X)− 1)

P̂ (Y = 1, D = 0)

]
− EP

[
g(X)(µ(X)− 1)

P (Y = 1, D = 0)

]

+
1

P̂ (Y = 1, D = 0)
EP

[
−1[Y = 1, D = 0]

P̂ (Y = 1, D = 0)
EP̂ [ĝ(X)(µ̂(X)− 1)] + 1[D = 0](Y − 1)

]

= EP̂

[
ĝ(X)(µ̂(X)− 1)

P̂ (Y = 1, D = 0)

]
− EP

[
g(X)(µ(X)− 1)

P (Y = 1, D = 0)

]

− P (Y = 1, D = 0)

P̂ (Y = 1, D = 0)
EP̂

[
ĝ(X)(µ̂(X)− 1)

P̂ (Y = 1, D = 0)

]
+ EP

[
1[D = 0](Y − 1)

P̂ (Y = 1, D = 0)

]
Rearranging terms gives us that

R(P̂ , P ) = EP̂

[
ĝ(X)(µ̂(X)− 1)

P̂ (Y = 1, D = 0)

]
− P (Y = 1, D = 0)

P̂ (Y = 1, D = 0)
EP̂

[
ĝ(X)(µ̂(X)− 1)

P̂ (Y = 1, D = 0)

]

+ EP

[
1[D = 0](Y − 1)

P̂ (Y = 1, D = 0)

]
− EP

[
g(X)(µ(X)− 1)

P (Y = 1, D = 0)

]

=

(
1− P (Y = 1, D = 0)

P̂ (Y = 1, D = 0)

)
EP̂

[
ĝ(X)(µ̂(X)− 1)

P̂ (Y = 1, D = 0)

]

+ EP

[
g(X)(µ(X)− 1)

P̂ (Y = 1, D = 0)
− g(X)(µ(X)− 1)

P (Y = 1, D = 0)

]

=

(
1− P (Y = 1, D = 0)

P̂ (Y = 1, D = 0)

)
EP̂

[
ĝ(X)(µ̂(X)− 1)

P̂ (Y = 1, D = 0)

]

+

(
P (Y = 1, D = 0)− P̂ (Y = 1, D = 0)

P (Y = 1, D = 0)P̂ (Y = 1, D = 0)

)
EP [g(X)(µ(X)− 1)]

We finally note that our estimator of P (Y = 1, D = 0) has a rate of OP (n
− 1

2 . Thus, we get that both of the above

terms will have fast rates and that our overall error term will converge at a rate of oP (n
− 1

2 ) given estimators g, π

that converge at rates of oP (n
− 1

4 ).

A.7 Algorithm for Estimators in Propositions 4, 3, 5, and 6

We perform estimation of our upper and lower bounds as follows, using cross-fitting:

1. We first split our data M = {(X,T, Y,D)} into M0 = {(Xi, Ti, Yi, Di)|∀i where Di = 0} and M1 =
{(Xi, Ti, Yi, Di)|∀i where Di = 1}.

2. Next, we split our data into N disjoint folds of equal sample size to perform cross-fitting.

3. For each fold k, we estimate the upper and lower bounds in Lemmas 1 and 2:

ψ̂u =

K∑
k=1

(
Nk
n
ψ̂uk ), ψ̂l =

K∑
k=1

(
Nk
n
ψ̂lk),

where ψ̂uk , ψ̂
l
k represent our estimates of the upper and lower bounds evaluated on fold k and where our

nuisance functions used in estimating ψ are trained on all folds except k.
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4. In computing ψ̂u, ψ̂u,γ , ψ̂l, ψ̂l,γ on fold k, and we estimate the following nuisance functions:

• Estimate π(x) on M1,¬k and evaluate on M0,k ∪M1,k.

• Estimate µ(x) on M0,¬k and evaluate on M0,k ∪M1,k.

• Estimate g(x) on M0,¬k ∪M1,¬k and evaluate on M0,k ∪M1,k

• Estimate P (Y = 1, D = 0) on M0,¬k ∪M1,¬k and evaluate on M0,k ∪M1,k.

A.8 Identification of Bounds with a Sensitivity Analysis Model

Next, we will derive our results under certain assumptions on the strengths of underlying confounders by adopting
a sensitivity analysis model. We impose a condition on confounding in treatment assignment,

1

γ
≤ P (T = 1|Y (0) = 0, D = 1, X)

P (T = 1|Y (0) = 1, D = 1, X)
≤ γ.

We now represent the result from the main body in the identification of our bounds under our sensitivity model.

Theorem 3 (Bounds with γ). Using Definition 3, we achieve the following set of bounds

ψl,γ ≤ P (T = 1|Y (0) = 1, D = 1, X) ≤ ψu,γ

where

ψl,γ := E[max{θl,γ1 , θl,γ2 }]
ψu,γ := E[min{θu,γ1 , θu,γ2 }]

θl,γ1 := θl1

θl,γ2 :=
P (T=1|D=1,X)

P (Y (0)=1|D=1,X)+γ(1−P (Y (0)=1|D=1,X))

θu,γ1 :=
P (T=1|D=1,X)

P (Y (0)=1|D=1,X)+ 1
γ
(1−P (Y (0)=1|D=1,X))

θu,γ2 := θu2

Proof. Now, using the same expansion of P (T = 1|D = 1, X) as before, we have

P (T = 1|D = 1, X) = P (Y (0) = 1|D = 1, X)P (T = 1|Y (0) = 1, D = 1, X)

+ P (Y (0) = 0|D = 1, X)P (T = 1|Y (0) = 0, D = 1, X).

Consider first the upper bound. As before, we know that P (T = 1|Y (0) = 0, D = 1, X) ≥ 0. However, given
the sensitivity assumption, we also have P (T = 1|Y (0) = 0, D = 1, X) ≥ 1

γP (T = 1|Y (0) = 1, D = 1, X). Since
1
γP (T = 1|Y (0) = 1, D = 1, X) ≥ 0, the tightest bound combining these two constraints is

P (T = 1|D = 1, X) ≥ P (Y (0) = 1|D = 1, X)P (T = 1|Y (0) = 1, D = 1, X)

+ P (Y (0) = 0|D = 1, X)
1

γ
P (T = 1|Y (0) = 1, D = 1, X)

which yields

P (T = 1|Y (0) = 1, D = 1, X) ≤ P (T = 1|D = 1, X)

P (Y (0) = 1|D = 1, X) + 1
γP (Y (0) = 0|D = 1, X)

=
P (T = 1|D = 1, X)

P (Y (0) = 1|D = 1, X) + 1
γ (1− P (Y (0) = 1|D = 1, X))

.

As γ → 1 (no unmeasured confounding), this bound converges to P (T = 1|Y (0) = 1, D = 1, X) ≤ P (T = 1|D =
1, X). As γ → ∞ (arbitrary unmeasured confounding), it converges to our earlier bound without the sensitivity
assumption.

Turning now to the lower bound, we have that P (T = 1|Y (0) = 0, D = 1, X) ≤ 1 as before. The sensitivity
assumption adds the further constraint P (T = 1|Y (0) = 0, D = 1, X) ≤ γP (T = 1|Y (0) = 1, D = 1, X). The
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first constraint is not necessarily redundant because as γ → ∞, γP (T = 1|Y (0) = 1, D = 1, X) will exceed 1.
Therefore, we obtain a tighter bound by taking the stronger of the two constraints:

P (T = 1|Y (0) = 1, D = 1, X) ≥ max

{
P (T = 1|D = 1, X)

P (Y (0) = 1|D = 1, X) + γ(1− P (Y (0) = 1|D = 1, X))
,

P (T = 1|D = 1, X)− P (Y (0) = 0|D = 1, X)

P (Y (0) = 1|D = 1, X)

}
.

As γ → 1, we have P (T = 1|Y (0) = 1, D = 1, X) ≥ P (T = 1|D = 1, X). Combined with the γ → 1 upper bound,
this shows we achieve point identification at the expected value under no unmeasured confounding. As γ → ∞,
the first term in the max eventually becomes vacuous, and we revert to the bound from before.

A.9 Estimation of Bounds with a Sensitivity Analysis Model

Now that we have shown the identification results under our sensitivity analysis model in Theorem 3, we can
construct our estimator of the upper and lower bounds, given by ψu,γ , ψl,γ . First, we consider estimating the
upper bound.

Recall that our estimands are given by

θl,γ1 := θl1

θl,γ2 :=
P (T = 1|D = 1, X)

P (Y (0) = 1|D = 1, X) + γ(1− P (Y (0) = 1|D = 1, X))

θu,γ1 :=
P (T = 1|D = 1, X)

P (Y (0) = 1|D = 1, X) + 1
γ (1− P (Y (0) = 1|D = 1, X))

θu,γ2 := θu2

Our relevant conditional distributions (i.e., our nuisance functions) are given by

µ(X) := E[Y = 1|D = 0, X = x], π(X) := E[T = 1|D = 1, X = x], g(x) := E[D = 0|X = x]

We now proceed to derive the influence functions for our upper and lower bounds under our sensitivity analysis
model.

Lemma 6. Let our estimand θu,γ1 (P ) be given by

θu,γ1 (P ) =
1

P (Y = 1, D = 0)
E

[
γπ(X)µ(X)

(γ − 1)µ(X) + 1

]
Then, we have that our influence function is given by

IF (θu,γ1 (P )) = − 1[Y = 1, D = 0]

P (Y = 1, D = 0)
2EP [g(X)A(X)] +

g(X)A(X)

P (Y = 1, D = 0)
+
A(X)(1[D = 0]− g(X))

P (Y = 1, D = 0)

+
1[D = 1]

P (Y = 1, D = 0)

γµ(X)

((γ − 1)µ(X) + 1)
(T − π(x))

g(X)

1− g(X)

+
1[D = 0]

P (Y = 1, D = 0)

γπ(X)

((γ − 1)µ(X) + 1)
2 (Y − µ(x))

Proof. First, we will simplify the upper bound term. It can be written as

π(X)

µ(X) + 1
γ (1− µ(X))

=
γπ(X)

γµ(X) + (1− µ(X))
=

γπ(X)

(γ − 1)µ(X) + 1
.
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Our target function of interest is given by

E

[
γπ(X)

(γ − 1)µ(X) + 1
|Y = 1, D = 0

]
=

∫
x

P (x|Y = 1, D = 0)
γπ(x)

(γ − 1)µ(x) + 1

=

∫
x

P (Y = 1, D = 0|x) P (x)

P (Y = 1, D = 0)

γπ(x)

(γ − 1)µ(x) + 1

=
1

P (Y = 1, D = 0)
E

[
P (Y = 1, D = 0|X)

γπ(X)

(γ − 1)µ(X) + 1

]
=

1

P (Y = 1, D = 0)
E

[
P (Y = 1|D = 0, x)P (D = 0|X)

γπ(X)

(γ − 1)µ(X) + 1

]
=

1

P (Y = 1, D = 0)
E

[
µ(X)g(X)

γπ(X)

(γ − 1)µ(X) + 1

]
=

1

P (Y = 1, D = 0)
E

[
g(X)

γπ(X)µ(X)

(γ − 1)µ(X) + 1

]

Let

A(X) =
γπ(X)µ(X)

(γ − 1)µ(X) + 1
,

and let g(X) = P (D = 0|X), as is done previously. We begin as follows

IF (θu,γ1 (P )) =
EP [g(X)A(X)]

P (Y = 1, D = 0)

We remark that this is the same form as in the proof for the upper bound with arbitrary unobserved confounding,
except that we have switched π(X) for A(X). Therefore, we can apply an intermediate result

IF (θu,γ1 (P )) = −1[Y = 1, D = 0]− P (Y = 1, D = 0)

P (Y = 1, D = 0)
2 EP [g(X)A(X)]

+
1

P (Y = 1, D = 0)

∑
x

(1[X = x]− p(x))(g(x)A(x))

+
1

P (Y = 1, D = 0)

∑
x

p(x)

(
1[X = x]

P (X = x)
(1[D = 0]− g(x))

)
A(x)

+
1

P (Y = 1, D = 0)

∑
x

p(x)g(x)IF (A(x))

This simplifies as follows (combining the first three lines)

IF (θu,γ1 (P )) = − 1[Y = 1, D = 0]

P (Y = 1, D = 0)
2EP [g(X)A(X)] +

1

P (Y = 1, D = 0)
EP [g(X)A(X)]

+
g(X)A(X)

P (Y = 1, D = 0)
− E[g(X)A(X)]

P (Y = 1, D = 0)

+
A(X)(1[D = 0]− g(X))

P (Y = 1, D = 0)

+
1

P (Y = 1, D = 0)

∑
x

p(x)g(x)IF (A(x))

= − 1[Y = 1, D = 0]

P (Y = 1, D = 0)
2EP [g(X)A(X)] +

g(X)A(X)

P (Y = 1, D = 0)
+
A(X)(1[D = 0]− g(X))

P (Y = 1, D = 0)

+
1

P (Y = 1, D = 0)

∑
x

p(x)g(x)IF (A(x))



Auditing Fairness under Unobserved Confounding

Next, we address IF (A(X)). This is computed as

IF

(
γπ(X)µ(X)

(γ − 1)µ(X) + 1

)
=
γIF (π(X)µ(X))((γ − 1)µ(x) + 1)

((γ − 1)µ(X) + 1)2
− γπ(X)µ(X)(γ − 1)IF (µ(X))

((γ − 1)µ(X) + 1)2

=
γIF (π(X)µ(X))

((γ − 1)µ(X) + 1)
− γπ(X)µ(X)(γ − 1)IF (µ(X))

((γ − 1)µ(X) + 1)2

=
γIF (π(X))µ(X) + γπ(X)IF (µ(X))

((γ − 1)µ(X) + 1)
− γπ(X)µ(X)(γ − 1)IF (µ(X))

((γ − 1)µ(X) + 1)2

=
γIF (π(X))µ(X)

((γ − 1)µ(X) + 1)
+

γπ(X)IF (µ(X))

((γ − 1)µ(X) + 1)
− γπ(X)µ(X)(γ − 1)IF (µ(X))

((γ − 1)µ(X) + 1)2

=
γµ(X)

((γ − 1)µ(X) + 1)
IF (π(X)) +

γπ(X)

((γ − 1)µ(X) + 1)
IF (µ(X))

− γπ(X)µ(X)(γ − 1)

((γ − 1)µ(X) + 1)2
IF (µ(X))

We now compute the influence functions for π(X) and µ(X) in the last line.

IF

(
γπ(X)µ(X)

(γ − 1)µ(X) + 1

)
=

γµ(X)

((γ − 1)µ(X) + 1)

(
1[D = 1, X = x]

P (D = 1, X)
(T − π(x))

)
+

γπ(X)

((γ − 1)µ(X) + 1)

(
1[D = 0, X = x]

P (D = 0, X)
(Y − µ(x))

)
− γπ(X)µ(X)(γ − 1)

((γ − 1)µ(X) + 1)2

(
1[D = 0, X = x]

P (D = 0, X)
(Y − µ(x))

)

Then, plugging in this above and removing our indicator function on X = x gives us

1

P (Y = 1, D = 0)

∑
x

p(x)g(x)IF (A(x))

=
1

P (Y = 1, D = 0)

(
γµ(X)

((γ − 1)µ(X) + 1)

(
1[D = 1]P (X)g(X)

P (D = 1, X)
(T − π(X))

)
+

γπ(X)

((γ − 1)µ(X) + 1)

(
1[D = 0]P (X)g(X)

P (D = 0, X)
(Y − µ(X))

)
− γπ(X)µ(X)(γ − 1)

((γ − 1)µ(X) + 1)2

(
1[D = 0]P (X)g(X)

P (D = 0, X)
(Y − µ(X))

))

=
1

P (Y = 1, D = 0)

(
γµ(X)

((γ − 1)µ(X) + 1)

(
1[D = 1]g(X)

P (D = 1|X)
(T − π(X))

)
+

γπ(X)

((γ − 1)µ(X) + 1)

(
1[D = 0]g(X)

P (D = 0|X)
(Y − µ(X))

)
− γπ(X)µ(X)(γ − 1)

((γ − 1)µ(X) + 1)2

(
1[D = 0]g(X)

P (D = 0|X)
(Y − µ(X))

))

=
1

P (Y = 1, D = 0)

(
γµ(X)

((γ − 1)µ(X) + 1)
(1[D = 1](T − π(X)))

g(X)

1− g(X)

+
γπ(X)

((γ − 1)µ(X) + 1)
(1[D = 0](Y − µ(X)))

− γπ(X)µ(X)(γ − 1)

((γ − 1)µ(X) + 1)2
(1[D = 0](Y − µ(X)))

)

=
1[D = 1]

P (Y = 1, D = 0)

γµ(X)

((γ − 1)µ(X) + 1)
(T − π(X))

g(X)

1− g(X)

+
1[D = 0]

P (Y = 1, D = 0)

γπ(X)

((γ − 1)µ(X) + 1)
(Y − µ(X))

− 1[D = 0]

P (Y = 1, D = 0)

γπ(X)µ(X)(γ − 1)

((γ − 1)µ(X) + 1)2
(Y − µ(X))
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Then, we note that we can combine the two bottom lines, where

γπ(X)

(γ − 1)µ(X) + 1
− γπ(X)µ(X)(γ − 1)

((γ − 1)µ(X) + 1)
2 =

γπ(X)µ(X)(γ − 1) + γπ(X)

((γ − 1)µ(X) + 1)
2 − γπ(X)µ(X)(γ − 1)

((γ − 1)µ(X) + 1)
2

=
γπ(X)

((γ − 1)µ(X) + 1)
2

which gives that

1

P (Y = 1, D = 0)

∑
x

p(x)g(x)IF (A(x)) =
1[D = 1]

P (Y = 1, D = 0)

γµ(X)

((γ − 1)µ(X) + 1)
(T − π(X))

g(X)

1− g(X)

+
1[D = 0]

P (Y = 1, D = 0)

γπ(X)

((γ − 1)µ(X) + 1)
2 (Y − µ(X))

Finally, we can put everything together to get

IF (θu,γ1 (P )) = − 1[Y = 1, D = 0]

P (Y = 1, D = 0)
2EP [g(X)A(X)] +

g(X)A(X)

P (Y = 1, D = 0)
+
A(X)(1[D = 0]− g(X))

P (Y = 1, D = 0)

+
1[D = 1]

P (Y = 1, D = 0)

γµ(X)

((γ − 1)µ(X) + 1)
(T − π(X))

g(X)

1− g(X)

+
1[D = 0]

P (Y = 1, D = 0)

γπ(X)

((γ − 1)µ(X) + 1)
2 (Y − µ(X))

Next, we move on to discussing our estimator of the upper bound, using this influence function.

Proposition 5. Our one-step estimator of θu,γ1 is given by

θ̂u,γ1 =
1

P̂ (Y = 1, D = 0)
EP

[
Â(X)(1[D = 0])

]
+

1

P̂ (Y = 1, D = 0)
EP

[
1[D = 1]

γµ̂(X)

((γ − 1)µ̂(X) + 1)
(T − π̂(x))

ĝ(X)

1− ĝ(X)

]
+

1

P̂ (Y = 1, D = 0)
EP

[
1[D = 0]

γπ̂(X)

((γ − 1)µ̂(X) + 1)
2 (Y − µ̂(x))

]

Proof.

θ̂u,γ1 (P̂ ) = θu,γ1 (P̂ ) + EP̂ [IF (θ
u,γ
1 (P̂ ))]

The first term is given by

θu,γ1 (P̂ ) =
1

P̂ (Y = 1, D = 0)
EP̂ [ĝ(X)Â(X)]

The second term is given by

EP̂ [IF (θ
u,γ
1 (P̂ ))] = EP̂

[
− 1[Y = 1, D = 0]

P̂ (Y = 1, D = 0)
2EP̂ [ĝ(X)Â(X)] +

ĝ(X)Â(X)

P̂ (Y = 1, D = 0)
+
Â(X)(1[D = 0]− ĝ(X))

P̂ (Y = 1, D = 0)

]

+ EP̂

[
1[D = 1]

P̂ (Y = 1, D = 0)

γµ̂(X)

((γ − 1)µ̂(X) + 1)
(T − π̂(x))

ĝ(X)

1− ĝ(X)

]

+ EP̂

[
1[D = 0]

P̂ (Y = 1, D = 0)

γπ̂(X)

((γ − 1)µ̂(X) + 1)
2 (Y − µ̂(x))

]
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The first expectation term in the second term is exactly θu,γ1 (P̂ ), so it cancels out with the original first term.
This gives us that

θ̂1
u,γ

(P̂ ) =
1

P̂ (Y = 1, D = 0)
EP̂ [ĝ(X)Â(X)] +

1

P̂ (Y = 1, D = 0)
EP̂

[
Â(X)(1[D = 0]− ĝ(X))

]
+

1

P̂ (Y = 1, D = 0)
EP̂

[
1[D = 1]

γµ̂(X)

((γ − 1)µ̂(X) + 1)
(T − π̂(X))

ĝ(X)

1− ĝ(X)

]
+

1

P̂ (Y = 1, D = 0)
EP̂

[
1[D = 0]

γπ̂(X)

((γ − 1)µ̂(X) + 1)
2 (Y − µ̂(X))

]

=
1

P̂ (Y = 1, D = 0)
EP̂ [ĝ(X)Â(X)] +

1

P̂ (Y = 1, D = 0)
EP̂

[
Â(X)(1[D = 0]− ĝ(X))

]
+

1

P̂ (Y = 1, D = 0)
EP̂

[
1[D = 1]

γµ̂(X)

((γ − 1)µ̂(X) + 1)
(T − π̂(X))

ĝ(X)

1− ĝ(X)

]
+

1

P̂ (Y = 1, D = 0)
EP̂

[
1[D = 0]

γπ̂(X)

((γ − 1)µ̂(X) + 1)
2 (Y − µ̂(x))

]

=
1

P̂ (Y = 1, D = 0)
EP

[
Â(X)(1[D = 0])

]
+

1

P̂ (Y = 1, D = 0)
EP

[
1[D = 1]

γµ̂(X)

((γ − 1)µ̂(X) + 1)
(T − π̂(x))

ĝ(X)

1− ĝ(X)

]
+

1

P̂ (Y = 1, D = 0)
EP

[
1[D = 0]

γπ̂(X)

((γ − 1)µ̂(X) + 1)
2 (Y − µ̂(x))

]
.

Lemma 7 (Error of one-step estimator of upper bound with γ). Let the error of our one-step estimator be given
by

R(P̂ , P ) = θu,γ1 (P̂ )− θu,γ1 (P ) + EP

[
IF (θu,γ1 (P̂ ))

]
Then, we have that

R(P̂ , P ) = oP (n
− 1

2 ),

when (π̂ − π), (µ̂− µ), (ĝ − g) have rates of at least oP (n
− 1

4 ).

Proof.

R(P̂ , P ) = θu,γ1 (P̂ )− θu,γ1 (P ) + EP

[
IF
(
θu,γ1 (P̂ )

)]
= EP̂

[
ĝ(X)Â(X)

P̂ (Y = 1, D = 0)

]
︸ ︷︷ ︸

(a)

−EP

[
g(X)A(X)

P (Y = 1, D = 0)

]
︸ ︷︷ ︸

(b)

− P (Y = 1, D = 0)

(P̂ (Y = 1, D = 0))2
EP̂ [ĝ(X)Â(X)]︸ ︷︷ ︸

(c)

+ EP

[
ĝ(X)Â(X)

P̂ (Y = 1, D = 0)

]
︸ ︷︷ ︸

(d)

+EP

[
Â(X)(1[D = 0]− ĝ(X)

P̂ (Y = 1, D = 0)

]

+ EP

[
1[D = 1]

P̂ (Y = 1, D = 0)

(
γµ̂(X)

(γ − 1)µ̂(X) + 1

)
ĝ(X)

1− ĝ(X)
(T − π̂(X))

]

+ EP

[
1[D = 0]

P̂ (Y = 1, D = 0)

(
γπ̂(X)

((γ − 1)π̂(X) + 1)2

)
(Y − µ̂(X))

]
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First, we take the terms (a) and (c),

EP̂

[
ĝ(X)Â(X)

P̂ (Y = 1, D = 0)

]
− P (Y = 1, D = 0)

(P̂ (Y = 1, D = 0))2
EP̂ [ĝ(X)Â(X)] =

(
1− P (Y = 1, D = 0)

P̂ (Y = 1, D = 0)

)
EP̂

[
ĝ(X)Â(X)

P̂ (Y = 1, D = 0)

]

As shown in the proof of Lemma 4 in (9), this converges at oP (n
−1/2) rate. Now, we take the terms (b) and (d),

− EP

[
g(X)A(X)

P (Y = 1, D = 0)

]
+ EP

[
ĝ(X)Â(X)

P̂ (Y = 1, D = 0)

]

=

(
1− P (Y = 1, D = 0)

P̂ (Y = 1, D = 0)

)
EP

[
g(X)A(X)

P̂ (Y = 1, D = 0)

]
+

1

P̂ (Y = 1, D = 0)
EP [ĝ(X)Â(X)− g(X)A(X)]︸ ︷︷ ︸

(e)

Again, we see that the first term converges at oP (n
−1/2) rate. We defer analysis of the second term to later. We

will first turn to analyzing the remaining terms.

EP

[
1[D = 1]

P̂ (Y = 1, D = 0)

(
γµ̂(X)

(γ − 1)µ̂(X) + 1

)
ĝ(X)

1− ĝ(X)
(T − π̂(X))

]

+ EP

[
1[D = 0]

P̂ (Y = 1, D = 0)

(
γπ̂(X)

(((γ − 1)µ̂(X) + 1)2

)
(Y − µ̂(X))

]
+ EP

[
Â(X)(1[D = 0]− ĝ(X))

P̂ (Y = 1, D = 0)

]

= EP

[
1− g(X)

P̂ (Y = 1, D = 0)

(
γµ̂(X)

(γ − 1)µ̂(X) + 1

)
ĝ(X)

1− ĝ(X)
(π(X)− π̂(X))

]

+ EP

[
g(X)

P̂ (Y = 1, D = 0)

(
γπ̂(X)

((γ − 1)µ̂(X) + 1)2

)
(µ(X)− µ̂(X))

]
+ EP

[
Â(X)(g(X)− ĝ(X))

P̂ (Y = 1, D = 0)

]

The equality here holds through an application of iterated expectation over X and with the observation

E[1[D = 1]Tq(X)] = E[(1− g(X))π(X)q(X)],

for any function q of X.

We now look at these remaining terms with the last remaining term from above (e), resulting in the following
expression:

R(P̂ , P ) =
1

P̂ (Y = 1, D = 0)
EP [ĝ(X)Â(X)− g(X)A(X)] + EP

[
Â(X)(g(X)− ĝ(X))

P̂ (Y = 1, D = 0)

]

+ EP

[
1− g(X)

P̂ (Y = 1, D = 0)

(
γµ̂(X)

(γ − 1)µ̂(X) + 1

)
ĝ(X)

1− ĝ(X)
(π(X)− π̂(X))

]

+ EP

[
g(X)

P̂ (Y = 1, D = 0)

(
γπ̂(X)

((γ − 1)µ̂(X) + 1)2

)
(µ(X)− µ̂(X))

]
+ oP (n

− 1
2 ),

where the terms that disappear at the parametric rate are contained within the additional term of oP (n
− 1

2 ). This
further simplifies to

R(P̂ , P ) =
1

P̂ (Y = 1, D = 0)
EP [g(X)Â(X)− g(X)A(X)]

+ EP

[
1− g(X)

P̂ (Y = 1, D = 0)

(
γµ̂(X)

(γ − 1)µ̂(X) + 1

)
ĝ(X)

1− ĝ(X)
(π(X)− π̂(X))

]

+ EP

[
g(X)

P̂ (Y = 1, D = 0)

(
γπ̂(X)

((γ − 1)µ̂(X) + 1)2

)
(µ(X)− µ̂(X))

]
+ oP (n

− 1
2 )
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Rewriting the above equation in terms of A(X) and Â(X), we have that

R(P̂ , P ) =
1

P̂ (Y = 1, D = 0)
EP [g(X)Â(X)− g(X)A(X)]︸ ︷︷ ︸

(j)

+ EP

 1− g(X)

P̂ (Y = 1, D = 0)

(
γµ̂(X)π(X)

(γ − 1)µ̂(X) + 1

)
ĝ(X)

1− ĝ(X)︸ ︷︷ ︸
(e)

− (1− g(X))ĝ(X)

P̂ (Y = 1, D = 0)(1− ĝ(X))
Â(X)︸ ︷︷ ︸

(f)



+ EP

 g(X)

P̂ (Y = 1, D = 0)

 γπ̂(X)µ(X)

((γ − 1)µ̂(X) + 1)2︸ ︷︷ ︸
(g)

− 1

(γ − 1)µ̂(X) + 1
Â(X)︸ ︷︷ ︸

(h)




+ oP (n
− 1

2 )

Now, we let d = (γ − 1)µ̂(X) + 1 and d′ = (γ − 1)µ(X) + 1 (i.e., the denominators of A and Â, respectively). We
first look at combining terms (e) and (h)

1

P̂ (Y = 1, D = 0)

(
E

[
1− g(X)

1− ĝ(X)
ĝ(X)

γµ̂(X)π(X)

d

]
− E

[g
d
Â(X)

] )
=

1

P̂ (Y = 1, D = 0)
E
[ (1− g(X))ĝ(X)γµ̂(X)π(X)

(1− ĝ(X))d
− g(X)γµ̂(X)π̂(X)

dd

]

This simplifies to give us that

=
1

P̂ (Y = 1, D = 0)
E
[ (1− g(X))ĝ(X)(γµ̂(X)π(X))((γ − 1)µ̂(X) + 1)− (1− ĝ(X))g(X)γµ̂(X)π̂(X)

(1− ĝ(X))dd′

]
=

1

P̂ (Y = 1, D = 0)
E
[ 1

(1− ĝ(X))dd′

(
(1− g(X))ĝ(X)(γµ̂(X)π(X))(γ − 1)µ̂(X)

+ (1− g(X))ĝ(X)γµ̂(X)π(X)

− (1− ĝ(X))g(X)γµ̂(X)π̂(X)
)]

=
1

P̂ (Y = 1, D = 0)
E
[ 1

(1− ĝ(X))dd′

(
(1− g(X))ĝ(X)(γµ̂(X)π(X))(γ − 1)µ̂(X)

− ĝ(X)g(X)γµ̂(X)π̂(X) + ĝ(X)g(X)γµ̂(X)π̂(X)

+ g(X)ĝ(X)γµ̂(X)π(X)− ĝ(X)γµ̂(X)π(X)
)]

=
1

P̂ (Y = 1, D = 0)
E
[ 1

(1− ĝ(X))dd′

(
(1− g(X))ĝ(X)(γµ̂(X)π(X))(γ − 1)µ̂(X)

+ γµ̂(X)(ĝ(X)π(X)− g(X)π̂(X)) + g(X)ĝ(X)γµ̂(X)(π̂(X)− π(X))︸ ︷︷ ︸
(i)

)]

We remark that we can simplify (i) (ignoring the common multiple of γµ̂(X) for now),

ĝ(X)π(X)− g(X)π̂(X) + g(X)ĝ(X)π̂(X)− g(X)ĝ(X)π(X)

= g(X)π̂(X)(ĝ(X)− 1)− ĝ(X)π(X)(g(X)− 1)
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Plugging this in yields that

=
1

P̂ (Y = 1, D = 0)
E
[ 1

(1− ĝ(X))dd′

(
(1− g(X))ĝ(X)(γµ̂(X)π(X))(γ − 1)µ̂(X)

+ γµ̂(X)
(
g(X)π̂(X)(ĝ(X)− 1)− ĝ(X)π(X)(g(X)− 1)

))]
=

1

P̂ (Y = 1, D = 0)
E
[ 1

(1− ĝ(X))dd′
(1− g(X))ĝ(X)(γµ̂(X)π(X))(γ − 1)µ̂(X)

]
(11)

+
1

P̂ (Y = 1, D = 0)
E
[
γµ̂(X)

(
g(X)π̂(X)(ĝ(X)− 1)− ĝ(X)π(X)(g(X)− 1)

)]

Next, we look at combining terms (f) and (g)

1

P̂ (Y = 1, D = 0)

(
E

[
g(X)γπ̂(X)µ(X)

dd

]
− E

[
1− g(X)

1− ĝ(X)
ĝ(X)Â(X)

])
=

1

P̂ (Y = 1, D = 0)
E

(
(1− ĝ(X))g(X)

(1− ĝ(X))d

γπ̂(X)µ(X)

d
− 1− g(X)

1− ĝ(X)
ĝ(X)

γπ̂(X)µ̂(X)d

dd

)

We first try to simplify the numerator inside the expectation. First, we substitute d = (γ − 1)µ̂(X) + 1 and
expand the terms.

(1− ĝ(X))g(X)γπ̂(X)µ(X)− (1− g(X))ĝ(X)γπ̂(X)µ̂(X)d

= (1− ĝ(X))g(X)γπ̂(X)µ(X)− (1− g(X))ĝ(X)γπ̂(X)µ̂(X)((γ − 1)µ̂(X) + 1)

= (1− ĝ(X))g(X)γπ̂(X)µ(X)− (1− g(X))ĝ(X)γπ̂(X)µ̂(X)(γ − 1)µ̂(X)− (1− g(X))ĝ(X)γπ̂(X)µ̂(X)

= g(X)γπ̂(X)µ(X)︸ ︷︷ ︸
(k)

− ĝ(X)g(X)γπ̂(X)µ(X)︸ ︷︷ ︸
(l)

− (1− g(X))ĝ(X)γπ̂(X)µ̂(X)(γ − 1)µ̂(X)︸ ︷︷ ︸
(m)

− ĝ(X)γπ̂(X)µ̂(X)︸ ︷︷ ︸
(n)

+ g(X)ĝ(X)γπ̂(X)µ̂(X)︸ ︷︷ ︸
(o)

Grouping the (k) and (n) together, grouping (l) and (o) together, and keeping term (m), we have

γπ̂(X)(g(X)µ(X)− ĝ(X)µ̂(X)) + γπ̂(X)g(X)ĝ(X)(µ̂(X)− µ(X))− (1− g(X))ĝ(X)γπ̂(X)µ̂(X)(γ − 1)µ̂(X)

= (γπ̂(g(X)µ(X)− ĝ(X)µ̂(X) + g(X)ĝ(X)µ̂(X)− g(X)ĝ(X)µ(X))

− (1− g(X))ĝ(X)γπ̂(X)µ̂(X)(γ − 1)µ̂(X)

= (γπ̂(ĝ(X)µ̂(X)(g(X)− 1)− g(X)µ(X)(ĝ(X)− 1))− (1− g(X))ĝ(X)γπ̂(X)µ̂(X)(γ − 1)µ̂(X)

Reintroducing the denominator results in the following expression

1

P̂ (Y = 1, D = 0)
E
[ γπ̂(X)

(1− ĝ(X))dd
(ĝ(X)µ̂(X)(g(X)− 1)− g(X)µ(X)(ĝ(X)− 1)) (12)

− (1− g(X))ĝ(X)γπ̂(X)µ̂(X)(γ − 1)µ̂(X)

(1− ĝ(X))dd

]

Next, we combine terms from (11) and (12), which gives us that (ignoring the 1
P̂ (Y=1,D=0)

and the expectation
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for now)

1

(1− ĝ(X))dd
((1− g(X))ĝ(X)γµ̂(X)π(X)(γ − 1)µ̂(X) (13)

+
γµ̂(X)

(1− ĝ(X))dd
(g(X)π̂(X)(ĝ(X)− 1)− ĝ(X)π(X)(g(X)− 1)) (14)

+
γπ̂(X)

(1− ĝ(X))dd
(ĝ(X)µ̂(X)(g(X)− 1)− g(X)µ(X)(ĝ(X)− 1)) (15)

− 1

(1− ĝ(X))dd
((1− g(X))ĝ(X)γµ̂(X)p̂i(X)(γ − 1)µ̂(X) (16)

Combining terms (13) and (16) gives us

1

(1− ĝ(X))dd
((1− g(X))ĝ(X)γµ̂(X)(γ − 1)µ̂(X)(π(X)− π̂(X)).

Combining terms (14) and (15) gives us

1

(1− ĝ(X))dd
(γg(X)π̂(X)(ĝ(X)− 1))(µ̂(X)− µ(X)) +

1

(1− ĝ(X))dd
γµ̂(X)ĝ(X)(g(X)− 1)(π̂(X)− π(X))

The remaining term (j) from above is simplified as

1

P̂ (Y = 1, D = 0)
E[g(X)Â(X)− g(X)A(X)] =

1

P̂ (Y = 1, D = 0)
E

[
g(X)

1

dd′
γ(γ − 1)µ(X)µ̂(X)(π̂(X)− π(X))

]
(17)

+ P̂ (Y = 1, D = 0)E

[
g(X)

1

dd′
γ(π̂(X)µ̂(X)− π(X)µ(X))

]
, (18)

as we note that

Â(X)−A(X) =
γπ̂(X)µ̂(X)

d
− γπ(X)µ(X)

d′
=
d′γπ̂(X)µ̂(X)− dγπ(X)µ(X)

dd′

=
1

dd′

(
(γ − 1)µ(X)γπ̂(X)µ̂(X)− (γ − 1)µ̂(X)γπ(X)µ(X) + γπ̂(X)µ̂(X)− γπ(X)µ(X)

)
=

1

dd′
γ(γ − 1)µ(X)µ̂(X)(π̂(X)− π(X)) +

1

dd′
γ(π̂(X)µ̂(X)− π(X)µ(X))

Now, we can combine (17) and the combination of (13) and (16), giving us that

1

P̂ (Y = 1, D = 0)
E

[
g(X)

1

dd′
γ(γ − 1)µ(X)µ̂(X)(π̂(X)− π(X))

]
+

1

P̂ (Y = 1, D = 0)
E

[
1

(1− ĝ(X))dd
(1− g(X))ĝ(X)γµ̂(X)(γ − 1)µ̂(X)(π(X)− π̂(X))

]
which simplifies by factoring to give that

1

P̂ (Y = 1, D = 0)
E

[
γ(γ − 1)µ̂(X)(π̂(X)− π(X))

d

(g(X)

d′
µ(X)− (1− g(X))ĝ(X)µ̂(X)

(1− ĝ(X))d

)]
Now we can focus on the difference term, which simplifies as

g(X)(1− ĝ(X))dµ(X)

(1− ĝ(X))dd′
− (1− g(X))ĝ(X)d′µ̂(X)

(1− ĝ(X))dd′
,

and when only simplifying the numerator, we get that

(g(X)− g(X)ĝ(X))dµ(X)− (ĝ(X)− g(X)ĝ(X))d′µ̂(X)

= (g(X)− g(X)ĝ(X))((γ − 1)µ̂(X) + 1)µ(X)− (ĝ(X)− g(X)ĝ(X))((γ − 1)µ(X) + 1)µ̂(X)

= (g(X)− g(X)ĝ(X))(γ − 1)µ̂(X)µ(X)

+ (g(X)− g(X)ĝ(X))µ(X)− (ĝ(X)− g(X)ĝ(X))(γ − 1)µ(X)µ̂(X)− (ĝ(X)− g(X)ĝ(X))µ̂(X)
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This further simplifies to give us that

= (γ − 1)µ̂(X)µ(X)(g(X)− g(X)ĝ(X)− ĝ(X) + g(X)ĝ(X)) + (g(X)− g(X)ĝ(X))µ(X)− (ĝ(X)− g(X)ĝ(X))µ̂(X)

= (γ − 1)µ̂(X)µ(X)(g(X)− ĝ(X)) + g(X)µ(X)− ĝ(X)µ̂(X) + g(X)ĝ(X)µ̂(X)− g(X)ĝ(X)µ(X)

= (γ − 1)µ̂(X)µ(X)
(
g(X)− ĝ(X)

)
+
(
g(X)µ(X)− ĝ(X)µ̂(X)

)
+ g(X)ĝ(X)

(
µ̂(X)− µ(X)

)
Then, plugging this back with the denominator and factored out term in the numerator gives us that

=
1

P̂ (Y = 1, D = 0)
E

[
γ(γ − 1)µ̂(X)

d
(π̂(X)− π(X)) · (γ − 1)µ̂(X)µ(X)

(
g(X)− ĝ(X)

)]
+

1

P̂ (Y = 1, D = 0)
E

[
γ(γ − 1)µ̂(X)

d
(π̂(X)− π(X)) ·

(
g(X)µ(X)− ĝ(X)µ̂(X)

)]
+

1

P̂ (Y = 1, D = 0)
E

[
γ(γ − 1)µ̂(X)

d
(π̂(X)− π(X)) · g(X)ĝ(X)

(
µ̂(X)− µ(X)

)]

Note that in each line, we have squared terms in differences of our estimated quantities on P̂ and P . In the
second line, we have (π̂ − π) · (gµ− ĝµ̂); the term (ĝµ̂ is a plugin estimator, which we have previously shown in
Appendix A.4 to have a rate of the sum of the rates of ĝ and µ̂. Thus, when multiplied by the difference π̂ − π,
we still achieve squared terms. Thus, this term converges at a rate of oP (n

− 1
2 ) if our estimates of π and g and µ,

each converge at a rate of oP (n
− 1

4 ).

Note that π̂(X)µ̂(X)− π(X)µ(X) = π̂(X)µ̂(X)− π(X)µ(X) + π̂(X)µ(X)− π̂(X)µ(X) = π̂(X)(µ̂(X)− µ(X)) +
(π̂(X)− π(X))µ(X). Now looking at (18), we can write it as

1

P̂ (Y = 1, D = 0)
E

[
g(X)

dd′
γ(π̂(X)µ̂(X)− π(X)µ(X))

]
=

1

P̂ (Y = 1, D = 0)
E

[
g(X)

dd′
γ(π̂(X)(µ̂(X)− µ(X))

]
︸ ︷︷ ︸

(p)

+
1

P̂ (Y = 1, D = 0)
E

[
g(X)

dd′
γ(µ(X)(π̂(X)− π(X))

]
︸ ︷︷ ︸

(q)

First, we look at the two terms with (µ̂(X)− µ(X)) (which are (p) and (15)).

1

P̂ (Y = 1, D = 0)
E

[
g(X)

dd′
γπ̂(X)(µ̂(X)− µ(X))

]
− 1

P̂ (Y = 1, D = 0)
E

[
1− ĝ(X)

(1− ĝ(X))dd
γπ̂(X)g(X)(µ̂(X)− µ(X))

]
=

1

P̂ (Y = 1, D = 0)
E

[
gγπ̂(X)(µ̂(X)− µ(X))

(
1

dd′
− 1

dd

)]
Looking at 1

dd′ −
1
dd , we unify the denominator as follows

1

dd′
− 1

dd
=

1

(γ − 1)µ(X) + 1
− 1

(γ − 1)µ̂(X) + 1
=

(γ − 1)µ̂(X) + 1− ((γ − 1)µ(X) + 1)

d′d

=
(γ − 1)(µ̂(X)− µ(X))

dd′

Putting this back together, the complete µ̂− µ term is

1

P̂ (Y = 1, D = 0)
E

[
gγπ̂(X)(µ̂(X)− µ(X))

(γ − 1)(µ̂(X)− µ(X))

dd′

]
We observe that this is in the form of squared differences of (µ̂(X)− µ(X)). Thus, this term converges at a rate

of oP (n
− 1

2 ) if our estimate of µ̂(X) converges at a rate of oP (n
− 1

4 ).

Now, looking at the (π̂(X)− π(X)) terms (which are (q) and (14)), we have

1

P̂ (Y = 1, D = 0)
E

[
g

1

dd′
γµ(X)(π̂(X)− π(X))

]
− 1

P̂ (Y = 1, D = 0)
E

[
ĝ(X)

1− g(X)

1− ĝ(X)

1

dd
γµ̂(X)(π̂(X)− π(X))

]
=

1

P̂ (Y = 1, D = 0)
E

[
γ

d
(π̂(X)− π(X))

(
g(X)

d′
µ(X)− ĝ(X)

d

1− g(X)

1− ĝ(X)
µ̂(X)

)]
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Looking at the terms inside the parentheses, g(X)
d′ µ(X)− ĝ(X)

d
1−g(X)
1−ĝ(X) µ̂(X), we unify the denominator as follows

g(X)

d′
µ(X)− ĝ(X)

d

1− g(X)

1− ĝ(X)
µ̂(X)

=
g(X)(1− ĝ(X))µ(X)d− ĝ(X)(1− g(X))µ̂(X)d′

d′(1− ĝ(X))d

We look at only the numerator for now,

g(X)(1− ĝ(X))µ(X)d− ĝ(X)(1− g(X))µ̂(X)d′

= g(X)µ(X)d− g(X)ĝ(X)µ(X)d− ĝ(X)µ̂(X)d′ + g(X)ĝ(X)µ̂(X)d′

= (g(X)µ(X)d− ĝ(X)µ̂(X)d′) + (g(X)ĝ(X)µ̂(X)d′ − g(X)ĝ(X)µ(X)d)

= g(X)µ(X)(γ − 1)µ̂(X) + g(X)µ(X)− (ĝ(X)µ̂(X)(γ − 1)µ(X) + ĝ(X)µ̂(X))

= g(X)ĝ(X)µ̂(X)(γ − 1)µ(X) + g(X)ĝ(X)µ̂(X)− (g(X)ĝ(X)µ̂(X)(γ − 1)µ̂(X) + gĝ(X)µ(X))

= (γ − 1)µ(X)µ̂(X)(g(X)− ĝ(X)) + (g(X)µ(X)− ĝ(X)µ̂(X)) + g(X)ĝ(X)(µ̂(X)− µ(X))

Putting this back together with the denominator, we have

1

P̂ (Y = 1, D = 0)
E
[γ
d
(π̂(X)− π(X))(γ − 1)µ(X)µ̂(X)(g(X)− ĝ(X))

]
+

1

P̂ (Y = 1, D = 0)
E
[γ
d
(π̂(X)− π(X))(g(X)µ(X)− ĝ(X)µ̂(X))

]
+

1

P̂ (Y = 1, D = 0)
E
[γ
d
(π̂(X)− π(X))g(X)ĝ(X)(µ̂(X)− µ(X))

]

We observe the that first and third terms are in the form of squared differences, so they converge at a rate of
oP (n

− 1
2 ), when the individual estimators converge at a rate of oP (n

− 1
4 ). We observe that the second term scales

with |g(X)− ĝ(X)|+ |µ(X)− µ̂(X)| (again by the logic in Appendix A.4) and is multiplied by (π̂(X)− π(X)),

so it converges in oP (n
− 1

2 ).

Now, for the following Lemmas and proofs, we let A(X) = γ′π(X)µ(X)
(γ′−1)µ(X)+1 where γ′ = 1

γ .

Lemma 8. Let our estimand θl,γ2 (P ) be given by

θl,γ2 (P ) =
1

P (Y = 1|D = 0)
E

[
1
γπ(X)µ(X)

( 1γ − 1)µ(X) + 1
|D = 0

]

Let γ′ = 1
γ . Then, we have that our influence function is given by

IF (θl,γ2 ) = − 1[Y = 1, D = 0]

P (Y = 1, D = 0)
2EP [g(X)A′(X)] +

g(X)A′(X)

P (Y = 1, D = 0)
+
A′(X)(1[D = 0]− g(X))

P (Y = 1, D = 0)

+
1[D = 1]

P (Y = 1, D = 0)

γ′µ(X)

((γ′ − 1)µ(X) + 1)
(T − π(x))

+
1[D = 0]

P (Y = 1, D = 0)

1− g(X)

g(X)

γ′π(X)

((γ′ − 1)µ(X) + 1)
2 (Y − µ(x))

Proof. This holds via a direct application for the proof for the upper bound with our sensitivity model, except
using γ′ = 1

γ .

Next, we move on to discussing our estimator of the lower bound, using this influence function.



Yewon Byun, Dylan Sam, Michael Oberst, Zachary C. Lipton, Bryan Wilder

Proposition 6. Our one-step estimator of θl,γ2 is given by

θ̂2
l,γ

=
1

P̂ (Y = 1, D = 0)
EP

[
Â′(X)(1[D = 0])

]
+

1

P̂ (Y = 1, D = 0)
EP

[
1[D = 1]

γ′µ̂(X)

((γ′ − 1)µ̂(X) + 1)
(T − π̂(x))

ĝ(X)

1− ĝ(X)

]
+

1

P̂ (Y = 1, D = 0)
EP

[
1[D = 0]

γ′π̂(X)

((γ′ − 1)µ̂(X) + 1)
2 (Y − µ̂(x))

]

Proof. This holds via a direct application for the proof for the upper bound with our sensitivity model, except
using γ′ = 1

γ .

Lemma 9 (Error of one-step estimator of lower bound with γ). Let the error of our one-step estimator be given
by

R(P̂ , P ) = θl,γ2 (P̂ )− θl,γ2 (P ) + EP

[
IF (θl,γ2 (P̂ ))

]
Then, we have that

R(P̂ , P ) = oP (n
− 1

2 ),

when (π̂ − π), (µ̂− µ), (ĝ − g) have rates of at least oP (n
− 1

4 ).

Proof. This holds via a direct application for the proof for the upper bound with our sensitivity model, except
using γ′ = 1

γ .

B Margin-based Analysis and Asymptotic Normality of our Estimators

In this section, we provide the proof for Theorem 2. First, we provide a general analysis of estimating a quantity
that consists of a max or min operator, showing that the resulting estimator is asymptotically normal. Next, we
show that the individual components of our estimators satisfy the assumptions in our margin analysis, concluding
that our resulting estimator is asymptotically normal (i.e., Theorem 2).

B.1 Preliminaries and Assumptions for Theorem 2

Let W = (X,Y,D, T ) denote all of our observed variables. The estimators we introduce in this paper all fit within
a common framework, where we consider the general problem of estimating a bound given by either of

ψl := EP

[
max

j=1,...,J
θlj(W ;P )

]
= EP

[
θldl(W )(W ;P )

]
dl(W ) := arg max

j∈1,...,J
θlj(W ;P ) (19)

ψu := EP

[
min

j=1,...,J
θuj (W ;P )

]
= EP

[
θudu(W )(W ;P )

]
du(W ) := arg min

j∈1,...,J
θuj (W ;P ) (20)

where the θuj (W ;P ), θlj(W ;P ) are individual bounds that can be evaluated at each sample W and we wish to
take the pointwise maximum (for our lower bounds) or minimum (for our upper bounds) and then marginalize
over W . Note that the set of individual bounds θj(W ;P ) will differ depending on whether we are estimating
upper and lower bounds. Furthermore, we define for each θj(W ;P ) (regardless of whether it is a lower or upper
bound) the corresponding functional

θj := EP [θj(W ;P )]. (21)

In each of the estimators we consider in this work, we have derived a plug-in estimator for each θj ,

θ̂j := EP̂ [θj(W ; P̂ )], (22)

and we similarly have access to a one-step (or “debiased”) estimator for each θj ,

ψ̂j := EP̂ [θj(W ; P̂ ) + λj(W ; P̂ )] (23)
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where λj(W ; P̂ ) is the influence function for θj in (21), though in the following results we will only require that
this additional term satisfies certain conditions (e.g., being zero-mean EP [λj(W ;P )] = 0) and that the plug-in
estimator in (22) and the one-step estimator in (23) converge to θj at certain rates.

Our estimator of the lower bound in (19) is given by the following, where we introduce the short-hand φ(W ;P, d)

ψ̂l = EP̂

[
φl(W ; P̂ , d̂l)

]
(24)

φl(W ; P̂ , d̂l) := θl
d̂l(W )

(W ; P̂ ) + λl
d̂l(W )

(W ; P̂ )

d̂l(W ) := arg max
j∈1,...,J

θlj(W ; P̂ )

and our estimator of the upper bound in (20) is analogously given by

ψ̂u = EP̂

[
φu(W ; P̂ , d̂u)

]
(25)

φu(W ; P̂ , d̂u) := θu
d̂u(W )

(W ; P̂ ) + λu
d̂u(W )

(W ; P̂ )

d̂u(W ) := arg max
j∈1,...,J

θuj (W ; P̂ ).

In words, each estimator uses the plug-in estimators θj(W ; P̂ ) to estimate which bound is tightest at each
observation W , uses the tightest bound for each observation, and then averages the bias-corrected version of the
bound at each W to give the final estimate.

Our goal is to demonstrate that these estimators for the lower bound in (24) and for the upper bound in (25) are
asymptotically normal, and to characterize the resulting asymptotic variance, so that we can provide asymptotically
valid confidence bounds. The main technical challenge is that these estimators are non-smooth, given the presence
of the max/min operator.

To do so, we will require a few technical assumptions, which we state in a general form, since they apply equally
whether we are considering upper or lower bounds. Our first assumption states that our estimators are bounded.

Assumption 6 (Boundedness). For every j ∈ {1, . . . , J}, λj(W ;P ) and θj(W ;P ) are both uniformly bounded
by constants with respect to n.

We will also require that for the estimator of each individual component of the bound, the chosen one-step
correction λj has zero mean, which will be satisfied whenever λ is derived via an influence function-based debiasing
step (related to the fact that influence functions have mean 0).

Assumption 7 (Zero-mean Correction Term). For every j ∈ {1, . . . , J}, EP [λj(W ;P )] = 0.

We also require a consistency assumption for the plugin estimator, although no assumption about its rate of
convergence is required just yet.

Assumption 8 (Consistent Plug-in Estimator). For every j ∈ {1 . . . J}, ||θ̂j − θj || = oP (1).

Finally, we require a technical “margin” condition, such that P puts bounded density on the event that
minj ̸=d θd(W )(W )− θj(W ) is close to zero, i.e., that there are two near-optimal bounds at a given W .

Assumption 9 (Margin Condition). There exists some α > 0 such that

P

[
min

j ̸=d(W )
|θd(W )(W )− θj(W )| ≤ t

]
≲ tα.

Assumption 10 (Independent Samples). In (24) and (25) the expectation is taken with respect to P̂1, while the

estimator φ(W ; P̂2, d̂) uses an independent sample P̂2.

B.2 Proof of Technical Lemmas for Theorem 2

To prove Theorem 2, we require Lemma 10 and Lemma 11.
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Lemma 10. Let Assumptions 6, 7, 8, 9 and 10 hold. Then

ψ̂l − ψl =EP̂ [φ
l(W ;P, dl)]− EP [φ

l(W ;P, dl)]︸ ︷︷ ︸
(a)

+OP

(
||θ̂lj − θlj ||1+α∞ + max

j=1,...,J
EP [θ

l
j(W ; P̂ ) + λlj(W ; P̂ )− θlj(W ;P )]

)
︸ ︷︷ ︸

(b)

+ oP (n
− 1

2 )︸ ︷︷ ︸
(c)

and similarly

ψ̂u − ψu =EP̂ [φ
u(W ;P, du)]− EP [φ

u(W ;P, du)]

+OP

(
||θ̂uj − θuj ||1+α∞ + max

j=1,...,J
EP [θ

u
j (W ; P̂ ) + λuj (W ; P̂ )− θuj (W ;P )]

)
+ oP (n

− 1
2 )

where ψl, ψu are defined in (19) and (20), and ψ̂l, ψ̂u are defined in (24) and (25).

Proof. Throughout the proof, we use ψ,φ in place of e.g., ψu, φu when the proof technique applies equally to
either estimator ψu, ψl. We use Pn and P̂ to denote two independent empirical distributions (per Assumption 10),
where the latter is used to estimate the nuisance parameters. With some abuse of notation, we will occasionally
write θ̂(W ) := θ(W ; P̂ ) and θ(W ) := θ(W ;P ).

To start, we use the following standard decomposition, with the short-hand Pφ(W ; P̂ , d̂) := EP [φ(W ; P̂ , d̂)], and
(P − Pn)(·) := EP [·]− EPn

[·].

ψ − ψ̂ = Pφ(W ;P, d)− Pnφ(W ; P̂ , d̂)

= (P − Pn){φ(W ; P̂ , d̂)− φ(W ;P, d)}+ P{φ(W ;P, d)− φ(W ; P̂ , d̂)}+ (P − Pn){φ(W ;P, d)}
≡ R1 +R2 + (P − Pn){φ(W ;P, d)}

and proceed by separately bounding R1 and R2.

Part 1: (Bounding R1) First, we show that under the given conditions, R1 = o(n−
1
2 ).

We make use of Lemma 2 of Kennedy et al. (2020), which states that this term is OP (∥φ̂− φ∥ · n−1/2), where we

have used the shorthand φ̂ := φ(W ; P̂ , d̂) and φ := φ(W ;P, d), and is therefore the entire term is o(n−1/2) if the
following condition holds.

EP

[(
φ(W ; P̂ , d̂)− φ(W ;P, d)

)2]
= oP (1).

We first bound

EP

[(
φ(W ; P̂ , d̂)− φ(W ;P, d)

)2]
= EP

[(
φ(W ; P̂ , d̂)− φ(W ;P, d̂) + φ(W ;P, d̂)− φ(W ;P, d)

)2]
≲ EP

[(
φ(W ; P̂ , d̂)− φ(W ;P, d̂)

)2]
+ EP

[(
φ(W ;P, d̂)− φ(W ;P, d)

)2]
(26)

where we simply add and subtract φ(W ;P, d̂) in the second line, and the third line follows from the inequality

that (a+ b)
2
= a2 + 2ab + b2 ≤ 2(a2 + b2), since (a− b)

2 ≥ 0 =⇒ 2ab ≤ a2 + b2. Note that we absorb the
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constant factor into ≲. We now bound the two terms on the right-hand side of (26), showing that both are OP (1).
The first term on the right-hand side of (26) satisfies

EP [(φ(W ; P̂ , d̂)− φ(W ;P, d̂))
2
] ≤

J∑
j=1

EP

[(
θj(W ; P̂ ) + λj(W ; P̂ )− θj(W ;P )− λj(W ;P )

)2]
= oP (1)

via consistency of the underlying estimator for each bound in Assumption 8. The second term on the right-hand
side of (26) satisfies

EP

[(
φ(W ;P, d̂)− φ(W ;P, d)

)2]
=

J∑
j=1

EP

[∣∣∣1[d̂(W ) = j]− 1[d(W ) = j]
∣∣∣ (λj(W ;P ) + θj(W ))

2
]

≲ P (θd̂(W ) ̸= θd(W ))

where we write θd(W ) := θd(W )(W ;P ) to simplify notation, and where the last step uses that θj and λj are
uniformly bounded per Assumption 6, and that J is fixed. Next, we will show that P (θd̂(W ) ≠ θd(W )) = oP (1) by

using consistency of d̂ combined with the margin condition from Assumption 9. For any t > 0, we have that

P (θd̂(W ) ̸= θd(W )) = P

(
θd̂(W ) ̸= θd(W ), min

j ̸=d(W )
|θd(W ) − θj | ≤ t

)
+ P

(
θd̂(W ) ̸= θd(W ), min

j ̸=d(W )
|θd(W ) − θj | > t

)
≤ P

(
min

j ̸=d(W )
|θd(W ) − θj | ≤ t

)
+ P

(
|θd(W ) − θd̂(W )| > t

)
(27)

where the last line uses that whenever θd̂(W ) ≠ θd(W ), it must hold that d̂(W ) ̸= d(W ) and hence
∣∣∣θd̂(W ) − θd(W )

∣∣∣ ≥
minj ̸=d(W ) |θd(W ) − θj |.

Note that, if we are considering dl, then θdl(W ) − θd̂l(W ) ≥ 0, since we take a maximum over θj when considering

dl, and similarly θ̂d̂l(W ) − θ̂dl(W ) ≥ 0, since d̂l considers the maximum over θ̂j . As a result, we can write that∣∣∣θdl(W ) − θd̂l(W )

∣∣∣ = θdl(W ) − θd̂l(W )

≤ θdl(W ) − θ̂dl(W ) + θ̂d̂l(W ) − θd̂l(W )

≤
∣∣∣θdl(W ) − θ̂dl(W )

∣∣∣+ ∣∣∣θ̂d̂l(W ) − θd̂l(W )

∣∣∣ (28)

and if we are considering du, then θdu(W ) − θd̂u(W ) ≤ 0, and θ̂d̂u(W ) − θ̂du(W ) ≤ 0, and by similar logic∣∣∣θdu(W ) − θd̂u(W )

∣∣∣ = θd̂u(W ) − θdu(W )

≤ θd̂u(W ) − θ̂d̂u(W ) + θ̂du(W ) − θdu(W )

≤
∣∣∣θdu(W ) − θ̂du(W )

∣∣∣+ ∣∣∣θ̂d̂u(W ) − θd̂u(W )

∣∣∣ (29)

Returning to (27), let C be the universal constant from the margin condition in Assumption 9. Using the margin
condition, and our reasoning above, coupled with the fact that for a ≤ b, P (a > t) ≤ P (b > t), we continue to
bound as follows

P (θd̂(W ) ̸= θd(W )) ≤ Ctα + P
(
|θd(W ) − θ̂d(W )(W )|+ |θ̂d̂(W )(X)− θd̂(W )| > t

)
≤ Ctα + P

 J∑
j=1

2|θj − θ̂j | > t


≤ Ctα +

2

t

J∑
i=1

EP [|θj − θ̂j |] (using Markov’s inequality and linearity of expectation)

≤ Ctα +
2

t

J∑
i=1

||θ̂j − θj ||2.
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Now, we obtain the desired result by using consistency of the underlying plug-in estimators (Assumption 8)

that for each j, ||θ̂j − θj ||2 = oP (1). For any ϵ > 0, set tϵ =
(
ϵ
C

) 1
α so that Ctαϵ = ϵ. Next, define the sequences

Xn = P (θd̂(W ) ≠ θd(W )) and Z
ϵ
n = 2

tϵ

∑J
i=1 ||θ̂j − θj ||2. Since |Xn| ≤ ϵ+Zϵn and Zϵn = oP (1), X

n = oP (1) as well,
concluding the proof of the bound on R1.

Part 2: (Bounding R2) We now show that

|R2| = OP

(
max

j=1,...,J
||θ̂j − θj ||1+α∞ + max

j=1,...,J
EP [θj(W ; P̂ ) + λj(W ; P̂ )− θj(W ;P )]

)

Our goal is to bound R2 ≡ EP [φ(W ; P̂ , d̂)− φ(W ;P, d)]. We decompose this as

R2 = EP

[
λd̂(W )(W ; P̂ ) + θd̂(W )(W ; P̂ )− θd̂(W )(W ;P )

]
+ EP

[
θd̂(W )(W ;P )− θd(W )(W ;P )

]
(30)

noting that EP [λj(W ;P )] = 0 by Assumption 7. For the first term of (30), we have that

∣∣∣EP [λd̂(W )(W ; P̂ ) + θd̂(W )(W ; P̂ )− θd̂(W )(W ;P )
]∣∣∣ ≤ J∑

j=1

∣∣∣EP [λj(W ; P̂ ) + θj(W ; P̂ )− θj(W ;P )
]∣∣∣

≲ max
j=1,...,J

∣∣∣EP [λj(W ; P̂ ) + θj(W ; P̂ )− θj(W ;P )
]∣∣∣ ,

which gives us the second term in the desired expression for |R2|. For the second term of (30), we use the margin

condition. First, since this difference is equal to zero whenever d̂(W ) = d(W ), we can write the absolute value of
this expression as∣∣∣EP [θd̂(W )(W ;P )− θd(W )(W ;P )]

∣∣∣
≤ EP

[∣∣∣θd̂(W )(W ;P )− θd(W )(W ;P )
∣∣∣]

= EP

[
1[d(W ) ̸= d̂(W )] ·

∣∣∣θd(W )(W ;P )− θd̂(W )(W ;P )
∣∣∣]

= EP

[
1

[
min

j ̸=d(W )

∣∣θd(W )(W ;P )− θj(W ;P )
∣∣ ≤ ∣∣∣θd(W )(W ;P )− θd̂(W )(W ;P )

∣∣∣] · ∣∣∣θd(W )(W ;P )− θd̂(W )(W ;P )
∣∣∣] (31)

where the indicator follows from the simple fact that d̂(W ) ̸= d(W ). Recall from (28) and (29) that regardless of
whether we are using dl, du, we can write that∣∣∣θd(W )(W ;P )− θd̂(W )(W ;P )

∣∣∣ ≤ ∣∣∣θd(W )(W ;P )− θd(W )(W ; P̂ )
∣∣∣+ ∣∣∣θd̂(W )(W ;P )− θd̂(W )(W ; P̂ )

∣∣∣
≤ 2 max

j=1,...,J

∥∥∥θj(W ;P )− θj(W ; P̂ )
∥∥∥
∞

(32)

Moreover, we can observe that

Y ≤ Z =⇒ EP [1[X ≤ Y ] · Y ] ≤ EP [1[X ≤ Z] · Z]. (33)

Putting it all together, we observe that (31), combined with (32) and (33), gives us the desired result, where we

use the shorthand θj := θj(W ;P ) and θ̂j := θj(W ; P̂ ) for simplicity∣∣∣EP [θd̂(W )(W ;P )− θd(W )(W ;P )]
∣∣∣ ≤ EP

[
1

[
min

j ̸=d(W )

∣∣θd(W ) − θj
∣∣ ≤ 2 max

j=1,...,J

∥∥∥θj − θ̂j

∥∥∥
∞

]
· 2 max

j=1,...,J

∥∥∥θj − θ̂j

∥∥∥
∞

]
= P

(
min

j ̸=d(W )

∣∣θd(W ) − θj
∣∣ ≤ 2 max

j=1,...,J

∥∥∥θj − θ̂j

∥∥∥
∞

)
· 2 max

j=1,...,J

∥∥∥θj − θ̂j

∥∥∥
∞

≲ max
j=1,...,J

||θ̂j − θj ||1+α∞

using the margin condition. Combining the bounds on the two individual components of R2 yields the result.

We can now plug in the bounds derived in Parts 1 and 2 (for R1 and R2) to conclude our result for Lemma 10.
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Now, to show that an estimator is asymptotically normal (Lemma 11), we make two more assumptions, which
require that each of the one-step estimators converge at a sufficiently fast rate.

Assumption 11. ||θ̂j − θj ||1+α∞ = oP (n
− 1

2 ), where α is defined in Assumption 9

Assumption 12. For each j ∈ {1 . . . J}, EP [θj(W ; P̂ ) + λj(W ; P̂ )− θj(W ;P )] = oP (n
− 1

2 )

Lemma 11. Under the conditions of Lemma 10, as well as Assumptions 11 and 12, then

√
n
(
ψ̂l − ψl

)
→ N(0,Var(φl(W ;P, dl)))

and √
n
(
ψ̂u − ψu

)
→ N(0,Var(φu(W ;P, du)))

Proof. Under Assumptions 11 and 12, the second and third terms ((b) and (c)) in Lemma 10 vanish asymptotically
at fast rates, so only the first term (a) remains. The desired result directly follows from an application of the
Central Limit Theorem on the remaining first term.

Thus, we have shown that a general estimator is asymptotically normal, given that it satisfies the aformentioned
assumptions. We will now show that our estimators satisfy these assumptions.

B.3 Verifying Assumptions for Our Estimators

B.3.1 Setup and Notation

First, let W = (X,Y,D, T ) denote all observed variables, as in the previous section. Let θ1(W ;P ) be defined as
the quantity that gives us the upper bound based on the partial identification, i.e.,

EP [θ
u
1 (W ;P )] = ψu (34)

and let θ2(W ) = 1, the constant function. Furthermore, let θ3(W ;P ) be defined similarly as the quantity that
gives us the upper bound based on γ, i.e.,

EP [θ
u
3 (W ;P )] = ψuγ (35)

where J = 2 for the partial identification bound, and J = 3 for the bound that includes γ. Furthermore, we define
our estimators as follows

θu1 (W ; P̂ ) :=
1

P̂ (Y = 1, D = 0)
ĝ(X)π̂(X) (36)

θl1(W ; P̂ ) :=
1

P̂ (Y = 1, D = 0)
ĝ(X)(π̂(X) + µ̂(X)− 1) (37)

λu1(W ; P̂ ) :=
1

P̂ (Y = 1, D = 0)

(
− 1[Y = 1, D = 0]

P̂ (Y = 1, D = 0)
EP̂ [ĝ(X)π̂(X)] + ĝ(X)π̂(X) (38)

+ 1[D = 1](T − π̂(X))
ĝ(X)

1− ĝ(X)

)
(39)

λl1(W ; P̂ ) := λu1(W ; P̂ ) +
1

P̂ (Y = 1, D = 0)

(
− 1[Y = 1, D = 0]

P̂ (Y = 1, D = 0)
EP̂ [ĝ(X)(µ̂(X)− 1)] (40)

+ 1[D = 0](Y − 1)

)
(41)

and, with letting

Âγ(X) =
γµ̂(X)π̂(X)

(γ − 1)µ̂(X) + 1
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we have that for the sensitivity model bounds,

θu3 (W ; P̂ ) :=
1

P̂ (Y = 1, D = 0)
ĝ(X)

(
Âγ(X)

)
(42)

θl3(W ; P̂ ) :=
1

P̂ (Y = 1, D = 0)
ĝ(X)

(
Â 1

γ
(X)

)
(43)

λu3(W ; P̂ ) := − 1[Y = 1, D = 0]

P̂ (Y = 1, D = 0)2
EP̂ [ĝ(X)Âγ(X)] +

ĝ(X)Âγ(X)

P̂ (Y = 1, D = 0)
+
Âγ(X)(1[D = 0]− ĝ(X))

P̂ (Y = 1, D = 0)
(44)

+
1[D = 1]

P̂ (Y = 1, D = 0)

γµ̂(X)

(γ − 1)µ̂(X) + 1
(T − π̂(X))

ĝ(X)

1− ĝ(X)
(45)

+
1[D = 0]

P̂ (Y = 1, D = 0)

γπ̂(X)

((γ − 1)µ̂(X) + 1)2
(Y − µ̂(X)) (46)

λl3(W ; P̂ ) := − 1[Y = 1, D = 0]

P̂ (Y = 1, D = 0)2
EP̂ [ĝ(X)Â 1

γ
(X)] +

ĝ(X)Â 1
γ
(X)

P̂ (Y = 1, D = 0)
+
Â 1

γ
(X)(1[D = 0]− ĝ(X))

P̂ (Y = 1, D = 0)
(47)

+
1[D = 1]

P̂ (Y = 1, D = 0)

1
γ µ̂(X)

( 1γ − 1)µ̂(X) + 1
(T − π̂(X))

ĝ(X)

1− ĝ(X)
(48)

+
1[D = 0]

P̂ (Y = 1, D = 0)

1
γ π̂(X)

(( 1γ − 1)µ̂(X) + 1)2
(Y − µ̂(X)) (49)

(50)

Then our desired quantity to estimate, and the combined estimator, is defined as in the previous section (see (24)
and (25)).

Our goal is now to demonstrate that the conditions of Lemma 11 hold. If so, then we can conclude that our
estimator is asymptotically normal, with variance given by Var(φ(W,P, d)), which we can in turn estimate from
data. Let us discuss each condition in turn.

B.3.2 Verifying Assumptions for the Partial Identification Bound

Throughout, we will assume that there exists some α such that Assumption 9 holds. With this in hand, we will
verify that the remaining assumptions of Lemma 11 hold for our estimators. For each assumption, we re-state the
assumption for ease of reading, then discuss whether or not it is satisfied in our case.

Assumption 6 (Boundedness). For every j ∈ {1, . . . , J}, λj(W ;P ) and θj(W ;P ) are both uniformly bounded
by constants with respect to n.

In all cases, this assumption holds. For each θj and λj , we have a denominator that contains P̂ (Y = 1, D = 0).
While this can be zero, we assume that our dataset contains instances of Y = 1 in our pre-treatment dataset,
which makes this value nonzero. Similarly, we also have that 1− ĝ(X) is in the denominator as well; given that
our observed training data for our models has non-zero support on pre-treatment data, this will also be greater
than zero.

Assumption 7 (Zero-mean Correction Term). For every j ∈ {1, . . . , J}, EP [λj(W ;P )] = 0.

In our error analysis, we have shown that the correction functions that we derived have error terms that are
second order in differences in quantities estimated on P̂ and P . Therefore, by an application of the results in the
work of Kennedy et al. (2021), we have that our correction functions are efficient influence functions (and that
our usage of the discretization trick in deriving this influence functions is valid). As influence functions have zero
mean, this assumption is satisfied.

Assumption 8 (Consistent Plug-in Estimator). For every j ∈ {1 . . . J}, ||θ̂j − θj || = oP (1).

This assumption is directly implied by Assumption 12 below, so we defer discussion until then.

Assumption 9 (Margin Condition). There exists some α > 0 such that

P

[
min

j ̸=d(W )
|θd(W )(W )− θj(W )| ≤ t

]
≲ tα.
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As discussed above, we assume this condition, rather than verifying it directly, since it depends on the underlying
data-generating process.

Assumption 10 (Independent Samples). In (24) and (25) the expectation is taken with respect to P̂1, while the

estimator φ(W ; P̂2, d̂) uses an independent sample P̂2.

As we use cross-fitting to estimate our nuisance functions, this assumption holds by construction.

Assumption 11. ||θ̂j − θj ||1+α∞ = oP (n
− 1

2 ), where α is defined in Assumption 9

For our values of θj , we have that our estimates converge at a rate of oP (n
− 1

2 ) with α = 0. We can consider an

estimate of θu1 (W ; P̂ ). This is given by

EP̂

[
ĝ(X)π̂(X)

P̂ (Y = 1, D = 0)

]
− EP

[
g(X)π(X)

P (Y = 1, D = 0)

]
=

√
σ2

n
+

∣∣∣∣∣EP

[
ĝ(X)π̂(X)

P̂ (Y = 1, D = 0)

]
− EP

[
g(X)π(X)

P (Y = 1, D = 0)

]∣∣∣∣∣
where σ2 is the variance of our estimator, following the steps in Appendix A.4. Given that our estimator is
bounded and, thus, has finite variance, we observe that the variance term has a rate of oP (n

− 1
2 ). The remaining

error term is on the same order as the sum of the individual estimators’ error terms. Thus, if π̂ and ĝ each converge

at oP (n
− 1

2 ), then our assumption is satisfied. In other words, these must converge at a rate of oP (n
− 1

2(1+α) ),
which is easily satisfied.

Assumption 12. For each j ∈ {1 . . . J}, EP [θj(W ; P̂ ) + λj(W ; P̂ )− θj(W ;P )] = oP (n
− 1

2 )

We have shown in Lemma 4 and Lemma 5 that given estimators of µ, π, g that converge at rates of oP (n
− 1

4 ),

then our one step corrected estimator converges at a oP (n
− 1

2 ) rate.

B.3.3 Verifying Assumptions for the Sensitivity Analysis Bound

We repeat the same discussion for our sensitivity analysis bound. Throughout, we will assume that there exists
some α such that Assumption 9 holds. With this in hand, we will verify the remaining assumptions of Lemma 11.
For each assumption, we re-state the assumption for ease of reading, then discuss whether or not it is satisfied in
our case.

Assumption 6 (Boundedness). For every j ∈ {1, . . . , J}, λj(W ;P ) and θj(W ;P ) are both uniformly bounded
by constants with respect to n.

In all cases, this assumption holds. For each θj and λj , we have a denominator that contains P̂ (Y = 1, D = 0).
While this can be zero, we assume that our dataset contains instances of Y = 1 in our pre-treatment dataset,
which makes this value nonzero. Similarly, we also have that 1− ĝ(X) is in the denominator as well; given that
our observed training data for our models has non-zero support on pre-treatment data, this will also be greater
than zero. In our sensitvity analysis bound, we have an additional term of 1

(γ−1)µ̂(X)+1 , but this is always greater

than 0 because of the 1 that is added.

Assumption 7 (Zero-mean Correction Term). For every j ∈ {1, . . . , J}, EP [λj(W ;P )] = 0.

In our error analysis, we have shown that the correction functions that we derived have error terms that are
second order in differences in quantities estimated on P̂ and P . Therefore, by the results in the work of Kennedy
et al. (2021), we have that our correction functions are efficient influence functions. As influence functions have
zero mean, this assumption is satisfied.

Assumption 8 (Consistent Plug-in Estimator). For every j ∈ {1 . . . J}, ||θ̂j − θj || = oP (1).

This assumption is directly implied by Assumption 12 below, so we defer discussion until then.

Assumption 9 (Margin Condition). There exists some α > 0 such that

P

[
min

j ̸=d(W )
|θd(W )(W )− θj(W )| ≤ t

]
≲ tα.

As discussed above, we assume this condition, rather than verifying it directly, since it depends on the underlying
data-generating process.
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Assumption 10 (Independent Samples). In (24) and (25) the expectation is taken with respect to P̂1, while the

estimator φ(W ; P̂2, d̂) uses an independent sample P̂2.

As we use cross-fitting to estimate our nuisance functions, this assumption holds by construction.

Assumption 11. ||θ̂j − θj ||1+α∞ = oP (n
− 1

2 ), where α is defined in Assumption 9

For our values of θj , we have that our estimates converge at a rate of oP (n
− 1

2 ) with α = 0. We can consider an

estimate of θu1 (W ; P̂ ). This is given by

EP̂

[
ĝ(X)π̂(X)

P̂ (Y = 1, D = 0)

]
− EP

[
g(X)π(X)

P (Y = 1, D = 0)

]
=

√
σ2

n
+

∣∣∣∣∣EP

[
ĝ(X)Âγ(X)

P̂ (Y = 1, D = 0)

]
− EP

[
g(X)Aγ(X)

P (Y = 1, D = 0)

]∣∣∣∣∣
where σ2 is the variance of our estimator, following the steps in Appendix A.4. Given that our estimator is
bounded and, thus, has finite variance, we observe that the variance term has a rate of oP (n

− 1
2 ). The remaining

error term is on the same order of the sum of the individual estimators error terms. Thus, if ĝ and Âγ (and

likewise Â 1
γ
each converge at oP (n

− 1
2 ), then our assumption is satisfied. We can again argue that Â is a plugin

estimator for A, which gives us that it also converges at a sum of the rates of µ̂ and π̂. Thus, if these estimators
converge at a rate of at least oP (n

− 1
2 ), then our assumption is satisfied with α = 1. In other words, these must

converge at a rate of oP (n
− 1

2(1+α) ), which is easily satisfied.

Assumption 12. For each j ∈ {1 . . . J}, EP [θj(W ; P̂ ) + λj(W ; P̂ )− θj(W ;P )] = oP (n
− 1

2 )

We have shown in Lemma 7 and Lemma 9 that given estimators of µ, π, g that converge at rates of oP (n
− 1

4 ),

then our one step corrected estimator converges at a oP (n
− 1

2 ) rate.

B.4 Proof of Theorem 2

Having proven the required technical lemmas and having demonstrated that our estimators indeed satisfy the
required assumptions, we can now derive Theorem 2.

Theorem 2 (Asymptotic Normality of Estimators). Let θ̂ denote the plugin estimate of any of the individual
components of each bound. Under the conditions that Assumption 5 is satisfied, µ and g are lower bounded, and
each θ̂ is consistent (i.e., ||θ̂ − θ|| = oP (1)), the error of the estimator satisfies.

ψ̂u − ψu = OP

(
||θ̂uj − θuj ||1+α∞

+ max
j=1,...,J

EP [θ̂
u
j + λ̂uj − θuj ]

)
+OP (n

− 1
2 )

Provided that π̂ and ĝ converge at a oP (n
− 1

4 ) rate, and the plugin estimators satisfy ||θ̂uj − θuj ||1+α∞ = oP (n
− 1

2 ),

then ψ̂u is asymptotically normal with
√
n(ψ̂u − ψu) → N(0, V ar(φ(P, d))).

Proof. We can directly apply Lemma 10 and Lemma 11, given that our estimators satisfy all the given assumptions
(as discussed in Appendix B.3), to prove this result.

C Dataset and Cohort Details

C.1 Dataset Consent and Acknowledgement Statement

The analyses described in this publication were conducted with data or tools accessed through the NCATS
N3C Data Enclave https://covid.cd2h.org and N3C Attribution & Publication Policy v1.2-2020-08-25b

supported by NCATS U24 TR002306, Axle Informatics Subcontract: NCATS-P00438-B. This research was possible
because of the patients whose information is included within the data and the organizations (https://ncats.
nih.gov/n3c/resources/data-contribution/data-transfer-agreement-signatories) and scientists who
have contributed to the on-going development of this community resource: https://doi.org/10.1093/jamia/
ocaa196.

https://covid.cd2h.org
https://ncats.nih.gov/n3c/resources/data-contribution/data-transfer-agreement-signatories
https://ncats.nih.gov/n3c/resources/data-contribution/data-transfer-agreement-signatories
https://doi.org/10.1093/jamia/ocaa196
https://doi.org/10.1093/jamia/ocaa196
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C.2 Cohort Details

The patient cohort is filtered out based on the following eligibility requirements:

• Satisfy all FDA-approved Paxlovid eligibility requirements U.S. Food and Drug Administration (Year of
Access)

• Not taking any medications, where coadministration with Nirmatralvir-Ritonavir is contraindicated (Marzolini
et al., 2022; Larkin, 2022)

• First COVID-19 diagnosis visits are between 22 December 2021 (date of FDA approval for Paxlovid) and 31
May 2023

• From sites with at least a 10% treatment rate—to exclude sites where treatment is potentially underreported.


	INTRODUCTION
	RELATED WORK
	PRELIMINARIES
	ANALYSIS OF INEQUITY
	Equity in Treatment Allocation
	Identification under Strong Assumptions
	Partial Identification under Arbitrary Unmeasured Confounding
	Sensitivity Analysis under Bounded Confounding
	Benchmarking Sensitivity Analysis

	RESULTS
	Dataset and Cohort Definition
	Real-world Study Results
	Benchmarking Sensitivity Analysis
	Semi-synthetic and Synthetic Settings

	DISCUSSION
	Additional Proofs & Statements
	Representing Assumptions in a Causal Graph
	Proof of prop:identification
	Proof of Theorem 1
	Analysis of Plugin Estimators
	Proof of Lemma 1
	Proof of Lemma 2
	Algorithm for Estimators in Propositions 4, 3, 5, and 6
	Identification of Bounds with a Sensitivity Analysis Model
	Estimation of Bounds with a Sensitivity Analysis Model 

	Margin-based Analysis and Asymptotic Normality of our Estimators
	Preliminaries and Assumptions for prop:normality-max
	Proof of Technical Lemmas for prop:normality-max
	Verifying Assumptions for Our Estimators
	Setup and Notation
	Verifying Assumptions for the Partial Identification Bound
	Verifying Assumptions for the Sensitivity Analysis Bound

	Proof of prop:normality-max

	Dataset and Cohort Details
	Dataset Consent and Acknowledgement Statement
	Cohort Details


