

ILVS²NET: ILLUMINATION-DRIVEN NON-LOCAL VISUAL STATE SPACE UNFOLDING NETWORK FOR LOW-LIGHT ENHANCEMENT

Anonymous authors

Paper under double-blind review

ABSTRACT

In low-light image enhancement (LLIE), deep unfolding methods have achieved remarkable success by bridging physical models with learnable modules. However, existing approaches often overlook the structured sparsity of illumination, which leads to oversmoothing and unstable recovery. To address this, we propose ILVS²Net, a deep Retinex unfolding network that explicitly integrates a group-sparse prior into each iteration. Specifically, we design two learnable proximal operator networks: a Non-Local Visual State Space (NLVSS) module that translates the grouping and shrinkage principle of group sparsity into a neural operator, effectively capturing long-range structural dependencies; and an Illumination Smoothing Operator (ISP) that enforces edge-preserving piecewise smoothness for coherent illumination estimation. By embedding these proximal operator networks into the unfolding process, our model achieves a stable closed-form update while dynamically adapting to complex illumination variations. Extensive experiments on five public benchmarks demonstrate that ILVS²Net consistently outperforms state-of-the-art methods in both quantitative metrics and perceptual quality. The code and pretrained models will be released.

1 INTRODUCTION

Low-light images, captured under challenging lighting conditions, often exhibit color distortion, detail loss, and extremely low contrast. These issues not only reduce human visual perception but also degrade the performance of downstream computer vision tasks, such as semantic segmentation Li et al. (2022); Hou et al. (2024), object detection He et al. (2023), and autonomous driving. As a result, low-light image enhancement has gained significant attention.

Current LLIE methods are generally categorized into three approaches: Traditional, Deep Learning-Based, and Deep Unfolding-Based methods. Traditional methods, such as histogram equalization Hummel (1975); Arici et al. (2009); Pizer et al. (1987); Abdullah-Al-Wadud et al. (2007) and gamma correction Huang et al. (2013); Wang et al. (2019b), often fail to maintain a natural appearance under complex lighting. Retinex theory Land (1977), inspired by the Human Visual System (HVS), decomposes an image into reflectance and illumination components. While Deep Learning-Based methods have surpassed traditional techniques, they often rely on black-box structures that lack

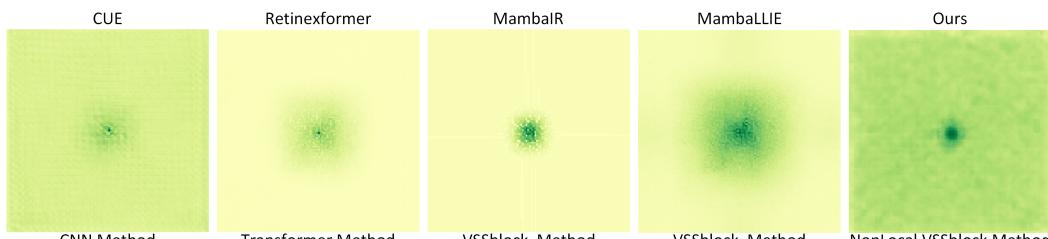


Figure 1: The Effective Receptive Field (ERF) visualization for CUE Zheng et al. (2023a), Retinexformer Cai et al. (2023), MambaIRGuo et al. (2024), MambaLLIE Weng et al. (2024) and the proposed ILVS²Net. A larger ERF is indicated by a more extensively distributed dark area.

054 interpretability and require numerous learnable parameters Wang et al. (2019a); Zhang et al. (2019);
 055 Chen et al. (2018); He et al. (2023); Zhang et al. (2021b). Deep Unfolding-Based LLIE methods
 056 have emerged with Retinex theory and achieved great success by incorporating physical priors into
 057 network architecture Wu et al. (2022a); Zhou et al. (2023b); Zheng et al. (2023a).

058 However, most Retinex-based deep unfolding methods treat Retinex components equally, ignoring
 059 their independent characteristics. The challenge of balancing illumination and reflectance during
 060 decomposition often results in illumination components that are oversmoothed and inconsistent. This
 061 inevitably leads to overexposure or underexposure in the enhanced images. Illumination is not merely
 062 another image feature, but a light-driven signal characterized by: (1) Non-local spatial correlations,
 063 as illumination at one point often depends on distant light sources and scene geometry (Kajiya,
 064 1986); and (2) Piecewise-smooth variations, where intensity changes gradually within homogeneous
 065 regions but can jump sharply at object boundaries (Rudin et al., 1992). By neglecting these priors,
 066 existing architectures misinterpret lighting gradients as textures or noise Bai et al. (2024); Zhang
 067 et al. (2024b); Cai et al. (2023); Weng et al. (2024). A model’s receptive field must accommodate
 068 both local and global contexts to handle the natural variations of illumination across different spatial
 069 scales. As shown in Fig. 1, existing methods suffer from limited receptive fields, capturing only local
 070 or only global information, but rarely both, which often leads to oversmoothing.

071 To address these challenges, we revisit Retinex decomposition through the lens of structured group
 072 sparsity. Illumination can be modeled as belonging to non-local groups of structurally similar patches,
 073 where a group-sparse prior enforces two properties simultaneously: (i) redundancy reduction across
 074 groups, and (ii) structural preservation within each group. This perspective directly inspires the design
 075 of our network, where the structured prior is translated into learnable proximal operator networks. We
 076 therefore propose two novel modules: (1) the Non-Local Visual State Space (NLVSS), which serves
 077 as a neural approximation of the group-sparse proximal operator, capturing long-range dependencies
 078 and enforcing non-local consistency ; and (2) the Illumination Smoothing Operator (ISP), which
 079 enforces piecewise-smoothness to ensure stable and edge-preserving illumination. As shown in Fig. 1,
 080 our approach exhibits diversity and dynamism in long-range modeling, explicitly reflecting its ability
 081 to preserve informative illumination variations.

082 The main contributions of this work are summarized as follows:

- (1) We introduce the Non-local Visual State Space (NLVSS), a learnable proximal operator that embodies the group-sparse prior and captures non-local dependencies for illumination modeling.
- (2) We propose an Illumination Smoothing Operator (ISP) that dynamically adjusts and reweights illumination estimation, enforcing piecewise-smoothness while preserving structural edges.
- (3) We formulate a deep-unfolding framework that integrates NLVSS and ISP into each iteration, yielding a stable closed-form optimization solution with explicit physical priors.
- (4) Extensive experiments show that our method achieves state-of-the-art performance in both quantitative metrics and visual quality, while also improving efficiency in downstream vision tasks.

093 2 RELATED WORK

095 2.1 TRADITIONAL LLIE METHODS

097 Traditional low-light image enhancement (LLIE) methods are generally categorized into three main
 098 types: histogram equalizationHummel (1975); Arici et al. (2009); Pizer et al. (1987); Abdullah-Al-
 099 Wadud et al. (2007), gamma correction Huang et al. (2013); Wang et al. (2019b), and Retinex-based
 100 approaches. However, under extreme conditions, these methods may introduce additional noise,
 101 leading to unnatural visual artifacts and a loss of fine details.

103 2.2 DEEP LEARNING-BASED LLIE METHODS

105 With the continuous advancements in deep learning, LLIE methods have gradually evolved to
 106 incorporate CNNs and Transformers. CNN-based approaches Wang et al. (2019a); Zhang et al.
 107 (2019); Chen et al. (2018) effectively learn spatial features; notably, Wei et al. Chen et al. (2018)
 pioneered an end-to-end Retinex decomposition. However, CNNs still face challenges in capturing

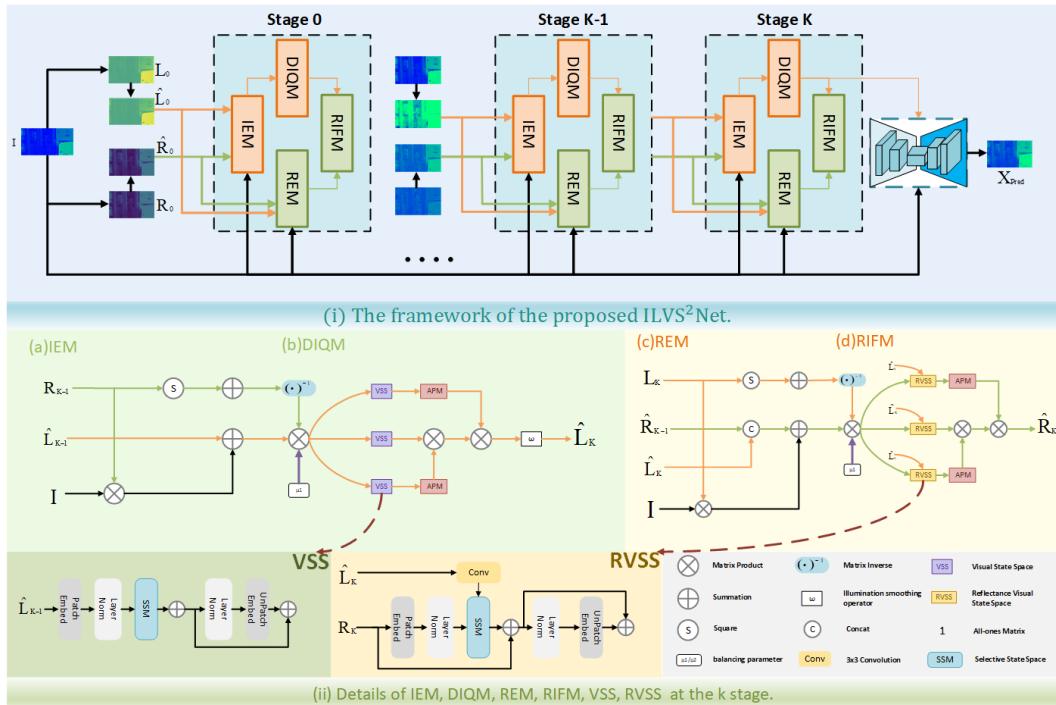


Figure 2: Framework of our proposed ILVS²Net. Showcasing the multi-stage unfolding of illumination (L) and reflectance (R) through IEM, DIQM, REM, RIFM, RVSS, and NLVSS blocks, culminating in the final enhanced image X_{pred} .

global context and long-range dependencies. To address these issues, Transformer models He et al. (2023); Zhang et al. (2021b) leverage attention mechanisms, with Star Zhang et al. (2021b) being one of the earliest Transformers applied to LLIE. Despite their impressive performance, Transformers demand high computational resources and large-scale training data. Recently, state space models (SSMs) like Mamba Gu & Dao (2023) have drawn attention for their memory efficiency and ability to handle long-range dependencies. While Mamba-based structures Zhang et al. (2024b); Bai et al. (2024) offer improvements to encoder-decoder designs for LLIE, they still struggle to effectively integrate both global and local information.

2.3 DEEP UNFOLDING-BASED LLIE METHODS

Deep unfolding-based LLIE methods integrate the interpretability of traditional model-driven approaches with the feature extraction capabilities of deep learning Wu et al. (2022a); Zhou et al. (2023b); Zheng et al. (2023a). Wu et al. (2022a) first introduced this idea by incorporating auxiliary variables and iterative ADMM updates to control reflectance and illumination. Subsequently, Zheng et al. (2023a) added a learnable prior for illumination. Despite these advances, achieving smooth and consistent illumination that accurately captures both global and local features remains a challenging task.

3 METHOD

3.1 MODEL FORMULATION

To improve low-light image quality, we adopt Retinex theory (Land, 1977) and decompose a low-light image into illumination (L) and reflectance (R), optimizing each component:

$$\mathbf{L}, \mathbf{R} = \arg \min_{\mathbf{L}, \mathbf{R}} \|\mathbf{I} - \mathbf{R} \odot \mathbf{L}\|_F^2 + \beta \Theta(\mathbf{L}) + \delta \Omega(\mathbf{R}), \quad (1)$$

where $\Theta(\mathbf{L})$ and $\Omega(\mathbf{R})$ are regularization terms for \mathbf{L} and \mathbf{R} , and $\beta, \delta > 0$ are balancing parameters.

162 **Definition 1 (Non-local Modeling Representation).** Unlike methods such as *RetinexMamba* Bai et al.
 163 (2024) and *RetinexFormer* Cai et al. (2023), which extract patch-level features directly, we explicitly
 164 model non-local patch dependencies within Retinex components. Direct quadratic penalties on
 165 illumination and reflectance are often biased toward the degraded measurement \mathbf{I} in Eq. 1, which can
 166 cause oversmoothing across unfolding iterations. Motivated by the observation that low-light images
 167 often contain regions with richer structural information, we introduce a group-sparse representation
 168 to capture such structured variations. Inspired by Zha et al. (2022), we integrate this representation
 169 into our Retinex model as follows:

$$170 \quad \hat{\mathbf{L}}, \hat{\mathbf{R}} = \arg \min_{\hat{\mathbf{L}}, \hat{\mathbf{R}}} \|\mathbf{X}_i^* - \hat{\mathbf{R}} \odot \hat{\mathbf{L}}\|_F^2 + \alpha \Phi(\hat{\mathbf{L}}) + \gamma \Psi(\hat{\mathbf{R}}), \quad (2)$$

172 where \mathbf{X}_i^* denotes grouped data matrices, and $\hat{\mathbf{L}}, \hat{\mathbf{R}}$ are group-level Retinex components.
 173

174 Following the tractability analysis in Bhan et al. (2013), we estimate $\hat{\mathbf{L}}$ and $\hat{\mathbf{R}}$ from \mathbf{L} and \mathbf{R} under a
 175 given group structure \mathbb{G} by solving:

$$176 \quad \hat{\mathbf{L}} = \mathbf{L} - \hat{\mathbf{L}}, \quad \text{s.t.} \quad \|\hat{\mathbf{L}}\|_{\mathbb{G}, 1, p} \leq \lambda, \quad (3)$$

$$178 \quad \hat{\mathbf{R}} = \mathbf{R} - \hat{\mathbf{R}}, \quad \text{s.t.} \quad \|\hat{\mathbf{R}}\|_{\mathbb{G}, 1, p} \leq \lambda, \quad (4)$$

179 where $\lambda > 0$ balances approximation accuracy and group sparsity, and $\|\cdot\|_{\mathbb{G}, 1, p} := \sum_{g \in \mathbb{G}} \|\cdot|_{G_g}\|_p$
 180 denotes the group- $\ell_{1,p}$ norm over non-overlapping non-local groups $\{G_g\}$.
 181

182 To make optimization tractable, we relax the hard constraints in Eqs. 3–4 into penalized (Lagrangian)
 183 forms and define unified non-local group-sparsity regularizers:

$$184 \quad \mathcal{R}_{\text{GroupSparse}}^{(\hat{\mathbf{L}})}(\hat{\mathbf{L}}) = \sum_{g \in \mathbb{G}_L} \rho(\|\mathbf{P}_g^{(\hat{\mathbf{L}})} \hat{\mathbf{L}}\|_2), \quad \mathcal{R}_{\text{GroupSparse}}^{(\hat{\mathbf{R}})}(\hat{\mathbf{R}}) = \sum_{g \in \mathbb{G}_R} \rho(\|\mathbf{P}_g^{(\hat{\mathbf{R}})} \hat{\mathbf{R}}\|_2),$$

187 where $\mathbb{G}_L, \mathbb{G}_R$ index non-local groups, $\mathbf{P}_g^{(\cdot)}$ extracts the g -th group (e.g., a stack of similar
 188 patches/channels), and $\rho(\cdot)$ is a sparsity-promoting potential. In practice, we use $\rho(t) = t$ (group- $\ell_{1,2}$
 189 norm). These penalties are enforced via proximal mappings at each iteration of the unrolled network.

190 For the regularization term in Eq. 2, $\Phi(\hat{\mathbf{L}})$ is typically defined as $\|\hat{\mathbf{L}}\|_F^2$. In our formulation, however,
 191 we introduce a proximal operator network, denoted as ϖ , which adaptively refines $\hat{\mathbf{L}}$ to yield smoother
 192 illumination. Here, Φ, Ψ impose generic priors (e.g., smoothness), while $\mathcal{R}_{\text{GroupSparse}}$ enforces
 193 non-local structural consistency. By jointly leveraging these complementary properties, our model
 194 achieves improved accuracy and robustness.

195 Accordingly, the final form of the proposed model is:

$$197 \quad \min_{\mathbf{L}, \mathbf{R}, \hat{\mathbf{L}}, \hat{\mathbf{R}}} \|\mathbf{I} - \mathbf{R} * \mathbf{L}\|_F^2 + \mu_1 \|\mathbf{L} - \hat{\mathbf{L}}\|_F^2 + \mu_2 \|\mathbf{R} - \hat{\mathbf{R}}\|_F^2 + \alpha \Phi(\hat{\mathbf{L}}) + \gamma \Psi(\hat{\mathbf{R}}) \\ 198 \quad + \lambda_1 \mathcal{R}_{\text{GroupSparse}}^{(\hat{\mathbf{L}})}(\hat{\mathbf{L}}) + \lambda_2 \mathcal{R}_{\text{GroupSparse}}^{(\hat{\mathbf{R}})}(\hat{\mathbf{R}}) \quad (5)$$

200 where $\gamma, \alpha, \mu_1, \mu_2, \lambda_1, \lambda_2$ are regularization weights.
 201

202 3.2 MODEL OPTIMIZATION

204 The algorithm alternates between updating the $\mathbf{L}, \mathbf{R}, \hat{\mathbf{L}}_k$ and $\hat{\mathbf{R}}_k$. Below we detail the k -th iteration
 205 of the optimization process.

206 **Updating \mathbf{L}_k .** Given \mathbf{R}_{k-1} and $\hat{\mathbf{L}}_{k-1}$, we solve

$$208 \quad \mathbf{L}_k = \arg \min_{\mathbf{L}} \|\mathbf{I} - \mathbf{R}_{k-1} * \mathbf{L}\|_F^2 + \mu_1 \|\mathbf{L} - \hat{\mathbf{L}}_{k-1}\|_F^2, \quad (6)$$

210 This subproblem is a standard least squares formulation. Differentiating with respect to \mathbf{L} and setting
 211 the derivative to zero yields the closed-form solution: $\mathbf{L}_k = \mathbf{Q}^{-1} [\mu_1 \hat{\mathbf{L}}_{k-1} + \mathbf{I} * \mathbf{R}_{k-1}]$, where
 212 $\mathbf{Q} = \mathbf{R}_{k-1} * \mathbf{R}_{k-1} + \mu_1 \mathbf{1}$, $\mathbf{1}$ is an all-ones matrix, and μ_1 is a balancing parameter.

213 **Updating $\hat{\mathbf{L}}_k$.** Given \mathbf{L}_k , we refine it by solving

$$215 \quad \hat{\mathbf{L}}_k = \arg \min_{\hat{\mathbf{L}}} \mu_1 \|\mathbf{L}_k - \hat{\mathbf{L}}\|_F^2 + \alpha \Phi(\hat{\mathbf{L}}) + \lambda_1 \mathcal{R}_{\text{GroupSparse}}^{(\hat{\mathbf{L}})}(\hat{\mathbf{L}}), \quad (7)$$

216 where Φ and $\mathcal{R}_{\text{GroupSparse}}^{(\hat{L})}$ denote illumination priors. Since a closed-form solution is intractable, we
 217 approximate the proximal mappings using two learned networks:
 218

$$219 \quad \mathbf{U}_k = \mathcal{P}_\theta^{(\text{GS})}(\mathbf{L}_k), \quad \hat{\mathbf{L}}_k = \varpi(\mathbf{U}_k). \quad (8)$$

221 **Updating \mathbf{R}_k .** Given \mathbf{L}_k and $\hat{\mathbf{R}}_{k-1}$, the reflectance is updated via
 222

$$223 \quad \mathbf{R}_k = \arg \min_{\mathbf{R}} \|\mathbf{I} - \mathbf{R} * \mathbf{L}_k\|_F^2 + \mu_2 \|\mathbf{R} - \hat{\mathbf{R}}_{k-1}\|_F^2, \quad (9)$$

225 which leads to the closed-form update $\mathbf{R}_k = \mathbf{D}^{-1} \left[\mu_2 \hat{\mathbf{R}}_{k-1} + \mathbf{I} * \mathbf{L}_k \right]$, where $\mathbf{D} = \mathbf{L}_k * \mathbf{L}_k + \mu_2 \mathbf{1}$,
 226 and μ_2 is a balancing parameter.
 227

228 **Updating $\hat{\mathbf{R}}_k$.** Finally, given \mathbf{R}_k , we solve
 229

$$230 \quad \hat{\mathbf{R}}_k = \arg \min_{\hat{\mathbf{R}}} \mu_2 \|\mathbf{R}_k - \hat{\mathbf{R}}\|_F^2 + \gamma \Psi(\hat{\mathbf{R}}) + \lambda_2 \mathcal{R}_{\text{GroupSparse}}^{(\hat{R})}(\hat{\mathbf{R}}). \quad (10)$$

232 Since reflectance primarily encodes scene details and textures, it does not require the additional
 233 piecewise-smooth prior enforced for illumination, so a single proximal operator suffices. Moreover,
 234 according to Retinex theory, reflectance restoration should be conditioned on illumination. Hence,
 235 we concatenate illumination and reflectance as inputs to the proximal operator network:

$$236 \quad \hat{\mathbf{R}}_k = \mathcal{P}_\theta^{(R)}(\hat{\mathbf{L}}_k, \mathbf{R}_k). \quad (11)$$

238 3.3 DEEP NETWORK ARCHITECTURE

240 Rather than treating iterations as an independent algorithm, we design a deep network with N stages,
 241 each mimicking an optimization-inspired iteration. As shown in Figure 2, ILVS²Net alternates
 242 among the Illumination Estimation Module (IEM), Reflection Estimation Module (REM), Dynamic
 243 Illumination Quantification Module (DIQM), and Reflection–Illumination Fusion Module (RIFM).
 244 The illumination \mathbf{L} is initialized to the maximum pixel value of the input, while the reflectance \mathbf{R} is
 245 obtained by pixel-wise division, with $\hat{\mathbf{L}}$ and $\hat{\mathbf{R}}$ set accordingly. In the final stage, the enhanced image
 246 is reconstructed as $\mathbf{X}_{\text{pred}} = \text{RecModule}(\mathbf{I}, \hat{\mathbf{L}}_k)$. The detailed architecture and algorithmic design
 247 are described below.

248 **Structure of the IEM.** The Illumination Estimation Module (IEM) is designed based on Eq. 6, where
 249 $\text{Module}_{\mathcal{X}}$ implements the update of \mathbf{L}_k :

$$251 \quad \mathbf{L}_k = \text{Module}_{\mathcal{X}}(\mathbf{I}, \mathbf{R}_{k-1}, \hat{\mathbf{L}}_{k-1}, \mu_1) = \mathbf{Q}^{-1} \left[\mu_1 \hat{\mathbf{L}}_{k-1} + \mathbf{I} * \mathbf{R}_{k-1} \right], \quad (12)$$

253 which follows the same closed-form update but with all parameters made learnable to enhance
 254 stability and generalization.

255 **Structure of the DIQM.** According to Eq. 7, to ensure the smoothness and continuity of illumination,
 256 we employ two learnable proximal operator networks. The first corresponds to the *group-sparse*
 257 *prior*, translated into a learnable operator. Specifically, the non-local group-sparse penalty is

$$259 \quad \mathcal{R}_{\text{GroupSparse}}^{(\hat{L})}(\hat{\mathbf{L}}) = \sum_{g \in \mathbb{G}_L} \rho(\|\mathbf{P}_g^{(\hat{L})} \hat{\mathbf{L}}\|_2),$$

262 where the grouping operator \mathbf{P}_g aggregates mutually similar patches or channels. This step mirrors
 263 non-local operations, enabling retrieval and aggregation of repeated structures across the image. The
 264 within-group shrinkage is implemented by block $\ell_{1,2}$ penalties, which we realize through Visual State
 265 Space (VSS) dynamics that propagate structured dependencies and suppress noise.

266 **NLVSS architecture.** As shown in Fig. 2 and Fig. 5, we replace the convolutional layers of the
 267 Non-local network Wang et al. (2018) with VSS structures and an APM module. This design allows
 268 \mathbf{L} to propagate both globally and locally. Two VSS layers yield \mathbf{L}_{p_1} and \mathbf{L}_{p_3} , while the APM employs
 269 four global average-pooling layers at multiple scales. Another VSS layer extracts \mathbf{L}_{p_2} . Together,
 these components capture long-range and contextual illumination dependencies.

270 Table 1: Results on the LLIE task. The best two results are in **red** and **blue** fonts, respectively.
271

Methods	Sources	Efficiency Para. ↓ FLOPs ↓	LOL-v1				LOL-v2-real				LOL-v2-synthetic				
			PSNR ↑	SSIM ↑	FID ↓	BIQE ↓	PSNR ↑	SSIM ↑	FID ↓	BIQE ↓	PSNR ↑	SSIM ↑	FID ↓	BIQE ↓	
URetinex (Wu et al., 2022b)	CVPR22	0.36	233.09	21.33	0.835	85.59	30.37	20.44	0.806	76.74	28.85	24.73	0.897	33.25	33.46
UFormer (Wang et al., 2022)	CVPR22	5.20	10.68	16.36	0.771	166.69	41.06	18.82	0.771	164.41	40.36	19.66	0.871	58.69	39.75
Restormer (Zamir et al., 2022a)	CVPR22	26.13	144.25	22.43	0.823	78.75	33.18	19.94	0.827	114.35	37.27	21.41	0.830	46.89	35.06
SNR-Net (Xu et al., 2022)	CVPR22	4.01	26.35	24.61	0.842	66.47	28.73	21.48	0.849	68.56	28.83	24.14	0.928	30.52	33.47
SMG (Xu et al., 2023)	CVPR23	14.02	17.55	24.82	0.838	69.47	30.15	22.62	0.857	71.76	30.32	25.62	0.905	23.36	29.35
Diff-Retinex (Yi et al., 2023)	ICCV23	56.88	198.16	21.98	0.852	51.33	19.62	20.17	0.826	46.67	24.18	24.30	0.921	28.74	26.35
MRQ (Liu et al., 2023)	ICCV23	8.45	20.66	25.24	0.855	53.32	22.73	22.37	0.854	68.89	33.61	25.54	0.940	20.86	25.09
IAGC (Wang et al., 2023c)	ICCV23	—	—	24.53	0.842	59.73	25.50	22.20	0.863	70.34	31.70	25.58	0.941	21.38	30.32
DiffIR (Xia et al., 2023)	ICCV23	27.80	35.32	23.15	0.828	70.13	26.38	21.15	0.816	72.33	29.15	24.76	0.921	28.87	27.74
CUE (Zheng et al., 2023b)	ICCV23	0.25	157.32	21.86	0.841	69.83	27.15	21.19	0.829	67.05	28.83	24.41	0.917	31.33	33.83
GSAD (Jinhu et al., 2023)	NIPS23	17.17	670.33	23.23	0.852	51.64	19.96	20.19	0.847	46.77	28.85	24.22	0.927	19.24	25.76
AST (Zhou et al., 2024)	CVPR24	19.90	13.25	21.09	0.858	87.67	21.23	21.68	0.856	91.81	25.17	22.25	0.927	37.19	28.78
RetiMamba (Bai et al., 2024)	ArXiv	3.59	37.98	24.03	0.827	75.33	16.28	22.45	0.844	56.96	21.76	25.89	0.934	20.17	16.29
MamballIE (Guo et al., 2024)	ECCV24	4.30	60.66	22.23	0.863	63.39	20.17	21.15	0.857	56.09	24.46	25.75	0.937	19.75	20.37
MamballIE (Weng et al., 2024)	NIPS24	2.28	20.85	23.24	0.861	—	—	22.95	0.847	—	—	25.87	0.940	—	—
CIDNet (Yan et al., 2025)	CVPR25	1.88	7.57	23.50	0.900	46.69	14.77	24.11	0.871	48.04	18.45	25.71	0.942	18.60	15.87
ILVS²Net	Ours	3.42	11.27	24.33	0.910	42.89	13.46	23.06	0.888	36.44	18.35	26.16	0.960	18.27	15.03

287 Figure 3: Visual results on the low-light image enhancement task.
288

Illumination smoothing operator. Group sparsity alone may yield blocky or discontinuous illumination. In the unrolled optimization framework, this step corresponds to the proximal mapping of a piecewise-smooth prior, which is intractable to compute in closed form. Unlike a generic CNN filter, the ISP is not a post-hoc refinement block but the learnable realization of this proximal operator. Classical choices such as TV or WLS can be viewed as fixed forms of this mapping: they enforce smoothness but often lead to over-smoothing due to their hand-crafted nature. Our ISP generalizes these operators by adopting a data-adaptive design that combines VSS and IlluNet: VSS provides selective 2D scanning to capture non-local structural consistency, while IlluNet (five 5×5 convolutional layers with LeakyReLU) performs lightweight, edge-aware diffusion to enforce local smoothness. Thus, ISP reduces to TV/WLS under fixed linear parameters, but as a learnable proximal operator, it adaptively balances global consistency and local smoothness, ensuring both interpretability and stability within the optimization framework, beyond what a stand-alone CNN can offer. The final module for computing $\hat{\mathbf{L}}_k$ is defined as

$$\hat{\mathbf{L}}_k = \text{Module}_{\mathcal{F}}[\mathbf{L}_k; \boldsymbol{\Lambda}_{NLVSS}, \boldsymbol{\Lambda}_{\varpi}], \quad (13)$$

302 where $\boldsymbol{\Lambda}_{NLVSS}$ and $\boldsymbol{\Lambda}_{\varpi}$ denote the learnable parameters of the two proximal operator networks.
303

Structure of the REM. The Reflectance Estimation Module (REM) is derived from Eq. 9, with fixed
304 parameters replaced by learnable ones:
305

$$\mathbf{R}_k = \text{Module}_{\mathcal{R}}(\mathbf{I}, \mathbf{L}_{k-1}, \hat{\mathbf{R}}_{k-1}, \mu_2) = \mathbf{D}^{-1} \left[\mu_2 \hat{\mathbf{R}}_{k-1} + \mathbf{I} * \mathbf{L}_{k-1} \right]. \quad (14)$$

Structure of the RIFM. According to Eq. 10, to effectively fuse reflectance and illumination, we
309 concatenate \mathbf{L}_k and \mathbf{R}_k along the channel dimension, and feed them into a proximal operator network
310 to estimate $\hat{\mathbf{R}}_k$. This network adopts the NLVSS structure:
311

$$\hat{\mathbf{R}}_k = \text{Module}_{\mathcal{M}}[\mathbf{R}_k, \hat{\mathbf{L}}_k; \theta_{NLVSS}], \quad (15)$$

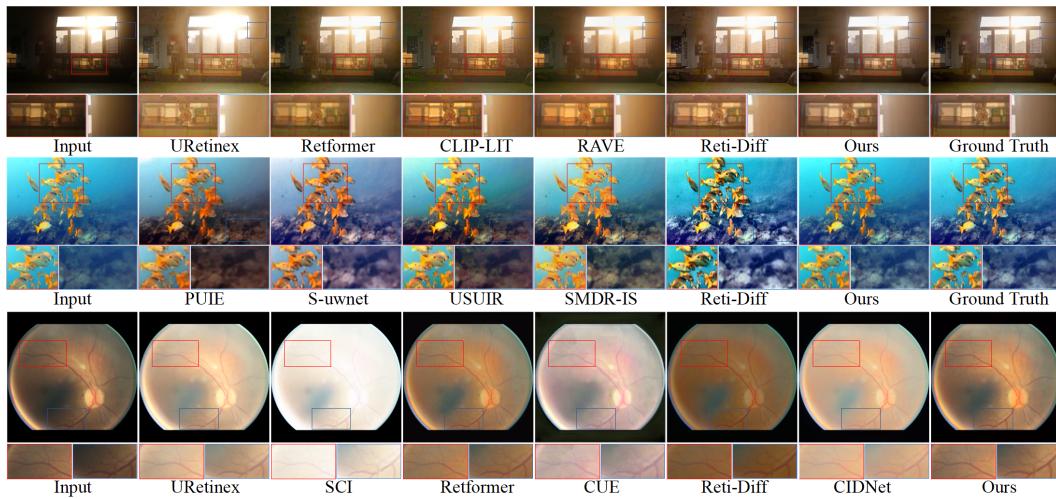
314 where θ_{NLVSS} denotes the learnable parameters. Finally, $\hat{\mathbf{L}}_k$ is concatenated with \mathbf{I} and passed
315 through a U-Net-style VSSBlock Weng et al. (2024) to reconstruct the enhanced image \mathbf{X}_{pred} .
316

317 4 EXPERIMENTS

Implementation: Experiments were conducted with PyTorch on NVIDIA GTX4090 GPUs, using a
319 batch size of 8. We trained with the Adam optimizer Kingma & Ba (2014) ($\beta_1 = 0.9$, $\beta_2 = 0.99$)
320 for 3000k iterations, starting with a learning rate of 2×10^{-4} and halving it every 50k iterations.
321 Hyperparameters μ_1 and μ_2 were initially set to 0.1 and increased by 0.05 at each stage. We employ
322 a combination of mean absolute error (MAE) and a perceptual loss as our loss function(Cai et al.,
323 2023).

324 **Table 2: Results on the UIEB task. Table 3: Results on the BIE task. Table 4: Results on the FIE task.**

Methods	Sources	UIEB				Methods	Sources	BAID				Methods	Sources	Fundus		
		PSNR ↑	SSIM ↑	UCIQE ↑	UIQM ↑			PSNR ↑	SSIM ↑	LPIPS ↓	FID ↓			BIQE ↑	CLIPQA ↑	FID ↓
S-uwnet (Naik et al., 2021)	AAAI21	18.28	0.855	0.544	2.942	EnGAN (Jiang et al., 2021)	TP21	17.96	0.819	0.182	43.55	SNR-Net (Xu et al., 2022)	CNPR22	6.144	0.557	79.284
PUIE (Fu et al., 2022)	ECCV22	21.38	0.882	0.566	3.021	URetinex (Wu et al., 2022b)	CNPR22	19.96	0.845	0.206	42.26	URetinex (Wu et al., 2022b)	CNPR22	12.158	0.561	33.347
USUIR (Peng et al., 2023)	AAAI22	20.31	0.878	0.566	3.021	CLIP-LIT (Liang et al., 2023)	ICCV23	21.13	0.855	0.159	37.30	SCI (Ma et al., 2022)	CNPR22	23.527	0.552	85.175
POGAT (Cong et al., 2023)	TP22	23.05	0.897	0.608	2.902	Diff-Retinex (Yi et al., 2023)	ICCV23	22.07	0.861	0.160	38.07	MIRNETv2 (Zamir et al., 2022b)	TPAM22	14.925	0.527	47.607
ADP (Zhang et al., 2023)	ICCV23	22.59	0.892	0.621	3.008	DiffIR (Xia et al., 2023)	ICCV23	21.10	0.835	0.175	40.35	FourLLE (Wang et al., 2023a)	MM23	7.741	0.508	28.736
NU2net (Guo et al., 2023)	AAAI23	22.38	0.903	0.587	2.936	AR (Zhang et al., 2024)	CVPR24	22.07	0.850	0.156	32.47	CUE (Zheng et al., 2023b)	ICCV23	11.721	0.448	111.336
AST (Zhou et al., 2024)	CVPR24	22.19	0.908	0.602	2.981	RAVE (Guo et al., 2024)	ICCV24	21.30	0.874	0.148	31.13	ICCV23	6.054	0.564	29.316	
SMDR-IS (Zhang et al., 2024a)	AAAI24	23.71	0.922	0.602	2.981	RAVE (Guo et al., 2024)	ICCV24	21.26	0.872	0.096	64.89	Reti-Diff (Fang et al., 2025)	ICLR25	10.788	0.525	27.637
Reti-Diff (Fang et al., 2025)	ICLR25	24.12	0.910	0.631	3.088	Reti-Diff (Fang et al., 2025)	ICLR25	23.19	0.876	0.147	27.47	Reti-Diff (Yin et al., 2025)	CVPR25	10.063	0.529	41.89
ILVS ² Net	Ours	24.48	0.934	0.843	4.182	ILVS ² Net	Ours	24.89	0.910	0.085	31.36	ILVS ² Net	Ours	6.415	0.565	25.170

341 **Figure 4: Visual results on the Backlit image enhancement, Underwater image enhancement and**
342 **Fundus image enhancement task.**343

4.1 COMPARATIVE EVALUATION

344 **Low-light Image Enhancement:** Following Reti-Diff Fang et al. (2025), We evaluate our model on
345 three benchmarks—*LOL-v1* Wei et al. (2018), *LOL-v2-real* Yang et al. (2021), and *LOL-v2-syn* Yang
346 et al. (2021)—using four metrics: PSNR, SSIM, FID Heusel et al. (2017), and BIQE Moorthy &
347 Bovik (2010). Superior performance is indicated by higher PSNR and SSIM scores as well as lower
348 FID and BIQE values. Figure 3 and Table 1 demonstrate that our method achieves top performance
349 across all three datasets, delivers superior visual quality, and maintains a compact model size, thereby
350 underscoring its exceptional effectiveness. Additional visual results of low-light enhancement can be
351 seen in Figure 8.

352 **Underwater image enhancement.** We validate our method on the *UIEB* dataset Li et al. (2019) using
353 four widely adopted metrics—PSNR, SSIM, UCIQE (Yang & Sowmya, 2015), and UIQM (Panetta
354 et al., 2015)—where higher scores indicate better enhancement quality. As shown in Table 2, our
355 approach outperforms all competing methods across every metric. Furthermore, the visual examples
356 in Figure 4 demonstrate its strong capacity to correct color distortions and significantly enhance fine
357 textures in underwater scenes.

358 **Backlit image enhancement.** Following CLIP-LIT Liang et al. (2023), we trained our network on
359 the BAID Lv et al. (2022) dataset, evaluating with PSNR, SSIM, LPIPS(Zhang et al., 2018) and FID.
360 Table 3 shows our method consistently outperforms existing approaches, demonstrating its capability
361 to enhance backlit images by reducing artifacts and improving quality. Figure 4 shows our model’s
362 strength in brightness enhancement while preserving detail.

363 **Fundus image enhancement.** Following the evaluation protocol of Reti-Diff Fang et al. (2025), we
364 evaluate our model on the *Fundus* dataset using weights pretrained on *LOL-v2-syn*. We report BIQE,
365 CLIPQA Wang et al. (2023b) (higher is better), and FID. As summarized in Table 4 and illustrated in
366 Figure 4, our method maintains a leading position in both quantitative metrics and qualitative visual
367 results.

368 **Real-world illumination degradation image restoration.** We tested our method on real-world IDIR
369 tasks using four datasets: LIME Guo et al. (2016), MEF Wang et al. (2013), NPE Ma et al. (2015),
370 and VV He et al. (2024), following the strategy of CIDNet Feng et al. (2024). Since these images
371 lack high-quality ground-truths, we used a pre-trained model on *LOL-v2-syn* and evaluated using

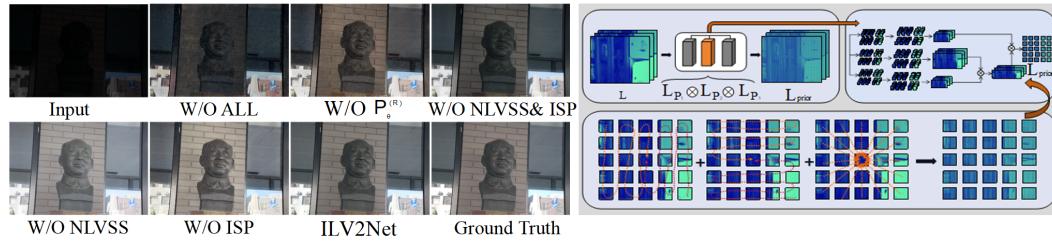


Figure 5: Ablation Study Breakdown with NLVSS Structure Diagram

Table 5: Results on the real-world IDIR task.

Methods	Sources	NPE		LIME		MEF		VV	
		PI ↓	NIQE ↓						
EnGAN (Jiang et al., 2021)	TIP21	4.015	4.705	3.669	4.593	4.015	4.705	3.386	4.047
KinD++ (Zhang et al., 2021a)	IJCV21	3.785	4.908	3.785	4.908	4.016	4.557	3.773	3.822
SNR-Net (Xu et al., 2022)	CVPR22	3.753	5.937	3.753	5.937	3.677	6.449	3.503	5.906
DCC-Net (Zhang et al., 2022)	CVPR22	3.312	4.425	3.312	4.425	3.424	4.598	3.615	3.286
UHDFor (Li et al., 2023)	ICLR23	4.124	4.430	4.124	4.430	3.813	4.231	3.319	4.330
PairLIE (Fu et al., 2023)	CVPR23	3.387	4.587	3.387	4.587	4.133	4.065	3.334	3.574
GDP (Fei et al., 2023)	CVPR23	4.115	4.891	4.115	4.891	3.694	4.609	3.431	4.683
Reti-Diff (Fang et al., 2025)	ICLR25	2.837	3.693	3.111	4.128	2.876	3.554	2.651	2.540
CIDNet (Yan et al., 2025)	CVPR25	2.985	3.550	3.146	4.132	2.683	3.568	2.826	3.218
ILVS²Net	Ours	2.952	3.381	3.138	4.093	2.748	3.377	2.595	2.317

Table 6: Low-light image detection on *ExDark*.

Methods (AP)	Bicycle	Boat	Bottle	Bus	Car	Cat	Chair	Cup	Dog	Motor	People	Table	Mean
Baseline	74.7	64.9	70.3	84.2	79.7	47.3	58.4	67.1	64.1	66.2	73.9	45.7	66.4
RetinexNet	72.8	66.4	67.3	87.5	80.6	52.8	60.0	67.8	68.5	69.3	71.3	46.2	67.5
KinD	73.2	67.1	64.6	86.8	79.5	58.7	63.4	67.5	67.4	62.3	75.5	51.4	68.1
MIRNet	74.9	69.7	68.3	89.7	77.6	57.8	56.9	66.4	69.7	64.6	74.6	53.4	68.6
RUAS	75.7	71.2	73.5	90.7	80.1	59.3	67.0	66.3	68.3	66.9	72.6	50.6	70.2
Restormer	77.0	71.0	68.8	91.6	77.1	62.5	57.3	68.0	69.6	69.2	74.6	49.7	69.7
SCI	73.4	68.0	69.5	86.2	74.5	63.1	59.5	61.0	67.3	63.9	73.2	47.3	67.2
SNR-Net	78.3	74.2	74.5	89.6	82.7	66.4	66.3	62.5	74.7	63.1	73.3	57.2	71.9
Reti-Diff	82.0	77.9	76.4	92.2	83.3	69.6	67.4	74.4	75.5	74.3	78.3	57.9	75.8
ILVS²Net	88.6	81.1	79.1	87.9	73.9	75.9	80.9	81.1	83.8	85.3	70.3	64.7	79.4

PIBlau et al. (2018) and NIQE Mittal et al. (2012), where lower scores indicate better results. As shown in Table 5 and Figure 7, our method consistently outperforms competing approaches.

4.2 ABLATION STUDY

In this section, we conduct ablation studies on the LOL-v2-syn dataset to assess the impact of different components of our model and the influence of the number of stages.

Analysis of the Unrolling Stage T : The choice of unrolling depth T directly influences the granularity with which our network approximates the Retinex decomposition. We evaluate $T \in \{2, 3, 4, 5\}$ (see Table 7) and observe a clear trade-off: At $T = 2$, the network capacity is limited, yielding a PSNR of 25.73dB and SSIM of 0.936. Increasing to $T = 3$ boosts performance to a peak PSNR of 26.16dB and SSIM of 0.960, indicating sufficient iteration for accurate illumination–reflectance separation without overfitting. Further unrolling to $T = 4$ and 5 introduces diminishing returns and even slight performance drops (e.g., PSNR falls to 26.14dB at $T = 4$ and 26.05dB at $T = 5$), likely due to error accumulation across more steps and increased model complexity. Thus, $T = 3$ strikes the best balance between decomposition fidelity and robustness, maximizing quantitative scores while avoiding the risk of over-parameterization.

Analysis of Core Module Contributions: To verify the contribution of each key module in ILVS²Net—NLVSS, ISP, $P_\theta^{(R)}$, and $P_\theta^{(GS)}$ —we conduct a series of ablations (Figure 5). Specifically, we replace the illumination proximal-operator network $P_\theta^{(GS)}$ (denoted $\mathcal{R}(\cdot)$) with CNN, non-local (NL), visual state space (VSS), and NL+VSS, denoted by $\mathcal{R}_1(\cdot)$, $\mathcal{R}_2(\cdot)$, $\mathcal{R}_3(\cdot)$, and $\mathcal{R}_4(\cdot)$, respectively. As reported in Table 7, substituting NLVSS with these classical modules, or removing it altogether, consistently degrades performance. Moreover, as illustrated in Figure 5, retaining NLVSS yields illumination maps that align more closely with real-world lighting. We further replace the illumination smoothing operator $\varpi(\cdot)$ (ISP) with WLS, TV, and a shallow CNN, denoted $\varpi_1(\cdot)$, $\varpi_2(\cdot)$, and $\varpi_3(\cdot)$. Table 7 shows that replacing or removing ISP also leads to performance drops. Qualitatively (Figure 5), omitting the illumination smoothing operator results in more uneven illumination, confirming its role in enforcing spatial smoothness. Finally, removing the reflectance proximal-operator network $P_\theta^{(R)}$ causes noticeable performance degradation, introduces a visible loss of fine texture, and produces artifacts in the enhanced images (Figure 5). Collectively, the quantitative drops and qualitative distortions—loss of global consistency without NLVSS, spotted/uneven illumination without ISP, and texture degradation without $P_\theta^{(R)}$ —underscore the necessity of our proposed modules for achieving clear, artifact-free enhancement.

Other configurations in ILVS²Net. To further assess the effectiveness and generalizability of our modules, we plug NLVSS and ISP into two representative baselines—*CUE* (a deep unfolding method) and *MamballIE* (a Mamba-based pure neural model)—and denote the augmented variants as *MamballIE++* and *CUE++*, respectively. For *MamballIE*, we insert NLVSS and ISP immediately after concatenating the input image’s channel-wise maximum and minimum features, which facilitates illumination enhancement and smoothing. For *CUE*, at each stage we apply NLVSS followed

Table 7: Ablation study in the LLIE task.

Datasets	Metrics	Effect of NLVSS				Effect of DIQM and RIFM			Effect of ISP			ILVS ² Net (Ours)
		$\mathcal{R}_1(\cdot) \rightarrow \mathcal{R}(\cdot)$	$\mathcal{R}_2(\cdot) \rightarrow \mathcal{R}(\cdot)$	$\mathcal{R}_3(\cdot) \rightarrow \mathcal{R}(\cdot)$	$\mathcal{R}_4(\cdot) \rightarrow \mathcal{R}(\cdot)$	w/o $P_g^{(GS)}$	w/o $P_g^{(R)}$	w/o ϖ	$\varpi_1(\cdot) \rightarrow \varpi(\cdot)$	$\varpi_1(\cdot) \rightarrow \varpi(\cdot)$	$\varpi_1(\cdot) \rightarrow \varpi(\cdot)$	
$L\text{-}v2\text{-}s$	PSNR \uparrow	25.68	25.64	25.77	25.18	25.74	25.77	25.84	25.32	25.48	25.62	26.16
$L\text{-}v2\text{-}s$	SSIM \uparrow	0.936	0.932	0.938	0.931	0.936	0.940	0.939	0.943	0.938	0.942	0.960
$L\text{-}v2\text{-}r$	PSNR \uparrow	22.86	22.82	22.85	22.80	22.72	22.74	22.78	22.83	22.81	22.80	23.06
$L\text{-}v2\text{-}r$	SSIM \uparrow	0.882	0.883	0.886	0.880	0.883	0.885	0.883	0.884	0.882	0.880	0.887

Table 8: Performance of ILVS²Net with different restoration models and stage numbers.

Datasets	Metrics	Restoration models		Stage numbers			ILVS ² Net IDIRM, K=3		
		mambaille	mambaille++	CUE	CUE++	K=2	K=4	K=5	
$L\text{-}v2\text{-}s$	PSNR \uparrow	25.87	25.96	24.41	25.11	25.73	26.14	26.05	26.16
$L\text{-}v2\text{-}s$	SSIM \uparrow	0.940	0.946	0.917	0.931	0.936	0.954	0.957	0.960
	LPIPS \uparrow	0.063	0.057	0.097	0.079	0.042	0.039	0.037	0.035

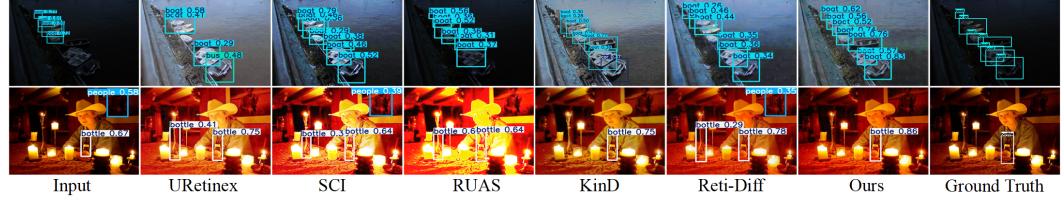


Figure 6: Visual results on the low-light object detection task.

Figure 7: Visual results on the real-world illumination degradation image restoration task.

by ISP on the illumination branch. As shown in Table 8, augmenting either baseline with our modules consistently improves performance, confirming that the proposed priors transfer well to other illumination-enhancement architectures.

Potential applications of ILVS²Net: We further explore the potential of ILVS²Net by extending it to the unsupervised setting. Following the experimental protocol of LightenDiff and incorporating the SCIMa et al. (2022) loss, our framework attains strong performance under unsupervised training. As shown in Table 9, with well-designed unsupervised losses, our method surpasses current state-of-the-art approaches, highlighting its effectiveness not only in the supervised regime but also in the unsupervised one.

4.3 ANALYSIS ON DOWNSTREAM TASKS

To validate whether our enhancement benefits downstream tasks, we evaluate its impact on object detection under low-light conditions. Following the setup in Fang et al. (2025), we feed the images processed by each method into a YOLO detector and test on the *ExDark* dataset Loh & Chan (2019). As shown in Table 6 and Figure 6, ILVS²Net achieves the highest detection accuracy among all compared methods, demonstrating its effectiveness in improving high-level vision performance.

5 CONCLUSION

We propose ILVS²Net, a Retinex-inspired deep-unfolding network that injects a group-sparse prior into every iteration. Building on a principled derivation grounded in illumination physics, we design two new proximal-operator networks—NLVSS for non-local visual state-space regularization and ISP for illumination smoothing—and integrate them as learnable priors. By preserving dynamic illumination variations and reflectance, the model mitigates information loss and color distortion across both homogeneous and textured regions. On five standard LLIE benchmarks, ILVS²Net consistently surpasses state-of-the-art methods; ablations further show that the group-sparsity-driven proximal modules provide complementary gains in spatial smoothness and structural fidelity.

486 REFERENCES
487

488 M. Abdullah-Al-Wadud, Md. Kabir, M. Akber Dewan, and Oksam Chae. A dynamic histogram
489 equalization for image contrast enhancement. *IEEE Transactions on Consumer Electronics*, pp.
490 593–600, Jan 2007. doi: 10.1109/tce.2007.381734. URL <http://dx.doi.org/10.1109/tce.2007.381734>.

492 T. Arici, S. Dikbas, and Y. Altunbasak. A histogram modification framework and its application for
493 image contrast enhancement. *IEEE Transactions on Image Processing*, pp. 1921–1935, Sep 2009.
494 doi: 10.1109/tip.2009.2021548. URL <http://dx.doi.org/10.1109/tip.2009.2021548>.

496 Jiesong Bai, Yuhao Yin, Qiyuan He, Yuanxian Li, and Xiaofeng Zhang. Retinexmamba: Retinex-
497 based mamba for low-light image enhancement. *arXiv preprint arXiv:2405.03349*, 2024.

498 Nirav Bhan, Luca Baldassarre, and Volkan Cevher. Tractability of interpretability via selection
499 of group-sparse models. In *2013 IEEE International Symposium on Information Theory*, pp.
500 1037–1041. IEEE, 2013.

501 Yochai Blau, Roey Mechrez, Radu Timofte, Tomer Michaeli, and Lihi Zelnik-Manor. The 2018 pirm
502 challenge on perceptual image super-resolution. In *ECCV*, pp. 0–0, 2018.

504 Yuanhao Cai, Hao Bian, Jing Lin, Haoqian Wang, Radu Timofte, and Yulun Zhang. Retinexformer:
505 One-stage retinex-based transformer for low-light image enhancement. In *Proceedings of the
506 IEEE/CVF international conference on computer vision*, pp. 12504–12513, 2023.

508 Wei Chen, Wenjing Wang, Wenhan Yang, and Jiaying Liu. Deep retinex decomposition for low-light
509 enhancement. *arXiv: Computer Vision and Pattern Recognition*, *arXiv: Computer Vision and
510 Pattern Recognition*, Aug 2018.

511 Runmin Cong, Wenyu Yang, Wei Zhang, Chongyi Li, Chun-Le Guo, Qingming Huang, and Sam
512 Kwong. Pugan: Physical model-guided underwater image enhancement using gan with dual-
513 discriminators. *IEEE Transactions on Image Processing*, 2023.

515 Chengyu Fang, Yulun Zhang, Tian Ye, Kai Li, Longxiang Tang, Zhenhua Guo, Xiu Li, and Sina
516 Farsiu. Reti-diff: Illumination degradation image restoration with retinex-based latent diffusion
517 model. *ICLR*, 2025.

518 Ben Fei, Zhaoyang Lyu, Liang Pan, Junzhe Zhang, Weidong Yang, Tianyue Luo, Bo Zhang, and
519 Bo Dai. Generative diffusion prior for unified image restoration and enhancement. In *CVPR*, pp.
520 9935–9946, 2023.

522 Yixu Feng, Cheng Zhang, Pei Wang, Peng Wu, Qingsen Yan, and Yanning Zhang. You only
523 need one color space: An efficient network for low-light image enhancement. *arXiv preprint
524 arXiv:2402.05809*, 2024.

525 Zhenqi Fu, Wu Wang, Yue Huang, Xinghao Ding, and Kai-Kuang Ma. Uncertainty inspired underwa-
526 ter image enhancement. In *ECCV*, pp. 465–482. Springer, 2022.

528 Zhenqi Fu, Yan Yang, Xiaotong Tu, Yue Huang, Xinghao Ding, and Kai-Kuang Ma. Learning a
529 simple low-light image enhancer from paired low-light instances. In *CVPR*, pp. 22252–22261,
530 2023.

531 Tatiana Gaintseva, Martin Benning, and Gregory Slabaugh. Rave: Residual vector embedding for
532 clip-guided backlit image enhancement. In *ECCV*, pp. 412–428. Springer, 2024.

534 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv
535 preprint arXiv:2312.00752*, 2023.

536 Chunle Guo, Ruiqi Wu, Xin Jin, Linghao Han, Weidong Zhang, Zhi Chai, and Chongyi Li. Underwater
537 ranker: Learn which is better and how to be better. In *AAAI*, volume 37, pp. 702–709, 2023.

539 Hang Guo, Jinmin Li, Tao Dai, Zhihao Ouyang, Xudong Ren, and Shu-Tao Xia. Mambair: A simple
540 baseline for image restoration with state-space model. In *ECCV*, 2024.

540 Xiaojie Guo, Yu Li, and Haibin Ling. Lime: Low-light image enhancement via illumination map
 541 estimation. *IEEE Trans. Image Process.*, 26(2):982–993, 2016.
 542

543 Chunming He, Chengyu Fang, Yulun Zhang, Kai Li, Longxiang Tang, and Zhenhua Guo. Reti-
 544 diff: Illumination degradation image restoration with retinex-based latent diffusion model. *arXiv*
 545 *preprint arXiv:2311.11638*, 2023.

546 Chunming He, Yuqi Shen, Chengyu Fang, Fengyang Xiao, Longxiang Tang, Yulun Zhang, Wangmeng
 547 Zuo, Zhenhua Guo, and Xiu Li. Diffusion models in low-level vision: A survey. *arXiv preprint*
 548 *arXiv:2406.11138*, 2024.
 549

550 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
 551 trained by a two time-scale update rule converge to a local nash equilibrium. *NeurIPS*, 30, 2017.
 552

553 Jinhui Hou, Zhiyu Zhu, Junhui Hou, Hui Liu, Huanqiang Zeng, and Hui Yuan. Global structure-aware
 554 diffusion process for low-light image enhancement. *Advances in Neural Information Processing*
 555 *Systems*, 36, 2024.
 556

556 Shih-Chia Huang, Fan-Chieh Cheng, and Yi-Sheng Chiu. Efficient contrast enhancement using
 557 adaptive gamma correction with weighting distribution. *IEEE Transactions on Image Processing*,
 558 pp. 1032–1041, Mar 2013. doi: 10.1109/tip.2012.2226047. URL <http://dx.doi.org/10.1109/tip.2012.2226047>.
 559

560 RobertA. Hummel. Image enhancement by histogram transformation. *Unknown eBooks, Unknown*
 561 *eBooks*, Sep 1975.
 562

563 Hai Jiang, Ao Luo, Xiaohong Liu, Songchen Han, and Shuaicheng Liu. Lightendiffusion: Unsuper-
 564 vised low-light image enhancement with latent-retinex diffusion models. In *European Conference*
 565 *on Computer Vision*, pp. 161–179. Springer, 2024.
 566

567 Yifan Jiang, Xinyu Gong, Ding Liu, Yu Cheng, Chen Fang, Xiaohui Shen, Jianchao Yang, Pan Zhou,
 568 and Zhangyang Wang. Enlightengan: Deep light enhancement without paired supervision. *IEEE*
 569 *transactions on image processing*, 30:2340–2349, 2021.
 570

570 HOU Jinhui, Zhiyu Zhu, Junhui Hou, LIU Hui, Huanqiang Zeng, and Hui Yuan. Global structure-
 571 aware diffusion process for low-light image enhancement. In *NeurIPS*, 2023.
 572

573 James T Kajiya. The rendering equation. In *Proceedings of the 13th annual conference on Computer*
 574 *graphics and interactive techniques*, pp. 143–150, 1986.
 575

575 DiederikP. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv: Learning, arXiv: Learning*, Dec 2014.
 576

578 Edwin H. Land. The retinex theory of color vision. *Scientific American*, pp. 108–128,
 579 Dec 1977. doi: 10.1038/scientificamerican1277-108. URL <http://dx.doi.org/10.1038/scientificamerican1277-108>.
 580

581 Chongyi Li, Chunle Guo, Wenqi Ren, Runmin Cong, Junhui Hou, Sam Kwong, and Dacheng Tao.
 582 An underwater image enhancement benchmark dataset and beyond. *IEEE transactions on image*
 583 *processing*, 29:4376–4389, 2019.
 584

585 Chongyi Li, Chunle Guo, Linghao Han, Jun Jiang, Ming-Ming Cheng, Jinwei Gu, and Chen Change
 586 Loy. Low-light image and video enhancement using deep learning: A survey. *IEEE Transactions*
 587 *on Pattern Analysis and Machine Intelligence*, pp. 9396–9416, Dec 2022. doi: 10.1109/tpami.2021.3126387. URL <http://dx.doi.org/10.1109/tpami.2021.3126387>.
 588

589 Chongyi Li, Chun-Le Guo, Man Zhou, Zhexin Liang, Shangchen Zhou, Ruicheng Feng, and
 590 Chen Change Loy. Embeddingfourier for ultra-high-definition low-light image enhancement.
 591 In *ICLR*, 2023.
 592

593 Zhexin Liang, Chongyi Li, Shangchen Zhou, Ruicheng Feng, and Chen Change Loy. Iterative prompt
 learning for unsupervised backlit image enhancement. In *ICCV*, pp. 8094–8103, 2023.

594 Yunlong Liu, Tao Huang, Weisheng Dong, Fangfang Wu, Xin Li, and Guangming Shi. Low-light
 595 image enhancement with multi-stage residue quantization and brightness-aware attention. In *ICCV*,
 596 pp. 12140–12149, 2023.

597

598 Yuen Peng Loh and Chee Seng Chan. Getting to know low-light images with the exclusively dark
 599 dataset. *Computer Vision and Image Understanding*, 178:30–42, 2019.

600

601 Xiaoqian Lv, Shengping Zhang, Qinglin Liu, Haozhe Xie, Bineng Zhong, and Huiyu Zhou. Backlitnet:
 602 A dataset and network for backlit image enhancement. *Computer Vision and Image Understanding*,
 603 218:103403, 2022.

604

605 Kede Ma, Kai Zeng, and Zhou Wang. Perceptual quality assessment for multi-exposure image fusion.
 606 *IEEE Trans. Image Process.*, 24(11):3345–3356, 2015.

607

608 Long Ma, Tengyu Ma, Risheng Liu, Xin Fan, and Zhongxuan Luo. Toward fast, flexible, and robust
 609 low-light image enhancement. In *CVPR*, pp. 5637–5646, 2022.

610

611 Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. Making a “completely blind” image quality
 612 analyzer. *IEEE Signal Processing Lett.*, 20(3):209–212, 2012.

613

614 Anush Krishna Moorthy and Alan Conrad Bovik. A two-step framework for constructing blind image
 615 quality indices. *IEEE Signal processing letters*, 17(5):513–516, 2010.

616

617 Ankita Naik, Apurva Swarnakar, and Kartik Mittal. Shallow-uwnet: Compressed model for underwa-
 618 ter image enhancement (student abstract). In *AAAI*, volume 35, pp. 15853–15854, 2021.

619

620 Karen Panetta, Chen Gao, and Sos Agaian. Human-visual-system-inspired underwater image quality
 621 measures. *IEEE Journal of Oceanic Engineering*, 41(3):541–551, 2015.

622

623 Lintao Peng, Chunli Zhu, and Liheng Bian. U-shape transformer for underwater image enhancement.
 624 *IEEE Transactions on Image Processing*, 2023.

625

626 Stephen M. Pizer, E. Philip Amburn, John D. Austin, Robert Cromartie, Ari Geselowitz, Trey Greer,
 627 Bart ter Haar Romeny, John B. Zimmerman, and Karel Zuiderveld. Adaptive histogram equalization
 628 and its variations. *Computer Vision, Graphics, and Image Processing*, pp. 355–368, Aug 1987.
 629 doi: 10.1016/s0734-189x(87)80186-x. URL [http://dx.doi.org/10.1016/s0734-189x\(87\)80186-x](http://dx.doi.org/10.1016/s0734-189x(87)80186-x).

630

631 Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal
 632 algorithms. *Physica D: nonlinear phenomena*, 60(1-4):259–268, 1992.

633

634 Chenxi Wang, Hongjun Wu, and Zhi Jin. Fourllie: Boosting low-light image enhancement by fourier
 635 frequency information. In *ACM MM*, pp. 7459–7469, 2023a.

636

637 Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Exploring clip for assessing the look and feel
 638 of images. In *AAAI*, volume 37, pp. 2555–2563, 2023b.

639

640 Ruixing Wang, Qing Zhang, Chi-Wing Fu, Xiaoyong Shen, Wei-Shi Zheng, and Jiaya Jia. Under-
 641 exposed photo enhancement using deep illumination estimation. In *2019 IEEE/CVF Conference
 642 on Computer Vision and Pattern Recognition (CVPR)*, Jun 2019a. doi: 10.1109/cvpr.2019.00701.
 643 URL <http://dx.doi.org/10.1109/cvpr.2019.00701>.

644

645 Shuhang Wang, Jin Zheng, Hai-Miao Hu, and Bo Li. Naturalness preserved enhancement algorithm
 646 for non-uniform illumination images. *IEEE Trans. Image Process.*, 22(9):3538–3548, 2013.

647

648 Wei Wang, Na Sun, and Michael K. Ng. A variational gamma correction model for image contrast
 649 enhancement. *Inverse Problems & Imaging*, pp. 461–478, Jan 2019b. doi: 10.3934/ipi.
 650 2019023. URL <http://dx.doi.org/10.3934/ipi.2019023>.

651

652 Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks. In
 653 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 7794–7803,
 654 2018.

648 Yinglong Wang, Zhen Liu, Jianzhuang Liu, Songcen Xu, and Shuaicheng Liu. Low-light image
 649 enhancement with illumination-aware gamma correction and complete image modelling network.
 650 In *ICCV*, pp. 13128–13137, 2023c.

651

652 Zhendong Wang, Xiaodong Cun, Jianmin Bao, Wengang Zhou, Jianzhuang Liu, and Houqiang Li.
 653 Uformer: A general u-shaped transformer for image restoration. In *CVPR*, pp. 17683–17693, 2022.

654 Chen Wei, Wenjing Wang, Wenhan Yang, and Jiaying Liu. Deep retinex decomposition for low-light
 655 enhancement. *arXiv preprint arXiv:1808.04560*, 2018.

656

657 Jiangwei Weng, Zhiqiang Yan, Ying Tai, Jianjun Qian, Jian Yang, and Jun Li. Mamballie: Implicit
 658 retinex-aware low light enhancement with global-then-local state space. *NeurIPS*, 2024.

659

660 Wenhui Wu, Jian Weng, Pingping Zhang, Xu Wang, Wenhan Yang, and Jianmin Jiang. Uretinex-net:
 661 Retinex-based deep unfolding network for low-light image enhancement. In *Proceedings of the
 662 IEEE/CVF conference on computer vision and pattern recognition*, pp. 5901–5910, 2022a.

663

664 Wenhui Wu, Jian Weng, Pingping Zhang, Xu Wang, Wenhan Yang, and Jianmin Jiang. Uretinex-net:
 665 Retinex-based deep unfolding network for low-light image enhancement. In *CVPR*, pp. 5901–5910,
 666 2022b.

667

668 Bin Xia, Yulun Zhang, Shiyin Wang, Yitong Wang, Xinglong Wu, Yapeng Tian, Wenming Yang, and
 669 Luc Van Gool. Diffir: Efficient diffusion model for image restoration. In *ICCV*, 2023.

670

671 Xiaogang Xu, Ruixing Wang, Chi-Wing Fu, and Jiaya Jia. Snr-aware low-light image enhancement.
 672 In *CVPR*, pp. 17714–17724, 2022.

673

674 Xiaogang Xu, Ruixing Wang, and Jiangbo Lu. Low-light image enhancement via structure modeling
 675 and guidance. In *CVPR*, pp. 9893–9903, 2023.

676

677 Qingsen Yan, Yixu Feng, Cheng Zhang, Pei Wang, Peng Wu, Wei Dong, Jinqiu Sun, and Yanning
 678 Zhang. You only need one color space: An efficient network for low-light image enhancement.
 679 *CVPR*, 2025.

680

681 Miao Yang and Arcot Sowmya. An underwater color image quality evaluation metric. *IEEE
 682 Transactions on Image Processing*, 24(12):6062–6071, 2015.

683

684 Shuzhou Yang, Moxuan Ding, Yanmin Wu, Zihan Li, and Jian Zhang. Implicit neural representation
 685 for cooperative low-light image enhancement. In *ICCV*, pp. 12918–12927, 2023.

686

687 Wenhuan Yang, Wenjing Wang, Haofeng Huang, Shiqi Wang, and Jiaying Liu. Sparse gradient
 688 regularized deep retinex network for robust low-light image enhancement. *IEEE Transactions on
 689 Image Processing*, 30:2072–2086, 2021.

690

691 Xunpeng Yi, Han Xu, Hao Zhang, Linfeng Tang, and Jiayi Ma. Diff-retinex: Rethinking low-light
 692 image enhancement with a generative diffusion model. In *ICCV*, pp. 12302–12311, 2023.

693

694 Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-
 695 Hsuan Yang. Restormer: Efficient transformer for high-resolution image restoration. In *CVPR*, pp.
 696 5728–5739, 2022a.

697

698 Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan
 699 Yang, and Ling Shao. Learning enriched features for fast image restoration and enhancement.
 700 *TPAMI*, 45(2):1934–1948, 2022b.

701

702 Zhiyuan Zha, Bihan Wen, Xin Yuan, Jiantao Zhou, Ce Zhu, and Alex Chichung Kot. Low-rankness
 703 guided group sparse representation for image restoration. *IEEE Transactions on Neural Networks
 704 and Learning Systems*, 34(10):7593–7607, 2022.

705

706 Dehuan Zhang, Jingchun Zhou, Chunle Guo, Weishi Zhang, and Chongyi Li. Synergistic multiscale
 707 detail refinement via intrinsic supervision for underwater image enhancement. In *Proceedings of
 708 the AAAI conference on artificial intelligence*, volume 38, pp. 7033–7041, 2024a.

709

710 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 711 effectiveness of deep features as a perceptual metric. In *CVPR*, pp. 586–595, 2018.

702 Xuanqi Zhang, Haijin Zeng, Jinwang Pan, Qiangqiang Shen, and Yongyong Chen. Llemamba:
 703 Low-light enhancement via relighting-guided mamba with deep unfolding network. *arXiv preprint*
 704 *arXiv:2406.01028*, 2024b.

705 Yonghua Zhang, Jiawan Zhang, and Xiaojie Guo. Kindling the darkness: A practical low-light image
 706 enhancer. *arXiv: Computer Vision and Pattern Recognition*, *arXiv: Computer Vision and Pattern*
 707 *Recognition*, May 2019.

708 Yonghua Zhang, Xiaojie Guo, Jiayi Ma, Wei Liu, and Jiawan Zhang. Beyond brightening low-light
 709 images. *Int. J. Comput. Vision*, 129:1013–1037, 2021a.

710 Zhao Zhang, Huan Zheng, Richang Hong, Mingliang Xu, Shuicheng Yan, and Meng Wang. Deep
 711 color consistent network for low-light image enhancement. In *CVPR*, pp. 1899–1908, 2022.

712 Zhaoyang Zhang, Yitong Jiang, Jun Jiang, Xiaogang Wang, Ping Luo, and Jinwei Gu. Star: A
 713 structure-aware lightweight transformer for real-time image enhancement. In *2021 IEEE/CVF*
 714 *International Conference on Computer Vision (ICCV)*, Oct 2021b. doi: 10.1109/iccv48922.2021.
 715 00407. URL <http://dx.doi.org/10.1109/iccv48922.2021.00407>.

716 Naishan Zheng, Man Zhou, Yanmeng Dong, Xiangyu Rui, Jie Huang, Chongyi Li, and Feng Zhao.
 717 Empowering low-light image enhancer through customized learnable priors. In *Proceedings of the*
 718 *IEEE/CVF International Conference on Computer Vision*, pp. 12559–12569, 2023a.

719 Naishan Zheng, Man Zhou, Yanmeng Dong, Xiangyu Rui, Jie Huang, Chongyi Li, and Feng Zhao.
 720 Empowering low-light image enhancer through customized learnable priors. In *ICCV*, pp. 12559–
 721 12569, 2023b.

722 Jingchun Zhou, Qian Liu, Qiuping Jiang, Wenqi Ren, Kin-Man Lam, and Weishi Zhang. Under-
 723 water camera: Improving visual perception via adaptive dark pixel prior and color correction.
 724 *International Journal of Computer Vision*, pp. 1–19, 2023a.

725 Mingliang Zhou, Xingtai Wu, Xuekai Wei, Tao Xiang, Bin Fang, and Sam Kwong. Low-light
 726 enhancement method based on a retinex model for structure preservation. *IEEE Transactions on*
 727 *Multimedia*, 26:650–662, 2023b.

728 Shihao Zhou, Duosheng Chen, Jinshan Pan, Jinglei Shi, and Jufeng Yang. Adapt or perish: Adaptive
 729 sparse transformer with attentive feature refinement for image restoration. In *Proceedings of the*
 730 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 2952–2963, June
 731 2024.

732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

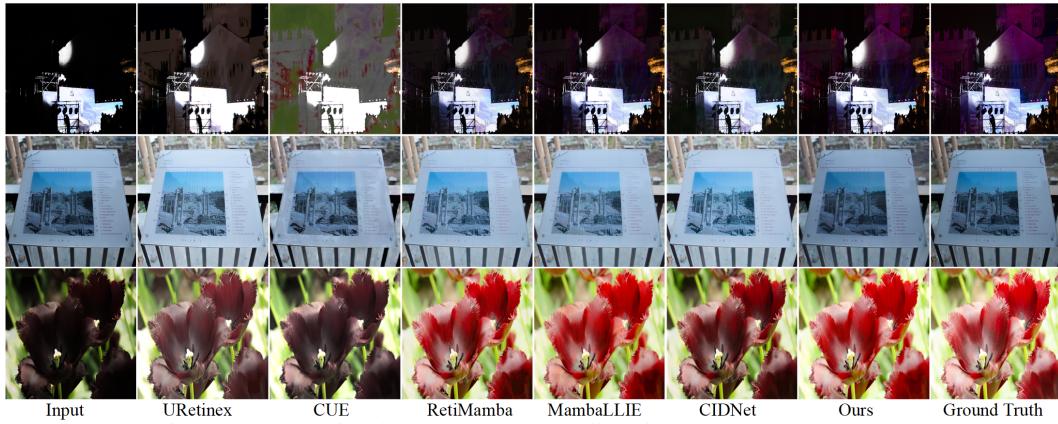


Figure 8: More visual results on the low-light image enhancement task.

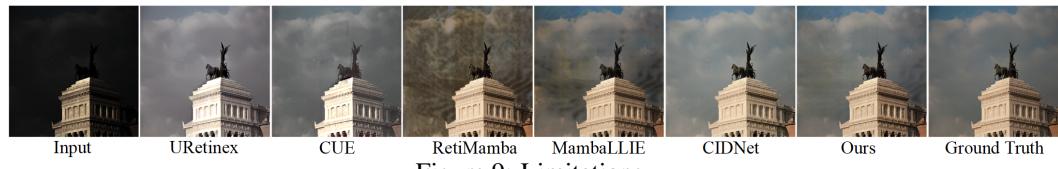


Figure 9: Limitations.

A APPENDIX

MORE VISUAL RESULTS

LIMITATIONS AND FUTURE WORK

As shown in Fig. 9, although our method excels at maintaining smooth and consistent illumination, it still struggles to recover subtle texture details. This issue mainly stems from noise amplification during the illumination restoration process. According to Retinex theory, the reflectance component represents an object's intrinsic physical properties and should remain unchanged; however, noise infiltrates the reflectance, causing image distortion and loss of fine textures. To address this, future work will investigate the physical characteristics of the reflectance component more deeply, with the goal of effectively suppressing noise in the reflectance during restoration and thereby improving detail preservation.

792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809