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ABSTRACT

In low-light image enhancement (LLIE), deep unfolding methods have achieved
remarkable success by bridging physical models with learnable modules. How-
ever, existing approaches often overlook the structured sparsity of illumination,
which leads to oversmoothing and unstable recovery. To address this, we pro-
pose ILVS2Net, a deep Retinex unfolding network that explicitly integrates a
group-sparse prior into each iteration. Specifically, we design two learnable prox-
imal operator networks: a Non-Local Visual State Space (NLVSS) module that
translates the grouping and shrinkage principle of group sparsity into a neural oper-
ator, effectively capturing long-range structural dependencies; and an Illumination
Smoothing Operator (ISP) that enforces edge-preserving piecewise smoothness for
coherent illumination estimation. By embedding these proximal operator networks
into the unfolding process, our model achieves a stable closed-form update while
dynamically adapting to complex illumination variations. Extensive experiments
on five public benchmarks demonstrate that ILVS2Net consistently outperforms
state-of-the-art methods in both quantitative metrics and perceptual quality. The
code and pretrained models will be released.

1 INTRODUCTION

Low-light images, captured under challenging lighting conditions, often exhibit color distortion,
detail loss, and extremely low contrast. These issues not only reduce human visual perception but
also degrade the performance of downstream computer vision tasks, such as semantic segmentation
Li et al. (2022); Hou et al. (2024), object detection He et al. (2023), and autonomous driving. As a
result, low-light image enhancement has gained significant attention.

Current LLIE methods are generally categorized into three approaches: Traditional, Deep Learning-
Based, and Deep Unfolding-Based methods. Traditional methods, such as histogram equalization
Hummel (1975); Arici et al. (2009); Pizer et al. (1987); Abdullah-Al-Wadud et al. (2007) and gamma
correction Huang et al. (2013); Wang et al. (2019b), often fail to maintain a natural appearance
under complex lighting. Retinex theory Land (1977), inspired by the Human Visual System (HVS),
decomposes an image into reflectance and illumination components. While Deep Learning-Based
methods have surpassed traditional techniques, they often rely on black-box structures that lack

Figure 1: The Effective Receptive Field (ERF) visualization for CUE Zheng et al. (2023a), Retinex-
former Cai et al. (2023), MambaIRGuo et al. (2024), MambaLLIE Weng et al. (2024) and the
proposed ILVS2Net. A larger ERF is indicated by a more extensively distributed dark area.
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interpretability and require numerous learnable parameters Wang et al. (2019a); Zhang et al. (2019);
Chen et al. (2018); He et al. (2023); Zhang et al. (2021b). Deep Unfolding-Based LLIE methods
have emerged with Retinex theory and achieved great success by incorporating physical priors into
network architecture Wu et al. (2022a); Zhou et al. (2023b); Zheng et al. (2023a).

However, most Retinex-based deep unfolding methods treat Retinex components equally, ignoring
their independent characteristics. The challenge of balancing illumination and reflectance during
decomposition often results in illumination components that are oversmoothed and inconsistent. This
inevitably leads to overexposure or underexposure in the enhanced images. Illumination is not merely
another image feature, but a light-driven signal characterized by: (1) Non-local spatial correlations,
as illumination at one point often depends on distant light sources and scene geometry (Kajiya,
1986); and (2) Piecewise-smooth variations, where intensity changes gradually within homogeneous
regions but can jump sharply at object boundaries (Rudin et al., 1992). By neglecting these priors,
existing architectures misinterpret lighting gradients as textures or noise Bai et al. (2024); Zhang
et al. (2024b); Cai et al. (2023); Weng et al. (2024). A model’s receptive field must accommodate
both local and global contexts to handle the natural variations of illumination across different spatial
scales. As shown in Fig. 1, existing methods suffer from limited receptive fields, capturing only local
or only global information, but rarely both, which often leads to oversmoothing.

To address these challenges, we revisit Retinex decomposition through the lens of structured group
sparsity. Illumination can be modeled as belonging to non-local groups of structurally similar patches,
where a group-sparse prior enforces two properties simultaneously: (i) redundancy reduction across
groups, and (ii) structural preservation within each group. This perspective directly inspires the design
of our network, where the structured prior is translated into learnable proximal operator networks. We
therefore propose two novel modules: (1) the Non-Local Visual State Space (NLVSS), which serves
as a neural approximation of the group-sparse proximal operator, capturing long-range dependencies
and enforcing non-local consistency ; and (2) the Illumination Smoothing Operator (ISP), which
enforces piecewise-smoothness to ensure stable and edge-preserving illumination. As shown in Fig. 1,
our approach exhibits diversity and dynamism in long-range modeling, explicitly reflecting its ability
to preserve informative illumination variations.

The main contributions of this work are summarized as follows:

(1) We introduce the Non-local Visual State Space (NLVSS), a learnable proximal operator that
embodies the group-sparse prior and captures non-local dependencies for illumination modeling.

(2) We propose an Illumination Smoothing Operator (ISP) that dynamically adjusts and reweights
illumination estimation, enforcing piecewise-smoothness while preserving structural edges.

(3) We formulate a deep-unfolding framework that integrates NLVSS and ISP into each iteration,
yielding a stable closed-form optimization solution with explicit physical priors.

(4) Extensive experiments show that our method achieves state-of-the-art performance in both
quantitative metrics and visual quality, while also improving efficiency in downstream vision tasks.

2 RELATED WORK

2.1 TRADITIONAL LLIE METHODS

Traditional low-light image enhancement (LLIE) methods are generally categorized into three main
types: histogram equalizationHummel (1975); Arici et al. (2009); Pizer et al. (1987); Abdullah-Al-
Wadud et al. (2007), gamma correction Huang et al. (2013); Wang et al. (2019b), and Retinex-based
approaches. However, under extreme conditions, these methods may introduce additional noise,
leading to unnatural visual artifacts and a loss of fine details.

2.2 DEEP LEARNING-BASED LLIE METHODS

With the continuous advancements in deep learning, LLIE methods have gradually evolved to
incorporate CNNs and Transformers. CNN-based approaches Wang et al. (2019a); Zhang et al.
(2019); Chen et al. (2018) effectively learn spatial features; notably, Wei et al. Chen et al. (2018)
pioneered an end-to-end Retinex decomposition. However, CNNs still face challenges in capturing
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Figure 2: Framework of our proposed ILVS2Net. Showcasing the multi-stage unfolding of illu-
mination (L) and reflectance (R) through IEM, DIQM, REM, RIFM, RVSS, and NLVSS blocks,
culminating in the final enhanced image Xpred.

global context and long-range dependencies. To address these issues, Transformer models He et al.
(2023); Zhang et al. (2021b) leverage attention mechanisms, with Star Zhang et al. (2021b) being one
of the earliest Transformers applied to LLIE. Despite their impressive performance, Transformers
demand high computational resources and large-scale training data. Recently, state space models
(SSMs) like Mamba Gu & Dao (2023) have drawn attention for their memory efficiency and ability
to handle long-range dependencies. While Mamba-based structures Zhang et al. (2024b); Bai et al.
(2024) offer improvements to encoder-decoder designs for LLIE, they still struggle to effectively
integrate both global and local information.

2.3 DEEP UNFOLDING-BASED LLIE METHODS

Deep unfolding-based LLIE methods integrate the interpretability of traditional model-driven ap-
proaches with the feature extraction capabilities of deep learning Wu et al. (2022a); Zhou et al.
(2023b); Zheng et al. (2023a). Wu et al. Wu et al. (2022a) first introduced this idea by incorporating
auxiliary variables and iterative ADMM updates to control reflectance and illumination. Subsequently,
Zheng et al. Zheng et al. (2023a) added a learnable prior for illumination. Despite these advances,
achieving smooth and consistent illumination that accurately captures both global and local features
remains a challenging task.

3 METHOD

3.1 MODEL FORMULATION

To improve low-light image quality, we adopt Retinex theory (Land, 1977) and decompose a low-light
image into illumination (L) and reflectance (R), optimizing each component:

L,R = argmin
L,R

∥I−R⊙ L∥2F + βΘ(L) + δΩ(R), (1)

where Θ(L) and Ω(R) are regularization terms for L and R, and β, δ > 0 are balancing parameters.
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Definition 1 (Non-local Modeling Representation). Unlike methods such as RetinexMamba Bai et al.
(2024) and RetinexFormer Cai et al. (2023), which extract patch-level features directly, we explicitly
model non-local patch dependencies within Retinex components. Direct quadratic penalties on
illumination and reflectance are often biased toward the degraded measurement I in Eq. 1, which can
cause oversmoothing across unfolding iterations. Motivated by the observation that low-light images
often contain regions with richer structural information, we introduce a group-sparse representation
to capture such structured variations. Inspired by Zha et al. (2022), we integrate this representation
into our Retinex model as follows:

L̂, R̂ = argmin
L̂,R̂

∥∥X∗
i − R̂⊙ L̂

∥∥2
F
+ αΦ(L̂) + γΨ(R̂), (2)

where X∗
i denotes grouped data matrices, and L̂, R̂ are group-level Retinex components.

Following the tractability analysis in Bhan et al. (2013), we estimate L̂ and R̂ from L and R under a
given group structure G by solving:

∆̂L = L− L̂, s.t. ∥L̂∥G,1,p ≤ λ, (3)

∆̂R = R− R̂, s.t. ∥R̂∥G,1,p ≤ λ, (4)
where λ > 0 balances approximation accuracy and group sparsity, and ∥ · ∥G,1,p :=

∑
g∈G ∥(·)Gg∥p

denotes the group-ℓ1,p norm over non-overlapping non-local groups {Gg}.

To make optimization tractable, we relax the hard constraints in Eqs. 3–4 into penalized (Lagrangian)
forms and define unified non-local group-sparsity regularizers:

R(L̂)
GroupSparse(L̂) =

∑
g∈GL

ρ
(
∥P(L̂)

g L̂∥2
)
, R(R̂)

GroupSparse(R̂) =
∑
g∈GR

ρ
(
∥P(R̂)

g R̂∥2
)
,

where GL,GR index non-local groups, P
(·)
g extracts the g-th group (e.g., a stack of similar

patches/channels), and ρ(·) is a sparsity-promoting potential. In practice, we use ρ(t) = t (group-ℓ1,2
norm). These penalties are enforced via proximal mappings at each iteration of the unrolled network.

For the regularization term in Eq. 2, Φ(L̂) is typically defined as ∥L̂∥2F . In our formulation, however,
we introduce a proximal operator network, denoted as ϖ, which adaptively refines L̂ to yield smoother
illumination. Here, Φ,Ψ impose generic priors (e.g., smoothness), while RGroupSparse enforces
non-local structural consistency. By jointly leveraging these complementary properties, our model
achieves improved accuracy and robustness.

Accordingly, the final form of the proposed model is:

min
L,R,L̂,R̂

∥I−R ∗ L∥2F + µ1∥L− L̂∥2F + µ2∥R− R̂∥2F + αΦ(L̂) + γΨ(R̂)

+ λ1R(L̂)
GroupSparse(L̂) + λ2R(R̂)

GroupSparse(R̂)

(5)

where γ, α, µ1, µ2, λ1, λ2 are regularization weights.

3.2 MODEL OPTIMIZATION

The algorithm alternates between updating the L, R, L̂k and R̂k. Below we detail the k-th iteration
of the optimization process.

Updating Lk. Given Rk−1 and L̂k−1, we solve

Lk = argmin
L

∥I−Rk−1∗L∥2F + µ1∥L− L̂k−1∥2F , (6)

This subproblem is a standard least squares formulation. Differentiating with respect to L and setting
the derivative to zero yields the closed-form solution: Lk = Q−1

[
µ1L̂k−1 + I ∗Rk−1

]
, where

Q = Rk−1 ∗Rk−1 + µ11, 1 is an all-ones matrix, and µ1 is a balancing parameter.

Updating L̂k. Given Lk, we refine it by solving

L̂k = argmin
L̂

µ1∥Lk − L̂∥2F + αΦ(L̂) + λ1R(L̂)
GroupSparse(L̂), (7)
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where Φ and R(L̂)
GroupSparse denote illumination priors. Since a closed-form solution is intractable, we

approximate the proximal mappings using two learned networks:

Uk = P(GS)
θ (Lk), L̂k = ϖ(Uk). (8)

Updating Rk. Given Lk and R̂k−1, the reflectance is updated via

Rk = argmin
R

∥I−R∗Lk∥2F + µ2∥R− R̂k−1∥2F , (9)

which leads to the closed-form update Rk = D−1
[
µ2R̂k−1 + I ∗ Lk

]
, where D = Lk ∗Lk+µ21,

and µ2 is a balancing parameter.

Updating R̂k. Finally, given Rk, we solve

R̂k = argmin
R̂

µ2∥Rk − R̂∥2F + γΨ(R̂) + λ2R(R̂)
GroupSparse(R̂). (10)

Since reflectance primarily encodes scene details and textures, it does not require the additional
piecewise-smooth prior enforced for illumination, so a single proximal operator suffices. Moreover,
according to Retinex theory, reflectance restoration should be conditioned on illumination. Hence,
we concatenate illumination and reflectance as inputs to the proximal operator network:

R̂k = P(R)
θ (L̂k, Rk). (11)

3.3 DEEP NETWORK ARCHITECTURE

Rather than treating iterations as an independent algorithm, we design a deep network with N stages,
each mimicking an optimization-inspired iteration. As shown in Figure 2, ILVS2Net alternates
among the Illumination Estimation Module (IEM), Reflection Estimation Module (REM), Dynamic
Illumination Quantification Module (DIQM), and Reflection–Illumination Fusion Module (RIFM).
The illumination L is initialized to the maximum pixel value of the input, while the reflectance R is
obtained by pixel-wise division, with L̂ and R̂ set accordingly. In the final stage, the enhanced image
is reconstructed as Xpred = RecModule

(
I, L̂k

)
. The detailed architecture and algorithmic design

are described below.

Structure of the IEM. The Illumination Estimation Module (IEM) is designed based on Eq. 6, where
ModuleX implements the update of Lk:

Lk = ModuleX
(
I,Rk−1, L̂k−1, µ1

)
= Q−1

[
µ1L̂k−1 + I ∗Rk−1

]
, (12)

which follows the same closed-form update but with all parameters made learnable to enhance
stability and generalization.

Structure of the DIQM. According to Eq. 7, to ensure the smoothness and continuity of illumina-
tion, we employ two learnable proximal operator networks. The first corresponds to the group-sparse
prior, translated into a learnable operator. Specifically, the non-local group-sparse penalty is

R(L̂)
GroupSparse(L̂) =

∑
g∈GL

ρ
(
∥P(L̂)

g L̂∥2
)
,

where the grouping operator Pg aggregates mutually similar patches or channels. This step mirrors
non-local operations, enabling retrieval and aggregation of repeated structures across the image. The
within-group shrinkage is implemented by block ℓ1,2 penalties, which we realize through Visual State
Space (VSS) dynamics that propagate structured dependencies and suppress noise.

NLVSS architecture. As shown in Fig. 2 and Fig. 5, we replace the convolutional layers of the
Non-local network Wang et al. (2018) with VSS structures and an APM module. This design allows
L to propagate both globally and locally. Two VSS layers yield Lp1

and Lp3
, while the APM employs

four global average-pooling layers at multiple scales. Another VSS layer extracts Lp2
. Together,

these components capture long-range and contextual illumination dependencies.
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Table 1: Results on the LLIE task. The best two results are in red and blue fonts, respectively.
Efficiency LOL-v1 LOL-v2-real LOL-v2-syntheticMethods Sources Para. ↓ FLOPs ↓ PSNR ↑ SSIM ↑ FID ↓ BIQE ↓ PSNR ↑ SSIM ↑ FID ↓ BIQE ↓ PSNR ↑ SSIM ↑ FID ↓ BIQE ↓

URetinex (Wu et al., 2022b) CVPR22 0.36 233.09 21.33 0.835 85.59 30.37 20.44 0.806 76.74 28.85 24.73 0.897 33.25 33.46
UFormer (Wang et al., 2022) CVPR22 5.20 10.68 16.36 0.771 166.69 41.06 18.82 0.771 164.41 40.36 19.66 0.871 58.69 39.75
Restormer (Zamir et al., 2022a) CVPR22 26.13 144.25 22.43 0.823 78.75 33.18 19.94 0.827 114.35 37.27 21.41 0.830 46.89 35.06
SNR-Net (Xu et al., 2022) CVPR22 4.01 26.35 24.61 0.842 66.47 28.73 21.48 0.849 68.56 28.83 24.14 0.928 30.52 33.47
SMG (Xu et al., 2023) CVPR23 14.02 17.55 24.82 0.838 69.47 30.15 22.62 0.857 71.76 30.32 25.62 0.905 23.36 29.35
Diff-Retinex (Yi et al., 2023) ICCV23 56.88 198.16 21.98 0.852 51.33 19.62 20.17 0.826 46.67 24.18 24.30 0.921 28.74 26.35
MRQ (Liu et al., 2023) ICCV23 8.45 20.66 25.24 0.855 53.32 22.73 22.37 0.854 68.89 33.61 25.54 0.940 20.86 25.09
IAGC (Wang et al., 2023c) ICCV23 — — 24.53 0.842 59.73 25.50 22.20 0.863 70.34 31.70 25.58 0.941 21.38 30.32
DiffIR (Xia et al., 2023) ICCV23 27.80 35.32 23.15 0.828 70.13 26.38 21.15 0.816 72.33 29.15 24.76 0.921 28.87 27.74
CUE (Zheng et al., 2023b) ICCV23 0.25 157.32 21.86 0.841 69.83 27.15 21.19 0.829 67.05 28.83 24.41 0.917 31.33 33.83
GSAD (Jinhui et al., 2023) NIPS23 17.17 670.33 23.23 0.852 51.64 19.96 20.19 0.847 46.77 28.85 24.22 0.927 19.24 25.76
AST (Zhou et al., 2024) CVPR24 19.90 13.25 21.09 0.858 87.67 21.23 21.68 0.856 91.81 25.17 22.25 0.927 37.19 28.78
RetiMamba Bai et al. (2024) ArXiv 3.59 37.98 24.03 0.827 75.33 16.28 22.45 0.844 56.96 21.76 25.89 0.934 20.17 16.29
MambaIR (Guo et al., 2024) ECCV24 4.30 60.66 22.23 0.863 63.39 20.17 21.15 0.857 56.09 24.46 25.75 0.937 19.75 20.37
Mamballie Weng et al. (2024) NIPS24 2.28 20.85 23.24 0.861 — — 22.95 0.847 — — 25.87 0.940 — —
CIDNet Yan et al. (2025) CVPR25 1.88 7.57 23.50 0.900 46.69 14.77 24.11 0.871 48.04 18.45 25.71 0.942 18.60 15.87
ILVS2Net Ours 3.42 11.27 24.33 0.910 42.89 13.46 23.06 0.888 36.44 18.35 26.16 0.960 18.27 15.03

Figure 3: Visual results on the low-light image enhancement task.

Illumination smoothing operator. Group sparsity alone may yield blocky or discontinuous illumi-
nation. In the unrolled optimization framework, this step corresponds to the proximal mapping of
a piecewise-smooth prior, which is intractable to compute in closed form. Unlike a generic CNN
filter, the ISP is not a post-hoc refinement block but the learnable realization of this proximal operator.
Classical choices such as TV or WLS can be viewed as fixed forms of this mapping: they enforce
smoothness but often lead to over-smoothing due to their hand-crafted nature. Our ISP generalizes
these operators by adopting a data-adaptive design that combines VSS and IlluNet: VSS provides se-
lective 2D scanning to capture non-local structural consistency, while IlluNet (five 5×5 convolutional
layers with LeakyReLU) performs lightweight, edge-aware diffusion to enforce local smoothness.
Thus, ISP reduces to TV/WLS under fixed linear parameters, but as a learnable proximal operator,
it adaptively balances global consistency and local smoothness, ensuring both interpretability and
stability within the optimization framework, beyond what a stand-alone CNN can offer. The final
module for computing L̂k is defined as

L̂k = ModuleF
[
Lk;ΛNLV SS ,Λϖ

]
, (13)

where ΛNLV SS and Λϖ denote the learnable parameters of the two proximal operator networks.

Structure of the REM. The Reflectance Estimation Module (REM) is derived from Eq. 9, with fixed
parameters replaced by learnable ones:

Rk = ModuleR
(
I,Lk−1, R̂k−1, µ2

)
= D−1

[
µ2R̂k−1 + I ∗ Lk−1

]
. (14)

Structure of the RIFM. According to Eq. 10, to effectively fuse reflectance and illumination, we
concatenate Lk and Rk along the channel dimension, and feed them into a proximal operator network
to estimate R̂k. This network adopts the NLVSS structure:

R̂k = ModuleM
[
Rk, L̂k; θNLV SS

]
, (15)

where θNLV SS denotes the learnable parameters. Finally, L̂k is concatenated with I and passed
through a U-Net–style VSSBlock Weng et al. (2024) to reconstruct the enhanced image Xpred.

4 EXPERIMENTS

Implementation: Experiments were conducted with PyTorch on NVIDIA GTX4090 GPUs, using a
batch size of 8. We trained with the Adam optimizer Kingma & Ba (2014) (β1 = 0.9, β2 = 0.99)
for 3000k iterations, starting with a learning rate of 2 × 10−4 and halving it every 50k iterations.
Hyperparameters µ1 and µ2 were initially set to 0.1 and increased by 0.05 at each stage. We employ
a combination of mean absolute error (MAE) and a perceptual loss as our loss function(Cai et al.,
2023).
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Table 2: Results on the UIE task.
UIEBMethods Sources PSNR ↑ SSIM ↑ UCIQE ↑ UIQM ↑

S-uwnet (Naik et al., 2021) AAAI21 18.28 0.855 0.544 2.942
PUIE (Fu et al., 2022) ECCV22 21.38 0.882 0.566 3.021
USUIR (Peng et al., 2023) AAAI22 20.31 0.841 - -
PUGAN (Cong et al., 2023) TIP23 23.05 0.897 0.608 2.902
ADP (Zhou et al., 2023a) IJCV23 22.90 0.892 0.621 3.005
NU2Net (Guo et al., 2023) AAAI23 22.38 0.903 0.587 2.936
AST (Zhou et al., 2024) CVPR24 22.19 0.908 0.602 2.981
SMDR-IS (Zhang et al., 2024a) AAAI24 23.71 0.922 - -
Reti-Diff Fang et al. (2025) ICLR25 24.12 0.910 0.631 3.088
ILVS2Net Ours 24.48 0.934 0.843 4.182

Table 3: Results on the BIE task.
BAIDMethods Sources PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

EnGAN (Jiang et al., 2021) TIP21 17.96 0.819 0.182 43.55
URetinex (Wu et al., 2022b) CVPR22 19.08 0.845 0.206 42.26
CLIP-LIT (Liang et al., 2023) ICCV23 21.13 0.853 0.159 37.30
Diff-Retinex Yi et al. (2023) ICCV23 22.07 0.861 0.160 38.07
DiffIR Xia et al. (2023) ICCV23 21.10 0.835 0.175 40.35
AST Zhou et al. (2024) CVPR24 22.61 0.851 0.156 32.47
MambaIR Guo et al. (2024) ECCV24 23.07 0.874 0.153 29.13
RAVE Gaintseva et al. (2024) ECCV24 21.26 0.872 0.096 64.89
Reti-Diff Fang et al. (2025) ICLR25 23.19 0.876 0.147 27.47
ILVS2Net Ours 24.89 0.910 0.085 31.36

Table 4: Results on the FIE task.
FundusMethods Sources BIQE ↓ CLIPIQA ↑ FID ↓

SNR-Net Xu et al. (2022) CVPR22 6.144 0.557 79.284
URetinex (Wu et al., 2022b) CVPR22 12.158 0.561 33.347
SCI Ma et al. (2022) CVPR22 23.527 0.552 85.175
MIRNetV2 Zamir et al. (2022b) TPAMI22 14.925 0.527 47.607
FourLLE Wang et al. (2023a) MM23 7.741 0.508 28.736
CUE Zheng et al. (2023b) ICCV23 11.721 0.448 111.336
Retformer Yang et al. (2023) ICCV23 6.054 0.564 29.316
Reti-Diff Fang et al. (2025) ICLR25 10.788 0.525 27.637
CIDNet Yan et al. (2025) CVPR25 10.663 0.529 41.089
ILVS2Net Ours 6.415 0.565 25.170

Figure 4: Visual results on the Backlit image enhancement, Underwater image enhancement and
Fundus image enhancement task.

4.1 COMPARATIVE EVALUATION

Low-light Image Enhancement: Following Reti-Diff Fang et al. (2025), We evaluate our model on
three benchmarks—LOL-v1 Wei et al. (2018), LOL-v2-real Yang et al. (2021), and LOL-v2-syn Yang
et al. (2021)—using four metrics: PSNR, SSIM, FID Heusel et al. (2017), and BIQE Moorthy &
Bovik (2010). Superior performance is indicated by higher PSNR and SSIM scores as well as lower
FID and BIQE values. Figure 3 and Table 1 demonstrate that our method achieves top performance
across all three datasets, delivers superior visual quality, and maintains a compact model size, thereby
underscoring its exceptional effectiveness. Additional visual results of low-light enhancement can be
seen in Figure 8.

Underwater image enhancement. We validate our method on the UIEB dataset Li et al. (2019) using
four widely adopted metrics—PSNR, SSIM, UCIQE (Yang & Sowmya, 2015), and UIQM (Panetta
et al., 2015)—where higher scores indicate better enhancement quality. As shown in Table 2, our
approach outperforms all competing methods across every metric. Furthermore, the visual examples
in Figure 4 demonstrate its strong capacity to correct color distortions and significantly enhance fine
textures in underwater scenes.

Backlit image enhancement. Following CLIP-LIT Liang et al. (2023), we trained our network on
the BAID Lv et al. (2022) dataset, evaluating with PSNR, SSIM, LPIPS(Zhang et al., 2018) and FID.
Table 3 shows our method consistently outperforms existing approaches, demonstrating its capability
to enhance backlit images by reducing artifacts and improving quality. Figure 4 shows our model’s
strength in brightness enhancement while preserving detail.

Fundus image enhancement. Following the evaluation protocol of Reti-Diff Fang et al. (2025), we
evaluate our model on the Fundus dataset using weights pretrained on LOL-v2-syn. We report BIQE,
CLIPIQA Wang et al. (2023b) (higher is better), and FID. As summarized in Table 4 and illustrated in
Figure 4, our method maintains a leading position in both quantitative metrics and qualitative visual
results.

Real-world illumination degradation image restoration. We tested our method on real-world IDIR
tasks using four datasets: LIME Guo et al. (2016), MEF Wang et al. (2013), NPE Ma et al. (2015),
and VV He et al. (2024), following the strategy of CIDNet Feng et al. (2024). Since these images
lack high-quality ground-truths, we used a pre-trained model on LOL-v2-syn and evaluated using
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Figure 5: Ablation Study Breakdown with NLVSS Structure Diagram
Table 5: Results on the real-world IDIR task.

Methods Sources NPE LIME MEF VV
PI ↓ NIQE ↓ PI ↓ NIQE ↓ PI ↓ NIQE ↓ PI ↓ NIQE ↓

EnGAN (Jiang et al., 2021) TIP21 4.015 4.705 3.669 4.593 4.015 4.705 3.386 4.047
KinD++ (Zhang et al., 2021a) IJCV21 3.785 4.908 3.785 4.908 4.016 4.557 3.773 3.822
SNR-Net (Xu et al., 2022) CVPR22 3.753 5.937 3.753 5.937 3.677 6.449 3.503 9.506
DCC-Net (Zhang et al., 2022) CVPR22 3.312 4.425 3.312 4.425 3.424 4.598 3.615 3.286
UHDFor (Li et al., 2023) ICLR23 4.124 4.430 4.124 4.430 3.813 4.231 3.319 4.330
PairLIE (Fu et al., 2023) CVPR23 3.387 4.587 3.387 4.587 4.133 4.065 3.334 3.574
GDP (Fei et al., 2023) CVPR23 4.115 4.891 4.115 4.891 3.694 4.609 3.431 4.683
Reti-Diff Fang et al. (2025) ICLR25 2.837 3.693 3.111 4.128 2.876 3.554 2.651 2.540
CIDNet Yan et al. (2025) CVPR25 2.985 3.550 3.146 4.132 2.683 3.568 2.826 3.218
ILVS2Net Ours 2.952 3.381 3.138 4.093 2.748 3.377 2.595 2.317

Table 6: Low-light image detection on ExDark.
Methods (AP) Bicycle Boat Bottle Bus Car Cat Chair Cup Dog Motor People Table Mean

Baseline 74.7 64.9 70.7 84.2 79.7 47.3 58.6 67.1 64.1 66.2 73.9 45.7 66.4
RetinexNet 72.8 66.4 67.3 87.5 80.6 52.8 60.0 67.8 68.5 69.3 71.3 46.2 67.5
KinD 73.2 67.1 64.6 86.8 79.5 58.7 63.4 67.5 67.4 62.3 75.5 51.4 68.1
MIRNet 74.9 69.7 68.3 89.7 77.6 57.8 56.9 66.4 69.7 64.6 74.6 53.4 68.6
RUAS 75.7 71.2 73.5 90.7 80.1 59.3 67.0 66.3 68.3 66.9 72.6 50.6 70.2
Restormer 77.0 71.0 68.8 91.6 77.1 62.5 57.3 68.0 69.6 69.2 74.6 49.7 69.7
SCI 73.4 68.0 69.5 86.2 74.5 63.1 59.5 61.0 67.3 63.9 73.2 47.3 67.2
SNR-Net 78.3 74.2 74.5 89.6 82.7 66.8 66.3 62.5 74.7 63.1 73.3 57.2 71.9
Reti-Diff 82.0 77.9 76.4 92.2 83.3 69.6 67.4 74.4 75.5 74.3 78.3 57.9 75.8
ILVS2Net 88.6 81.1 79.1 87.9 73.9 75.9 80.9 81.1 83.8 85.3 70.3 64.7 79.4

PIBlau et al. (2018) and NIQE Mittal et al. (2012), where lower scores indicate better results. As
shown in Table 5 and Figure 7, our method consistently outperforms competing approaches.

4.2 ABLATION STUDY

In this section, we conduct ablation studies on the LOL-v2-syn dataset to assess the impact of different
components of our model and the influence of the number of stages.

Analysis of the Unrolling Stage T : The choice of unrolling depth T directly influences the granularity
with which our network approximates the Retinex decomposition. We evaluate T ∈ {2, 3, 4, 5} (see
Table 7) and observe a clear trade-off: At T = 2, the network capacity is limited, yielding a PSNR of
25.73dB and SSIM of 0.936. Increasing to T = 3 boosts performance to a peak PSNR of 26.16dB
and SSIM of 0.960, indicating sufficient iteration for accurate illumination–reflectance separation
without overfitting. Further unrolling to T = 4 and 5 introduces diminishing returns and even slight
performance drops (e.g., PSNR falls to 26.14dB at T = 4 and 26.05dB at T = 5), likely due to
error accumulation across more steps and increased model complexity. Thus, T = 3 strikes the
best balance between decomposition fidelity and robustness, maximizing quantitative scores while
avoiding the risk of over-parameterization.

Analysis of Core Module Contributions: To verify the contribution of each key module in
ILVS2Net—NLVSS, ISP, P (R)

θ , and P
(GS)
θ —we conduct a series of ablations (Figure 5). Specifically,

we replace the illumination proximal-operator network P
(GS)
θ (denoted R(·)) with CNN, non-local

(NL), visual state space (VSS), and NL+VSS, denoted by R1(·), R2(·), R3(·), and R4(·), respec-
tively. As reported in Table 7, substituting NLVSS with these classical modules, or removing it
altogether, consistently degrades performance. Moreover, as illustrated in Figure 5, retaining NLVSS
yields illumination maps that align more closely with real-world lighting. We further replace the
illumination smoothing operator ϖ(·) (ISP) with WLS, TV, and a shallow CNN, denoted ϖ1(·),
ϖ2(·), and ϖ3(·). Table 7 shows that replacing or removing ISP also leads to performance drops.
Qualitatively (Figure 5), omitting the illumination smoothing operator results in more uneven il-
lumination, confirming its role in enforcing spatial smoothness. Finally, removing the reflectance
proximal-operator network P

(R)
θ causes noticeable performance degradation, introduces a visible

loss of fine texture, and produces artifacts in the enhanced images (Figure 5). Collectively, the quanti-
tative drops and qualitative distortions—loss of global consistency without NLVSS, spotted/uneven
illumination without ISP, and texture degradation without P (R)

θ —underscore the necessity of our
proposed modules for achieving clear, artifact-free enhancement.

Other configurations in ILVS2Net. To further assess the effectiveness and generalizability of
our modules, we plug NLVSS and ISP into two representative baselines—CUE (a deep unfolding
method) and MambaLLIE (a Mamba-based pure neural model)—and denote the augmented variants as
MambaLLIE++ and CUE++, respectively. For MambaLLIE, we insert NLVSS and ISP immediately
after concatenating the input image’s channel-wise maximum and minimum features, which facilitates
illumination enhancement and smoothing. For CUE, at each stage we apply NLVSS followed
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Table 7: Ablation study in the LLIE task.

Datasets Metrics Effect of NLVSS Effect of DIQM and RIFM Effect of ISP ILVS2Net
R1(•) → R(•) R2(•) → R(•) R3(•) → R(•) R4(•) → R(•) w/o P

(GS)
θ w/o P

(R)
θ w/o ϖ ϖ1(•) → ϖ(•) ϖ1(•) → ϖ(•) ϖ1(•) → ϖ(•) (Ours)

L-v2-s PSNR ↑ 25.68 25.64 25.77 25.18 25.74 25.77 25.84 25.32 25.48 25.62 26.16
SSIM ↑ 0.936 0.932 0.938 0.931 0.936 0.940 0.939 0.943 0.938 0.942 0.960

L-v2-r PSNR ↑ 22.86 22.82 22.85 22.80 22.72 22.74 22.78 22.83 22.81 22.80 23.06
SSIM ↑ 0.882 0.883 0.886 0.880 0.883 0.885 0.883 0.884 0.882 0.880 0.887

Table 8: Performance of ILVS2Net with different
restoration models and stage numbers.

Datasets Metrics Restoration models Stage numbers ILVS2Net
mambaille mambaille++ CUE CUE++ K=2 K=4 K=5 IDIRM, K=3

L-v2-s
PSNR↑ 25.87 25.96 24.41 25.11 25.73 26.14 26.05 26.16
SSIM↑ 0.940 0.946 0.917 0.931 0.936 0.954 0.957 0.960
LPIPS↑ 0.063 0.057 0.097 0.079 0.042 0.039 0.037 0.035

Table 9: Experiments under the unsupervised set-
ting.

Dataset Metric NeRCO Yang et al. (2023) PairLIE Liang et al. (2023) LightenDiff Jiang et al. (2024) UnfoldIR

ICCV’23 CVPR’23 ECCV’24 Ours

L-v1 PSNR↑ 19.84 19.51 20.45 21.07

SSIM↑ 0.771 0.731 0.803 0.811

Figure 6: Visual results on the low-light object detection task.

Figure 7: Visual results on the real-world illumination degradation image restoration task.

by ISP on the illumination branch. As shown in Table 8, augmenting either baseline with our
modules consistently improves performance, confirming that the proposed priors transfer well to
other illumination-enhancement architectures.

Potential applications of ILVS2Net: We further explore the potential of ILVS2Net by extending it
to the unsupervised setting. Following the experimental protocol of LightenDiff and incorporating
the SCIMa et al. (2022) loss, our framework attains strong performance under unsupervised training.
As shown in Table 9, with well-designed unsupervised losses, our method surpasses current state-of-
the-art approaches, highlighting its effectiveness not only in the supervised regime but also in the
unsupervised one.

4.3 ANALYSIS ON DOWNSTREAM TASKS

To validate whether our enhancement benefits downstream tasks, we evaluate its impact on object
detection under low-light conditions. Following the setup in Fang et al. (2025), we feed the images
processed by each method into a YOLO detector and test on the ExDark dataset Loh & Chan (2019).
As shown in Table 6 and Figure 6, ILVS2Net achieves the highest detection accuracy among all
compared methods, demonstrating its effectiveness in improving high-level vision performance.

5 CONCLUSION

We propose ILVS2Net, a Retinex-inspired deep-unfolding network that injects a group-sparse prior
into every iteration. Building on a principled derivation grounded in illumination physics, we design
two new proximal-operator networks—NLVSS for non-local visual state-space regularization and
ISP for illumination smoothing—and integrate them as learnable priors. By preserving dynamic
illumination variations and reflectance, the model mitigates information loss and color distortion
across both homogeneous and textured regions. On five standard LLIE benchmarks, ILVS2Net
consistently surpasses state-of-the-art methods; ablations further show that the group-sparsity-driven
proximal modules provide complementary gains in spatial smoothness and structural fidelity.
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Figure 8: More visual results on the low-light image enhancement task.

Figure 9: Limitations.

A APPENDIX

MORE VISUAL RESULTS

LIMITATIONS AND FUTURE WORK

As shown in Fig. 9, although our method excels at maintaining smooth and consistent illumination,
it still struggles to recover subtle texture details. This issue mainly stems from noise amplification
during the illumination restoration process. According to Retinex theory, the reflectance component
represents an object’s intrinsic physical properties and should remain unchanged; however, noise
infiltrates the reflectance, causing image distortion and loss of fine textures. To address this, future
work will investigate the physical characteristics of the reflectance component more deeply, with
the goal of effectively suppressing noise in the reflectance during restoration and thereby improving
detail preservation.

15


	Introduction
	Related Work
	Traditional LLIE Methods
	Deep Learning-Based LLIE Methods
	Deep Unfolding-Based LLIE Methods

	Method
	Model Formulation
	Model Optimization
	Deep Network Architecture

	EXPERIMENTS
	Comparative Evaluation
	Ablation Study
	Analysis on Downstream Tasks

	Conclusion
	Appendix

