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Abstract. In this report, we focus on reconstructing clothed humans in
the canonical space given multiple views and poses of a human as the in-
put. To achieve this, we utilize the geometric prior of the SMPLX model
in the canonical space to learn the implicit representation for geome-
try reconstruction. Based on the observation that the topology between
the posed mesh and the mesh in the canonical space are consistent, we
propose to learn latent codes on the posed mesh by leveraging multiple
input images and then assign the latent codes to the mesh in the canoni-
cal space. Specifically, we first leverage normal and geometry networks to
extract the feature vector for each vertex on the SMPLX mesh. Normal
maps are adopted for better generalization to unseen images compared
to 2D images. Then, features for each vertex on the posed mesh from
multiple images are integrated by MLPs. The integrated features acting
as the latent code are anchored to the SMPLX mesh in the canonical
space. Finally, latent code for each 3D point is extracted and utilized
to calculate the SDF. Our work for reconstructing the human shape on
canonical pose achieves 3rd performance on WCPA MVP-Human Body
Challenge.

Keywords: Implicit Representation, SMPLX, Signed Distance Func-
tion, Latent Codes Fusion

1 Introduction

High-fidelity human digitization has attracted a lot of interest for its application
in VR/AR, image and video editing, telepresence, virtual try-on, etc. In this
work, we target at reconstructing the high-quality 3D clothed humans in the
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canonical space given multiple views and multiple poses of a human performer
as the input.

Our network utilizes multiple images as the input and learns the implicit
representation for the given points in the 3D space. Inspired by the advantages of
implicit representation such as arbitrary topology and continuous representation,
we adopt this representation to reconstruct high-fidelity clothed 3D humans. To
learn geometry in the canonical space, we utilize the SMPLX mesh [15] in the
canonical space as the geometric guidance. Due to the correspondence between
the posed mesh and the mesh in the canonical space, we propose to first learn
the latent codes in the posed mesh and then assign the latent codes to the
canonical mesh based on the correspondence. By utilizing the posed mesh, image
information in the 2D space can be included by projecting the posed mesh to
the image space.

Given the multi-view images as input, normal and geometry networks are
utilized to extract the features for the vertices on the SMPLX mesh [15]. We
utilize a normal map as the intermediate prediction which helps generate sharp
reconstructed geometry [21].

To integrate the features from different views or poses, we utilize a fusion
network to generate a weighted summation of multiple features. Specifically, we
first concatenate the features with the means and variances of features from all
inputs followed by a Multi-layer Perceptron (MLP) predicting the weight and
transformed features. Then, the weighted features will be integrated into the
latent code through another MLP.

The latent code learned by the neural network is anchored to the SMPLX
mesh in the canonical space, which serves as the geometry guidance to recon-
struct the 3D geometry. Because of the sparsity of the vertices, we utilize a
SparseConvNet to generate effective features for any 3D point following [19].
Finally, we use the trilinear interpolation to extract the latent code followed by
an MLP to produce the SDF which models the signed distance of a point to the
nearest surface.

2 Related Work

Implicit Neural Representations. Recently, the implicit representation en-
coded by a deep neural network has gained extensive attention, since it can
represent continuous fields and can generate the details on the clothes, such as
wrinkles and facial expressions. Implicit representation has been applied suc-
cessfully to shape representation [16,18, 26]. Here we utilize the signed distance
function (SDF) as the implicit representation, which is a continuous function
that outputs the point’s signed distance to the closest surface, whose sign en-
codes whether the point is inside (negative) or outside (positive) of the water-
tight surface. The underlying surface is implicitly represented by the isosurface
of SDF (·) = 0.
3D Clothed Human Reconstruction. Reconstructing humans has been widely
studied given the depth maps [4, 22, 27], images [2, 10, 14], or videos [11, 13] as
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Fig. 1. Overview of our clothed human reconstruction pipeline.

the input. Utilizing the SMPLX mesh, the existing works show promising results
with the RGB image as the input. NeuralBody [19] adopts the posed SMPLX
mesh to construct the latent code volume that aims to extract the implicit pose
code. ICON [24] proposes to refine the SMPLX mesh and normal map iteratively.
SelfRecon [9] utilizes the initial canonical SMPLX body mesh to calculate the
canonical implicit SDF. Motivated by these methods, we propose to utilize the
SMPLX mesh in the canonical space as a geometric prior to reconstruct the
clothed humans.

3 Methodology

Given the multi-view and multi-pose RGB images of human and SMPLX pa-
rameters as the input, we aim to reconstruct the clothed 3D geometry in the
canonical space. Here the input images are denoted as {Ik}Kk=1, where k denotes
the image index and K is the number of images. The corresponding SMPLX pa-
rameters are denoted as {θk, βk, sk, tk}Kk=1, where θk, βk are the pose and shape
parameters of SMPLX and sk, tk are the camera parameters used for projection.

3.1 Multi-view and Multi-pose Image Feature Encoding

Our feature extraction networks utilizes multi-view and multi-pose images {Ik}Kk=1

as input and outputs the geometric feature maps that help to predict the 3D
geometry in the canonical space. Specifically, we first adopt the normal network
Fnormal to extract the normal maps and then utilize the geometry network Fgeo

to generate geometric feature maps {Fk}Kk=1 that will be further utilized to ex-
tract the pixel-aligned features for the vertices on the posed mesh.

Fk = Fgeometry (Fnormal (Ik)) k = 1, 2, · · · ,K (1)
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In particular, we adopt the pretrained image-to-image translation network
from PIFuHD [21] as our normal network, and use the pretrained ResUNet34 [8]
backbone as our geometry network.

3.2 Structured Latent Codes

After obtaining the geometric feature maps {Fk}Kk=1, we extract the pixel-aligned
features for each vertex vi

k on the posed mesh M(θk, βk). For each vertex vi
k, we

first project it to the image space by utilizing the weak-perspective projection
Φ according to camera parameters scale sk and translation tk, then adopt the
bilinear interpolation operation to extract the pixel-aligned features f i

k.

Φ : x̂ = sΠ(x) + t, x ∈ R3, x̂ ∈ R2 (2)

f i
k = bilinear

(
Fk, Φ

(
vi
k, sk, tk

))
(3)

where Π is the orthogonal projection, x is the point in 3D space and x̂ is the
projected points in 2D image space.

To integrate the feature of the i-th vertex in the canonical space from multiple
views/poses, we use a fusion network that takes {f i

k}Kk=1 as the input and outputs
the integrated feature li, which is illustrated in Figure 1. Specifically, the mean
µi and variance σi of features {f i

k}Kk=1 is calculated and then concatenated with
f i
k to serve as the input of a MLP. The MLP predicts the new feature vector

and weight {wi
k}Kk=1 for each feature, which generates a weighted sum of features

from multiple inputs. The weighted feature is finally forwarded to an MLP for
feature integration, li which serves as the structured latent code for the vertex
vi.

Different from the latent code in NeuralBody [19] which is initialized ran-
domly for optimizing specific humans, our latent code is the feature vector
learned by a network with the normal map as the input, which can general-
ize to humans unseen from training ones.

The above-mentioned latent codes are generated based on the posed mesh.
The posed mesh and the canonical mesh share the same latent codes because
of their topology correspondence which forms the set of latent codes by Q =
{l1, l2, · · · , lNV }, li ∈ Rd. Here NV represents the number of vertices.

3.3 Implicit Neural Shape Field

The learned latent codes are anchored to a human body model (SMPLX [15])
in the canonical space. SMPLX is parameterized by shape and pose parameters
with NV = 10, 475 vertices and NJ = 54 joints. The locations of the latent codes
Q = {l1, l2, · · · , lNV } are transformed for learning the implicit representation by
forwarding the latent codes into a neural network

To query the latent code at continuous 3D locations, trilinear interpolation
is adopted for each point. However, the latent codes are relatively sparse in the
3D space, and directly calculating the latent codes using trilinear interpolation
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will generate zero vectors for most points. To overcome this challenge, we use
a SparseConvNet [19] to form a latent feature volume V ∈ RH×H×H×d which
diffuses the codes defined on the mesh surface to the nearby 3D space.

V = Fdiffuse

(
{l1, l2, . . . , lNV }

)
(4)

Specifically, to obtain the latent code for each 3D point, trilinear interpolation
is employed to query the code at continuous 3D locations.

Here the latent code will be forwarded into a neural network φ to predict the
SDF Fsdf (x) for 3D point x.

Fsdf (x) = φ( trilinear (V,x)) (5)

3.4 Loss Function

During training, we sample NS spatial points X surrounding the ground truth
canonical mesh. To train the implicit SDF, we deploy a mixed-sampling strategy:
20% for uniform sampling on the whole space and 80% for sampling near the
surface. We adopt the mixed-sampling strategy because of the following two
reasons. First, sampling uniformly in the 3D space will put more weight on the
points outside the mesh during network training, which results in overfitting
when sampling around the iso-surface. Second, sampling points far away from
the reconstructed surface contribute little to geometry reconstruction, which
increases the pressure of network training.

Overall, we enforce 3D geometric loss Lsdf and normal constraint loss Lnormal.

L = λsdfLsdf + λnormalLnormal (6)

3D Geometric Loss. Given a sampling point x ∈ X , we employ the L2 loss
between the predicted Fsdf (x) and the ground truth Gsdf (x), which are truncated
by a threshold δ,

Lsdf =
1

NS

∑
x∈X

∥C(Fsdf (x), δ)− C(Gsdf (x), δ)∥2 . (7)

Here C(·, δ) = max(−δ,min(·, δ)).
Normal Constraint Loss. Beyond the geometric loss, to make the predicted
surface smoother, we deploy Eikonal loss [6] to encourage the gradients of the
sampling points to be close to 1.

Lnormal =
1

NS

∑
x∈X

∥∥∥∇xFsdf (x)∥2 − 1
∥∥
2
. (8)
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Fig. 2. The pipeline for data processing.

4 Experiments

4.1 Datasets

We use the WCPA [1] dataset as training and testing datasets, which consists of
200 subjects for training and 50 subjects for testing. Each subject contains 15
actions, and each action contains 8 RGB images from different angles (0, 45, 90,
135, 180, 225, 270, 315). Each image is an 1280×720 jpeg file. The ground truth
of the canonical pose is a high-resolution 3D mesh with detailed information
about clothes, faces, etc. For the training phase, we randomly select 4 RGB
images with different views and poses as inputs to learn 3D human models.

4.2 Image Preprocessing

Image Cropping. For each image, we first apply VarifocalNet [28] to detect
the bounding boxes to localize the humans. Next, we crop the input images with
the resolution of 512×512 according to the bounding boxes. When the cropped
images exceed the bounds of the input images, the cropped images will be padded
with zeros.
Mask Generation. For each image, we first apply DensePose [7] to obtain part
segmentations. Then we set the parts on the human as the foreground human
mask and set the values of the background image pixels as zero. The masked
images are served as the input of our network.

The mask is then refined using the MatteFormer [17], which can generate
better boundary details. Following [23], the trimap adopted in [17] is generated
based on the mask using the erosion and dilation operation.

4.3 SMPLX Estimation and Optimization

It is very challenging to get accurate SMPLX from 2D RGB images due to the in-
herent depth ambiguity. First, we use Openpose [3] to detect the 2D keypoints of
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(a) image (b)	normal (d)	w/o	normal (e)	w/o	smplx
refinement (f)	full	model(c)	w/o	mask

Fig. 3. The visualization results on the test dataset.

the person in the image and then use ExPose [5] to estimate the SMPLX param-
eters and camera parameters. However, due to extreme illumination conditions
and complex backgrounds, the SMPLX obtained in this way is not sufficiently
accurate, and we need to refine the SMPLX parameters further. We utilize the
2D keypoints and masks to optimize SMPLX parameters θ, β. For the 2D key-
points loss, given the SMPLX 3D joints location J(θ, β), we project them to the
2D image using the weak-perspective camera parameters s, t. For the mask loss,
we utilize PyTorch3D [20] to render the 2D mask given the posed mesh M(θ, β).
Then the mask loss is calculated based on the rendered mask and the pseudo
ground truth mask Mgt.

θ∗, β∗ = min
θ,β

∥Φ(J(θ, β), s, t)− Jgt∥+ λ ∥Ψ(M(θ, β), s, t)−Mgt∥ (9)

4.4 Implementation Details

During training, we randomly choose K = 4 images from total of 8 ∗ 15 im-
ages as input to extract the 2D feature map. Taking into account the memory
limitation, we set the latent feature volume V ∈ R224×224×224×64, where each
latent code li ∈ R64. During training, we randomly sample Nt = 10, 000 points
around the complete mesh. To stably train our network, we initialize the SDF to
approximate a unit sphere [25]. We adopt the Adam optimizer [12] and set the
learning rate lr = 5e−4, and it spends about 40 hours on 2 Nvidia GeForce RTX
3090 24GB GPUs. For inference, the surface mesh is extracted by the zero-level
set of SDF by running marching cubes on a 2563 grid.

4.5 Results

Our method achieved very good results in the challenge, demonstrating the su-
periority of our method for 3D human reconstruction from multi-view and multi-
pose images. To further analyze the effectiveness of our method, we performed
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different ablation experiments. According to the results as shown in the table 1
and the figure 3, removing the background allows the model to better reconstruct
the human body. The two-stage approach of predicting the normal vector map
as input has a stronger generalization line on unseen data compared to directly
using the image as input. What is more important is that the precision of SM-
PLX has a significant impact on the reconstruction performance, demonstrating
the necessity of SMPLX optimization.

w/o mask w/o normal map w/o SMPLX refinement full model

Chamfer Distance ↓ 1.1277 1.0827 1.1285 0.9985

Table 1. Quantitative metrics of different strategies on the test dataset.

5 Conclusion

Modeling 3D humans accurately and robustly from challenging multi-views and
multi-posed RGB images is a challenging problem, due to the varieties of body
poses, viewpoints, light conditions, and other environmental factors. Our key
idea is to overcome these challenges by constructing structured latent codes as
the inputs for implicit representation. The latent codes integrate the features
for vertices in the canonical pose from different poses or views. To this end, we
have contributed a deep-learning based framework to incorporate the parametric
SMPLX model and non-parametric implicit function for reconstructing a 3D
human model from multi-images.
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