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3 Department of Computer Science, University of Freiburg, Germany

Abstract: The increasing interest in autonomous driving systems has highlighted
the need for an in-depth analysis of human driving behavior in diverse scenar-
ios. Analyzing human data is crucial for developing autonomous systems that
can replicate safe driving practices and ensure seamless integration into human-
dominated environments. This paper presents a comparative evaluation of hu-
man compliance with traffic and safety rules across multiple trajectory prediction
datasets, including Argoverse 2, nuPlan, Lyft, and DeepUrban. By defining and
leveraging existing safety and behavior-related metrics such as time to collision,
adherence to speed limits, and interactions with other traffic participants, we aim
to provide a comprehensive understanding of each dataset’s strengths and limita-
tions. Our analysis focuses on the distribution of data samples, identifying noise,
outliers, and undesirable behaviors exhibited by human drivers in both the training
and validation sets. The results underscore the need for applying robust filtering
techniques to certain datasets due to high levels of noise and the presence of such
undesirable behaviors.
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1 Introduction

In recent years, autonomous vehicles (AVs) have gained significant attention due to their potential
to reduce traffic fatalities. The widespread adoption of AV technology is contingent not only on
technical performance but also on public trust, with concerns centering on safety and potential tech-
nological malfunctions [1, 2]. A key factor in improving trust in autonomous systems is the ability
to understand and replicate human driving behavior. However, worldwide, road accidents cause
over 1.19 million deaths annually, with a majority resulting from human error [3], hence following
human driving pattern is not always desired. Since the majority of accidents are caused by human
error, analyzing human driving data allows us to identify common mistakes and undesirable driving
patterns. This understanding is crucial for training machine learning models, such as those used
in behavior cloning, where the goal is to mimic human driving behavior. Identifying undesirable
driving patterns is especially useful for achieving a defensive driving behavior, which is proven to
play a significant role in increasing passenger comfort and trust in AVs [4].

In summary, our main contributions are:

• Review existing criticality measures and safety violations and define new relevant metrics
• Provide comprehensive overview of dataset characteristics
• Examine critical behavior across datasets and compare findings

∗These authors contributed equally to this work.
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Figure 1: Example of an onboard sensor dataset sample from (a) Argoverse2 [5] and (b) drone data
DeepUrban [6].

Dataset Cities Recording Type Total Volume (h) Year Access

Argoverse 1 [8] 2 Onboard 320 2019 Open
Lyft L5 [9] 1 Onboard 1118 2020 Open
Waymo [10] 6 Onboard 574 2021 Open
Shifts [11] - Onboard 1667 2021 Open
nuPlan [12] 4 Onboard 1500 2021 Open
Argoverse 2 [5] 6 Onboard 763 2023 Open

highD [13] - Drone 16 2018 Open
INTERACTION [14] - Drone 16 2019 Open
inD [15] - Drone 10 2020 Open
MONA [16] - Elevated Camera 130 2022 Open
DeepUrban [6] - Drone 66 2024 Restricted

Table 1: Naturalistic Driving Studies collection over the years.

2 Related Work

The following sections will provide a summary of the current state of the art in metrics, datasets,
and trajectory prediction methodologies.

2.1 Datasets for Trajectory Prediction and Planning

This section explores key datasets containing human-driving data. The quality of machine learning
models trained using these datasets (e.g., trajectory prediction models or planner models) relies
heavily on the driving behavior and patterns demonstrated in these datasets. Early projects such
as the 100-Car Naturalistic Study [7] collected large amounts of data but were primarily suited for
perception tasks. More recent datasets are tailored for trajectory prediction, directly providing data
on agent and lane level instead of raw sensor data only (Table 1).

Onboard Sensor Datasets: These datasets use multiple sensors (e.g., cameras, LiDAR, Radar)
from the ego vehicle to detect its surroundings, capturing real-time measurements like speed and
acceleration (Fig. 1(a)). However, onboard sensors are prone to noise and limited in their ability to
capture distant traffic conditions. Despite these limitations, onboard sensor data is essential for the
full AV stack, including trajectory prediction, planning, perception, and control, due to its ability to
provide highly accurate internal vehicle signals.

External Sensor Datasets: External datasets, recorded via drones or elevated cameras, offer a
top-down view of traffic as shown in Fig. 1(b). These methods offer an alternative perspective by
precisely tracking all traffic participants, including those not visible from the ego vehicle’s view-
point. However, external sensor datasets face limitations such as restricted availability (strict flight
regulations) and environmental dependencies (weather and lighting conditions).
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2.2 Criticality Measures and Traffic Rule / Safety Violations

Ensuring and demonstrating safe driving behavior is a crucial step for the widespread adoption of
AVs, particularly for the certification of SAE Level 5 systems [17], where human intervention is not
possible. Both the research and industrial sectors are keen on identifying critical driving situations
and maneuvers [18] and ensuring appropriate responses.

Criticality Measures: Criticality measures are essential for analyzing human driving behavior,
helping to quantify the risk involved in specific traffic scenarios. Several key metrics are com-
monly used for this purpose, including Gap, Time to Collision (TTC), and Post Encroachment Time
(PET) [19].

Gap: The Gap metric measures the distance between two agents Ai and Aj at a given time t. In a
car following scenario, this is described as:

GAP(Ai, Aj , t) = distance(pAi,front(t), pAj ,rear(t)), (1)

where pA1,front(t) is the 2D position of the front of agent i at time step t. The Headway (HW) is a
related measure that calculates the distance between the fronts of two agents [20].

Time to Collision (TTC): TTC estimates the time until two agents would collide given a dynamic
motion model at the current time step [20, 19]. It is widely used as a surrogate safety indicator. The
critical threshold for TTC, TTC∗, varies across the literature, with suggested values ranging from
1.5 to 4 seconds [21, 22, 23]. It is calculated as

TTC(Ai, Aj , t) = min
(
{t̃ ≥ 0 | d(pAi

(t+ t̃), pAj
(t+ t̃)) = 0} ∪ {∞}

)
. (2)

There are also different variations of TTC, which have been used for evaluating the quality of
planned trajectory. One variation used in CommonRoad [24] takes into consideration the relative
velocity, acceleration, and Gap in the car following the scenario.

Post Encroachment Time (PET): PET calculates the time interval between one agent exiting and
another agent entering a designated conflict area (CA):

PET(Ai, Aj ,CA) = tentry(Aj ,CA)− texit(Ai,CA). (3)

PET can also be semi-predictive, with tentry(Aj ,CA) being predicted using motion models such as
constant velocity.

Traffic Rule Violations: Legal compliance is a critical aspect of analyzing Naturalistic Driving
Studies, as most accidents are caused by human error [25]. While criticality measures may de-
tect potential risks, they do not always capture traffic rule violations, which can also increase
the risk of accidents. AVs must adhere strictly to traffic regulations, and defining such rules pre-
cisely for autonomous systems is essential. Driver errors and rule violations can be classified into
three categories: recognition, decision, and reaction errors, with most accidents caused by the first
two [26]. In this study, the focus is on analyzing rule violations, particularly according to German
law (StVO) [27]. Key traffic rules examined include:

• Boundaries: Prohibition of crossing solid lines (StVO Section 2).
• Overtaking: Maintaining a minimum distance of 1.5 meters when overtaking pedestrians

or cyclists in urban areas and 2 meters outside urban areas (StVO Section 5).
• Pedestrian Crossings: Vehicles must stop for pedestrians at crossings and must not block

the crossing during congestion (StVO Section 26).

By examining such violations in motion prediction datasets, this analysis helps ensure that AVs
comply with traffic regulations to reduce the risk of accidents.

3 Critical Behavior Extraction Method

In this section, first the various metrics used for dataset analysis are discussed. The second part
focuses on the implementation of the metrics and details of the dataset analysis.
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3.1 Definition of Criticality Measures and Safety Rule Violations

The analysis of human driving behavior, particularly in the context of autonomous driving, requires
specific criteria that are generally applicable to all datasets. The following criteria were used in this
work:

Speed (VEL): One of the fundamental criteria is the speed of vehicles, which can be calculated from
the agents’ positions:

VEL =
pAi

(t+ 1)− pAi
(t)

∆t
, (4)

where pAi(t) is the position of agent i at time t, and ∆t is the time step. For this analysis, speeds
above 14 m/s (around 50 km/h) are considered critical, based on urban area speed limit regulations
of the US (30mph ∼ 48kph) and Germany (50kph).

Acceleration (ACC): Acceleration is another key criterion computed from the vehicle’s speed:

ACC =
vAi

(t+ 1)− vAi
(t)

∆t
, (5)

where vAi
(t) is velocity of the agent i at time t. Acceleration values below −6m/s2 and above

6m/s2 are considered critical, as research has shown that such values can cause discomfort or even
whiplash [28].

Gap: The calculation of the Gap is based on Eq.1. We consider the trajectory of the ego as a
reference, and if other agents’ polygon at each time step are positioned in the future trajectory of
the ego, the minimal distance between two agents along the trajectory is considered as GAP value
(Fig. 2 (b)).

Time to Collision (TTC): TTC is a key criterion used to assess how long it will take for two vehicles
to collide if their current trajectories are maintained. The general formula for TTC is shown in
Equation 2. It calculates the minimum time tttc until a potential collision between two vehicles, Ai

and Aj , based on their current trajectories. To make this calculation more general and not just limited
to car-following scenarios, the vehicles’ future trajectories are used as the reference paths. At each
discrete time step tttc ∈ {0.5, 1.0, 1.5, . . . , 39.5, 40}, the predicted positions p̂Ai

(t+tttc), p̂Aj
(t+tttc)

for vehicles Ai, Aj are computed based on their current speed vt and acceleration at by interpolating
the traveled distance:

∆X = vt · tttc +
1

2
· at · t2ttc

over the reference path. The TTC value is determined as the first time step when the vehicles occupy
the same position, indicating a potential collision. (Fig. 2(a)).

TTC = min({tttc|p̂Ai
(t+ tttc) ∩ p̂Aj

(t+ tttc)}), for tttc ∈ {0.5, 1.0, 1.5, . . . , 39.5, 40}s, (6)

where p̂ is the function that outputs the interpolated future position of the agent. Critical TTC
thresholds typically vary depending on environmental factors and road conditions. Values in the
range of 1.5 to 4 seconds have been suggested in the literature [29, 30]. For this study, a threshold
of 2 seconds is chosen to ensure that only the most critical situations are flagged.

Distance to Bicycles (DTB): The Distance to Bicycles (DTB) criterion is used to ensure safe inter-
actions between vehicles and cyclists. The distance from a vehicle A to a cyclist C is calculated at
each time step as

DTB = distance(pA(t), pC(t)). (7)

This analysis focuses on values within a 5 meter radius. To address specific legal requirements,
such as the StVO in Germany, DTB is further divided into longitudinal and lateral components. The
longitudinal DTB (LODTB) measures the forward or backward distance along the vehicle’s direction
of travel relative to the cyclist, while the lateral DTB (LADTB) assesses the lateral distance between
the vehicle and cyclist.

A minimum lateral distance of 1.5 meters must be maintained during overtaking in urban areas.
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Figure 2: (a) TTC calculation where the red vehicle turns left and the blue vehicle follows the lane,
using constant acceleration for future trajectory. (b) Visualization of all metrics except TTC in our
framework.

Name Category Unit Requires Map Criticality Threshold

VEL Traffic Violation m/s No VEL > 14m/s
ACC Criticality Measure m/s2 No |ACC| > 6m/s2

GAP Criticality Measure m No -
TTC Criticality Measure s No TTC < 2 s
DTB Traffic Violation m No DTB < 1.5m
DTP Traffic Violation m No DTP < 1.5m
DTPNZ Traffic Violation m Yes DTPNZ < 1.5m
VOZ Criticality Measure m/s Yes -
SLC Traffic Violation m Yes SLC > 0m

Table 2: Metrics that are analyzed in the work with criticality threshold.

Distance to Pedestrians (DTP): Similar to the DTB, the Distance to Pedestrians (DTP) criterion
measures the distance between a vehicle A and pedestrians P as

DTP = distance(pA(t), pP (t)). (8)

As with the DTB, this distance is evaluated within a 5 meter range and divided into longitudinal
(LODTP) and lateral (LADTP) components to ensure compliance with pedestrian safety regulations.
The critical threshold of 1.5 meters is again used as the minimum distance vehicles should maintain
from pedestrians in urban areas.

Pedestrian Crossing (DTPNZ): The DTPNZ criterion, a subset of the DTP, measures the proximity
of pedestrians to the vehicle when it crosses a pedestrian zone. The criterion, therefore, gives special
attention to whether the vehicle complies with traffic rules when approaching crosswalks. The
critical threshold of 1.5 meters applies here as well, ensuring pedestrian safety.

Speed at Pedestrian Crossings (VOZ): This criterion measures vehicle speed when crossing pedes-
trian zones, derived from the general speed criterion (VEL) [31, 32]. Speeds are analyzed to ensure
they comply with legal speed limits and safety regulations near crosswalks.

Solid Line Crossing (SLC): Crossing solid lines is a common traffic violation. The distance between
the vehicle’s outer tire and the solid line is measured as

SLC = distance(outer tire(At), solid line). (9)

This criterion helps assess whether the vehicle complies with lane discipline rules, as crossing a
solid line can increase the risk of collisions. All the investigated criteria and their corresponding
critical thresholds are aggregated in Table 2.

3.2 Analysis of Datasets

The analysis of various datasets is a central component of this work. To make the evaluation process
more efficient, we used a common internal representation, similar to TrajData [33] of the traffic scene
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Metric Lyft nuPlan Argoverse 2 DeepUrbanTrain Val Train Val Train Val

VEL (ms−1) 5.78 5.8 7.38 6.51 7.11 7.13 6.39
ACC (ms−2) 0.11 0.11 0.14 0.14 0.14 0.14 0.2
GAP (m) 25.84 25.74 20.53 19.45 30.10 20.60 18.40
TTC (s) 6.0 6.0 7.0 7.0 6.0 6.0 7.0
LADTB (m) 2.13 2.04 1.75 1.86 1.91 1.69 2.03
LODTB (m) 7.17 7.81 7.83 7.42 7.17 6.69 7.46
LADTP (m) 2.4 2.39 2.35 2.32 2.16 2.15 2.18
LODTP (m) 0.98 1.81 3.68 3.64 3.75 2.54 3.68
DTPNZ (m) 3.59 3.52 2.61 3.11 3.07 3.0 3.36
VOZ (ms−1) 3.86 3.82 4.45 4.5 4.96 5.0 2.88
SLC (m) 0.23 0.22 0.20 0.24 0.22 0.21 0.11

Table 3: Comparison of median values for every metric and dataset.

in our problem formulation. The representation contains key data required for safe autonomous
driving, such as:

• Map data: Contains information about lane borders, lane types (e.g., bus, bicycle lanes),
boundaries (e.g., dashed, solid lines), crosswalks, and restricted areas. A graph-like struc-
ture links lanes via predecessors, successors, and neighbors.

• Agent data: Tracks the ego vehicle and other agents (e.g., buses, bicycles, pedestrians),
including their position, speed, dimensions, and categories.

• General data: Stores scenario metadata such as the recording city, dataset name, frame
rate, and time of day.

We standardized scenarios to 11 seconds at 10 frames per second, including only relevant map
regions within 150 meters of the agents. The framework classifies agents and scenarios as critical
or non-critical based on metrics and thresholds, filtering out undesirable behaviors for downstream
tasks. It also generates metadata on critical agents or scenarios, as shown in Table 4.

4 Results

The analysis focus on evaluating the performance of Lyft, nuPlan, Argoverse 2 (AV2), and Deep-
Urban based on the defined metrics and examining the critical agents. The distribution of each
criterion is illustrated in Fig. 3 and their corresponding medians are presented in Table 3 for more
detail information.

The velocity distribution across datasets revealed that most vehicles navigate at slower speeds, with
a median velocity below 8 m/s in all datasets. The Lyft dataset showed the widest range of velocities
and the highest number of outliers, reaching almost 100 m/s, likely due to noise in the data. The
highest median velocity was observed in the nuPlan dataset (7.39 m/s). Values for outliers in datasets
suggested that these velocities are too high to be valid, except for DeepUrban and nuPlan, where top
velocities of 28 m/s and 35 m/s, respectively, are more plausible for their scenarios.

Acceleration distributions center around 0 m/s², except for DeepUrban, which has a narrower range.
Lyft has the most extreme values, suggesting that velocity outliers influence acceleration noise in
both Lyft and AV2, while DeepUrban has the most precise measurements.

The gap distribution varied significantly between datasets, with AV2 showing the highest median
gap (30.21 meters), followed by Lyft (25.9 meters). A notable observation is the difference between
AV2’s training and validation datasets, where agents in the validation set maintained shorter dis-
tances from each other compared to the training set. High gap values are generally safer, but shorter
gaps with stationary vehicles are also safe, illustrating that gap alone is not necessarily a measure
of criticality, therefore, we suggest using this metric in combination with others. TTC is a crucial
metric for assessing potential collisions. The Lyft and AV2 datasets both have a median TTC of
6 seconds, with similar distributions between their training and validation sets. nuPlan and Deep-
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Figure 3: Comparison of distributions of different criteria in datasets.
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Dataset Total Agents VEL ACC TTC DTPNZ LADTB SLC

Lyft (train) 40,938,112 4.48% 9.57% 0.05% 0.00% 0.00% 0.16%
Lyft (val) 4,802,359 4.37% 9.49% 0.06% 0.00% 0.00% 0.15%
nuPlan (train) 12,870,111 1.32% 1.32% 0.00% 0.12% 0.01% 0.88%
nuPlan (val) 2,376,986 0.84% 1.02% 0.00% 0.07% 0.01% 1.76%
AV2 (train) 8,141,840 6.32% 11.66% 0.42% 0.08% 0.01% 0.78%
AV2 (val) 1,020,858 6.34% 11.69% 0.38% 0.10% 0.01% 0.79%
DeepUrban 909,507 3.01% 0.00% 0.00% 0.01% 0.04% 0.04%

Table 4: Comparison of critical agent amount based on different metric thresholds in proposed
datasets.

Figure 4: Examples of noisy data in Lyft dataset which have wrong heading angle.

Urban have higher median TTC values of 7 seconds, indicating safer behavior among agents. Both
datasets also show a similar distribution, particularly in nuPlan’s validation set. Low-range outliers,
particularly in nuPlan and DeepUrban, have TTC values as low as 1 second or 0.5 seconds. The
Lyft dataset demonstrates a more defensive driving style toward bicycles in LADTB, compare to all
other datasets which lower quartiles fell below critical value of 1.5 meters.

Among the four metrics capturing driver-pedestrian interactions, the largest differences appear in
longitudinal distance. The Lyft dataset shows more aggressive behavior, while AV2’s training set
exhibits more desirable behavior with most cases above 2 meters, though its validation set presents
more challenging situations. DeepUrban demonstrates a more defensive driving style in VOZ, with
lower median and tail values. In SLC, most agents fall between 0 and 1, showing small deviations
from the center line. However, Lyft contains unrealistic cases exceeding 3 meters in SLC, likely due
to errors in bounding box orientation or size estimation, as shown in Fig. 4.

5 Conclusion

The analysis of human driving behavior across four key datasets revealed significant differences in
driving behavior and noise levels. The Lyft dataset exhibited the most noise, with extreme outliers
in both velocity and acceleration, highlighting the need for thorough preprocessing to ensure accu-
rate model training. In contrast, the DeepUrban dataset demonstrated more controlled and realistic
driving behaviors, with fewer outliers and a consistently defensive driving style, making it a reliable
source for analysis. The AV2 shows a significantly higher percentage of critical TTC values, with up
to 0.42% in the training set and 0.38% in the validation set, compared to other datasets such as Lyft
and nuPlan, which mostly hover around 0%. This higher percentage in AV2 highlights a distinct
driving pattern within the dataset. The nuPlan and AV2 datasets showed balanced driving behaviors,
representing a middle ground between the more defensive DeepUrban and the outlier-heavy Lyft.
The comparative analysis between Lyft and AV2 also revealed that advancements in sensors and
post-processing techniques have led to noticeable reductions in noise levels over time. Additionally,
datasets captured via drones generally exhibited lower noise levels than those recorded using on-
board sensors. This difference is likely due to the broader, less obstructed perspective provided by
drones, whereas onboard sensors are limited by the ego vehicle’s viewpoint. By employing the pro-
posed framework, we can effectively identify abnormal behaviors across these datasets, facilitating
the training of models that focus on more desirable human driving patterns.
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