
Proceedings of Machine Learning Research vol 120:1–10, 2020

Localized Learning of Robust Controllers for Networked Systems with
Dynamic Topology

SooJean Han SOOJEAN@CALTECH.EDU

California Institute of Technology, Pasadena, CA 91125, USA.

Abstract
This paper addresses the problem of controller synthesis for networked systems with dynamic and
unknown topology. Such networked systems arise in applications such as the power grid when
lines between consumers are downed due to natural causes, or in multi-agent robotic networks
and embedded sensor networks, both of which tend to be structurally complex and prone to high
faults. We develop a robust and adaptive system-level controller synthesis approach to this prob-
lem. The algorithm is described sequentially in three settings: centralized, localized, and iterative
localized for multiple modifications over time. In particular, the iterative localized scheme is de-
signed around networks which switch between topological configurations arranged in a finite-state
Markov Chain; the subsystems additionally perform consensus to estimate its transition probabili-
ties. The advantages of our method are twofold. First, as a result of the localized implementation of
the system-level approach, our controller can be extended to large-scale networks. Second, achiev-
ing exact consensus or learning precisely where the network structure has changed is not necessary
to stabilize the overall network due to the robust nature of our controller. To demonstrate perfor-
mance, we simulate the iterative localized algorithm for a simple centered hexagon network with 4
different topological states.
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1. Introduction

Maintaining stability in a large-scale network, even when the topology of the network is not totally
known, is an important issue which arises in a variety of applications. For instance, in the case of
the power grid, one may think of lines which have fallen due to severe weather conditions or the
installation of new lines between consumers. Multi-agent robots which operate independently of
each other to work towards a collaborative goal (e.g., formation flying, information gathering) com-
municate wirelessly to do so, corresponding to a highly dynamic communication network topology.
There is a subsequent need to upgrade the control scheme in an efficient way that does not involve
redesigning from scratch simply because the topology has changed.

In this paper, we take the first step towards extending the system-level synthesis (SLS) approach to
designing localized robust controllers for potentially large-scale networked systems which adapts
to topological changes over time. We first describe the core mechanics of the algorithm in the cen-
tralized formulation. Then the progression to the localized formulation follows easily, as its main
distinction from the centralized formulation is that each subsystem in the network only accounts for
structural changes in a local region of neighboring subsystems. Finally, we manipulate the localized
formulation into an iterative scheme for fault-tolerance against successive modifications between
links in the topological structure of the network. In particular, we consider the control of networks
which switch between configurations according to a finite-state Markov Chain. An additional av-
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eraging consensus algorithm is performed atop the scheme to learn the transition probabilities of
the chain, which can then be used to predict the next state and help speed up the adaptive learning
process.

However, due to the robust nature of the proposed controller, we emphasize that learning the proba-
bilities or the locations of topological change are priorities which are second to system stabilization.
Adaptive control problems come with a fundamental trade-off between safely stabilizing the system
and adaptively learning the uncertainties; simultaneous exact achievement of both tasks is nearly
impossible, even for systems which are not large-scale. The property of robustness allows us to
optimize this trade-off, and uncertainty sets will continue to be reduced for as long as there does
not exist a controller which will stabilize the system. This is especially useful for large-scale net-
works, where maintaining a complete picture of the entire system is nearly impossible due to a large
number of parameters and a dense connection of subsystems.

Related Work Traditional adaptive control approaches like Ioannou and Sun (1995); Tao (2014)
tend to overlook the issue of maintaining stability while learning uncertainties. More promising
developments such as Dean et al. (2017, 2018) combine elements from data-driven control and ma-
chine learning to manage safety, but have not been shown to be scalable. Furthermore, most adap-
tive techniques focus on handling parametric uncertainties rather than topological ones; a method of
designing scalable robust adaptive controllers for parametric uncertainties was proposed in Ho and
Doyle (2019). On the other hand, there exists a rich literature of work on the treatment of distributed
networked control systems with dynamic structures; see Han et al. (2017), Table 2 for a comprehen-
sive survey. Ge and Han (2014) considers consensus for fault-detection in sensor networks whose
topological structure switches according to a Markov chain. Event-triggered and sample-based con-
sensus approaches for collections of systems arranged in a dynamic network have been studied
in Gao and Wang (2011); Cheng et al. (2013); Nedic et al. (2009) and criterion for convergence
are also provided. Such approaches have a lot of practical applicability like cooperative robot con-
trol Chung and Slotine (2009, 2010), oscillator synchronization Slotine et al. (2004), as well as pa-
rameter estimation and sensor fusion Xiao et al. (2005); Olfati-Saber and Murray (2004). However,
a primary difference between this branch of literature and the work presented here is that the true
topology and/or uncertain parameters do not necessarily need to be fully determined prior to synthe-
sizing a controller for it, due to the robustness property mentioned before. Hence, the performance
of the consensus algorithm is less important than the performance of the stabilizing controller.

2. Background

Notation: We use Ns to denote the number of subsystems in network, Nx (a multiple of Ns) to
denote the total number of states, andNu ≤ Nx as the number of control inputs. Denote the network
of systems by an undirected graph G(V, E) with adjacency matrix G ∈ RNs×Ns with vertex set
V = {1, 2, · · ·Ns}.

2.1. System Level Synthesis Review

Before we present the main schemes, we will briefly review the necessary concepts from system
level synthesis (SLS). SLS is appealing because it provides important advantages such as the incor-
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poration of controller design specifications as convex constraints, and scalability to extremely large
networks. For more details, we refer the interested reader to Wang et al. (2016); Anderson et al.
(2019).

For plants of the following generic linear, discrete-time form x[t+ 1] = Ax[t] +Bu[t] +w[t], and
assuming the disturbance is bounded ‖w‖∞ < η for some η > 0, the state-feedback controller is
implemented as follows:

x̂[t] =
T∑
k=2

Φx[k]ŵ[t+ 1− k], ŵ[t] = x[t]− x̂[t], u[t] =
T∑
k=1

Φu[k]ŵ[t+ 1− k] (1)

with the controller’s internal state ŵ and system responses {Φx,Φu}, which are closed-loop transfer
function maps defined as x = Φxw and u = Φuw. These transfer function maps are constrained
to finite time horizon T , for which we will denote {Φx,Φu} ∈ FT . It was shown in Matni et al.
(2017) that even when this relationship is approximately satisfied, the implementation (1) produces
a stable closed-loop response.

Definition 1 We associate a local d-hop set Ld(i) with each system i ∈ V to be the set of systems
j for which the (i, j)th entry of Gd is nonzero. The system response is said to be d-localizable
iff for every i ∈ V, j /∈ Ld(i), we have Φx,ij = 0, and analogously for Φu. We denote this as
{Φx,Φu} ∈ Ld.

The desired behavior can then be achieved by constraining {Φx,Φu} to lie in an appropriate convex
set S, and solving an optimization problem of the form:

min
{Φx,Φu}

f(Φx,Φu, Q,R) s.t. {Φx,Φu} ∈ S (2)

where Q ∈ RNx×Nx , R ∈ RNu×Nu are cost matrices which assign weight to Φx,Φu respectively.
We typically have S ⊆ Ld ∩ FT , and it also includes system-to-system communication delay
constraints as well as the necessary robustness constraints to keep the closed-loop response stable
during the process of learning the uncertainties.

3. Implementation

In this section, we will first present the centralized scheme for maintaining robust control over a
topologically-varying network, then develop a localized extension which allows for computational
scalability to networks of larger size. We will restrict our attention to the case where only the topo-
logical structure of the plant network varies according to link modifications while the controller
network remains static. That is, the adjacency matrix G for A is varied while the B matrix remains
the same.

3.1. Centralized Implementation

We begin with a nominal topological structureA∗ of the network. We are aware that at least one link
has been disconnected, and although we do not know which one(s), we are given a finite collection
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of K candidate link failure matrices D, one of which gives us the true topology A = A∗ +D. This
setup is consistent with real-world scenarios where we are oftentimes able to vaguely identify the
local region in which a potential link failure has occurred. We assume that none of the candidate
matrices causes the graph to become disconnected.

With this premise, the system dynamics are given by x[t+ 1] = (A∗+D)x[t] +Bu[t] +w[t]. The
matrix A∗ denotes the known nominal system and link failures D enter in the form of perturbations
to A∗.

To characterize the set of D, we introduce basis matrices Al to encode all possible single-link
modifications so that linear combinations can be used to model a general number of failures corre-
sponding to each candidate D. We will denote this set as P0, and formally refer to it as the initial
consistent set.

P0 :=

{
M∑
l=1

ξlAl : ξl ∈ {−1, 0, 1}

}
(3)

where coefficient ξl = 1 is for when a link is added, ξl = −1 for when a link is deleted, ξl = 0 for
when a link is unchanged. Because it is a discrete combinatorial set, we will impose K << 2M to
make the problem tractable.

At each timestep, the consistent set is updated using new observations of (x[t+ 1],x[t],u[t]):

Pt+1 :=

{
D ∈ Pt :

∥∥∥∥∥x[t+ 1]−

(
A∗ +

M∑
l=1

ξlAl

)
x[t]−Bu[t]

∥∥∥∥∥
∞

≤ η

}
(4)

We will now use SLS to design the controller
{

Φ
(t)
x ,Φ

(t)
u

}
, where the superscript (t) is included to

show that the control laws may change over time as more of the topology is learned. In the context
of our topology adaptation problem, the following inequalities should be satisfied:

T∑
k=1

∥∥∥∆k(A
′, B,Φ(t−1)

x ,Φ(t−1)
u )

∥∥∥ ≤ λt ∀A′ = A∗ +D, D ∈ Pt (5a)∥∥∥∥∥
T∑
k=1

(
Φ(t−1)
x − Φ(t)

x

)
[k + 1]ŵ[t− k]

∥∥∥∥∥ ≤ γ (5b)

λt is referred to as the robustness margin and for each timestep t it determines whether the controller
is stabilizable with the tth polytope of uncertainties. γ is the adaptation margin and ensures that the
system response Φx doesn’t fluctuate wildly with largely-varying w.

The full optimization problem for centralized robust control which adapts to topological changes is
hence presented:

min{
Φ

(t)
x [k],Φ

(t)
u [k]

}T

k=1
,λt

f
(

Φ(t)
x ,Φ

(t)
u , Q,R

)
=


λt if λt ≤ λ∗
T∑
k=1

∥∥∥QΦ
(t)
x [k] +RΦ

(t)
u [k]

∥∥∥
1

else
(6)

s.t. {Φ(t)
x ,Φ

(t)
u } ∈ FT and (5)

The two separate steps expressed in the objective function above are taken because optimizing for a
performance objective is only reasonable if robust stability is feasible with uncertainty Pt.
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Remark 1 In implementation, the inclusion of (5b) to S is made optional. This is because the in-
correct system response may be learned and closely adhered to for the rest of time if γ is chosen too
small, resulting in an unstable controller. This is problematic in the case of topological uncertain-
ties, where the sparsity patterns of all the candidate topologies D may be different.

3.2. Localized Implementation

A localized version of the algorithm essentially decomposes (6) into multiple independent subprob-
lems. For system i, the submatrix Ai of consideration only includes the rows of A corresponding to
the systems in Ld(i) (Definition 1). This means each system only keeps track of link modifications
within its own local subset. Further, let dc be the communication delay matrix between systems of
the network, defined as dc(i, j) = |j − i| if j ∈ Ld(i), and∞ otherwise.

Each system i begins with a local initial consistent set P(i)
0 , defined the same way as in (3) but

instead with Mi basis matrices A(i)
l which have dimensions equal to Ai. Each consistent set is

locally updated from P(i)
t to P(i)

t+1 in a fashion similar to (4).

To design local controllers, we solve a local optimization problem of the form (2) for the ith columns
of the system response matrices Φ

(t)
x,i,Φ

(t)
u,i. The constraints follow analogously to (5). Define the

submatrix

∆j
k

(
A,B,Φ

(t)
x,ji,Φ

(t)
u,ji

)
:= Φ

(t)
x,ji[k + 1]−

∑
l∈N (j)

AjlΦ
(t)
x,li[k]−BjΦ(t)

u,ji[k] (7)

where i, j ∈ V , k = 1, · · · , T , and t iterates over the simulation time. This allows us to define our
robustness margin constraints∥∥∥∥∥∥

∑
j∈Ld(i)

∆j
k

(
A′, B,Φ

(t)
x,ji,Φ

(t)
u,ji

)∥∥∥∥∥∥ ≤ ciρk−1 ∀A′ = A∗ +D,D ∈ Pt ∀k ≤ T − 1 (8a)

ci

T∑
k=1

ρk−1 ≤ λ(i)
t + ε, ε ≥ 0 (8b)

Unlike the centralized formulation, instead of a constant, we introduce ρ > 0 and ci > 0 to ensure
faster exponential convergence to zero, which is motivated by the possibility of local disturbances
propagating throughout the network in a cascading manner if it is not killed quickly enough within
the local region.

The full optimization problem for localized robust, topologically-adaptive control is hence pre-
sented:

min{
Φ

(t)
x [k],Φ

(t)
u [k]

}T

k=1
,λt,ε

f
(

Φ
(t)
x,i,Φ

(t)
u,i, Qi, Ri

)
=

T∑
k=1

∥∥∥QΦ
(t)
x,i[k] +RΦ

(t)
u,i[k]

∥∥∥
1

+ rcε (9)

s.t. {Φ(t)
x ,Φ

(t)
u } ∈ Ld ∩ FT and (8)

Remark 2 The objective function described here is equivalent to the two-part objective function
in (6). The slack variable ε (scaled by fixed rc > 0) helps reduce the two-part process into a single

5



LOCALIZED ADAPTIVE ROBUST CONTROL FOR NETWORKED SYSTEMS WITH DYNAMIC TOPOLOGY

step optimization problem; when ε is very large, the optimization problem effectively focuses on
shrinking the polytope until ε is sufficiently reduced.

4. Iterative Multi-Stage Implementation

In this section, we present the iterative localized robust controller design for networks which switch
between topological configurations arranged in a finite-state ergodic Markov Chain. The proposed
algorithm is a simple variation of the localized implementation from Section 3.2, namely with time-
varying local sets Ld(i, t). The dynamics are now modeled as a time-varying hybrid system:

xi[t+ 1] = Aii(α(t))xi[t] +
∑

j∈Ni(α(t))

Aijxj [t] +Biu[t] + wi[t] ∀i ∈ V (10)

where α(t) ∈ N is a discrete-valued signal which switches with time and B is kept constant across
all possible states ofA. According to Olfati-Saber and Murray (2004); Xiao et al. (2005), consensus
among distributed systems is achievable with time-varying topologies, under conditions such as
joint-connectedness among topologies that are visited infinitely many times. We will restrict our
attention in this paper to hybrid dynamics where the signal α switches according to an ergodic
Markov chain with a finite numberK of states. Link modifications occur for a sequence of unknown
times {T1, T2, · · · }. The initial true system topology A(α(0)) (with adjacency matrix G(α(0))) is
known.

Each subsystem keeps a nominal topology estimate A(i)(α∗(t)) and updates it whenever it detects
that a switch has been made. The transition probability matrix P of the chain is unknown to the
system, and each subsystem maintains an estimate P̂ (i), which it updates both locally and via simple
averaging with the values of its other neighbors Xiao et al. (2005). Since the methodology is the
same across all subsystems i ∈ V , the subscript i is henceforth removed for notational simplicity.

Similar to (3), the initial consistent sets are formed from Mk basis matrices A(i,k)
` where k =

1, · · · ,K, i ∈ V , and the collective modification is expressed as a linear combination of these
bases. At each timestep t, an observation x[t] is made from the system (10). We identify which
coefficients remain consistent with the system dynamics (x[t],x[t − 1],u[t − 1]) by updating the
consistent set in a fashion similar to (4) for each i. Because identification for each system i was only
done using information local to i, additional consensus may be performed to further narrow down
the consistent set in order to estimate the state of the Markov chain more precisely.

As before, it is most important to maintain system stability while this identification and consensus
process is being done. To construct a topologically-robust controller {Φ(t)

x,i,Φ
(t)
u,i} for each system i,

we simply solve the optimization problem (9) with the same communication delay matrix dc defined
in Section 3.2 and time horizon T .

5. Numerical Simulation

We simulate our iterative, localized scheme on a power grid network from Wang et al. (2018),
where the ith subsystems obeys the dynamics below. ci is its inertia, bi is a damping factor, wi is the
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external disturbance, ui is the control action, and ∆t is the sampling time. The states are the relative
phase angle x(i)

1 between its rotor axis and external field, and its derivative, the frequency x(i)
2 .[

x
(i)
1

x
(i)
2

]
[t+ 1] =

[ 1 ∆t

−ai
ci

∆t 1− bi
ci

∆t

]
+
∑

j∈N (i)

[
0 0

aij
ci

∆t 0

][x(j)
1

x
(j)
2

]
[t] +

[
0

∆t

]
(wi[t] + ui[t])

We choose η = 0.3 and initial conditions xi[0] = (3, 0)T ,xi[0] = (0, 0)T ∀i > 1. Our hexagon
network switches topologically according to a Markov chain with four states, as shown in Figure 1.
The true values of the transition probabilities are p1 = 1 − p2 = 0.4 and p3 = 1 − p4 = 0.8, and
are initially unknown to each subsystem in the network. We assume that the entire set of states are
known to each system, so that there are at most four consistent coefficients in Pt per system over all
t. For the control law, we take ρ = 0.7, time horizon T = 5, and information from 1-hop regions
about each system.
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Figure 1: [Top] Hexagon topologies arranged in a Markov chain with four states. [Bottom] The state transition diagram
for the four states.

In Figure 2, the black stems indicate the time of switching, and a height of 1
2s indicates a switch to

state s. In the top figure, the number of consistent coefficients versus time is shown for subsystems
4, 5, and 6. Each time a switch to a different configuration occurs, each subsystem resets with the
entire set Markov chain states. In the bottom figure, each system estimates the actual topological
configuration at the current time. Note that although each system manages to ultimately estimate
the correct state, there is a slight time delay in when it achieves this. Figure 3 shows the control law
u and two state values x1, x2 for each of systems 1, 3, and 5. We see that it stabilizes the system
and is only a little rough during the switching phases when the system is uncertain of the current
topology. The state values for system 5 are more unstable than those of systems 1 and 3 because its
local links vary the most across all four topological configurations. Finally, using standard average
consensus, all systems converge to the same transition matrix:

P̂ =


0 0.3333 0.6667 0

0.75 0 0.25 0
0 0.1429 0 0.8571
0 0.6 0.4 0


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Figure 2: [Top] The number of consistent coefficients and [Bottom] the estimate of the current state for systems 4, 5, and
6.
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Figure 3: Control law and state evolutions for systems 1, 3, and 5.

6. Conclusion

In conclusion, this paper developed a robust system-level controller synthesis approach to large-
scale networked systems which adaptively learned topological changes over time. In particular, we
considered systems which switched between topological configurations of a finite-state Markov
Chain. We demonstrated via simulation that each subsystem managed to stabilize under a robust
control law that used only local information, while adapting to the current topology within rea-
sonable time after a switch is made. We emphasized throughout that learning precisely where the
network structure has changed is unnecessary to stabilize the overall network due to the robust
nature of the controller we design.
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