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Abstract

Video generative models are receiving particular attention given their ability to gen-
erate realistic and imaginative frames. Besides, these models are also observed to
exhibit strong 3D consistency, significantly enhancing their potential to act as world
simulators. In this work, we present Vidu4D, a novel reconstruction model that
excels in accurately reconstructing 4D (i.e., sequential 3D) representations from
single generated videos, addressing challenges associated with non-rigidity and
frame distortion. This capability is pivotal for creating high-fidelity virtual contents
that maintain both spatial and temporal coherence. At the core of Vidu4D is our pro-
posed Dynamic Gaussian Surfels (DGS) technique. DGS optimizes time-varying
warping functions to transform Gaussian surfels (surface elements) from a static
state to a dynamically warped state. This transformation enables a precise depiction
of motion and deformation over time. To preserve the structural integrity of surface-
aligned Gaussian surfels, we design the warped-state geometric regularization
based on continuous warping fields for estimating normals. Additionally, we learn
refinements on rotation and scaling parameters of Gaussian surfels, which greatly
alleviates texture flickering during the warping process and enhances the capture
of fine-grained appearance details. Vidu4D also contains a novel initialization
state that provides a proper start for the warping fields in DGS. Equipping Vidu4D
with an existing video generative model, the overall framework demonstrates high-
fidelity text-to-4D generation in both appearance and geometry. Project page:
https://vidudd-dgs.github.io.

1 Introduction

The field of multimodal generation exhibits significant advancements and holds great promise for
various applications. Recently, video generative models have garnered attention for their remarkable
capability to craft immersive and lifelike frames [4, 8]. These models produce visually stunning
content while also exhibiting strong 3D consistency [15, 81], largely increasing their potential to
simulate realistic environments.

Parallel to these developments, high-quality 4D reconstruction has made great strides [19, 58, 63,
94, 100]. This technique involves capturing and rendering detailed spatial and temporal information.
When integrated with generative video technologies, 4D reconstruction potentially enables the
creation of models that capture static scenes and dynamic sequences over time. This synthesis
provides a more holistic representation of reality, which is crucial for applications such as virtual
reality, scientific visualization, and embodied artificial intelligence.
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(a) Prompt: A portrait captures the dignified presence of an orange cat with striking blue eyes. The cat wears a
single pearl earring. Her head tilts in contemplation, reminiscent of a Dutch cap.

(e) Prompt: A small, fluffy creature with an appearance reminiscent of a mythical being. The creature’s fur
texture is rendered in high detail. The monster’s large eyes and open mouth express wonder and curiosity.

(f) Prompt: An isolated coloured abstract sculpture with a dali shape.

Figure 1: Text-(to-video)-to-4D samples generated by equipping Vidu4D with a pretrained video
diffusion model [4]. For each sample, we exhibit per-frame 3D rendering for novel-view color, normal,
and surfel feature. We observe that Vidu4D can reconstruct precisely detailed and photo-realistic 4D
representation. See our accompanying videos in our project page for better visual quality.


https://vidu4d-dgs.github.io

However, achieving high-fidelity 4D reconstruction from generated videos poses great challenges.
Non-rigidity and frame distortion are prevalent issues that can undermine the temporal and spatial
coherence of the reconstructed content, thus complicating the creation of a seamless and coherent
depiction of dynamic subjects.

In this work, we introduce Vidu4D, a novel reconstruction pipeline designed to accurately recon-
struct 4D representations from single generated videos, facilitating the creation of 4D content with
high precision in spatial and temporal coherence. Vidu4D contains two novel stages, namely, the
initialization of non-rigid warping fields and Dynamic Gaussian Surfels (DGS), together enabling the
reconstruction of high-fidelity 4D content with detailed appearance and accurate geometry.

Specifically, the proposed DGS optimizes non-rigid warping functions that transform Gaussian
surfels from static to dynamically warped states. This dynamic transformation accurately represents
motion and deformation over time, crucial for capturing realistic 4D representations. Besides, DGS
demonstrates superior 4D reconstruction performance due to two other key aspects. Firstly, in terms
of geometry, DGS adheres to Gaussian surfels principles [16, 28] to achieve precise geometric repre-
sentation. Unlike existing methods, DGS incorporates warped-state normal consistency regularization
to align surfels with actual surfaces with learnable continuous fields (w.r.t. spatial coordinate and
time) to ensure smooth warping when estimating normals. Secondly, for appearance, DGS learns
additional refinements on the rotation and scaling parameters of Gaussian surfels by a dual branch
structure. This refinement reduces the flickering artifacts during warping and allows for the precise
rendering of appearance details, resulting in high-quality reconstructed 4D representations.

By integrating Vidu4D with an existing powerful video generative model named Vidu [4], the
overall framework demonstrates exceptional capabilities in text-to-4D generation. We provide 4D
visualization results in Fig. 1. Extensive experiments based on the generated videos verify the
effectiveness of our method compared to current state-of-the-art methods.

2 Related works

3D representation. Transforming 2D images into 3D representations has long been a central chal-
lenge in the field. Initially, triangle meshes were favored for their compactness and compatibility
with rendering pipelines [9, 17, 67, 78, 82, 93]. However, the transition to more sophisticated volu-
metric methods was inevitable due to the limitations of surface-based approaches. Early volumetric
representations included voxel grids [35, 48, 61, 72] and multi-plane images [20, 54, 74, 75, 80, 105],
which, despite their straightforwardness, demanded intricate optimization strategies. The introduction
of neural radiance fields (NeRF) [55] marked a great advancement, offering an implicit volumetric
neural representation that could store and query the density and color of each point, leading to
highly realistic reconstructions. The NeRF paradigm has since been improved upon in terms of
reconstruction quality [5, 6, 33, 53, 92] and rendering [12, 23, 25, 27, 41, 45, 49, 6466, 85, 102].
To address the limitations of NeRF, such as rendering speed and memory usage, recent work dubbed
3D Gaussian splatting (3DGS) [33] has proposed anisotropic Gaussian representations with GPU-
optimized tile-based rasterization. This has opened up new avenues for surface extraction [24, 28],
generation [14, 77, 96], and large-scale scene reconstruction [34, 46, 70], with 3DGS emerging as a
universal representation for 3D scenes and objects. Gaussian surfels methods [16, 28] further exhibit
advantages in modeling accurate geometry. While these methods have significantly advanced the
field of static 3D representation, capturing the dynamic aspects of real-world scenes with non-rigid
motion and deformation introduces a distinct set of challenges that demand innovative solutions.

Dynamic reconstruction and generation. The dynamic reconstruction of scenes from video captures
presents a more complex challenge than static reconstruction, necessitating the capture of non-rigid
motion and deformation over time [30, 37, 60, 76, 88]. Traditional methods have explored dynamic
reconstruction using synchronized multi-view videos [1, 3, 11, 36, 48, 59, 73, 83, 84, 86, 89] or
have focused on specific dynamic elements like humans or animals. More recently, there has been
a shift towards reconstructing non-rigid objects from monocular videos, which is a more practical
yet challenging scenario. One approach involves incorporating time as an additional input to the
neural radiance field [11, 38, 68, 98], allowing for explicit querying of spatiotemporal information.
Another line of research decomposes the spatiotemporal radiance field into a canonical space and
a deformation field, representing spatial attributes and their temporal variations [18, 19, 19, 21, 22,
31, 39, 44, 47, 57, 58, 63, 69, 79, 95, 104]. With advancements in 3DGS, deformable-GS [100]
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Figure 2: Illustration of the pipeline of Vidu4D, including the initialization stage and the DGS stage.

and 4DGS [94] have been developed, utilizing neural deformation fields with multi-layer perception
(MLP) and triplane, respectively. SCGS [29] and dynamic 3D Gaussians [52] also advance the field
by modeling time-varying scenes. Building on these advances, our work introduces dynamic Gaussian
surfels, a novel extension of Gaussian representations that enhances the quality of both appearance and
surface reconstruction under dynamic scenarios. A concurrent work DGM [43] builds time-consistent
meshes from a monocular video with 3D Gaussian Splatting. In the realm of 3D or 4D generation,
our approach diverges from recent progress in optimization-based [2, 13, 14, 40, 42, 62, 71, 88, 90],
feed-forward [26, 91, 106], and multi-view reconstruction methods [15, 50, 51] by leveraging a video
generative model to achieve generation capabilities. Our primary focus is on preserving high-quality
appearance and geometrical integrity from generated videos. This results in a generation process that
not only captures the nuances of motion and deformation but also maintains the high standards of
realism and detail that are essential for creating immersive and lifelike virtual 3D representations.

3 Method

We start by introducing the problem definition for 4D reconstruction in Sec. 3.1. Following that,
we introduce our Vidu4D which encompasses two novel stages. The first stage is designed to learn
Dynamic Gaussian Surfels (DGS), ensuring precise representation of both visual appearance and
geometric structure during the non-rigid reconstruction process, as detailed in Sec. 3.2. The second
stage focuses on establishing the initial non-rigid warping fields of DGS, as detailed in Sec. 3.3.

3.1 Problem Definition

When given a single sequence of RGB video with 7" frames, the goal of 4D reconstruction is to
determine a sequential 3D representation that could be rendered to fit each video frame as much
as possible. Specifically, suppose the 3D representation for the ¢-th frame (termed as time ?) is
parameterized by 6,, where t = 1,--- | T. Given a differentiable rendering mapping g, we could
obtain the rendered color at the frame pixel X! € R?. We choose volume rendering as commonly
adopted in NeRF [55], Gaussian Splatting [33], and Gaussian Surfels [16, 28]. The optimization of
4D reconstruction can be implemented by minimizing the empirical loss as

T
min 3037 £(e(x) = g0, {xt}im v (21, 0

t=1 xt

where x! € R3 is the i-th 3D point sampled or intersected with Gaussian primitives along the ray that
emanates from the frame pixel x*; N is the number of sampled or intersected points per ray; c(x*)
and ¢(x?!) are the rendered color and the observed color at X!, respectively.

In the following, we detail the proposed Vidu4D, a reconstruction pipeline comprising two key stages
as illustrated in Fig. 2, including a field initialization stage and a DGS stage.

3.2 Dynamic Gaussian Surfels

By optimizing Eq. (1), essentially our goal is to build a sequential 3D representation that could deform
to be consistent with each 2D frame. We first start by considering an ideal video exhibiting different
views of the same static object without object deformation, movement, or video distortion. To model
the 3D representation with high appearance fidelity and geometry accuracy, we follow the method of
using differentiable 2D Gaussian primitives as proposed by recent Gaussian Surfels advances [16, 28].
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Figure 3: Illustration of the overall framework and our DGS in detail. For DGS, Gaussian surfels in
the static state are transformed to the warped state by learning non-rigid warping functions conditioned
on time ¢ and coordinate u. We incorporate warped-state normal regularization for accurate geometry,
and refined rotation and scaling matrices of Gaussian surfels for detailed appearance. Both branches
in the warped state, including with and without refinement, share the same centers of Gaussian surfels
and the same warping functions. “Field init.” stands for field initialization as introduced in Sec. 3.3.

Specifically, the k-th Gaussian surfel (of the total K) is characterized by a central point pj € R? and
a local coordinate system centered at pj. with two principal tangential vectors t}, € R3*1, ¢ € R3*!
and scaling factors s}, € R, s} € R. Here, we use the notation “*” to represent parameters in the
static state. A Gaussian surfel is computed as a 2D Gaussian defined in a local tangent plane in the
world space. Following [28], for any point u = (u, v) located on the uv coordinate system centered

at py,, its coordinate in the world space, denoted as P}, (u) € R3*1 s computed by

Pi(u) = pj + sutyu+ sitie = [RSE pi (w0, 1,1)7, )
where R} = [t%,t%,t2 x tX] € SO(3) denotes the rotation matrix, and the diagonal matrix S} =

diag(s}, s},0) € R3*3 denotes the scaling matrix.

In this work, our focus is on 4D reconstruction from a single generated video, which may exhibit
large non-rigidity, distortion, or illumination changes. We introduce Dynamic Gaussian Surfels
(DGS), a method designed to achieve precise 4D reconstruction while accommodating non-rigidity
and other time-varying effects.

Motivated by recent advancements in non-rigid reconstruction methods [57, 88, 98], we aim to ensure
that the target object maintains a consistent static state across different frames, thereby mitigating
non-rigidity and distortion effects. To achieve this, we employ warping techniques on each Gaussian
surfel represented by P;*(u), transforming them into a corresponding Gaussian surfel P/ (u) at time
t, which is centered at p}, € R® with a rotation matrix R, € SO(3) and a scaling matrix S}, € R3*3,

Non-rigid warping for Gaussian surfels. We now build the warping process from the static state to
the warped state. We leverage a non-rigid warping function with B bones as key points to ease the
training of deformation. In the static state, the b-th bone is represented by 3D Gaussian ellipsoids [97],
with more details provided in the Appendix. We let J¢ € SE(3) represent a rigid transformation that
moves the b-th bone from its static state to the warped state at time ¢. In effect, J} is achieved by
non-linear mappings using a multi-layer perception (MLP) with SE(3) guaranteed, as will be given
later in Eq. (5). The non-rigid warping function can be written as the weighted combination of J,
where we apply dual quaternion blend skinning (DQB) [32] to ensure valid SE(3) after combination,

B
Jt = R(Zw,ﬁQ(JZ)), 3)
b=1

where w} is the b-th element of the skinning weight vector w' € RE*1 as detailed in the Appendix;

Q and R denote the quaternion process and the inverse quaternion process, respectively. In this case,
there is J* € SE(3).

We therefore rewrite the warping as J* = [Rf, T?] with the rotation R’ € SO(3) and translation
T! € R?, and apply the corresponding transformation to Eq. (2) by

Pi(u) =J'P;(u) = [R'R;S; R'p;+T'] (u,v,1,1)7. )



Note that Eq. (4) holds for any given point P} (u) including the center point of the k-th Gaussian
surfel (i.e., pj) when u = (0, 0). By deriving Eq. (4), we enable connection of the warping function
w.r.t. to any point u = (u, v) on the local coordinate system centered at pj,, which is needed later in
Eq. (8) where u is an intersection with Gaussian surfels and a ray that emanates from the frame pixel.

Warped-state normal regularization. To accurately capture the geometric representation, we
follow similar methods in Gaussian Surfels [16, 28] to add normal consistency regularization which
encourages all Gaussian surfels to be locally aligned with the actual surfaces. Differently, unlike 3D
reconstruction for static scenes, 4D reconstruction commonly faces non-rigidity and distortion. Thus
simply performing regularization to promote surface-aligned Gaussian surfels like previous methods
harms the structural integrity due to the non-rigid warping.

We therefore design a warped-state normal regularization. As mentioned, each point P/ (u) in the
warped state at time ¢ is transformed from its corresponding static point P}’ (u) based on the warping
function in Eq. (4), namely, P}(u) = J* P} (u) with J* composed by J}. To maintain the structural
integrity to a large extent when regularizing normal, we design J} as a continuous field that takes
both the point P}’ (u) (or equivalently, u in the local coordinate system) and the time ¢ as conditions.
By this setting, J} is expected to change continuously with the change of u or ¢. We implement the
continuous field by using a NeRF-style MLP which directly outputs a 6-dimensional dual quaternion,
and rely on the inverse quaternion process R to guarantee SE(3), i.e.,

J; = R(MLP(v{; u,t)), ®)

where '75 is a learnable latent code for encoding the b-th bone at time ¢; both u and ¢ are sent to the
MLP as conditions to obtain J;. Thus J* is also expected to be continuous w.~.7. u and ¢.

Based on the above design, the normal consistency loss at time ¢ is obtained similar to [28],

- t \V4 t
L, :Zwk(l—n,INt), N'(z,y) = VaP X VyP
k

- (6)
|V.pt x Vypt|’

where k indexes over intersected surfels along the ray that emanates from the frame pixel X; wy =

ar Gr(u(x)) Hf;l(l — a; G;(u(x))) denotes the blending weight of the intersection point; ny,
represents the normal of the surfel that is oriented towards the camera; Nt, computed with finite

differences, is the surface normal estimated by the nearby depth point p’ at warped state time ¢.

In summary, by learning a continuous warping field and aligning the surfel normal with the estimated
surface normal in the warped state, we ensure that all Gaussian surfels locally approximate the actual
object surface without being noticeably impaired by the non-rigid warping.

Dual branch structure with refinement. To further achieve fine-grained appearance and reduce the
texture flickering during warping, we propose to learn refinement terms for adjusting the rotation
matrices R}, and scaling matrices S}, (defined in Eq. (2)) in the static state. We suppose the refinement
terms are AR} € SO(3) and AS;, € R3*3, respectively. Note that the third-axis of AS} is no longer
necessarily 0. During refinement, we remain the center points p}, and the warping J* (i.e., including

both R* and T?) to be unchanged. The new warped process is formulated as,
Pl(u) = [RYARER})(S; + ASE) Ripi + T (u,0,1,1)7. 7

During the training of DGS, we maintain two branches including one with refinement and one without.
In the warped state, both branches are jointly trained with shared warping functions and centers
of Gaussian primitivesz. Due to the involvement of AR} and ASj, both branches have different
rotation and scaling matrices of Gaussian primitives.

Rasterization. Given a frame pixel X and a camera ray that emanates from X, following the static-
state methods to calculate intersection coordinates with Gaussian primitives along the ray [28, 33],
we could obtain warped-state intersection coordinates based on Eq. (4) and Eq. (7). We then perform
the volume rendering process [28] that integrates alpha-weighted appearance along the ray by

k—1

chakgk H — a; G, (u(x))), ®)

Here, since the third-axis of the refined scaling matrix is not necessarily 0, we adopt “Gaussian primitive”
for commonly referring to both Gaussian surfel and the refined Gaussian.



where k indexes over intersected Gaussian primitives along the ray that emanates from the frame
pixel X; o, and ¢, denote the opacity and view-dependent appearance parameterized with spherical

2 2
u -25—1)
k-th intersection point u(x) which could be directly calculated when given P} (u) or P;*(u) and
the corresponding local coordinate system. During implementation, Gi(u(X))) is further applied a
low-pass filter following [7, 28].

harmonics of the k-th Gaussian surfel, respectively; Gi (u(X)) = exp (f corresponds to the

A detailed architecture of DGS is depicted in Fig. 3. Important symbols are summarized in our
Appendix.

3.3 Field Initialization

Given that the camera trajectory of generated videos is unknown, SfM methods like COLMAP
struggle to converge due to rigidity violations. Additionally, since the background of generated
videos appears to exhibit soft deformation or flickering colors, proper estimation of camera/body
poses through background SfM is hindered. These challenges often result in very few successful
registrations, as demonstrated in previous monocular 4D reconstruction tasks [98].

To address this, we design an implicit field before performing DGS to initialize the camera poses and
establish the continuous warping field in Eq. (5). In this part, we propose the field initialization as
another key component of our pipeline to initialize the continuous warping field of DGS for fast and
stable convergence, as detailed below.

Initially, we train a neural Signed Distance Function (SDF) model [87], leveraging the same warping
structure with bones as utilized in DGS. While DGS transforms Gaussian surfels from the static
state to the warped state for rasterization, the neural SDF reverses this process, mapping points
along camera rays from the warped state back to the static state. For the neural SDF component, we
optimize the reverse warping process and deduce the forward warping as its inverse by minimizing a
cycle loss, inspired by [10, 98]. Subsequently, we initialize MLP(-) in Eq. (5) to obtain warping

functions J {: by the network weights learned by the neural SDF part.

During the rendering of the neural SDF, we perform backward warping on the warped-state sampling
points to the static state,

B
31— R(Zw{:Q(be)‘l), X! = 3h1x, ©)
b=1

which is an inversion of Eq. (3). By querying the SDF with a sample point X* in the static state, we
render RGB and compute the photometric loss to optimize the SDF and the warping field defined in
Eq. (5).

Nevertheless, there are two discrepancies between the neural SDF warping and DGS warping. Firstly,
sampling points of the neural SDF are distributed in the frustum of the camera, while sampling
points of DGS are distributed on the object surface. Additionally, we train the inversion of during
initialization, while we utilize the non-inverse ones in DGS. To resolve the distribution gap and ensure
that faithfully models the forward warping, we add a cycle loss,

Loye = |37 (3F1(XT)) - X2, (10)

where X/ could be either a mesh surface point or a sample point on the camera ray.

After initialization, we extract the canonical space mesh using marching cubes and initialize Gaussian
surfels on it. We set the spherical harmonic in O-th order to the RGB value of the nearest vertices.
The warping field and learned camera poses are retained.

With the field initialization before DGS, our Vidu4D is capable of performing a text-(to-video)-to-4D
generation task with the integration of existing video diffusion models.

4 Experiment

In this section, we provide an extensive evaluation of our method DGS (Sec. 3.2) with the initialization
in Sec. 3.3, comparing both appearance and geometry against previous state-of-the-art methods.
Additionally, we analyze the contributions of each proposed component in detail.
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Figure 4: Novel-view qualitative evaluation compared with SOTA methods including NeRF-based
methods (BANMo [98] and D-NeRF [63]) and Gaussian splatting-based methods (Deformable-
GS [100] and SCGS [29]). We also provide our learned camera poses to baseline approaches for a
fair comparison. These variants are denoted as “w. Poses”. Best view in color and zoom in.

4.1 Implementation

For all qualitative and quantitative experiments, we follow the standard pipeline for dynamic recon-
struction [58], to construct our evaluation setup by selecting every fourth frame as a training frame
and designating the middle frame between each pair of training frames as a validation frame.

Our model configuration involves several key parameters to balance reconstruction and regularization
losses. For the field initialization stage, we use a similar architecture with 8 layers for volume
rendering as in NeRF [55], and initialize MLP for predicting SDF as an approximate unit sphere [101].
We obtain a neural SDF, a warping field, and camera poses after this stage. For the DGS stage, we
initialize centers of the Gaussian surfels with the sampled surface points extracted from the neural
SDF, and initialize the warping field by the forward field from the first stage. The dimension of the
latent code embedding ~; is set as 128. Following BANMo [98], we adopt 25 bones to optimize
skinning weights. For each reconstruction, the overall training takes over 1 hour on an A800 GPU.

4.2 Qualitative Evaluation

In the qualitative evaluation, we visually compare the novel-view reconstructions produced by our
DGS against those generated by other state-of-the-art models, as illustrated in Fig. 4. Our evaluation
focuses on several key aspects including detail preservation, texture quality, and geometric accuracy.
Compared to methods based on implicit fields, the integration of Gaussian in our approach facilitates
the rendering of highly detailed textures. Additionally, benefiting from a more geometry-aware
representation, our method produces superior normal maps compared to those purely Gaussian-based
methods. This also enhances the robustness of our method against artifacts of the generated videos

oo



Table 1: Novel-view quantitative results on generated videos. Evaluation metrics are PSNR, SSIM,
and LPIPS. We report results on three single videos and the averaged results over 30 single videos.

Cat Cheetah Dragon Average over 30 videos
PSNR 1 SSIM 1 LPIPS | |PSNR{ SSIM f LPIPS | |PSNR{ SSIM{ LPIPS || PSNR T SSIM 1 LPIPS |
BANMo [98] 1510 0.6514 02575 | 13.15 0.5921 03241 | 18.48 0.6423 0.3500 | 13.62 £2.99 0.6153 +0.0714 0.3738 & 0.0665
D-NeRF [63] 1515 0.6537 02657 | 1321 0.5930 0.3344 | 18.53 0.6489 0.3527 |21.01 £2.86 0.8519 +0.0717 0.1522 £ 0.0754
Deformable-GS [100] 19.09 0.7815 0.2434 | 2035 0.8039 0.1982 | 24.19 0.9100 0.0992 |13.22 £3.42 0.5934 4 0.0535 0.3749 £ 0.0763
SCGS [29] 19.46 07867 0.2405 | 20.87 0.8123 0.1919 | 24.03 0.9083 0.1009 |21.17 +2.69 0.8547 & 0.0691 0.1504 + 0.0737
Deformable-GS + our field init. | 21.94  0.8123 0.1816 | 2241 0.8200 0.1687 | 26.05 0.9218 0.0894 |22.63 4 2.14 0.8469 + 0.0438 0.1452 + 0.0354
SCGS + our field init. 2325 08268 0.1574 | 2370 0.8338 0.1497 | 2840 0.9375 0.0686 |24.75 £2.11 0.8680 4 0.0440 0.1201 £ 0.0359
Ours 24.63 0.8432 0.1559 | 25.68 0.8843 0.1117 | 28.58 0.9392 0.0618 |27.30 +2.66 0.9152 + 0.0602 0.0877=+ 0.0564
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(d) w/o. warped-state
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Figure 5: Ablation studies on the geometric regularization and refinement strategy. For our full model
shown in (b), we provide our rendered color, rendered normal, and surface normal (estimated from
the depth points for regularization). Additionally, for comparison, we visualize the rendered color for
the case without refinements in (c) and the rendered normal for the case without warped-state normal
regularization in (d), respectively. We showcase our model’s fidelity with close-ups.

like occlusions. For instance, in the third clip of the series, which features a dragon shrouded in
fog, both SCGS and Deformable-GS methods tend to overfit and subsequently show a decline in
performance. In contrast, our method consistently delivers superior results.

4.3 Quantitative Evaluation

We provide the quantitative evaluation comparing our method with state-of-the-art works in Table 1.
Metrics include Peak Signal-to-Noise Ratio (PSNR) to evaluate the fidelity of the reconstructed tex-
tures, Structural Similarity Index (SSIM) for the quality evaluation, and LPIPS [103] as a perceptual
metric. Our method exhibits superiority over all baseline methods, even with our learned poses, e.g.,
~2.5 PSNR increase over SCGS with poses for the averaged results.

4.4 Ablations

To understand the contributions of each component in Vidu4D, especially DGS, we conduct ablation
studies in this section. We remove or alter specific elements of our model and observe the resulting
performance changes in both appearance and geometry reconstruction.

Geometric regularization. We evaluate the impact of warped-state normal regularization by disabling
it during training. From Fig. 5(b)(d), we observe that when removing the regularization, there is
an obvious degradation in the structural integrity of surface-aligned Gaussian surfels, leading to
noticeable inconsistency in the reconstructed 4D models.

Refinement strategy. We examine the effect of omitting refinements by keeping one branch (the
concept of branches could be better visualized in Fig. 3) during training, shown in Fig. 5(b)(c). The
performance indicates that removing refinements increases the loss of fine-grained appearance details.
Additionally, we also find that refinements are crucial for mitigating the texture flickering issue.

Additional ablations. Please refer to the Appendix for additional ablation studies that detail the
effectiveness of our refinement strategy and field initialization.



5 Conclusion

We introduce Vidu4D as a novel reconstruction model to achieve high-fidelity 4D representations
from single generated videos. Vidu4D is powerful with our proposed DGS which builds the non-rigid
warping field to transform Gaussian surfels, ensuring precise capture of motion and deformation
over time. DGS also introduces key innovations that greatly enhance the accuracy and fidelity of
4D reconstruction, including dual branch refinement and warped-state geometric regularization.
Our experiments demonstrate that Vidu4D outperforms existing methods in both quantitative and
qualitative evaluations, highlighting its superiority in generating realistic and immersive 4D content.

Limitations and broader impact. While Vidu4D with DGS presents a significant performance in
4D reconstruction, currently there are still limitations such as the reliance on video quality, scalability
challenges for large scenes, and computational difficulties in real-time applications. Additionally,
when equipping Vidu4D with generative models, as with any generative technology, there is a risk of
producing deceptive content which needs more caution.
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A Appendix / Supplemental Material

Table 2: A summary of important symbols in DGS.

Symbol Definition and Usage

th e R ¢ e R®*! Principal tangential vectors in the static state.

sn ER, sy R Scaling factors in the static state.

pi € R¥! Center point coordinate (world space) of the k-th Gaussian surfel in the static state.

P (u) € R®! Coordinate (world space) in the static state, given u = (u, v) on the local uv coordinate system centered at pj,.
R = [ti, t),t;, x t;] € SO(3) Rotation matrix of the k-th Gaussian surfel in the static state.

S; = diag(s}, s3,0) € R®*3 Scaling matrix of the k-th Gaussian surfel in the static state, a diagonal matrix.

pi € R?*! Center point coordinate (world space) of the k-th Gaussian surfel in the warped state.

Pl(u) € R®! Coordinate (world space) in the warped state, given u = (u,v) on the local uv coordinate system centered at pj,.

c; € R¥ V€ R¥*3 Aj € R®3 Center, rotation matrix, and diagonal scaling matrix of the b-th Gaussian ellipsoid bone.

w! e RPX! Skinning weight vectors.

Ji € SE(3) A rigid transformation that moves the b-th bone from its static state to the warped state at time ¢.
J' = [R', T] € SE(3) The warping function, a weighted combination of J}.

AR The quaternion process and the inverse quaternion process.

wi e R A learnable latent code for representing the body pose at time .

n; € R3*! The normal of the k-intersected Gaussian surfel that is oriented towards the camera.

Nt e R¥*! The surface normal estimated by the nearby depth point p* at warped state time ¢.

AR;j, € SO(3) Learnable refinement term for adjusting R,.

AS}; € 50(3) Learnable refinement term for adjusting Sj.

A.1 Details of Skinning Representation

As mentioned in the main paper, the warping process from the static state to the warped state is
modelled as a time-varying non-rigid warping function with B bones to be key points. In the
static state, the b-th bone is represented by 3D Gaussian ellipsoids [97] with the center ¢; € R3*1,
rotation matrix V; € R3*3, and diagonal scaling matrix A; € R3*3. For a 3D point P} (u), the
skinning weight vectors w! € RP*1 at time # is calculated by the normalized Mahalanobis distance
following [98]

mlto = (Pl;k(u) _Ci)TQi(PI:(u) _02)7 Wt :Jsoftmax<mt1amt27"' 7mtB)T, (11)

where m} denotes the squared distance between P;(u) and the b-th bone; ¢! € R3*! is the center

of the b-th bone at time ¢, and Q} = VZTAZVf7 is the precision matrix composed by the bone
orientation matrix V| € R3*3 at time ¢ and A;. Specifically, there is (V}|c?) = J¢(V}|c*) with ¢},
V;, and A} being learnable parameters. ogoftmax 1S the softmax function.

A.2 Ablation Studies of Field Initialization and Refinement

In dynamic videos captured in the wild, one of the primary challenges is the initialization of camera
poses. In synthetic videos, preserving temporal consistency in texture and geometry is problematic,
which significantly complicates the task of camera registration. To address this, we utilize an implicit
field to both initialize the camera poses and establish the warping field. Initially, we estimate the
transformation for each frame, followed by the computation of coarse camera poses through an
iterative process. Subsequently, we adopt the approach outlined in NeuS [87] for scene representation.
Feature extraction is performed using DinoV2 [56], facilitating unsupervised registration. To enhance
this process, we train an additional channel in NeuS specifically for rendering features, which are then
employed for registration purposes as described in RAC [99]. The camera poses without initialization
and refined camera poses are depicted in Fig. 6. Without field initialization, the performance of DGS
will degrade, as shown in Table 3. Also, please refer to the quantitative ablation of refinement in
Table 3.

A.3 Additional Qualitative Comparison

In this section, we present a detailed comparison of our results with previous works, as illustrated in
Fig. 7-10. Our method consistently achieves high-quality texture details while maintaining smooth
and realistic geometry.
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Table 3: Quantitative ablation studies of the initialization and refinement.

Cat Cheetah Dragon
PSNR 1 SSIM 1 LPIPS | |PSNR 1 SSIM 1 LPIPS | |PSNR1{ SSIM 1 LPIPS |
Ours w.o. init. 20.15 0.7961 0.2393 | 2096 0.8194 0.1940 | 25.33 0.9146 0.0938
Ours w.o. refinement | 24.19  0.8196 0.1797 | 24.10 0.8582 0.1242 | 27.71 0.9128 0.0687
Ours full 24.63 0.8432 0.1559 | 25.68 0.8843 0.1117 | 28.58 0.9392 0.0618

(a) Camera poses without field initialization (b) Refined camera poses

Figure 6: Coarse camera poses and refined camera poses.

A.4 Interpolation on Time and Views

We present results for interpolation on time and views, as illustrated in Fig. 11 and Fig. 12.

A.5 Broader Impact

Generative models used in video generation might pose risks, for example, the potential for creating
deepfakes or other misleading content that could be used for harmful purposes like misinformation,
privacy invasion, or defamation. To mitigate these risks, we have chosen to release only the recon-
struction code, deliberately avoiding the release of components that could facilitate the generation of
content with ethical concerns. This decision ensures that our contribution is focused on advancing
reconstruction techniques without enabling the creation of new, potentially harmful video content.

Besides, we have carefully considered the potential ethical risks associated with generative models,
particularly in video content creation. To address these concerns, our model includes robust safety
mechanisms designed to screen and prevent any misuse. We believe these measures effectively
mitigate potential ethical risks and align with the standards of the community.
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Figure 7: Additional qualitative comparison with more novel views.
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Deformable-GS

Deformable-GS w. Poses

SCGS w. Poses

DGS (Ours)

Figure 8: Additional qualitative comparison with more novel views.
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Figure 9: Additional qualitative comparison with more novel views.
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DGS (Ours)

Figure 10: Additional qualitative comparison with more novel views.
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Figure 11: Interpolation on time and views.
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Figure 12: Interpolation on time and views.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .

Justification: Our main claims in the abstract and introduction accurately reflect the contri-
butions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss it Sec. 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We build our proof upon papers cited.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All relevant details are provided within the text of our paper or through the
references we have cited.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We will release it after acceptance.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All relevant details are provided within the text of our paper or through the
references we have cited.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Please refer to our Tab. 1.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please refer to Sec. 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The NeurIPS Code of Ethics is conformed.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss it in Sec. 5.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the assets properly.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:
Justification: No new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: No human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .
Justification: No human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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