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ABSTRACT

Time-series forecasting has gained increasing attention in the field of artificial intel-
ligence due to its potential to address real-world problems across various domains,
including energy, weather, traffic, and economy. While time-series forecasting
is a well-researched field, predicting complex temporal patterns such as sudden
changes in sequential data still poses a challenge with current models. This diffi-
culty stems from minimizing Lp norm distances as loss functions, such as mean
absolute error (MAE) or mean square error (MSE), which are susceptible to both
intricate temporal dynamics modeling and signal shape capturing. Furthermore,
these functions often cause models to behave aberrantly and generate uncorrelated
results with the original time-series. Consequently, the development of a shape-
aware loss function that goes beyond mere point-wise comparison is essential. In
this paper, we examine the definition of shape and distortions, which are crucial
for shape-awareness in time-series forecasting, and provide a design rationale for
the shape-aware loss function. Based on our design rationale, we propose a novel,
compact loss function called TILDE-Q (Transformation Invariant Loss function
with Distance EQuilibrium) that considers not only amplitude and phase distortions
but also allows models to capture the shape of time-series sequences. Furthermore,
TILDE-Q supports the simultaneous modeling of periodic and nonperiodic tem-
poral dynamics. We evaluate the efficacy of TILDE-Q by conducting extensive
experiments under both periodic and nonperiodic conditions with various mod-
els ranging from naive to state-of-the-art. The experimental results show that the
models trained with TILDE-Q surpass those trained with other metrics, such as
MSE and DILATE, in various real-world applications, including electricity, traffic,
illness, economics, weather, and electricity transformer temperature (ETT).

1 INTRODUCTION

Time-series forecasting has been a core problem across various domains, including traffic domain (Li
et al., 2018; Lee et al., 2020), economy (Zhu & Shasha, 2002), and disease propagation analysis (Mat-
subara et al., 2014). One of the key challenges in time-series forecasting is the modeling of complex
temporal dynamics (e.g., non-stationary signal and periodicity). Temporal dynamics, intuitively,
shape, is the most emphasized keywords in time-series domains, such as rush hour of traffic data
or abnormal usage of electricity (Keogh et al., 2003; Bakshi & Stephanopoulos, 1994; Weigend &
Gershenfeld, 1994; Wu et al., 2021; Zhou et al., 2022).

Although deep learning methods are an appealing solution to model complex non-linear temporal
dependencies and nonstationary signals, recent studies have revealed that even deep learning is often
inadequate to model temporal dynamics. To properly model temporal dynamics, novel deep learning
approaches, such as Autoformer (Wu et al., 2021) and FEDFormer (Zhou et al., 2022), have proposed
input sequence decomposition. Still, they are trained with Lp norm-based loss function, which could
not properly model the temporal dynamics, as shown in Fig. 1, (top). On the other hand, Le Guen
& Thome (2019) attempt to model sudden changes in a timely and accurate manner with dynamic
time warping (DTW), and Bica et al. (2020) adopt domain adversarial training to learn balanced
representations, which is a treatment invariant representations over time. Le Guen & Thome (2019);
Bica et al. (2020) try to capture the shape but still have some limitations, as depicted in Fig. 1 (middle),
implying the need for further investigation of the shape.
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Figure 1: Ground-truth and forecasting results of Informer model with three training metrics, as
shown in the blue box: (top) MSE, (middle) DTW-based, and (bottom) TILDE-Q loss function. (top,
middle) The blue boxes indicates the original intention of loss function (desired) and misbehaviors.

The identification of shape, denoting the pattern in time-series data within a given time interval, plays
an important role in addressing aforementioned limitation in time-series forecasting problem. It can
provide valuable information, such as rise, drop, trough, peak, and plateau. We refer to the prediction
as informative when it can appropriately model the shape. In real-world applications, including
economics, informative prediction is invaluable for decision-making. To achieve such informative
forecasting, a model should account for shape instead of solely aiming to forecast accurate value for
each time step. However, existing methods inadequately consider the shape (Wu et al., 2021; Zhou
et al., 2022; Bica et al., 2020; Le Guen & Thome, 2019). Moreover, deep learning model tends to opt
for an easy learning path (Karras et al., 2019), yielding inaccurate and uninformative forecasting
results disregarding the characteristics of time-series data. Fig. 1 illustrates three real forecasting
results obtained with Informer (Zhou et al., 2021) and different training metrics. When the mean
squared error (MSE) is used as an objective, the model aims to reduce the gap between prediction
and ground truth for each time-step. This “point-wise” distance-based optimization has less ability
to model shape, resulting in generating uninformative predictions regardless of temporal dynamics
(Fig. 1 (top)); the model rarely provides information about the time-series. In contrast, if both gap and
shape of the prediction and ground truth are taken into account, the model can achieve high accuracy
with proper temporal dynamics, as shown in Fig. 1 (bottom). Consequently, time-series forecasting
requires a loss function that consider both point-wise distance (i.e., traditional goal) and shape.

In this work, we aim to design a novel objective function that guides models in improving forecasting
performance by learning shapes in time-series data. To design a shape-aware loss function, we review
existing literature (Esling & Agon, 2012; Bakshi & Stephanopoulos, 1994; Keogh, 2003) and explore
the concepts of shapes and distortions that impede appropriate measurement of similarity between two
time-series data in terms of shapes (Sec. 3.1, Sec. 3.2, and Sec. 3.3). Based on our investigation, we
propose the necessary conditions for constructing an objective function for shape-aware time-series
forecasting (Sec. 4.1). Subsequently, we present a novel loss function, TILDE-Q (Transformation
Invariant Loss function with Distance EQualibrium), which enables shape-aware representation
learning by utilizing three loss terms that are invariant to distortions (Sec. 4.2). For evaluation,
we conduct extensive experiments with state-of-the-art deep learning models with TILDE-Q. The
experimental results indicate that TILDE-Q is model-agnostic and outperforms MSE and DILATE in
MSE and shape-related metrics.

Contributions In summary, our study makes the following contributions. (1) We delve into the
concept of shape awareness and distortion invariances in the context of time-series forecasting. By
thoroughly investigating these distortions, we enhance our understanding of their impact on time-
series forecasting problems. (2) We propose and implement TILDE-Q, which has invariances to three
distortions and achieves shape-awareness, empowering informative forecasting in a timely manner.
(3) We empirically demonstrate that the proposed TILDE-Q allows models to have higher accuracy
compared to the models trained with other existing metrics, such as MSE and DILATE.
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2 RELATED WORK

2.1 TIME-SERIES FORECASTING

Many time-series forecasting methods are available, ranging from traditional models, such as ARIMA
model (Box et al., 2015) and hidden Markov model (Pesaran et al., 2004), to recent deep learning
models. In this section, we briefly describe the recent deep learning models for time-series forecasting.
Motivated by the huge success of recurrent neural networks (RNNs) (Clevert et al., 2016; Li et al.,
2018; Yu et al., 2017), many novel deep learning architectures have been developed for improving
forecasting performance. To effectively capture long-term dependency, which is a limitation of RNNs,
Stoller et al. (2020) have proposed convolutional neural networks (CNNs). However, it is required to
stack lots of the same CNNs to capture long-term dependency (Zhou et al., 2021). Attention-based
models, including Transformer (Vaswani et al., 2017) and Informer (Zhou et al., 2021), have been
another popular research direction in time-series forecasting. Although these models effectively
capture temporal dependencies, they incur high computational costs and often struggle to obtain
appropriate temporal information (Wu et al., 2021). To cope with the problem, Wu et al. (2021);
Zhou et al. (2022) have adopted the input decomposition method, which helps models better encode
appropriate information. Other state-of-the-art models adopt neural memory networks (Kaiser et al.,
2017; Sukhbaatar et al., 2015; Madotto et al., 2018; Lee et al., 2022), which refer to historical data
stored in the memory to generate meaningful representation.

2.2 TRAINING METRICS

Conventionally, mean squared error (MSE), Lp norm and its variants are mainstream metrics used to
optimize forecasting models. However, they are not optimal for training forecasting models (Esling &
Agon, 2012) because the time-series is temporally continuous. Moreover, the Lp norm provides less
information about temporal correlation among time-series data. To better model temporal dynamics
in time-series data, researchers have used differentiable, approximated dynamic time warping (DTW)
as an alternative metric of MSE (Cuturi & Blondel, 2017; Abid & Zou, 2018; Mensch & Blondel,
2018). However, using DTW as a loss function results in temporal localization of changes being
ignored. Recently, Le Guen & Thome (2019) have suggested DILATE, a training metric to catch
sudden changes of nonstationary signals in a timely manner with smooth approximation of DTW and
penalized temporal distortion index (TDI). To guarantee DILATE’s operation in a timely manner,
penalized TDI issues a harsh penalty when predictions showed high temporal distortion. However,
the TDI relies on the DTW path, and DTW often showed misalignment because of noise and scale
sensitivity. Thus, DILATE often loses its advantage with complex data, showing disadvantages at the
training. In this paper, we discuss distortions and transformation invariances and design a new loss
function that enables models to learn shapes in the data and produce noise-robust forecasting results.

3 PRELIMINARY

In this section, we investigate common distortions focusing on the goal of time-series forecasting
(i.e., modeling temporal dynamics and accurate forecasting). To clarify the concepts of time-series
forecasting and related terms, we first define the notations and terms used (Sec. 3.1). We then discuss
common distortions in time-series from the transformation perspective that need to be considered for
building a shape-aware loss function (Sec. 3.2) and describe how other loss functions (e.g., dynamic
time warping (DTW) and temporal distortion index (TDI)) handle shapes during learning (Sec. 3.3).
We will discuss the conditions for effective time-series forecasting in the next session (Sec. 4.1).

3.1 NOTATIONS AND DEFINITIONS

Let Xt denote a data point at a time step t. We define a time-series forecasting problem as follows:
Definition 3.1. Given T -length historical time-series X = [Xt−T+1, . . . , Xt], Xi ∈ RF at time
i and a corresponding T ′-length future time-series Y = [Yt+1, . . . , Yt+T ′ ], Yi ∈ RC , time-series
forecasting aims to learn the mapping function f : RT×F → RT ′×C .

To distinguish between the label (i.e., ground truth) and prediction time-series data, we note the label
data as Y and prediction data as Ŷ. Next, we set up two goals for time-series forecasting, which
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Figure 2: Example of the six distortions on the amplitude axis (top) and temporal axis (bottom).

require not only precise but also informative forecasting (Wu et al., 2021; Zhou et al., 2022; Le Guen
& Thome, 2019) as follows:

• The mapping function f should be learnt to point-wisely reduce distance between Ŷ and Y;

• The output Ŷ should have similar temporal dynamics with Y.

Temporal dynamics are informative patterns in a time-series, such as rise, drop, peak, and plateau.
The optimization for point-wise distance reduction is a conventional method used in the deep learning
domain, which can be obtained using the MAE or MSE. However, in a real-world problem, such
as traffic speed or stock market prediction, accurate forecasting of temporal dynamics is required.
Esling & Agon (2012) also emphasized the measurement of temporal dynamics, as “...allowing the
recognition of perceptually similar objects even though they are not mathematically identical.” In
this paper, we define temporal dynamics as follows:
Definition 3.2. Temporal dynamics (or shapes) are informative periodic and nonperiodic patterns in
time-series data.

In this work, we aim to design a shape-aware loss function that satisfies both goals. To this end, we
first discuss distortions that two time-series with similar shapes can have.
Definition 3.3. Given two time-series F and G having similar shapes but not being mathematically
identical, let H is transformation that satisfies F = H(G). Then, the time-series F and G are
considered to have a distortion, which can be represented by the transformation H.

A distortion can generally be classified as a temporal distortion (i.e., warping) or an amplitude
distortion (i.e., scaling) depending on its dimension–time and amplitude. Existing distortions in the
data lead to misbehavior of the model, as they distort the measurements to be inaccurate. For example,
if we have two time-series F and G = F + k, which have similar shapes but different means, G
could represent many temporal dynamics of F. However, measurements often evaluate F and G as
completely different signals and cause misguidance of the model in training (e.g., measuring the
distance of F and G with MSE). As such, it is important to have measurements that consider a similar
shape invariant to distortion. We define a measurement for distortion as:
Definition 3.4. Let transformation H represent a distortion H . Then, we call measurement D
invariant to H if ∃δ > 0 : D(T,H(T)) < δ for any time-series T.

3.2 TIME-SERIES DISTORTIONS IN TRANSFORMATION PERSPECTIVES

Distortion, a gap between two similar time-series, affects shape capturing in time-series data. Thus, it
is important to investigate different distortions and their impacts on representation learning aspects.
There are six common time-series distortions that models encounter during learning (Esling & Agon,
2012; Batista et al., 2014; Berkhin, 2006; Warren Liao, 2005; Kerr et al., 2008)–Amplitude Shifting,
Phase Shifting, Uniform Amplification, Uniform Time Scaling, Dynamic Amplification, and Dynamic
Time Scaling. Next, we explain each common time-series distortion in terms of transformation with
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an n-length time-series F(t) = [f(t1), f(t2), . . . , f(tn)], where t = [t1, t2, . . . , tn]. Fig. 2 presents
example distortions, categorized by amplitude and time dimensions.

• Amplitude Shifting describes how much a time-series shifts against another time-series. This
can be described with two time-series and the degree of shifting k: G(t) = F(t) + k =
[f(t1) + k, . . . , f(tn) + k], where k ∈ R is constant.

• Phase Shifting is the same type of transformation (i.e., translation) as amplitude shifting, but
it occurs along the temporal dimension. This distortion can be represented by two time-series
functions with the degree of shift k: G(t) = F(t+ k) = [f(t1 + k), . . . , f(tn + k)], where
k ∈ R is constant. Cross-correlation (Paparrizos & Gravano, 2015; Vlachos et al., 2005) is
the most popular measure method that is invariant to this distortion.

• Uniform Amplification is a transformation that changes the amplitude by multiplication of
k ∈ R. This distortion can be described with two functions and a multiplication factor k:
G(t) = k · F(t) = [k · f(t1), . . . , k · f(tn)].

• Uniform Time Scaling refers to a uniformly shortened or lengthened F(t) on the temporal
axis. This distortion can be represented as G(t) = [g(t1), . . . , g(tm)], where g(ti) =
f(t⌈k·i⌉) and k ∈ R+. Although Keogh et al. (2004) have proposed uniform time warping
methods to handle this distortion, it still remains a challenging distortion type to measure
because of the difficulty in identifying the scaling factor k without testing all possible
cases (Keogh, 2003).

• Dynamic Amplification is any distortion that occurs through non-zero multiplication along
the amplitude dimension. This distortion can be described as follows: G(t) = H(t) ·
F(t) = [h(t1) ·f(t1), . . . , h(tn) ·f(tn)] with function h(t), such that ∀t∈T, h(t) ̸= 0. Local
amplification is representative of such distortions, which still remains challenging to solve.

• Dynamic Time Scaling refers to any transformation that dynamically lengthens or shortens
signals along the temporal dimension, including local time scaling (Batista et al., 2014) and
occlusion (Batista et al., 2014; Vlachos et al., 2003). It can be represented as follows: G(t) =
F(h(t)) = [f(h(t1)), . . . , f(h(tn))], where h(t) is a positive, strictly increasing function.
DTW (Bellman & Kalaba, 1959; Berndt & Clifford, 1994; Keogh & Ratanamahatana,
2005) is the most popular technique invariant to this distortion. Das et al. (1997) have also
introduced the longest common subsequence (LCSS) algorithm to tackle occlusion, noise,
and outliers in this distortion.

Shape-aware clustering (Bellman & Kalaba, 1959; Batista et al., 2014; Paparrizos & Gravano, 2015;
Berkhin, 2006; Warren Liao, 2005; Kerr et al., 2008) and classification (Xi et al., 2006; Batista et al.,
2014; Srisai & Ratanamahatana, 2009) tasks that consider shapes have been extensively studied.
However, only a few studies exist for time-series forecasting tasks, including Le Guen & Thome
(2019) that utilize DTW and TDI for modeling temporal dynamics. Next, we describe the MSE and
DILATE, proposed by Le Guen & Thome (2019), and discuss their invariance to distortions.

3.3 DISTORTION HANDLING IN CURRENT TIME-SERIES FORECASTING OBJECTIVES

Many measurement metrics have been used in the time-series forecasting domain, and those based on
the Lp distance, including Euclidean distance, are widely used to handle time-series data. However,
such metrics are not invariant to the aforementioned distortions (Ding et al., 2008; Le Guen & Thome,
2019) because of their point-wise mapping. In particular, since Lp distance compares the values
per time step, it cannot handle temporal distortions appropriately and is vulnerable to data scaling.
Le Guen & Thome (2019) have proposed a loss function called DILATE to overcome the inadequate
characteristic in the Lp distance metric by recognizing temporal dynamics with DTW and TDI. In
terms of transformation, DILATE handles dynamic time scaling, especially local time scaling with
DTW, and phase shifting with penalized TDI, defined as follows:

Ldilate(ŷi, yi) := −γ log
( ∑

A∈Ak,k

e−
⟨A,α∆(ŷi,yi)+(1−α)Ω⟩

γ

)
,

where A, ∆(ŷi, yi), Ω are the warping path, cost matrix, and penalization matrix, respectively.

While DILATE performs better than existing methods, it has a limitation from the perspective
of invariance. DILATE highly depends on DTW, which allows for the dynamic alignment of the
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time-series for a predefined window. In such windows, DTW can align the signal regardless of its
information (e.g., periodicity). As a result, the model creates misbehavior that can cheat DTW within
the window, as shown in Fig. 1 middle. DTW’s scale and noise sensitivity are also problematic.
DTW computes the Euclidean distance of two time-series after its temporal alignment in dynamic
programming, and the alignment relies on the distance function. Consequently, the dynamic alignment
of DTW can be properly achieved only when the two time-series have the same range (Esling &
Agon, 2012; Bellman & Kalaba, 1959). This means that it hardly achieves invariance to amplitude
distortion without appropriate pre-processing. Gong & Chen (2017) also show that DTW poorly
matches the prediction and target (i.e., ground truth) time-series with amplitude shifting. Even when
the target time-series is aligned with normalization, the appropriate alignment of the prediction and
target time-series cannot be guaranteed because of DTW’s high sensitivity to noise. As a result,
DILATE can generate poor alignment results, which can cause wrong TDI optimization, producing
incorrect results and instability during the optimization steps. To design an effective shape-aware loss
function, we must understand the measures and in which cases they have transformation invariances.
In the next section, we interpret transformations from a time-series forecasting viewpoint and discuss
the types of transformations that should be considered in objective function design.

4 METHODS

In this section, we discuss and propose the design rationale for the shape-aware loss function (Sec. 4.1).
Based on the design rationale, we implement a novel loss function, TILDE-Q (a Transformation
Invariant Loss function with Distance EQuilibrium), which allows models to perform shape-aware
time-series forecasting based on three distortion invariances.

4.1 TRANSFORMATION INVARIANCES IN TIME-SERIES FORECASTING

In the time-series domain, data often have various distortions; thus, measurements need to satisfy
numerous transformation invariances for meaningfully modeling temporal dynamics. As discussed in
Sec. 3.1, we set the goals of time-series forecasting as (1) point-wisely reducing the gap between the
prediction and target time-series and (2) preserving the temporal dynamics of the target time-series.
To satisfy both of them, we have to consider (1) a method that does not negatively impact on the
traditional goal of accurate time-series forecasting and (2) distortions that play a crucial role in
capturing the temporal dynamics of the target time-series. In this section, we review all six distortions
based on whether their corresponding invariance is feasible to be a loss function for time-series
forecasting, discuss the loss function’s benefits and trade-offs, and identify appropriate distortions to
be considered in time-series forecasting.

Amplitude Shifting In a wide range of situations, it is beneficial to capture the trends of time-series
sequences despite shifts in amplitude. Thus, being invariant to amplitude shifting in a loss function is
highly advantageous in time-series forecasting: (1) shape awareness invariant to amplitude shifting,
(2) accurate deviation of values in modeling, and (3) effective on-time prediction of the peak or
sudden changes. To guarantee an amplitude shifting invariance in the optimization stage, the loss
function should induce an equal gap k between the prediction and ground truth data in each step.
Specifically, the loss function considering amplitude shifting should satisfy:

L(Y, Ŷ) = 0 ⇔ ∀i∈[1,...,n], d(yi, ŷi) = k, (1)

where k ∈ R is an arbitrary and equal gap, and d(yi, ŷi) is a signed distance with a boundary yi > ŷi.
By allowing tolerance between the prediction and target time-series, models can follow trends in
time-series instead of predicting exact values point-wisely. In short, unlike existing loss functions,
which handle only point-wise distance (e.g., DTW), we should deal with both point-wise distance
and its relational distance values to guarantee amplitude shifting.

Phase Shifting There are some forecasting tasks whose main objectives concern accurate fore-
casting of peaks and periodicity in time-series (e.g., heartbeat data and stock price data). For such
tasks, phase shifting invariance is an optimal solution for (1) modeling periodicity, regardless of
the translation on the temporal axis, and (2) having precise statistics with shapes, such as peak and
plateau values. To be invariant to phase shifting, the loss function should satisfy

L(Y, Ŷ) = 0 ⇔ Y, Ŷ have the same dominant frequency. (2)
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Note that Eq. 2 allows a similar shape as the target time-series in forecasting, not exactly the same
shape (e.g., sin(x) and 2 sin(x+ x0) with the same dominant frequency).

Uniform Amplification This proposition can be utilized in the case of sparse data that contains
a significant number of zeros. By adopting uniform amplification invariance, models are able to
focus on non-zero sequences, whereas this proposition allows models to receive less penalty in zero
sequences. Since it guarantees shape awareness with a multiplication factor in a timely manner, as
shown in Fig. 2, invariance for uniform amplification fits well. To have a model trained with uniform
amplification invariance, the loss function should satisfy the following proposition:

L(Y, Ŷ) = 0 ⇔ ∀i∈[1,...,n],
yi
ŷi

= k(ŷi ̸= 0). (3)

Uniform Time Scaling, Dynamic Amplification, and Dynamic Time Scaling After careful
consideration, we conclude that uniform time scaling, dynamic amplification, and dynamic time
scaling are incompatible for optimization. the reasons are described below.

To achieve invariance for uniform time scaling, the loss function should satisfy below:

L(Y, Ŷ) = 0 ⇔ ∃c ∈ Z+, where {c|yi = ŷci} ∪ {c|yci = ŷi}∀i ∈ [0, 1, . . . , T ′]. (4)

This proposition will negatively influence the original temporal dynamics, considering that it creates
the tolerance for mispredicting periodicity (e.g., daily periodic signals) and cannot identify events
(e.g., abrupt changing values) in a timely manner. In summary, it hinders models from capturing
shapes and corrupts periodic information.

For both dynamic amplification and time scaling, the loss functions are zero for all pairs when there
is no limit for tolerance. Formally, the proposition for dynamic amplification invariance is as follows:

L(Y, Ŷ) = 0 ⇔ ∀ci ∈ R : yi = ciŷi,

If a loss function satisfies this proposition without bound for ci, it is always zero because there always
exists ci = yi/ŷi, except ŷi = 0. Therefore, it is not able to provide any information because all
random values could be an optimal solution. The same situation happens for the dynamic time scaling
if we do not limit the window. Consequently, all three objectives–uniform time scaling, dynamic
amplification, and dynamic time scaling are unsuitable to be objectives in time-series forecasting.

4.2 TILDE-Q: TRANSFORMATION INVARIANT LOSS FUNCTION WITH DISTANCE
EQUILIBRIUM

To build a transformation invariant loss function, we need to design a loss function that satisfies the
proposition for amplitude shifting (Eq. 1), phase shifting (Eq. 2), and uniform amplification shifting
invariance (Eq. 3), as discussed in Sec. 4.1. Furthermore, the loss function should guarantee a small
Lp norm between prediction and label, which is the traditional goal of forecasting. Both conditions
are hard to simultaneously satisfy by existing loss functions, such as the MSE or DILATE. To handle
all three distortions while considering traditional goal, we build three objective functions (a.shift,
phase, and amp losses) that can achieve one or more invariance by using softmax, Fourier coefficient,
and autocorrelation to design a loss function.

Amplitude Shifting Invariance with Softmax (Amplitude Shifting) To strengthen amplitude
shifting invariance, we design a loss function that satisfies Eq. 1. This means that d(yi, ŷi) must have
the same value for all i. To satisfy this condition, we utilize the softmax function:

La.shift(Y, Ŷ) = T ′
T ′∑
i=1

| 1
T ′ − Softmax(d(yi, ŷi))|, (5)

where T ′, Softmax, and d(·, ·) are the sequence length, softmax function, and signed distance function,
respectively. Because softmax produces the proportion of each value, it can obtain the optimal solution
only when it satisfies Eq. 1. Since Softmax outputs the relative values, it could handle any gap k.
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Table 1: Experimental results on six real-world datasets in multivariate time-series forecasting setting
with prediction lengths T ′ = {24, 36, 48, 60} for ILI and T ′ = {96, 192, 336, 720} for others. The
results are averaged from all prediction lengths. We set input sequence length T = 96 except
ILI dataset. For ILI dataset, we set input sequence length T = 36. Improved means the average
improvements of TILDE-Q over the model trained with MSE. We have colored the best training
metric in red.

Model iTransformer PatchTST Crossformer TimesNet DLinear FEDformer NSformer Autoformer
Methods MSE TILDE-Q MSE TILDE-Q MSE TILDE-Q MSE TILDE-Q MSE TILDE-Q MSE TILDE-Q MSE TILDE-Q MSE TILDE-Q
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ETT* 0.408 0.412 0.403 0.405 0.387 0.400 0.387 0.397 0.535 0.521 0.427 0.439 0.415 0.419 0.401 0.411 0.404 0.408 0.401 0.400 0.461 0.459 0.438 0.451 0.533 0.470 0.512 0.465 0.586 0.516 0.541 0.492

Electricity 0.179 0.269 0.175 0.266 0.204 0.291 0.203 0.282 0.188 0.284 0.181 0.278 0.195 0.295 0.192 0.292 0.225 0.319 0.212 0.294 0.227 0.337 0.224 0.333 0.196 0.295 0.194 0.293 0.250 0.351 0.232 0.338
Traffic 0.428 0.282 0.426 0.281 0.555 0.362 0.514 0.335 0.550 0.304 0.540 0.296 0.620 0.336 0.600 0.328 0.672 0.418 0.667 0.399 0.610 0.378 0.606 0.376 0.644 0.355 0.637 0.351 0.637 0.395 0.619 0.386

Weather 0.260 0.281 0.257 0.274 0.262 0.281 0.258 0.280 0.259 0.315 0.248 0.301 0.259 0.287 0.256 0.282 0.268 0.317 0.266 0.306 0.309 0.360 0.302 0.342 0.312 0.323 0.310 0.317 0.366 0.396 0.346 0.376
Exchange 0.389 0.421 0.379 0.415 0.365 0.410 0.364 0.403 0.943 0.711 0.833 0.660 0.403 0.436 0.407 0.438 0.323 0.392 0.301 0.379 0.554 0.515 0.524 0.499 0.546 0.488 0.474 0.457 0.532 0.518 0.494 0.493

ILI 2.333 0.984 2.220 0.949 2.253 0.933 2.143 0.903 3.724 1.281 3.297 1.202 2.346 0.963 2.083 0.899 2.815 1.150 2.475 1.071 3.307 1.276 3.113 1.225 2.613 1.024 2.032 0.921 3.327 1.261 3.199 1.241
Improved - - 2.08% 1.77% - - 2.43% 2.76% - - 8.85% 6.38% - - 3.25% 2.21% - - 4.48% 4.67% - - 3.42% 2.59% - - 7.02% 3.5% - - 5.69% 3.68%

Invariances with Fourier Coefficients (Phase Shifting) As discussed in Sec. 4.1, a potential
method that can be used to obtain phase shifting invariance is the use of Fourier coefficients. According
to the literature (NG & GOLDBERGER, 2007), the original time-series can be reconstructed with
a few dominant frequencies. Thus, we utilize the gap between dominant Fourier coefficients of
ground truth and prediction as our objective function for achieving phase shifting invariance. For
the other frequencies, we use the norm of the prediction sequence to reduce the value of the Fourier
coefficient. Consequently, this loss function keeps the temporal dynamics of the original time series
(i.e., dominant frequencies) and enables noise robustness by reducing white noises in non-dominant
frequencies. We achieve phase shifting invariance by optimizing the following loss function:

Lphase(Y, Ŷ) =

{
||F(Y)−F(Ŷ)||p, dominant freq.
||F(Ŷ)||p, otherwise

(6)

where || · ||p is the Lp norm. To obtain the dominant frequency terms, we calculate the norm of
the Fourier coefficient for each frequency and filter them with the squared root of sequence length,√
T ′. We also guarantee the minimum number of dominant frequencies as

√
T ′. This loss function

obtains uniform amplification invariance through the application of a normalization technique to
Fourier coefficients. For example, sinx and c ·sinx have the same Fourier coefficients if appropriately
normalized. In summary, from Eq. 6, we can obtain (1) invariance for phase shifting, (2) invariance
for uniform amplification, and (3) robustness to noise.

Invariances with Autocorrelation (Uniform Amplification) Although Fourier coefficients can be
considered a reasonable solution to determine the periodicity of the target time-series, they are not
completely invariant to phase shifting for three reasons: (1) the data statistics (e.g., mean and variance)
keep changing, (2) such changing statistics also cause changes in Fourier coefficients even at the
same frequency, and (3) objectives only with a norm of Fourier coefficient cannot fully represent the
original time-series. Thus, we introduce an objective based on normalized cross-correlation, which
satisfies Eq. 2 for a periodic signal:

Lamp(Y, Ŷ) = ||R(Y,Y)−R(Y, Ŷ)||p, (7)

where R(·, ·) is a normalized cross-correlation function. This loss function helps predicted sequences
mimic label sequences by calculating the difference between the autocorrelation of the label se-
quences and the cross-correlation between the label and predicted sequences. Therefore, the label and
prediction have similar temporal dynamics, regardless of phase shifting or uniform amplification.

In summary, we introduce TILDE-Q, combining Eq. 5, Eq. 6, and Eq. 7 as follows:

L(Y, Ŷ) = αLa.shift(Y, Ŷ) + (1− α)Lphase(Y, Ŷ) + γLamp(Y, Ŷ), (8)

where α ∈ [0, 1] and γ are hyperparameters.

5 EXPERIMENTS

In this section, we present the results of our comprehensive experiments, demonstrating the effective-
ness of TILDE-Q and the importance of transformation invariance.
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Table 2: Experimental results of short-term time-series forecasting on the three datasets with sequence-
to-sequence GRU model. We have colored the best training metric in red and the second best
underlined.

Methods GRU + MSE GRU + DILATE GRU + TILDE-Q

Eval MSE DTW TDI LCSS MSE DTW TDI LCSS MSE DTW TDI LCSS

Synthetic 0.0107 3.5080 1.0392 0.3523 0.0130 3.4005 1.1242 0.3825 0.0119 3.2873 1.1564 0.3811

ECG5000 0.2152 1.9718 0.8442 0.7743 0.8270 3.9579 2.0281 0.4356 0.2141 1.9575 0.7714 0.7773
Traffic 0.0070 1.4628 0.2343 0.7209 0.0095 1.6929 0.2814 0.6806 0.0072 1.4600 0.2276 0.7220

Experimental Setup We conduct the experiments with eight state-of-the-art models–
Autoformer (Wu et al., 2021), FEDformer (Zhou et al., 2022), NSformer (Liu et al., 2022), DLin-
ear (Zeng et al., 2023), TimesNet (Wu et al., 2023), Crossformer (Zhang & Yan, 2023), PatchTST Nie
et al. (2023), and iTransformer (Liu et al., 2023) and one basic GRU model. For model training, we
use seven real-world datasets–ECL, ETT, Electricity, Traffic, Weather, Exchange, and Weather–and
one synthetic dataset, Synthetic. We repeat each experiment with a model and dataset 10 times in
combination with two different objective functions. Appendix B provides detailed explanations of the
datasets, hyperparameter settings, model, and source code. We also provide additional qualitative
results in Appendix.

Evaluation Metrics In this experiment, we evaluate TILDE-Q with three evaluation metrics:
mean absolute error (MAE), mean squared error (MSE), dynamic time warping (DTW), and its
corresponding temporal distortion index (TDI), all of which are referred from Le Guen & Thome
(2019). As DTW is sensitive to noise and generates incorrect paths when one of the time-series data
is noisy (as discussed in Sec. 3.3), we additionally use the longest common subsequence (LCSS)
for comparison, which is more robust to outliers and noise (Esling & Agon, 2012). The longer the
matched subsequences, the higher the LCSS score will be achieved in modeling the shapes. For
state-of-the-art models, we report the MAE and MSE. For detailed results, including forecasting
results for different prediction lengths, please refer to Appendix C.

Experimental Results and Analysis Table 2 shows the results of the short-term forecasting
performance of the GRU model optimized with the MSE, DILATE, and TILDE-Q metrics. With the
Synthetic dataset, each metric used shows its own benefits. This result indicates that loss functions
with shape similarity or MSE have their specialty for shape and exact value, respectively. It also
means a better MSE does not guarantee a better solution for temporal dynamics. Moreover, since the
model is evaluated with real-world datasets, it is revealed that TILDE-Q outperforms other objective
functions in most evaluation metrics. These results indicate that our approach to learning shapes in
time-series data achieves better results than existing methods for forecasting. DILATE does not show
impressive performance with ECG5000 due to its high sensitivity to noise, as discussed in Sec. 3.3.
Table 1 summarizes the comprehensive experimental results obtained with the eight state-of-the-art
models. Compared to MSE baseline, TILDE-Q makes particularly better prediction among all the
models, even for the DLinear (Zeng et al., 2023), which consists of two one-layer linear layers. For the
Autoformer and NSformer, TILDE-Q makes significant improvement around 5%, making the models
recognize additional shape-related information beyond the frequency-based terms. For the recent
models (i.e., iTransformer and PatchTST) that interpret input signals with embedding or patching,
TILDE-Q is less beneficial than the other models. Crossformer makes the most impressive results
with 8.85% performance improvement. This improvement is caused by Crossformer’s design, which
particularly focuses on resolving inter-domain dependency among multivariate time series. TILDE-Q
is able for Crossformer to recognize the cross-time dependency (i.e., shape and temporal changes)
better, indicating the importance of both temporal and inter-domain behaviors. This insight reveals
possible future research investigating loss function related to causality and inter-domain dependency.
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6 CONCLUSION AND FUTURE WORK

We propose TILDE-Q that allows shape-aware time-series forecasting in a timely manner. To design
TILDE-Q, we review existing transformations in time-series data and discuss the conditions that
ensure transformation invariance during optimization tasks. The designed TILDE-Q is invariant
to amplitude shifting, phase shifting, and uniform amplification, ensuring a model better captures
shapes in time-series data. To prove the effectiveness of TILDE-Q, we conduct comprehensive
experiments with state-of-the-art models and real-world datasets. The results indicate that the model
trained with TILDE-Q generates more timely, robust, accurate, and shape-aware forecasting in both
short-term and long-term forecasting tasks. We conjecture that this work can facilitate future research
on transformation invariances and shape-aware forecasting.

7 IMPACT STATEMENTS

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none which we feel must be specifically highlighted
here.
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