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Figure 1: Illustrating xFlow in Diffusion Models. (a) Demonstrates the ambiguity in training targets caused
by crossing flows, leading to the xFlow problem. (b) Shows how our method eliminates flow crossing by
increasing the dimensionality of network inputs, thus resolving the xFlow problem. (c) Depicts how xFlow
leads to variable sampling results across different steps, undermining deterministic sampling even for Stable
Diffusion (Rombach et al., 2022). (d) Top: Highlights the discrepancies between outcomes from reduced
steps sampling (blue) versus standard results (from 1000 steps in red) due to xFlow. Bottom: Our method
ensures consistent outputs across different sampling steps. (e) Top: Exhibits instances where xFlow causes
Out-Of-Distribution (OOD) outcomes in reduced steps sampling (blue) compared to standard results (from
1000 steps in red). Bottom: Our approach minimizes the occurrence of OOD samples.

Abstract

In diffusion models, deviations from a straight generative flow are a common issue, resulting
in semantic inconsistencies and suboptimal generations. To address this challenge, we
introduce Non-Cross Diffusion, an innovative approach in generative modeling for learning
ordinary differential equation (ODE) models. Our methodology strategically incorporates an
ascending dimension of input to effectively connect points sampled from two distributions
with uncrossed paths. This design ensures enhanced semantic consistency throughout the
inference process, which is especially critical for applications reliant on consistent generative
flows, including distillation methods and deterministic sampling, which are fundamental in
image editing and interpolation tasks. Our empirical results demonstrate the effectiveness of
Non-Cross Diffusion, showing a substantial reduction in semantic inconsistencies at different
inference steps and a notable enhancement in the overall performance of diffusion models.

1



Under review as submission to TMLR

1 Introduction

Diffusion models, as delineated in recent studies (Song et al., 2020a; Ho et al., 2020; Dhariwal & Nichol,
2021; Nichol & Dhariwal, 2021; Rombach et al., 2022; Song & Ermon, 2019; Song et al., 2020b), have
exhibited remarkable capabilities in image synthesis, bolstering numerous applications such as text-to-image
generation (Nichol et al., 2022; Saharia et al., 2022), image editing (Avrahami et al., 2022; Nichol et al., 2022;
Brooks et al., 2023; Tumanyan et al., 2023), and image inpainting (Avrahami et al., 2022; Ramesh et al.,
2022). A key characteristic of these models is their multi-step generative process, which not only allows for
correction of the diffusion path (Song et al., 2020b) but also enhances controllability (Fan & Lee, 2023; Gao
et al., 2023).

Despite these advancements, the inference process in diffusion models typically involves a specific flow.
However, the training process is more complex and involves random step sampling from multiple flows.
Such randomness often results in a particular training step being correlated with numerous diverse flows.
Specifically, a single training step can be associated with multiple flows. This correlation with diverse
flows introduces ambiguity and uncertainty in the target from the optimization’s perspective, as depicted in
Figure 1(a). We term this phenomenon as ‘xFlow’.

xFlow’s emergence during training can hinder the model’s optimization at certain steps, leading to a
spectrum of generative issues. Notably, it challenges the model’s ability to generate samples via a straight
flow, compromising deterministic sampling across varying step counts, as shown in Fig. 1(c). It also complicates
predicting later sampling steps from earlier ones, limiting the effectiveness of reward models (Yoon et al.,
2023) and guided models (Dhariwal & Nichol, 2021). Moreover, in the context of distillation, which typically
adopts a progressive approach, xFlow can introduce misleading signals, as evidenced in Rectified Flow (Liu
et al., 2022). Perhaps most critically, xFlow can lead to the generation of Out-Of-Distribution (OOD)
samples or low-quality samples, especially as sampling step size increases, as illustrated in Fig. 1(d-e).

In this paper, we propose a novel training strategy aimed at resolving the xFlow challenge in diffusion
models. Our method centers on augmenting the input dimensionality to these models, a change that effectively
prevents flow crossing. As depicted in Fig. 1(a), the issue at hand arises when two flows intersect, creating
ambiguity; the input to the network (for instance, a noisy image) remains constant, yet it is associated with
multiple potential targets (such as distinct noises originating from different images). To address this, our
approach entails predicting the flow itself during the training phase, as shown in Fig. 1(b). Notably, we utilize
the noise predicted by the network as the flow’s endpoint, incorporating this element into the model’s input.
This technique sidesteps the pitfall of using groundtruth noise as input, which would otherwise result in trivial
training solutions devoid of substantive learning. For practical implementation, we found ControlNet (Zhang
et al., 2023) particularly effective in this context. Additionally, our methodology integrates a bootstrap
approach reminiscent of Analog bits (Chen et al., 2022), which significantly enhances our model’s optimization
and effectively narrows the gap between training and inference phases.

To evaluate our approach, we introduce the Inference Flow Consistency (IFC) metric, reflecting xFlow severity.
We also utilize Inception Score (IS) (Salimans et al., 2016) and Fréchet Inception Distance (FID) (Heusel
et al., 2017) for assessing generation quality. Our models, trained from scratch and compared against baselines
on Cifar-10 (Krizhevsky et al., 2009) and MNIST (LeCun et al., 1998), demonstrate not only an avoidance
of xFlow but also an enhancement in generation quality. The contributions of this paper include:

• We identify a widespread phenomenon in diffusion models, termed xFlow, leading to non-straight flow
during inference that may generate OOD or suboptimal samples.

• We attribute xFlow’s origins to the instability of the target during the training process. Accordingly,
we introduce the Non-Cross Diffusion, a novel training and inference pipeline to mitigate the xFlow
problem by enhancing input dimensionality.

• Our experiments on both a toy model and image generation on Cifar-10 and MNIST dataset demonstrate
that our method not only improves the proposed IFC metric by addressing xFlow, but also significantly
enhances other image evaluation metrics, such as IS and FID.
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2 Related work

2.1 Diffusion models

Diffusion models, as generative models, learn the reverse denoising process from Gaussian noise to image
distribution, achieved through either Markov (Ho et al., 2020) or non-Markov operations (Song et al., 2020a).
They are favored over other generative models like GAN (Goodfellow et al., 2014) and VAE (Vahdat & Kautz,
2020) due to their training stability and superior generation quality. Subsequent enhancements to these
models primarily concern varied network architectures (Karras et al., 2022), noise schedulers or losses (Nichol
& Dhariwal, 2021), transition from image space diffusion to latent space (Rombach et al., 2022), and improved
sampling techniques (Lu et al., 2022), with little attention to the xFlow during training. Rectified Flow (Liu
et al., 2022) noted the mismatch in sampling across different inference steps, a significant distillation issue, but
did not analyze it further. Instead, they proposed a workaround using a 2-rectified flow to fit another model
to a non-crossing flow between source and target distributions, which depends on a well-trained diffusion
model and requires additional retraining. Our paper is the first to examine xFlow in diffusion and offer
solutions.

2.2 Conditional Image Generation

Conditioning techniques are instrumental in managing generated content. For diffusion models, Song et al.
(2020b) propose classifier guidance, which is an efficient method to balance controllability and fidelity using
the gradients from a classifier, while classifier-free guidance (Ho & Salimans, 2022), being another important
conditioning technique to diffusion models, trains both conditional and unconditional diffusion models, and
combining their score to achieve better controllability. ControlNet (Zhang et al., 2023) employs pretrained
encoding layers from billions of images as a backbone to learn diverse conditional controls, which is an
architecture adopted in this paper. Analog Bits (Chen et al., 2022) introduces a technique that conditions
the model on its own previously generated samples during iterative sampling, akin to our work. However,
Analog Bits mainly aims to enhance sample quality by reusing the previous target, while our focus is to
introduce a condition in the training flow to prevent crossing issues.

3 Method

In this section, we start with a brief review of the formulation of DDPM (Ho et al., 2020). Next, we show
the drawback of baseline flow and analyze the cause of xFlow. Then, we introduce Non-Cross Diffusion to
avoid crossing by ascending dimension of input, together with training, inference, and network architecture of
Non-Cross Diffusion. Finally, we introduce IFC for evaluating the consistency of the inference flow.

3.1 Preliminary

Given samples from data distribution x0 ∼ q(x0), DDPM (Ho et al., 2020) defines a forward noising process
q which produces latent variables x1, . . . , xT by gradually adding Gaussian noise with a variance schedule
βt ∈ (0, 1) as follows:

q(x1, . . . , xT ) :=
T∏

t=1
q(xt|xt−1), (1)

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI). (2)

With αt := 1− βt and ᾱt :=
∏t

s=0 αs, the marginal q(xt|x0) can be derived through Eq. 2 as follows:

q(xt|x0) = N (xt,
√

ᾱtx0, (1− ᾱt)I), (3)
xt =

√
ᾱtx0 +

√
1− ᾱtϵ, (4)

where ϵ ∼ N (0, I). Using Bayes theorem, we can calculate the posterior q(xt−1|xt, x0) in terms of βt, αt and
ᾱt. There are many different ways to parameterize pθ to approximate the posterior, while DDPM (Ho et al.,
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Figure 2: The overview of non-cross diffusion. Training stage: The training phase involves two cases. In
Case 1, we utilize 0 as the condition and calculate loss function Lsimple as defined in Eq. 5. For Case 2,
we first compute ϵ̂ using 0 as condition. Subsequently, ϵ̂ is employed as the condition to calculate Lsimple.
Throughout the training process, Case 1 is applied with a fixed probability p; otherwise, Case 2 is implemented.
Inference stage: During the inference phase, 0 is used as the condition in the initial denoising step. This is
followed by iterative utilization of the estimated noise from the previous step as the condition for subsequent
steps.

2020) chooses pθ(xt−1|xt) = N (xt−1; µθ(xt, t), σ2
t I), and propose that predicting ϵ works best with a loss

function:

Lsimple = Et,x0,ϵ[∥ϵ− ϵθ(xt, t)∥2], (5)

where µθ(xt, t) = 1√
αt

(xt − βt√
1−ᾱt

ϵθ(xt, t))

3.2 Understanding Drawbacks of DDPM Flow

Training stage. Given source distribution π0 (i.e., q(x0)) and target distribution π1 (i.e., N (0, I)), we
sample two data pairs (x0, xT ), (y0, yT ) ∼ π0× π1. During the training stage, assume these two training flows
cross at time step t (i.e., xt = yt). Following Eq. 4, we have:

xt =
√

ᾱtx0 +
√

1− ᾱtϵx, (6)
yt =

√
ᾱty0 +

√
1− ᾱtϵy. (7)

At the crossing point, both flows aim to minimize the loss function as follows during training:

min
θ

Et,x0,ϵx [∥ϵx − ϵθ(xt, t)∥2], (8)

min
θ

Et,y0,ϵy
[∥ϵy − ϵθ(yt, t)∥2]. (9)

Since xt = yt, we can rewrite the above target as follows:

min
θ

Et,zt,ϵx,ϵy
[∥ (ϵx + ϵy)

2 − ϵθ(zt, t)∥2], (10)

where zt = xt = yt. This implies that at the crossing point, the model is given an incorrect target, which will
lead to ambiguity in data generation (i.e., the denoising process).
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Inference stage. Considering the ambiguity exists in a trained model, xFlow, where the generation flow
may deviate from the correct direction, results in various failure cases, as illustrated in Fig. 1. Besides, we
propose that the consequences of xFlow also depend on the timestep of inference. Specifically, more inference
steps, correlating with smaller strides, subtly affect inference flow because the deviation is also smaller, and
subsequent steps can correct minor errors. On the contrary, fewer inference steps, leading to larger strides,
significantly impact and alter the inference flow due to the crossing point, potentially generating inconsistent
or OOD samples. Such phenomena further decrease the determinism of diffusion models.

3.3 Non-Cross Diffusion

As analyzed in Sec. 3.2, xFlow is caused by incorrect training targets. To solve xFlow, in this section,
we introduce a new formulation of diffusion models that can avoid crossing points during training, namely
Non-Cross Diffusion.

Given the fact that latent variables are linear combinations of x0 and ϵ as in Eq. 4. We can think of the issue
with geometry, where training flows are line segments in 2D coordinates, as shown in Fig. 1 (a), with the
crossing point as the intersection of two segments. From a basic geometrical concept, i.e., any two distinct
lines in a plane can intersect at most once, as long as we can avoid the intersection once, the two segments
will never intersect again. Therefore, we aim to eliminate crossing points between any two different training
flows, thereby maintaining the integrity and distinctiveness for all of them.

To operationalize this concept, we propose to ascend the dimension of model input. As illustrated in Fig. 1 (b),
lifting the plot from 2D to 3D can avoid the original crossing point. Specifically, given xt = yt, by sampling
another point on the flow (i.e., xi and yi), we have xi ̸= yi, and thus [xi, xt] ̸= [yi, yt],∀i ∈ [0, T ] \ {t}. This
reminds us that any other samples (xi) from the same flow can be used for ascending dimensions. This
strategy effectively creates a multidimensional space where the likelihood of training flows intersecting is
significantly reduced.

Selection of Condition. xi is effective for ascending dimensions only if it is significantly different from xt.
Given the continuity of both linear combination and diffusion models, we propose to ascend the dimension
with either initial noise xT (i.e., ϵ) or the data point x0. Furthermore, we find the distance between randomly
sampled noise is stable while the distance between data points may not. Take image data as an example, for
two randomly sampled noise n1, n2 ∈ RH×W ×C , we have E[∥n1 − n2∥2] = 2CHW . Besides, we can only get
the initial noise during the inference stage. Therefore, using the initial noise xT for dimension ascending is
more practical.

Training Stage. The cornerstone of our training strategy is to circumvent trivial solutions and avoid training
collapse. To achieve this, we replace the use of initial noise ϵ with predicted noise ϵ̂. This substitution is
critical in refining our model’s predictive accuracy since it can effectively avoid trivial solutions. Furthermore,
we introduce a bootstrap strategy in the training stage, which adds robustness to the learning process and
avoids misleading the predicted noise ϵ̂ in the early stage.

As illustrated in Fig. 2, our training objective is formulated as follows:
min

θ
Et,xt,ϵ,[∥ϵ− ϵθ(xt, ϵ̂t, t)∥2], (11)

where xt =
√

ᾱtx0 +
√

1− ᾱtϵ. During training, we apply the bootstrap as follows: 1) with a fixed probability
p, we set ϵ̂t = 0 (i.e., Case 1 in Fig. 2); 2) at other cases, ϵ̂t is assigned the value of ϵθ(xt, 0, t) (i.e., Case 2 in
Fig. 2). We do not back-propagate through estimated noise ϵ̂t.

Inference Stage. As illustrated in Fig. 2, during the inference stage, to alleviate the computational costs,
we use estimated noise in the previous step instead of the current step as the condition and iteratively predict
ϵ̂ as follows:

ϵ̂T = ϵθ(x̂T , 0, T ), (12)
ϵ̂t = ϵθ(x̂t, ϵ̂t+1, t), t < T. (13)

When the number of inference steps is large, the discrepancy between ϵ̂t and ϵ̂t+1 is small, which ensures the
performance of our method.
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Figure 3: Results of the Toy Model. (a) Comparison of Generated Distributions: This panel illustrates the
distributions generated by the baseline model and our proposed model. As the number of inference steps
decreases, the baseline model tends to produce a significant number of out-of-distribution (OOD) samples.
In contrast, our model effectively mitigates the generation of OOD samples. (b) Trajectory Analysis: This
panel compares the generated trajectories of the baseline and our models. The baseline model’s inference flow
often redirects at the intersection point, leading to a target OOD distribution as the inference steps decrease.
Our method, however, maintains a consistent direction in the inference model, thereby straightening the
trajectory.

Network Architecture. Inspired by ControlNet (Zhang et al., 2023), to efficiently use ϵ̂t, Non-Cross
Diffusion employs an additive U-net branch, with ϵ̂t as input. For optimization, modifications are introduced,
specifically removing all zero convolution layers and initializing the addictive encoder for ϵ̂t with the original
U-net. The output is incorporated into the U-net decoder via addition. The whole network is trained
end-to-end from scratch.

3.4 Inference Flow Consistency

To better evaluate the consistency of the inference flow for image generation, we propose a metric by computing
the similarity between intermediate generated image x̂t

0 in timestep t and the final generated image x̂0 based
on peak signal-to-noise ratio (PSNR) as follows:

IFC = 1
T

T∑
t=0

PSNR(x̂t
0, x̂0). (14)

A change in training flow direction at a specific timestep yields notable differences in pre- and post-change
images, reducing PSNR. This can be effectively assessed for consistency across inference stages using our
PSNR-based metric.

4 Experiment

In this section, we discuss our experimental results on toy examples (Sec. 4.1) and image generation tasks
(Sec. 4.2), as well as ablation studies (Sec. 4.3) and further discussion for Non-Cross Diffusion (Sec. 4.4).
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DDIM-1000 DDIM-100 DDIM-50
Method IS FID Method IS FID Method IS FID
iDDPM 9.02 4.70 iDDPM 8.99 5.65 iDDPM 8.89 6.61
iDDPM‡ 9.10 4.82 iDDPM‡ 8.93 5.75 iDDPM‡ 8.79 6.71
Ours 9.51 2.88 Ours 9.22 3.93 Ours 9.10 5.31
Ours† 9.34 3.40 Ours† 9.15 4.21 Ours† 9.05 5.09

DDIM-20 DDIM-10 DDIM-5
Method IS FID Method IS FID Method IS FID
iDDPM 8.59 9.82 iDDPM 8.20 15.91 iDDPM 7.09 31.37
iDDPM‡ 8.65 9.89 iDDPM‡ 8.14 16.06 iDDPM‡ 7.08 31.21
Ours 8.77 9.87 Ours 7.97 20.63 Ours 6.20 50.25
Ours† 8.84 7.75 Ours† 8.50 12.85 Ours† 7.45 27.83

Table 1: We compare the performance of baseline and our method. We generate 50k samples using DDIM
with inference steps in {1000, 100, 50, 20, 10, 5}. ‡We expand the U-net encoder to ensure the same model
size as ours. †We use an inference strategy similar to the training stage. Specifically, we first give 0 as
condition and get estimated noise ϵ̂t, then we take ϵ̂t as condition and compute denoised image x̂t−1.

DDIM-1000 DDIM-100 DDIM-50
Method FID Method FID Method FID
iDDPM 8.02 iDDPM 8.26 iDDPM 9.12
Ours 7.13 Ours 7.72 Ours 9.06
Ours* 7.52 Ours* 7.91 Ours* 8.76

Table 2: We compare the performance of baseline and our method on MNIST. We generate 50k samples
using DDIM with inference steps in {1000, 100, 50}. †We use an inference strategy similar to the training
stage.

4.1 Toy Examples

In this section, we follow the setting in Rectified Flow (Liu et al., 2022), drawing a training dataset from
Gaussian mixture π0 × π1. Given a sample {xi

0, xi
1} from (X0, X1) ∼ π0 × π1, for baseline model, we train a

3-layer MLP vθ(z, t) to transfer from π0 to π1 with l2-loss as follow:

min
θ
∥vθ(xi

t, t)− (xi
1 − xi

0)∥2,

xi
t = txi

1 + (1− t)xi
0, t ∈ [0, 1).

Our method enhances this approach by incorporating an additional dimension with the estimated target as
follows:

min
θ
∥vθ([xi

t, ĉi
t], t)− (xi

1 − xi
0)∥2,

ĉi
t =

{
0 p≤0.5
vθ([xi

t, 0], t) otherwise

with p ∼ U(0, 1). The inference process is also similar to our proposed method, i.e., we use the estimated
target in the previous step as the condition.

Results. As shown in Fig. 3, the baseline model’s inference flow alters direction at the intersection of two
flows due to an erroneous loss function (Eq. 10), generating OOD samples. By adding an extra dimension using
the estimated result, our method prevents training and inference flow intersection, maintaining consistent
inference flow direction and effectively inhibiting OOD sample generation.

4.2 Experiments on Image Generation

Implementation Details. Our models are trained on Cifar-10 (Krizhevsky et al., 2009) and MNIST (Le-
Cun et al., 1998), with MNIST images resized to 32× 32. The fidelity of generated samples is evaluated

7



Under review as submission to TMLR

(a) Baseline (b) Ours

Figure 4: Here are the generated images using DDIM with inference steps in {5, 10, 25, 50, 100, 200, 500,
1000} on Cifar-10. For baseline method, the semantic information of image with small inference step and
large inference step could be greatly different, which implies that the inference flow changes its direction at
some timesteps.

(a) Baseline (b) Ours

Figure 5: Here are the generated images using DDIM with inference steps in {5, 10, 25, 50, 100, 200, 500,
1000} on MNIST.

using IS (Salimans et al., 2016) and FID (Heusel et al., 2017) and inference flow consistency with IFC. As
a baseline, we train iDDPM (Nichol & Dhariwal, 2021) from scratch with the same UNet. Training for
Cifar-10 follows iDDPM except using Lsimple only and with 250k steps. For MNIST, training is similar to
Cifar-10 but with 100k steps.
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(a) Baseline (b) Ours

Figure 6: Displayed are the generated images of baseline model and our model using DDIM with inference
step of 1000 on Cifar-10. The results demonstrate our model’s superior image generation capabilities,
significantly reducing the occurrence of OOD samples.

DDIM-1000 DDIM-100 DDIM-50
Method IFC Method IFC Method IFC
iDDPM 28.58 iDDPM 29.72 iDDPM 30.85
Ours 28.37 Ours 29.96 Ours 31.40

DDIM-20 DDIM-10 DDIM-5
Method IFC Method IFC Method IFC
iDDPM 33.94 iDDPM 38.51 iDDPM 46.11
Ours 35.11 Ours 40.21 Ours 47.96

Table 3: We compare the consistency of baseline and our method on Cifar-10. We generate 1000 samples
using DDIM with inference steps in {1000, 100, 50, 20, 10, 5}.

Comparison of Sampling Quality. Tables 1 and 2 compare our model’s performance with a baseline
model in generating Cifar-10 and MNIST images. Fig. 6 visualizes the generated Cifar-10 images, where
our model notably outperforms the baseline, especially at {1000, 100, 50} inference steps. The decreased
number of inference steps and increased strides enlarge the discrepancy in estimated noise between steps,
introducing bias and performance decline during inference. To counter this, we suggest conditioning on
the current step’s estimated noise. This augments image quality generated by our method even at smaller
steps in {20, 10, 5}. Besides, our model outperforms the baseline on MNIST at steps {1000, 100, 50}. The
adapted sampling strategy also enhances our model’s performance on MNIST as the number of inference
steps decreases.

Comparison of Inference Consistency. Table 3 reveals our method’s superior consistency over the
baseline on Cifar-10 at inference steps {50, 20, 10, 5}, in terms of IFC, achieved by preventing xFlow.
The impact of xFlow is minimal for larger steps ({1000, 100}), resulting in similar IFC between our method
and the baseline. Fig. 4 and Fig. 5 illustrate the visualization results of generated images under different
steps on Cifar-10 and MNIST. The results further demonstrate higher consistency compared with baselines,
indicating a straighter inference flow.
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4.3 Ablation Study

In this section, we verify the effectiveness of each component through ablation studies.

Ablation of bootstrap. Table 4 demonstrates the impact of the bootstrap strategy. We experimented with
three settings: without bootstrap (w/o bootstrap, where ϵ̂t = ϵθ(xt, 0, t) is consistently applied), exponential
schedule (exp-schedule, where the probability p increases exponentially), and fixed probability (fix-probability,
where p = 0.5). The findings reveal that lacking a bootstrap strategy can notably degrade model performance.

Setting IS FID

Bootstrap
w/o bootstrap 5.93 79.70
exp-schedule 9.22 5.24
fix-prob (Ours) 9.38 4.84

Condition
x̂0 condition 9.64 20.21
mid. condition 7.15 59.09
ϵ̂ condition (Ours) 9.38 4.84

Network Double Unet 9.65 6.26
ControlNet-based (Ours) 9.38 4.84

Inference
strategy

zero condition 9.06 6.43
ϵ condition 7.86 27.00
ϵ̂ condition (Ours) 9.38 4.84

Table 4: Ablation study. We generate 10k samples using DDIM with 1000 inference step.

Ablation of condition. We scrutinize the impact of varying conditions on our method. The x̂0 condition
implies the model utilizes the predicted image as the condition, while the mid. condition uses the midpoint
of training flow (i.e. x̂0+ϵ̂

2 ). During inference, each technique employs its corresponding condition. As in
Table 4, mid. performs suboptimally, presumably due to proximity to the training flows’ intersection, as
mentioned in Sec. 3.3. Benefiting from its stability, ϵ̂ as a condition leads to a significant FID improvement
over x̂0 condition.

Ablation of architecture. We also examine a Double U-net variant, i.e., doubling the U-net’s input channel
to accommodate ϵ̂ input. As Table 4 shows, the ControlNet-based model enhances FID by 1.42, likely because
the two inputs serve distinct roles, and the additive branch enables effective differentiation between them,
thereby facilitating training.

Ablation of inference strategy. We also consider several inference strategies applied after training (we
utilize a trained ϵ̂-conditioned model). These inference strategies include the Zero condition (utilizing 0), the
ϵ condition (using initial noise ϵ), and the ϵ̂ condition (employing estimated noise ϵ̂). Performance significantly
deteriorates under the ϵ condition due to ϵ-ϵ̂ discrepancy. Though our model circumvents training ambiguity,
the Zero condition marginally compromises performance during inference due to potential redirection at cross
points in the inference flow.

4.4 Discussion

This section offers an alternative perspective to understand our Non-Cross Diffusion. The inclusion of ϵ̂t in
the model input is seen as a strong conditional constraint, which we propose can reduce the variability of
semantic information, thus lessening the severity of xFlow during inference.

Specifically, the ϵ̂t condition in Non-Cross Diffusion is highly specific at the pixel level, making it an
exceptionally stringent constraint. Consequently, Non-Cross Diffusion effectively mitigates the xFlow issue.
An interesting question arises: how would xFlow be influenced by other forms of conditions with varying
degrees of strength? To investigate this, we employed the pre-trained ControlNet model for empirical analysis
and results.

Fig. 1(c) shows text conditional images from Stable Diffusion (Rombach et al., 2022), as well as pose
conditional and depth conditional images from ControlNet (Zhang et al., 2023). The text condition images at
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steps {5, 10, 25, 50, 250, 500} present a significant shift in the semantic content of the images at each step.
In contrast, pose conditional images demonstrate more consistent semantic content across steps: the pose of
super-hero remains the same but the background and style still show a large variation. The depth conditional
images keep the highest consistency across different steps, despite some variability in details such as the
background and pattern. Therefore, we hypothesize that stronger conditions ease the severity of xFlow.

5 Conclusion

In this study, we address the xFlow phenomenon in diffusion models, characterized by deviations in generative
flow that result in semantic inconsistencies and suboptimal image generation. Our novel approach, ‘Non-Cross
Diffusion’, innovates in the realm of generative modeling by adopting ordinary differential equation models.
Our empirical investigations, including both a toy example and image dataset such as Cifar-10 and MNIST,
demonstrate the substantial efficacy of the Non-Cross Diffusion approach. The results show a marked
reduction in semantic inconsistencies at various inference stages and significant improvements in the overall
performance of diffusion models.

Looking Ahead. The identification of xFlow as a critical issue during inference opens new avenues
for research and application optimization. Despite the effectiveness of the proposed Non-Cross Diffusion
approach on mitigating xFlow, we acknowledge the challenges associated with retraining large-scale diffusion
models such as Stable Diffusion. However, we are optimistic that future research will find ways to integrate
these improvements into existing models, potentially circumventing the need for extensive retraining. This
paper lays the groundwork for such advancements, aiming to enhance the reliability and quality of diffusion
model outputs.

Broader Impact Statements

This paper delineates our pivotal contribution towards fostering advancement in diffusion models within the
purview of generative models. The societal implications of our research are multitudinous and profound.
Some of them have been presented in Sec. 1. Additionally, the eminent stable diffusion series has been
discussed as a case study to illustrate potential applications of our work in Sec. 4.4. Furthermore, we delve
into the potential impact of our research from the standpoint of fellow academicians in Sec. 5, where we also
deliberate on future directions for this line of inquiry. There are no additional aspects we deem imperative to
underscore at this juncture.
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APPENDIX

A Continuity of Diffusion Models

In Sec. 3.3, we select the condition based on the inherent continuity in diffusion models. Continuity, although
abstract, is pivotal to understanding why we select noise as the condition. To make this concept more tangible,
we demonstrate it by introducing variable scale perturbations at different time steps. Specifically, for a fixed
timestep t and diffusion model ϵθ, the ϵθ(xt, t) is continuous with respect to xt. This implies that for any x̃t

close to xt, the resulting image remains similar, which shows the continuity principle in diffusion models.

A.1 Perturbation on Noise

Practically, for initial noise ϵ, i.e. t = T , we add perturbation as follows:

ϵ̃ = ϵ + w · ϵp√
1 + w2

, (15)

where ϵp is a perturbation sampled from a standard Gaussian distribution and w denotes the scale of
perturbation. For intermediate xt in timestep t, we first estimate the noise through the baseline unconditional
diffusion model:

ϵ̂ = ϵθ(xt, t). (16)

Then we add perturbation to the estimated noise ϵ̂:

ϵ̃ = ϵ̂ + w · ϵp√
1 + w2

, (17)

and we get the denoised image as follows:

xt−1 =
√

ᾱt−1x̂0 +
√

1− ᾱt−1ϵ̃, (18)

where x̂0 is predicted by ϵ̂ and xt.

A.2 Result with Perturbation

As depicted in Fig. 8, with a minimal scale, such as 0.01, there is negligible impact on the semantic content
of the images across different steps. The semantic information of generated images remains intact. As the
scale increases, the disparity between the original and the perturbed images becomes more pronounced. At a
scale of 0.2, the semantic alterations are most notable, as exemplified by significant changes in elements like
the postures of animals in the images. For instance, the positions of a cat or a deer might shift noticeably.
Despite these changes, the overall semantic context — the fundamental identity of the subjects — remains
unchanged, underscoring the continuity intrinsic to diffusion models.

However, at a higher scale, such as 0.5, the semantic shift becomes dramatic. The generated images undergo
substantial transformations, to the extent that the class of the subject in the image can completely change,
such as transitioning from a cat to a frog.

The observation shows that for the cross point, i.e. the noised images are identical, with similar conditions,
the generated image will still remain the same and cannot avoid crossing. With more distinct conditions, the
effectiveness of avoiding crossing increases.

B Details of our model

ControlNet-based. Fig. 7 presents the architecture of our proposed model. Notably, we have omitted the
zero convolution layer originally found in the ControlNet (Zhang et al., 2023) design. Both the UNet and
Control Blocks are concurrently trained from scratch. The outputs from Control Block A, B, C, and D are
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Input Block A

128×32×32
×3

Input Block B

256×16×16
×3

Input Block C

256×8×8
×3

Input Block D

256×4×4
×3

Control Block A

128×32×32
×3

Control Block B

256×16×16
×3

Control Block C

256×8×8
×3

Control Block D

256×4×4
×3

Output Block A

128×32×32
×3

Output Block B

256×16×16
×3

Output Block C

256×8×8
×3

Output Block D

256×4×4
×3

Middle Block 

256×4×4

Time

Encoder

Timestep 𝒕

Middle Block 

256×4×4

Output 𝜖𝜃(𝒙𝒕, ො𝝐, 𝒕)
3×32×32 

Input 𝒙𝒕

3×32×32 

Condition ො𝝐
3×32×32 

Figure 7: The architecture of our model. We show the shape on each module of its output.

integrated with the respective outputs of the input blocks. This integration is achieved by adding the outputs
from the Control Blocks to those of the Input Blocks, followed by concatenation with the corresponding
output from the Output Blocks. The output from the middle block of ControlNet is directly added to the
output of UNet’s middle block, and then this combined output is fed into UNet’s output block D.

Double UNet in Ablation Study. For the Double UNet setting in the ablation study, we modified the
input channel of the first layer in UNet. This modification involved doubling the input channel, i.e., changing
the input channel of the first convolution layer from 3 to 6.
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Figure 8: We sample images using iDDPM (Nichol & Dhariwal, 2021) with 1000 inference steps on Cifar-10.
For the image grid, from left to right, the perturbation is added at t = 1000, 800, 600, 400, 200. From top
to bottom, the perturbation is added with weight w = 0.01, 0.05, 0.1, 0.2, 0.5. We sample all images with
DDIM (Song et al., 2020a)

C Training and Inference Algorithm

Algorithm 1 shows the training pipeline of our method. As described in Section 3.3, we replace the use of
initial noise ϵ with predicted noise ϵ̂ to avoid trivial solutions and training collapse. During training, we set
ϵ̂ = 0, with a fixed probability p = 0.5, and otherwise, ϵ̂ is assigned the value of ϵθ(xt, 0, t).

Algorithm 2 shows the inference pipeline of our method. We use estimated noise in the previous step instead
of the current step as the condition and iteratively predict ϵ̂, which can effectivly alleviate the computational
costs.
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Algorithm 1 Training Stage
Input: diffusion model ϵθ, training step T

1: repeat
2: sample x0 ∼ q(x0), ϵ ∼ N (0, I), t ∼ U(0, T − 1)
3: compute noised image xt =

√
ᾱtx0 +

√
1− ᾱtϵ

4: sample p ∼ U(0, 1)
5: ϵ̂← 0
6: if p ≥ 0.5 then
7: ϵ̂, x̂0 ← ϵθ(xt, ϵ̂, t)
8: ϵ̂← stop_gradient(ϵ̂)
9: end if

10: ϵ̂, x̂0 ← ϵθ(xt, ϵ̂, t)
11: Loss = MSE(ϵ, ϵ̂)
12: until converged

Algorithm 2 Inference Stage
Input: diffusion model ϵθ, inference step T

1: sample x ∼ N (0, I)
2: ϵ̂← 0
3: for t in range(T, 0) do
4: ϵ̂, x̂0 ← ϵθ(x, ϵ̂, t)
5: x = √ᾱt−1x̂0 +√1− ᾱt−1ϵ̂
6: end for
7: return generated image x

Exp-schedule Bootstrap in Ablation Study. For exp-schedule setting in ablation study, we modified the
probability p of applying condition during training stage in Alogrithm 1. Specifically, we set p following:

p = 0.999
step
100 , (19)

where step denotes the training step.
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