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Abstract

Concept Bottleneck Models (CBMs) are a class of interpretable deep learning frameworks
that improve transparency by mapping input data into human-understandable concepts.
Recent advances, including the Discover-then-Name CBM proposed by Rao et al.| (2024),
eliminate reliance on external language models by automating concept discovery and naming
using a CLIP feature extractor and sparse autoencoder. This study is focused on replicating
the key findings reported by |Rao et al.| (2024). We conclude that the core conceptual ideas
are reproducible, but not to the extent presented in the original work. Many representations
of the active neurons appear to be disaligned with their assigned concepts. To address this
discrepancy, we suggest a model extension; we propose an enhanced alignment method
evaluated through a user study. Our extended model provides more interpretable concepts
(with statistical significance), at the cost of a slight decrease in accuracy.

1 Introduction

Interpretable frameworks like Concept Bottleneck Models (CBMs) have gained attention for their ability
to enhance explainability in deep learning. CBMs accomplish this by mapping input data into a human-
understandable concept space, which can then be used for downstream tasks such as classification (Koh et al.
2020). This is achieved through a linear combination of concepts, which allows to explain the predictions
made by a classifier. Traditional CBMs require labeled attribute datasets, but recent innovations use large
language models (LLMs) (Brown et al.,2020) and vision-language models (Radford et al., [2021]) for attribute-
label-free concept learning. Despite this, relying on LLMs can lead to unfaithfulness to the model’s reasoning
process (Margeloiu et al., |2021]).

To address these limitations, [Rao et al| (2024) propose the Discover-then-Name CBM (DN-CBM), which
automates the discovery and naming of concepts without relying on external LLMs. It uses a CLIP-based
feature extractor (Radford et al., 2021)) and sparse autoencoder (SAE) to disentangle input embeddings into
human-understandable concepts for classification.

In this study, we reproduce and evaluate the findings presented by Rao et al| (2024)), focusing on the
performance and explainability of the DN-CBM framework. Building on their findings, we investigate the
impact of cosine similarity on concept explainability and introduce a loss function which promotes more
interpretable concepts. This loss function encourages alignment between the SAE neurons and their assigned
concepts, which we then evaluate through a user study.

2 Scope of reproducibility
We investigate the following (main) claims from Rao et al.| (2024) and label them (C1-C3) for reference.

e C1: Automated concept discovery. The DN-CBM framework can successfully discover latent
concepts in the data without pre-selecting them. The SAE effectively identifies meaningful and
human-understandable concepts directly from the CLIP feature space.



Under review as submission to TMLR

e C2: Interpretability. The method demonstrates that the discovered dictionary vectors align well
with text embeddings of the concepts they represent in CLIP space. This alignment enables intuitive
naming of the concepts, facilitating model interpretability across different tasks. As a result, the
approach supports task-agnostic explanations of the model’s decision process.

e C3: Performance. The DN-CBM achieves competitive performance on classification tasks across
a variety of downstream datasets, ensuring task-agnosticity.

3 Methodology

This section outlines the methods used in this study. Sections and [3.3] discuss the models, datasets,
and hyperparameter considerations respectively. Section[3.4.1] details the experimental setup used to validate
the claims, and Section [3.4.2] presents the motivation and theoretical foundation of our extensions.

3.1 Model descriptions

Concept discovery. We follow the SAE approach proposed by Bricken et al.| (2023) to transform CLIP
features into a more interpretable latent space. This is achieved using a linear encoder f(-) with weights
Wg € R&>" followed by a ReLU activation function ¢(-). The SAE is trained in a self-supervised manner
by reconstructing the original features using a linear decoder g(-) with weights Wp € R"*?. The latent
space dimension, denoted by h, is much larger than the CLIP embedding dimension, denoted by d. For a
given embedding @ € R?, that is produced by a CLIP image encoder Z, the loss function is defined as:

Lsax (a) = [SAE(a) — all; + A |6 (f (@), (1)

where \; is a hyperparameter that enforces sparsity in activations. The SAE is typically trained on a large
dataset, denoted as Degract, t0 extract a wide range of concepts.

Concept naming. After training, we automatically assign names to individual feature dimensions in the
SAE’s hidden representation. To achieve this, a vocabulary set V = {v1,..., vy} is embedded using a CLIP
text encoder 7. Neurons in the SAE’s latent space are labeled according to the highest cosine similarity
between their dictionary (decoder) weights and the CLIP vocabulary representations. This is a natural choice
as CLIP was trained to optimize cosine similarities between text and image embeddings. The dictionary
weight vector p. for neuron c is defined as the ¢ row of the decoder weight matrix:

DPc = [WD]C,: S Rd- (2)
The corresponding label s, is then determined as:

Se = argér‘l)ax cos (£ (pe, T (v))) . (3)

We define a vector representing alignment as a distribution over all cosine similarities so that we can refer
to this later. Specifically, we introduce a vector v € R", where the ¢ element is defined as:

ve = €08 (£ (pe, T(sc))) - (4)

We refer to v, as the cosine similarity score of concept ¢ throughout this work. It quantifies the alignment
between the assigned vector in CLIP space and the dictionary vector of neuron c.

Constructing CBMs. A CBM is constructed by connecting a linear probe h(:) to the encoder’s out-
put for downstream classification tasks. The probe is trained on a separate dataset, denoted Dprope =
{(z1,11)}, (®2,y2), ...}, where y; represents the ground truth label of x;. The CBM ¢(-) is defined as:

t(x;) = (hogo fol)(w:) ()

During probe training, the SAE encoder layer is frozen, and the probe weights (w) are adjusted based on
the following loss function, where A, is a sparsity hyperparameter and CE denotes the cross-entropy loss:

Eprobc(wi) == CE (t(w1)7 yl) + )\2|QJ|1. (6)

2
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3.2 Datasets

We train and evaluate the DN-CBM on the following datasets:

CC3M. CC3M consists of image-caption pairs generated by extracting text from alt-texts of images on the
web (Sharma et al., 2018)). It contains 3,318,333 training images and a validation split of 15,840 images,
with captions comprising a total of 51,201 unique token types. The validation split consists of 15,840 images.
Due to link rot, approximately 68% of the originally collected images were retained in the final dataset. The
dataset can be downloaded here.

ImageNet. Imagenet contains 1,000 categories, with over 1.2 million training images (Deng et al.l |2009).
Each category has approximately 1,000 training images. Additionally, there are 50,000 validation images (50
per class) and 100,000 test images (100 per class).

Places365. Places365 contains 1.8 million training images spanning 365 unique scene categories, represent-
ing a wide range of real-world environments (Zhou et al., 2017). The dataset also includes 36,000 validation
images. These scene categories are distributed to reflect diverse locations encountered in everyday life, lead-
ing to a non-uniform distribution of images across categories. Due to computational constraints, we use 10%
of the training dataset in our experiments, which we refer to as Places365*.

CIFAR10. CIFARI0 counsists of 60,000 32x32 colour images in 10 classes (Krizhevskyl [2009). There are
6,000 images per class. The classes are airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.
The training split contains 50,000 images, and the test split consists of 10,000 images.

CIFAR100. CIFAR100 consists of 60,000 images in total (Krizhevsky, [2009), with 100 classes and 600
images per class. It consists of 50,000 training images and 10,000 test images.

CC3M is used for training and evaluating the SAE (Deytract), whereas ImageNet, Places365*, CIFAR10 and
CIFARI100 are used for training and evaluating the linear probe (Dpyope) for downstream tasks.

3.3 Hyperparameters

In reproducing the experiments, we adhered to the hyperparameters specified by the authors, which are
presented in Table [[I For this study, we will utilize the probe hyperparameter settings v, unless stated
otherwise.

Table 1: Hyperparameters. We use the same hyperparameters as [Rao et al|(2024) but note that the
original paper details a hyperparameter sweep without specifying the probe hyperparameters. Thus, we
consider two configurations for the linear probe: vy, from the GitHub README example for Places365, and
vg, the default settings in the code for each probe dataset. The Adam optimizer is configured using the
default hyperparameter settings (Kingma and Bay, [2015]).

General SAE Probe
Hyperparameter Value Hyperparameter Value Hyperparameter  v; v
text encoder (7)) CLIP ResNet-50 latent dim (h) 8192 learning rat 102 10-3
image encoder (7) ResNet-50 L, sparsity (A1) 3x107%  batch size 512 512
vocabulary (V) Google 20k learning rate 5x10~*  epochs 200 200
vocabulary size (|]V]) 20000 epochs 200 Ly sparsity (A2) 0.1 1
embedding dim (d) 1024 batch size 4096 optimizer Adam  Adam

batch resample freq 10
optimizer Adam

3.4 Experimental setup and code

Below is a summary of the resources used in our study, followed by an explanation of the methods to validate
the claims from Section [2] along with our proposed extension to the original work. The full code is available
at our |GitHub repository.

1For CIFAR100, a probe learning rate of 102 was used in va.


https://ai.google.com/research/ConceptualCaptions/download
https://github.com/first20hours/google-10000-english/blob/master/20k.txt
https://anonymous.4open.science/r/DNCBM-repro-22A6
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3.4.1 Reproducibility setup

We utilized the publicly available codebase by [Rao et al.| (2024) to reproduce the key findings of the original
study. This comprehensive GitHub repository| includes all necessary scripts to generate the plots and the
final results. The computational tasks were carried out using GPU resources provided by the Dutch national
supercomputer, Snellius, with funding support from the University of Amsterdam. A Nvidia A100 Tensor
Core GPU was used to run the experiments. The total computational expense for the reproduction equals
91.91 GPU hours. This has an estimated emissions of 10.87 kgCOQeqﬂ

To investigate C1, we train an SAE with the same architecture and hyperparameters as the original paper.
We then align the dictionary vectors (Equation with the CLIP feature representations. Finally, we
visualize the ranked cosine similarity scores for the DN-CBM and our reproduced DN-CBM. This will help
us determine if our reproduced latent space is as closely associated with CLIP features as in the original
work. We use this same figure as an initial indication for C2, which asserts that the vectors should align
well. To further investigate C2, we reproduce both the qualitative and quantitative analyses from Rao et al.
(2024).

The qualitative analysis involves reproducing a figure that illustrates examples of named concepts along with
the top images that activate these concepts across four datasets. In the original work, this qualitative analysis
includes only concepts that have high cosine similarity scores. We extend this by incorporating both highly
aligned and lower-aligned concepts to assess their representational quality. Furthermore, we reproduce the
explanation of the decision of the DN-CBM by classifying random images from the Places365* dataset and
reporting the top concepts that contribute to the decision. We assess generalizability by reporting similar
results for other datasets in Appendix [B1}

The quantitative support for C2 includes a human feedback survey to validate the alignment of concepts
with neurons across varying cosine similarity scores. Participants were asked to rate concept consistency
and naming accuracy for 12 images under one concept. Similar to the qualitative analysis, these are the top
images that activate the concept. High consistency is defined as a set of images with a consistent overarching
theme. This survey uses a 1-5 rating scale for accuracy, where 1 indicates poor alignment, and 5 indicates
strong alignment between concept and images. This survey was conducted with 22 participants; we replicated
the method and compared the results.

To reproduce C3, we follow the original DN-CBM model specification by attaching a linear probe to the
SAE to classify images. We compute the classification accuracy on ImageNet, Places365*%, CIFARI10, and
CIFAR100, specified in Section [3.2] We compare our accuracies to the original accuracies.

In |Rao et al.| (2024), the authors conduct two additional analyses beyond the core claims. First, they
conduct a quantitative evaluation using the SUNAttributes dataset (Patterson et al., 2014]) to compare
discovered concepts from their SAE to ground truth labels, filtering and merging nodes based on cosine
similarity with text embeddings. We did not reproduce this analysis. We emphasize that the core claims
emphasize alignment with CLIP embeddings and interpretability across diverse datasets, which offer broader
generalizability than the specific evaluation with SUNAttributes. Second, the authors assess the effectiveness
of concept interventions in their DN-CBM model using the Waterbirds-100 dataset (Petryk et al., [2022;
Sagawa et al 2020) to test robustness against spurious correlations between bird type and background. We
chose not to reproduce this analysis as it focuses on human-driven interventions, whereas our emphasis is on
automation and task-agnostic adaptability.

Additionally, we did not include an analysis of semantic consistency using k-means clustering on concept
activation vectors or the CLIP-Dissect component of the user study. We believe these analyses are unnec-
essary in determining the paper’s core claims, as our focus remains on reproducibility and the alignment of
concepts with CLIP embeddings.

2The emissions were calculated using Machine Learning calculator| (Lacoste et al.| [2019). The estimated carbon efficiency of
The Netherlands was 0.473 kgCO2eq in January 2025 (Nowtricity), |2025]).


https://github.com/neuroexplicit-saar/Discover-then-Name
https://mlco2.github.io/impact/#compute
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3.4.2 Extension to Original Work

Motivation. In their novel method, [Rao et al.| (2024) propose a post-hoc approach to explainable Al
This approach is compelling for maintaining the model’s accuracy, as it does not constrain the model to
be inherently explainable during training. However, the degree of explainability is theoretically limited as
certain aspects of a freely trained model cannot be fully captured by a single word or concept due to the
constraints of human language. Rao et al.| (2024]) report good alignment between dictionary vectors and
text embeddings in CLIP space (high cosine similarity score). However, defining "good" alignment in high-
dimensional space is challenging, especially when the alignment varies significantly across the neurons. We
investigate this alignment in C2 and propose a model extension to improve the alignment of dictionary
vectors and text embeddings.

Model extension. We introduce a loss function that encourages SAE neurons to align with more inter-
pretable concepts. This loss function is designed for fine-tuning, as it depends on a set of pre-defined concepts
learned during training. This loss function is defined as:

Crsar (a) = |SAE(a) — al + A 16 (f (@), — C (W -v) , )

where C' is the cosine penalty parameter that dictates the strength of our introduced penalty term. This
term encourages alignment between the latent space and explainable features using the cosine similarity
scores of v. The conceptual idea behind our fine-tuning loss is shown in Figure

T(Intersection) T(Intersection)
p1

T(Street) T(Street)

P1

CLIP feature 2
CLIP feature 2

7(Sunlight) 7(Sunlight)
T(Pink)

(s
P2

CLIP feature 1 CLIP feature 1

7(Pink)

(a) Dictionary vectors before fine-tuning. (b) Dictionary vectors after fine-tuning.

Figure 1: Conceptual overview of the fine-tuning process, in CLIP embedding space. In this
example, the vocabulary set is V = {Street, Pink, Intersection, Sunlight}, with both CLIP and latent dimen-
sions h = d = 2. Neuron 1 is assigned s; = {Intersection}, and neuron 2 is assigned s; = {Pink}. After
fine-tuning, the dictionary vectors are better aligned with the CLIP embeddings of their respective assigned
names. In practice, the vocabulary set, CLIP embedding dimension, and number of neurons are much larger.

A key advantage of scaling by ¢(f(a)) is that the incentive for alignment is proportional to the activation
magnitude. This prevents rarely activated neurons from arbitrarily aligning with CLIP embeddings without
capturing meaningful representations. Consequently, the neurons involved in inference are more likely to
exhibit a high cosine score. The normalization prevents the optimization routine from generating excessively
large activations to exploit the cosine loss.

Excessively large C' values, however, introduce an issue. When C becomes too large, the cosine similarity
term dominates the loss function, causing the distribution of v to shift towards higher values. This reduces
variation in similarity values. As more explainable neurons are incentivized to activate, their activations
may lose meaning. Furthermore, because we normalize C (¢(f(a)) - v) by ||¢ (f(a))]|, there is no incentive
to increase the activation magnitude. This leads to the diffusion of neuron activations, meaning that more
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neurons become active but with lower activation values. This reduces the model’s interpretability because
when it relies on a vast number of weakly activated neurons, it becomes difficult to pinpoint specific neurons
as the primary contributors to the decision-making process. This creates a trade-off: increasing neuron
explainability can sometimes come at the cost of making their activations less meaningful.

To determine an appropriate value for C, we experiment with different values and analyze their impact on
neuron interpretability, activations, and accuracy. We fine-tune our model seven times on CC3M, each time
using a different value of the hyperparameter C' € [1076,107°,...,10°]. We use the mean cosine similarity
score as a proxy for neuron interpretability, while activation levels are quantified by the average magnitude
of nonzero elements in ¢(f(a)). Additionally, we measure the validation accuracy on the Places365* dataset.
A balanced value of C' is then selected based on a qualitative assessment of these factors.

To evaluate the impact of our method, we compared the reproduced DN-CBM model with our fine-tuned
extension using the optimal C value. We do this by conducting a user study. For our user study, we selected all
concept explanations for image classifications that appeared more than five times in a subset of the Places365*
test set. Next, we ranked these concepts by cosine similarity and selected the bottom 40, middle 40, and top 40
aligning concepts for both models (resulting in a total of 6 groups). For each concept, we sampled five images
without replacement corresponding to the classification explanation, resulting in a total of 240 concepts, each
paired with five images. We asked each participant to rate two randomly sampled concepts from each group
on a scale from 0 to 5, reflecting how many images aligned with the concept. This sampling approach
ensured that each participant evaluated only 12 images while the entire dataset was thoroughly assessed
across all participants through the randomized selection process. A total of 203 participants completed the
questionnaire. Further details of the outline of our user study are given in Appendix[A7] To assess whether
the differences in user ratings between the two models are statistically significant, we employ the Wilcoxon
signed-rank test (Wilcoxon| [1945). This non-parametric test is appropriate given the paired nature of our
data and the lack of a normal distribution in the ratings. The details of the test and its implementation are
further discussed in Appendix [A72]

Note that our user study differs from the user study conducted by |[Rao et al.|(2024). In their work, they
analyzed neuron activations in response to concepts, we argue that classification explanations are more
meaningful for our objective, because they align with the model’s primary task. For example, a neuron
representing the concept of "turquoise” may have a list of top-activating images, such as a car in CIFARI10.
However, this does not necessarily indicate that the neuron plays a key role in classifying the object (car).

4 Results

This section begins by presenting findings on the reproducibility of C1 through C3. Subsequently, the results
of extensions to DN-CBM are discussed. The findings confirm C1 and C3, while contradictory results are
observed for C2.

4.1 Result reproducing original paper

To assess the reproducibility of C1 we visualize the ranked cosine scores for the original and reproduced
DN-CBM in Figure 2] We observe that we successfully reproduce a latent space that maps concepts within
a certain cosine similarity range. The distribution of values closely aligns with the original findings, demon-
strating that our approach achieves a comparable mapping. This validates the reproducibility of C1.

To validate C2, we extracted the top-activating images with the highest cosine similarity score, across the
four datasets, as shown in Figure[3] Notably, the top-activating images strongly correspond to their respective
concepts for ImageNet and Places365, indicating a high degree of semantic consistency. This is in line with
the results of Rao et al| (2024) and supports C2. For CIFAR10 and CIFAR100, the images correspond
less with the concepts "plaid" and "sweater", which may be attributed to the limited expressiveness of the
dataset.

To further assess the reproducibility of C2, we examine Figure The cosine scores range broadly from
approximately —0.01 to 0.42, indicating the presence of lower-aligned concepts. The original study focuses
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Figure 2: Ranked cosine similarity scores of the assigned concepts. Comparison of the cosine
similarity scores from the original DN-CBM (Figure and the reproduced DN-CBM (Figure .
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Figure 3: Task-agnosticity of concept extraction. We present the concepts with the highest cosine
similarity score, alongside their top-activating images from four datasets.

only on highly aligned concepts (Figure [3]), which may not generalize to the explainability of all neurons. To
assess C2 across the entire network, we examine Figure [} which presents concepts from the lower end of
the cosine similarity distribution and their top-activating images across four datasets. This analysis reveals
that not all concepts are as explainable as those in the highly aligned Figure |3] leading us to conclude that
C2 cannot be fully reproduced.
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Figure 4: Lower aligned task-agnosticity of concept extraction. We present low-aligned concepts
alongside their top-activating images from four datasets. The images associated with each concept demon-
strate low consistency with the assigned concept name across datasets.

To continue the qualitative analysis of C2, we display the top concepts contributing to the decision-making
process for two randomly selected samples from the Places365* dataset in Figure show
similar examples with concepts that, indeed, all describe aspects of the image’s theme. This qualitative anal-
ysis supports their claim that concepts are associated with the predicted class, thus aiding interpretability.
Upon examining Figure [f] we find that not all displayed concepts contribute meaningfully to the decision-
making process, which partially challenges C2. The left figure illustrates that the concepts are thematically
consistent with the corresponding class, supporting the validity of the approach. The right figure raises
concerns. Specifically, the presence of concepts such as "kayaking", "dams", and "trivium", do not clearly
correspond to the class. Consequently, we find that the original results cannot be reproduced to the same
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extent. This qualitative analysis is extended to different datasets in Appendix which demonstrates
similar results.

Most Strongly Contributing Concepts

e
kayaking w5

Pred: Greenhouse outdoor, GT: Greenhouse indoor Most Strongly Contributing Concepts

o

+1.02

Figure 5: Explaining decisions using the reproduced DN-CBM. We present randomly drawn ex-
amples of images from the Places365* dataset alongside the top concepts contributing to their classification.

To reproduce the quantitative analysis for C2, the survey results are presented in Figure [f] Figure
reveals an overall decline in semantic consistency as concept alignment decreases, aligning with prior findings.
However, the results are not an exact match, as the original work reported the highest scores for intermediate-
aligned concepts, likely due to the small sample size of both user studies. Figure [6b]shows a positive relation
between accuracy and consistency, with consistency generally improving as accuracy improves. Nonetheless,
some cases exhibit high consistency despite low accuracy. This trend aligns with the original findings,
suggesting reasonable reproducibility of the user study.

Boxplot of User Ratings by Alignment Level Consistency vs. Accuracy
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(a) Semantic consistency of concepts. (b) Consistency vs. Accuracy.

Figure 6: User study on concept accuracy. Semantic consistency is plotted for nodes with high,
intermediate, and low alignment to their assigned text embeddings of the reproduced SAE (Figure @) In
Figure the semantic consistency scores are plotted against name accuracy. The survey has 22 participants.

To assess C3, we report the classification accuracy for the reproduced model and the original work in
Table 2] The classification accuracies of ImageNet, CIFAR10 and CIFAR100 are similar for the original and
reproduced DN-CBM. The performance on Places365* is worse for the reproduced model. This could be
attributed to the use of a smaller version of this dataset. Overall our results are in agreement with C3.

Table 2: Comparison of performance of the original and reproduced results. We report the
classification accuracy (%) of the original paper and our reproduction using CLIP ResNet-50 on ImageNet,
Places365*, CIFAR10 and CIFAR100. "Finetuned" is our model suggestion, which incorporates a cosine loss
function with C' = 10~* (Equation IZ[), leading to improved explainability. *’ indicates the use of a smaller
dataset compared to the original paper; 10% of Places365.

Dataset ImageNet Places365 CIFAR10 CIFAR100
Original 72.9 53.5 87.6 67.5
Reproduced 2.7 50.0%* 86.7 68.6
Finetuned (Ours) 70.5 49.3* 83.9 64.5
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4.2 Result beyond original paper

Figure [7] shows the results of our experiments with different cosine penalty parameters, C. After completing
standard training, we fine-tuned for an additional 30 epochs using the loss function in Equation [7} which
was generally sufficient for convergence. We observe the theoretical trends discussed in Section [3.4:2] As
C increases, activations become more diffused, the average cosine similarity score rises, and at some point
it comes at the cost of accuracy. A value of C = 10~% strikes a balance, significantly improving cosine
similarity (from 0.146 to 0.540), still reasonable activations and the highest validation accuracy. This value
of C' is selected to represent our extension in the experiments we conducted. To further illustrate the effect
of the cosine penalty, Appendix [B.2] provides a visualization of the cosine score distribution across nodes for
different values of C.
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(a) Mean activation. (b) Mean cosine similarity. (c¢) Validation accuracy on Places365.

Figure 7: Impact evaluation of C'. Comparison of mean activation across nonzero neurons, mean cosine
score, and accuracy for different C' values. These plots are obtained with probe hyperparameters v;.

Referring to Table we compare the accuracy of our model to the original DN-CBM using the same
hyperparameters (v2). We observe that, under these hyperparametersﬂ our finetuned model underperforms,
with accuracy drops ranging from —0.7% to —4.1%, depending on the dataset. This decline is attributed to
the additional constraint imposed by neuron interpretability, highlighting a trade-off between accuracy and
interpretability. We further assess the interpretability component in our user study.

The results of our user study are presented in Figure Our findings indicate that, across all alignment
levels, our model, on average, achieves higher user ratings. This effect is particularly pronounced for low
and intermediate-aligned concepts, where the Wilcoxon signed-rank test produces p-values of 0.000. This
indicates that, even under a conservative significance threshold of 0.1%, the null hypothesis—that there is no
average difference in ratings between the reproduced and fine-tuned models—would still be rejected. For the
highly aligned concepts, the ratings are similar, and the statistical test yields a p-value of 0.176. Notably, the
intermediate-aligned concepts receive higher user ratings than the high-aligned concepts in our model. This
occurs because enhancing neuron explainability can diminish the meaningfulness of activations, as discussed
in Section

Figure [0 provides a qualitative intuition regarding the model’s improvement. We present a randomly selected
image from Places365* and from CIFARI10, classified and explained by both the original DN-CBM (left) and
our extended model with C' = 10~% (right). Looking at the Places365* figure, using the original model ,
the concept “ivy” is logically related to the predicted class “Vegetable garden.” However, other concepts such
as “arnold,” “cosmos,” “labrador,” and “eleven” lack clear interpretability. In contrast, our model pre-
dicts "Field wild", which is more coherently supported by concepts such as "meadow", "fields", "flower", and
"crops". Similarly for CIFAR10, the original model generates concepts "pelican”, "Michigan","aaliyah",
"busty" and "elephants", which do not contribute meaningfully to the prediction "Horse'. The same im-
age classified using our model generates the contributing concepts "horses", "equine" (horse-like) and
"horseback". This suggests that the extended model provides more interpretable and semantically relevant
explanations. For generalization, we plot local explanations for CIFAR100 and ImageNet in Appendix [B.2]

3Note that these hyperparameters were explicitly optimized for the original DN-CBM, placing our model at a slight disad-
vantage.
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Figure 8: User study results. User ratings for the reconstructed DN-CBM (orange) and our model
with C = 10~* and probe hyperparameters v; (green) on Places365*. The ratings are evaluated across
three groups based on descending relative cosine similarity scores: high alignment (top 40 highest-aligning
concepts of the model), intermediate alignment (40 concepts from the middle), and low alignment (bottom
40 concepts).

Pred: Vegetable garden, GT: Rainforest Most Strongly Contributing Concepts Pred: Field wild, GT: Rainforest Most Strongly Contributing Concepts
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(a) Original model (Places365%). (b) Extended model (Places365*).
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(¢) Original model (CIFAR10). (d) Extended model (CIFAR10).

Figure 9: Explaining decisions using DN-CBM and our extension. The top row shows an example
from Places365* with the predicted class, ground truth, and top contributing concepts for both the original
DN-CBM (left) and our extended model with C' = 10~* (right). The bottom row presents a similar com-
parison for CIFAR10.

5 Discussion

Our study successfully reproduces C1 and C3, demonstrating that the DN-CBM framework can effectively
uncover latent concepts in the data without pre-selecting them while maintaining competitive classification
accuracy. Our results for C2 indicate partial reproducibility, as especially lower-aligned concepts often
fail to contribute meaningfully to explaining the decision-making process. Fine-tuning the DN-CBM with
an extended loss function that drives the dictionary vector of neurons towards explainable CLIP vectors
enhances the interpretability of these neurons, as supported by both qualitative and user study analyses.
However, this comes at the cost of classification accuracy, introducing a trade-off that can be controlled by
adjusting the value of C, provided that C does not increase to the point where activations in the hidden state
of the SAE diffuse excessively. This raises an intriguing direction for future research, which could involve
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conducting user studies across a range of values for the cosine penalty parameter C'. Such studies could
provide a more nuanced understanding of the trade-off between accuracy and interpretability.

The concept of an alignment loss through the C penalty term could also be generalized to incorporate different
proximity measures. While cosine similarity is one approach to assessing neuron-concept alignment, it may
not always be the most effective metric. Determining similarity between vectors in high-dimensional spaces
is inherently challenging, however (Aggarwal et al., 2001)).

Lastly, we propose several general directions for future research that are not necessarily specific to our fine-
tuned model: removing vague concepts from the vocabulary set, using a larger dataset than CC3M to develop
a more general off-the-shelf SAE, and discouraging low-aligning concepts from contributing to classifications
through the probe. All of these directions hold promise in pushing the boundaries of explainable Al

What was easy. Reproducing the study was relatively straightforward due to the author’s well-documented,
publicly available code. The GitHub repository included clear instructions on setting up the environment,
running experiments, and reproducing figures. The modularity of the code and the comprehensive documen-
tation made it easy to verify the majority of the original claims. We considered it unnecessary to contact
the original authors

What was difficult. Despite the code being well-documented, we encountered some minor issues, such
as errors related to storing results. These were manageable but required some extra debugging. Due to
Snellius’ limitations on uploading large datasets, we had to use a smaller version of Places365. While it was
a necessary adaptation, it might have affected the performance in ways that were not fully comparable to
the original paper’s results. Additionally, the paper did not clearly specify all hyperparameter settings, and
while the GitHub code provided some guidance, inconsistencies in argument values added to the difficulty
of replicating the results exactly.
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A Additional explanation

A.1 Survey method

In our user study, we aimed to evaluate concept alignment across different models. Below, we provide
additional details on participant selection and survey structure.

Participant recruitment and survey distribution. The survey was distributed to a diverse group of
participants, including university students, colleagues, friends, and family. To ensure unbiased evaluation,
participants were not informed which concepts originated from our model versus the reproduced DN-CBM
model.

Survey structure and model parameters. The parameter C' in our model was set to 107%. Before
answering the main survey questions, participants were provided with example questions to familiarize them
with the task (Figure[L0). An example question from the study is included in Figure [L1).

12



Under review as submission to TMLR

UNIVERSITEIT VAN AMSTERDAM
X

Example: we will ask you to judge whether the displayed images align
well with the given concept. For each concept, you will see up to five
images. Your task is to assign a score from 0 to 5, where 0 means none of
the images match the concept, and 5 means all the images match the

concept, based on your judgment.

Answer: 1

Concept: Golfing

Answer: 5

Concept: Boxing

Figure 10: Examples presented at the start of the survey. At the start of the survey, we included
three sample questions (two of which are shown in this figure) to help participants become familiar with the
question format and response process.
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UNIVERSITEIT VAN AMSTERDAM
X

Concept: Tomb Vertaling: Graf

Powered by Qualtrics

Figure 11: Example of a question in the user study. We present five randomly selected images in
which "Tomb" appears among the top five explaining nodes in the local explanation.

A.2 Wilcoxon signed-rank test

To determine whether the differences in user ratings between the two models are statistically significant, we
employed the Wilcoxon signed-rank test (Wilcoxon [1945]). This test is a non-parametric alternative to the
paired t-test and is particularly suitable when the assumption of normality is violated.

Let X; and Y; represent the average user rating given by participant ¢ for the reproduced DN-CBM and our
model respectively, at a specific alignment level (high, intermediate, or low). The difference in ratings for
participant ¢ is:

where D; represents whether the participant preferred one model over the other for that alignment level.

For each alignment level, we test:

Null hypothesis (Hy). The average difference in ratings across participants is zero (D = 0). This implies
that there is no significant preference for either model.

Alternative hypothesis (H4). The average difference is not zero (D # 0), meaning participants system-
atically rate one model higher.

Assumptions. The Wilcoxon Signed-Rank Test assumes that the two samples are dependent, meaning the
data consists of paired samples. Moreover, the distribution of D; should be approximately symmetric around
the median. Lastly, the test requires that the data is ordinal. These assumptions hold for our data, as the
ratings range from 0 to 5, and each participant’s ratings are dependent.

14



Under review as submission to TMLR

B Additional qualitative results

B.1 Generalization local explanation

This section provides an extra local explanation for the reproduced DN-CBM and examines the local expla-
nation for ImageNet and CIFARI10.

Pred: Ruffed grouse, GT: Ruffed grouse Most Strongly Contributing Concepts Pred: Gondola, GT: Paddle Most Strongly Contributing Concepts

() (b)

Pred: Barbershop, GT: Barbershop Most Strongly Contributing Concepts Pred: Grocery store, GT: Baguette Most Strongly Contributing Concepts

_ -

vendors +0.57

(©) (d)

Figure 12: Explaining decisions using the reproduced DN-CBM. We present randomly drawn
examples of images from the ImageNet dataset alongside the top concepts contributing to their classification.
Figures and are correctly classified, whereas Figures and deviate from the ground truth
labels. While the predicted labels for Figure appear reasonable, and most labels for Figure are
also interpretable—except for the label "lynx"—the classifications for Figures and are less coherent.
Specifically, concepts such as "muller', "bookstores", "shortest", and "bakery" fail to provide a meaningful
rationale for the barbershop classification. Furthermore, in Figure [I2d] one of the highest contributing
concepts is "clic", which lacks a clear semantic interpretation, making it difficult to understand its role in
the model’s decision-making process.
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Pred: Automobile, GT: Automobile Most Strongly Contributing Concepts Pred: Cat, GT: Cat Most Strongly Contributing Concepts

-

(ELED +033

.

(a) (b)

Pred: Airplane, GT: Airplane Most Strongly Contributing Concepts Pred: Bird, GT: Deer Most Strongly Contributing Concepts
Al

(<) (d)

Figure 13: Explaining decisions using the reproduced DN-CBM. We present randomly drawn ex-
amples of images from the CIFAR10 dataset alongside the top concepts contributing to their classification.
Our observations indicate that Figures [I3a] [I3D] and are correctly classified, while Figure [I3d] is mis-
classified. The explanations for the classifications of "Automobile", "Airplane", and "Cat" appear reasonable,
as they include relevant concepts such as "car', "plane", and "worldcat." In the case of Figure which
is misclassified as a "Bird", the contribution of the "birds" node can be interpreted as a plausible factor.
However, the inclusion of concepts such as "snakes", "lynx", and "otter" is less intuitive and does not provide
a clear rationale for the model’s prediction.
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Pred: Mouse, GT: Hamster Most Strongly Contributing Concepts

3

(a)

Pred: Bicycle, GT: Bicycle Most Strongly Contributing Concepts

bicyclegtX’]

+0.46

4042

()

Most Strongly Contributing Concepts

EILELIED] +0.43

4041

(b)

Most Strongly Contributing Concepts

4053

hopper

(d)

Figure 14: Explaining decisions using the reproduced DN-CBM. We present randomly drawn ex-
amples of images from the CIFAR100 dataset alongside the top concepts contributing to their classification.
Our analysis reveals that Figures [I45 and are correctly classified, whereas Figures [I4a] and [[4d] are mis-
classified. The primary contributing concepts for the classifications of "Bicycle' and "Baby", such as "bikes"
and "infant", provide meaningful and interpretable justifications. However, in the case of the misclassification
as "Mouse," the concepts "albert", "emoticons", and "pokemon" do not offer a coherent explanation for the
model’s decision. Similarly, for the misclassification as "Turtle," the contributing concepts "staind" (a band),
"Serbia", and "hopper" lack clear semantic relevance, making the prediction difficult to interpret.
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B.2 Extended model

In this section, we will provide more explanation of how the extended model behaves. This is done by plotting
cosine similarity for different C in Figure Moreover, for generalization, we show local explanations of the
original model and our model for CIFAR100 and ImageNet in Figure

Pred: Fox, GT: Fox Most Strongly Contributing Concepts Pred: Wolf, GT: Fox Most Strongly Contributing Concepts

(a) Original model (CIFAR100). (b) Extended model (CIFAR100).

Pred: Toy terrier, GT: Toy terrier Most Strongly Contributing Concepts Pred: Toy terrier, GT: Toy terrier Most Strongly Contributing Concepts

- -

(c) Original model (ImageNet). (d) Extended model (ImageNet).

Figure 15: Explaining decisions using DN-CBM and our extension. The top row shows an example
from CIFAR100 with the predicted class, ground truth, and top contributing concepts for both the original
DN-CBM (left) and our extended model with C' = 10~ (right). It is observed that our model predicts the
incorrect label "wolf", yet the rationale behind this classification is interpretable, with contributing concepts
such as "husky" and "huskies". Given that CIFAR100 does not contain a "husky" class, "wolf" is identified as
the next closest match. In contrast, the original model correctly predicts the label, with explainable concepts
such as "firefox", "husky", and "huskies", although concepts like "nhl" and "bei" are less interpretable. The
bottom row compares similar examples for ImageNet. In this case, both models correctly classify the image
as "Toy terrier'. Our model provides a set of fully interpretable concepts, 1nclud1ng "dogs", "ears", and "dog".
The original model also identifies several explainable concepts such as "ears", "dogs", and "fostering", but
includes less interpretable concepts like "pelican" and "trivium".
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Figure 16: Cosine similarity distribution for different parameters C. The ranked cosine similarity
values of the assigned concepts after fine-tuning with varying penalty parameters are presented. C' = 1076
yields a similar distribution to the original cosine distribution of C' = 0. For C' = 10~°, the shape of the
distribution of cosine scores remains similar to that for C' = 10°, but with a substantially larger range. When
C = 107*, a noticeable shift in the distribution emerges, with most similarity values becoming positive and
a larger proportion of concepts exhibiting higher cosine similarity. For C' = 1072 and C = 102, the cosine
similarity scores reach 1 for the first 6,000 nodes before rapidly declining to 0.2 or lower. For C = 10~! and
C = 10°, the cosine similarity score goes to 0.2 after 8000 nodes.
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