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ABSTRACT

Adversarial examples are imperceptible perturbations in the input to a neural model
that result in misclassification. Generating adversarial examples for source code
poses an additional challenge compared to the domains of images and natural lan-
guage, because source code perturbations must adhere to strict semantic guidelines
so the resulting programs retain the functional meaning of the code. We propose a
simple and efficient gradient-free method for generating state-of-the-art adversarial
examples on models of code that can be applied in a white-box or black-box setting.
Our method generates untargeted and targeted attacks, and empirically outperforms
competing gradient-based methods with less information and less computational
effort.

1 INTRODUCTION

Although machine learning has been shown to be effective at a wide variety of tasks across computing,
statistical models are susceptible to adversarial examples. Adversarial examples, first identified
in the continuous domain by Szegedy et al. (2014), are imperceptible perturbations to input that
result in misclassification. Researchers have developed effective techniques for adversarial example
generation in the image domain (Goodfellow et al., 2015; Moosavi-Dezfooli et al., 2017; Papernot
et al., 2016a) and in the natural language domain (Alzantot et al., 2018; Belinkov & Bisk, 2018;
Cheng et al., 2020; Ebrahimi et al., 2018; Michel et al., 2019; Papernot et al., 2016b), although work
in the source code domain is less extensive (see Related Work). The development of adversarial
examples for deep learning models has progressed in tandem with the development of methods to
make models which are robust to such adversarial attacks, though much is still being learned about
model robustness (Goodfellow et al., 2015; Madry et al., 2018; Shafahi et al., 2019; Wong et al.,
2019).

The threat of adversarial examples poses severe risks for ML-based malware defenses (Al-Dujaili
et al., 2018; Grosse et al., 2016; Kaur & Kaur, 2015; Kolosnjaji et al., 2018; Kreuk et al., 2019; Suciu
et al., 2019), and introduces the ability of malicious actors to trick ML-based code-suggestion tools
to suggest bugs to an unknowing developer (Schuster et al., 2020). Thus, developing state-of-the-art
attacks and constructing machine learning models that are robust to these attacks is important for
computer security applications. Generating adversarial examples for models of code poses a challenge
compared to the image and natural language domain, since the input data is discrete and textual
and adversarial perturbations must abide by strict syntactical rules and semantic requirements. The
CODE2SEQ model is a state-of-the-art model of code that has been used to explore adversarial example
design and robustness methods on models of code (Rabin & Alipour, 2020; Ramakrishnan et al.,
2020).

In this work, we propose the Simple TRAined Token Attack (STRATA), a novel and effective method
for generating black-box and white-box adversarial attacks against CODE2SEQ. Our method replaces
local variable names with high impact candidates that are identified by dataset statistics. It can also
be used effectively for targeted attacks, where the perturbation targets a specific (altered) output
classification. Further, we demonstrate that adversarial training, that is, injecting adversarial examples
into CODE2SEQ’s training set, improves the robustness of CODE2SEQ to adversarial attacks.

We evaluate STRATA on CODE2SEQ, though we hypothesize that the method can be applied to other
models. The principles underlying STRATA apply not only to models of source code, but also to
natural language models in contexts where the vocabulary is large and there is limited training data.
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STRATA has a number of advantages compared to previously proposed adversarial attack strategies:

1. STRATA constructs state-of-the-art adversarial examples using a gradient-free approach that
outperforms gradient-based methods;

2. STRATA generates white-box adversarial examples that are extremely effective; black-
box attacks that use dictionaries created from unrelated code datasets perform similarly
(Appendix C)

3. STRATA does not require the use of a GPU and can be executed more quickly than competing
gradient-based attacks (Appendix D.1);

4. STRATA is the only available method (known to the authors at present) which performs
targeted attacks on CODE2SEQ, which is the current state-of-the-art for models of code.

2 MOTIVATION

CODE2SEQ, developed by Alon et al. (2019a), is an encoder-decoder model inspired by SEQ2SEQ

(Sutskever et al., 2014); it operates on code rather than natural language. CODE2SEQ is the state-of-
the-art code model, and therefore it represents a good target for adversarial attacks and adversarial
training. The model is tasked to predict method names from the source code body of a method.
The model considers both the structure of an input program’s Abstract Syntax Trees (ASTs) as
well as the tokens corresponding to identifiers such as variable names, types, and invoked method
names. To reduce the vocabulary size, identifier tokens are split into subtokens by commonly used
delimiters such as camelCase and under_scores. In this example, subtokens would include “camel”
and “case” and “under” and “scores”. CODE2SEQ encodes subtokens into distributed embedding
vectors. These subtoken embedding vectors are trained to capture semantic structure, so nearby
embedding vectors should correspond to semantically similar subtokens (Bengio et al., 2003). In this
paper, we distinguish between subtoken embedding vectors and token embedding vectors. Subtoken
embedding vectors are trained model parameters. Token embedding vectors are computed as a sum of
the embedding vectors of the constituent subtokens. If the token contains more than five subtokens,
only the first five are summed, as per the CODE2SEQ architecture. The full description and architecture
of the CODE2SEQ model is given in the original paper by Alon et al. (2019a).

The CODE2SEQ model only updates a subtoken embedding as frequently as that subtoken appears
during training, which is proportional to its representation in the training dataset. However, the
training datasets have very large vocabularies consisting not only of standard programming language
keywords, but also a huge quantity of neologisms. The frequency at which subtokens appear in
the CODE2SEQ java-large training set varies over many orders of magnitude, with the least common
subtokens appearing fewer than 150 times, and the most common over 108 times.

Thus, subtoken embedding vectors corresponding with infrequently-appearing subtokens will be
modified by the training procedure much less often than common subtokens. Figure 1a demonstrates
this phenomenon, showing a disparity between L2 norms of frequent and infrequently-appearing
subtoken embedding vectors.

We confirm this empirically. When we initialized embedding vectors uniformly at random and
then trained the model as normal, as per Alon et al. (2019a), we found that the vast majority of
final, i.e., post-training, embedding vectors change very little from their initialization value. In fact,
90% of embedding tokens had an L2 distance of less than 0.05 between the initial vector and final,
post-training vector when trained on a java dataset. About 10% of subtokens had a large L2 distance
between the initial embedding and final embedding; these subtokens were more frequent in the
training dataset and had embedding vectors with a notably larger final L2 magnitude (Figure 1).

The observation that high-L2-norm embedding vectors are associated with subtokens that appear
sufficiently frequently in the dataset motivates the core intuitions of our attack1. We show in this
paper that subtokens with high-L2-norm embedding vectors can be used for effective adversarial
examples, which are constructed as follows:

1We note very-high-frequency subtokens have small L2 norms. Examples of these very-high-frequency
subtokens include: get, set, string, and void, which appear so often as to not be useful for classification.
Despite the fact that these subtokens are not good adversarial candidates for STRATA, there are so few of them
that we expect them to have minimal influence on the effectiveness of our attack.

2



Under review as a conference paper at ICLR 2021

(a) The L2 distance between pre- and post-training
embedding vectors for each subtoken, plotted against
the log frequency of subtokens in the java-small train-
ing dataset.

(b) L2 norm of trained subtoken embedding vectors.
Dashed and dotted lines chosen arbitrarily to illustrate
tokens which have high L2 norm or frequency.

Figure 1: Visualization of embedding vectors for CODE2SEQ-SM.

1. To maximize adversarial effectiveness in a white-box setting, we should use tokens with
high L2 norm embedding vectors as local variable name replacements. We confirm this
empirically in the Experiments section.

2. In the absence of information about the L2 norms of embedding vectors, we can isolate
high-L2-norm subtokens for local variable name replacement by selecting tokens which
appear in the training dataset often enough to be well trained. This is empirically confirmed
by the large intersection of high-L2-norm subtokens and subtokens with high frequency.

3 METHODS

3.1 DATASET DEFINITIONS AND CONSIDERATIONS

We evaluate our attack on four datasets that are used for training different CODE2SEQ models. There
are three, non-overlapping Java datasets: java-small (700k examples), java-medium (4M examples),
and java-large (16M examples) (Alon et al., 2019a), and one Python dataset, python150k (Raychev
et al., 2016). We disambiguate the trained CODE2SEQ models for each datasets by denoting them
CODE2SEQ-SM, CODE2SEQ-MD, CODE2SEQ-LG, and CODE2SEQ-PY for models trained on java-small,
-medium, -large, and python150k respectively. Many of our experiments are evaluated on all four
models; however, experiments that require adversarial training are only evaluated on CODE2SEQ-SM,
for computational feasibility.

3.2 THE ATTACK

Traditional adversarial attacks on discrete spaces involve searching the discrete space for semantically
similar perturbations that yield a misclassification. Searching the space of all possible valid discrete
changes in source code is often intractable or even impossible (Rice, 1953). However, there are
strategies to reduce the search space. For example, perturbations may be limited to a small number of
predefined operations which are known to be semantically equivalent, such as inserting deadcode,
replacing local variable names, or replacing expressions with known equivalent expressions. Gradient-
based attacks on the embedding space may also be used in order to optimize the search of the
space itself (Ramakrishnan et al., 2020; Yefet et al., 2020). However, gradient-based attacks are
computationally expensive and rely heavily on knowledge of the exact parameters of the model.

We propose STRATA, which replaces local variable names with high-impact subtokens to generate
adversarial examples. STRATA leverages the fact that only a relatively small number of subtoken
embeddings are critical for the classification task performed by the CODE2SEQ model.

In Section 2, we presented two ways to identify high-impact subtokens. STRATA will use these
to replace local variable names. Recall that the model composes these subtokens into tokens by
summing the first five constituent subtoken embedding vectors. We wish to maximize the L2 norm of
the resulting token, while minimizing the semantic change. We propose three strategies:

1. single: pick a single subtoken as the token;
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2. 5-diff: pick five different (not necessarily unique) subtokens and concatenate them, which
will have a higher expected L2 norm than single;

3. 5-same: pick a single subtoken, and repeat the subtoken five times to form a token, which
will have the largest expected L2 norm, by the triangle inequality2.

We subjectively propose that single is the smallest and most realistic semantic change, 5-same is the
largest change and the “best-case" for an adversarial example, and 5-diff represents an intermediate
attack strength.

For a given method, STRATA generates an untargeted perturbation as follows:

1. Select one random local variable v;
2. Choose an adversarial token v∗ appropriately, using the chosen concatenation strategy

(single, 5-diff, or 5-same). For white-box attacks, choose each subtoken from a high-L2-
norm vocabulary (top-n by L2 norm). For black-box attacks, choose each subtoken with
sufficiently high frequency (top-n by frequency). We discuss the optimal cutoff values (n)
for L2 and frequency in Section 3.4.

3. Replace v with v∗.

For attacks on the Python dataset, since determining whether a variable is local or non-local is not
always possible by looking at only the body of the method, we treat all variables as local.

To perform targeted attacks in which we want the output to include a particular subtoken t, we
perform the same steps as the untargeted attack, and choose v∗ to be a 5-same concatenation of t.

3.3 DATASET-AGNOSTIC BLACK-BOX ATTACKS

STRATA can generate effective adversarial attacks even without the training dataset. We can determine
subtoken frequency statistics from a different (potentially non-overlapping) dataset. We empirically
confirm that STRATA can use non-overlapping datasets (java-small, java-medium, and java-large) in
this way to attack CODE2SEQ models that have been trained on a different Java dataset. We conclude
that the subtoken distributions of non-overlapping Java datasets are sufficiently similar for STRATA
to be effective (Appendix C). This confirms that STRATA can be applied in a completely black-box
setting without knowledge of the model parameters or training dataset.

3.4 IMPLEMENTATION

We assayed the effectiveness of the method by applying a simple local variable token replacement
attack. We select a single locally-declared variable at random and rename it with an adversarial token
which does not conflict with another name. Because the initial variable is locally declared, we know
that changing the name will have no effect elsewhere in the program, and will have no behavioral
effect. The token replacement, however, can effectively attack CODE2SEQ; example shown in the
Appendix.

The java-small test set consists of ~57,000 examples; we exclude from our testing dataset all methods
that cannot be attacked by our method, i.e. all methods without local variables, leaving ~40,000
examples. The python150k dataset consists of 50,000 testing examples. We then create several
vocabularies of subtokens from which to choose adversarial substitutions:

1. All: Contains all subtokens. Note that the number of subtokens varies by dataset (Table 1);
2. Top n by L2 norm contains subtokens for which their L2 norm embedding vectors are the n

highest;
3. Top n by frequency contains only the n subtokens which occur in the training data with

highest frequency.

To obtain optimal thresholds of n, we swept the range of possibilities to find the n that minimizes F1
score, i.e., generates the best performing adversarial examples (Figure 2). We present the final values
of n in Table 1.

2The triangle inequality states that ‖x+ y‖ ≤ ‖x‖+ ‖y‖, and is equal (and thus maximized) when x and y
are colinear, which occurs when x = y. This is easily generalized to five vectors.
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Dataset Model name Optimal n by frequency Optimal n by L2 Total subtokens

java-small CODE2SEQ-SM 1800 (2.51%) 1000 (1.39%) 71766
java-med CODE2SEQ-MD 3000 (1.65%) 3000 (1.65%) 181125
java-large CODE2SEQ-LG 10000 (5.54%) 6000 (3.33%) 180355
python150k CODE2SEQ-LG 1600 (1.99%) 1600 (1.99%) 80336

Table 1: The name of the CODE2SEQ model trained on each dataset, along with optimal values of n for
the top-n by frequency and L2 norm vocabularies, and the total number of subtokens for each dataset.

(a) CODE2SEQ-SM (b) CODE2SEQ-MD

(c) CODE2SEQ-LG (d) CODE2SEQ-PY

Figure 2: The F1 scores of the CODE2SEQ models, evaluated on the java-small or python testing
dataset that has been adversarially perturbed with STRATA for given top-n parameters, using 5-same
concatenation. A lower F1 score corresponds to a more effective attack.

4 EXPERIMENTS AND DISCUSSION

4.1 UNTARGETED ATTACKS

Table 2 compares the three proposed concatenation strategies on each of the four proposed vocabular-
ies (three in Java, one in Python). To perform comparisons, we measure the F1 score of the model on
the java-small testing dataset, with each adversarial perturbation. Lower F1 scores correspond with
better attacks. We see that the performance of CODE2SEQ drops when a local variable is replaced with
a token composed of a random selection from all subtokens, using the 5-diff and 5-same concatenation
strategies. However, we observe a larger drop in F1 score when we make variable replacements
from subtokens selected from the top-n subtokens by L2 norm or by frequency, using values of n
specified in Table 1. When we replaced local variables with random tokens with high L2 norm, the
F1 score dropped substantially, confirming our hypothesis that we can improve the effectiveness of
adversarial examples by selecting replacement tokens such that their subtoken embedding vectors
have high L2 norm. Similarly, adversarial examples that replace a local variable with subtokens of
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high frequency in the training dataset are highly effective, suggesting that the black-box method of
choosing adversarial subtokens based on frequency alone can approximate the white-box attack.

Surprisingly, the F1 score of CODE2SEQ-SM increased for random and frequency-based adversarial
perturbations constructed with the single concatenation strategy, suggesting that CODE2SEQ-SM

relies less on variable names for classification than CODE2SEQ-MD or CODE2SEQ-LG. The attacks
on CODE2SEQ-PY were also incredibly effective, although the baseline accuracy for that model was
already lower than the rest of the models.

Baseline All Top-n by L2 norm Top-n by Frequency

single 5-diff 5-same single 5-diff 5-same single 5-diff 5-same

CODE2SEQ-SM .369 .381 .350 .310 .362 .263 .214 .372 .284 .231
CODE2SEQ-MD .564 .548 .531 .492 .513 .416 .375 .513 .385 .345
CODE2SEQ-LG .608 .536 .547 .488 .542 .396 .360 .548 .427 .388
CODE2SEQ-PY .313 .536 .547 .488 .249 .198 .153 .256 .211 .172

Table 2: Evaluation of F1 scores of STRATA on our CODE2SEQ models, using vocabularies and
replacement strategies as described in the Methods section. The baseline refers to the performance of
the model on the original test dataset. For the Java models, samples were drawn from the java-small
testing set such that each method included a local variable to perturb. All top-n scores use optimal
values of n proposed in Table 1.

As proposed in Section 3.2, the effectiveness of the adversarial attack is optimized when we replace
local variables with a token that is constructed with the 5-same strategy. Strikingly, the black-box
attack (top-n by frequency) is nearly as effective as the white-box attack (top-n by L2).

4.2 TARGETED ATTACKS

We perform targeted adversarial attacks on the Java datasets that aim to inject a chosen subtoken
into the output by performing a STRATA attack using the targeted subtoken for replacement. See
Appendix D for an example.

To assay the effectiveness of targeted attacks, we perform targeted attacks that target three different
subtoken vocabularies: (1) all valid subtokens, (2) the optimized L2 vocabulary, and (3) the opti-
mized frequency vocabulary, where vocabularies are optimized for CODE2SEQ-SM, CODE2SEQ-MD,
or CODE2SEQ-LG appropriately. We determine that a particular attack is successful if the selected
subtoken is included in the output. We measure the percent of successful attacks, thus computing an
aggregate effectiveness of targeted attacks (Table 3). We omit targeted attacks on the Python dataset
although we expect that a similar trend holds.

Model Perturbation Strategy % success

CODE2SEQ-LG L2, top 6k 5-same 37.1
CODE2SEQ-LG Frequency, top 10k 5-same 35.6
CODE2SEQ-LG All 5-same 3.9

CODE2SEQ-MD L2, top 3k 5-same 43.8
CODE2SEQ-MD Frequency, top 3k 5-same 39.1
CODE2SEQ-MD All 5-same 1.4

CODE2SEQ-SM L2, top 1k 5-same 58.7
CODE2SEQ-SM Frequency, top 1.8k 5-same 52.8
CODE2SEQ-SM All 5-same 2.1

Table 3: Effectiveness of targeted attacks on CODE2SEQ.

Table 3 reveals that CODE2SEQ is especially vulnerable to targeted attacks performed on high-impact
subtokens. The black-box (frequency) attack performs similarly to the white-box (L2) attack.
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4.3 TRANSFERABILITY

In this section we show that gradient-based adversarial training as proposed by Ramakrishnan et al.
(2020) is not effective at improving robustness to STRATA attacks. We test a CODE2SEQ model that has
been trained to be robust to the gradient-based adversarial examples proposed by Ramakrishnan et al.
(2020), and find that the model is indeed robust to the gradient-based token-replacement perturbations.
However, neither the original nor the robust model are impervious to perturbations produced by
STRATA (Table 4). This result confirms that STRATA can effectively target models that are robust to
some gradient-based perturbations; therefore it is a useful tool when hardening models of code, even
when gradient-based perturbations are also being used.

Model No perturbations (F1) Gradient perturbations (F1) STRATA perturbations (F1)

Original .363 .243 .212
Robust .367 .342 .240

Table 4: F1 scores of a non-robust and robust CODE2SEQ-SM model on gradient-based adversarial
perturbations and STRATA perturbations.

5 STRATA OUTPERFORMS SIMILAR ATTACKS

At the time of writing there are two other works that address adversarial attacks targeting CODE2SEQ:
a class of source code transformations by Rabin & Alipour (2020) and gradient-based attacks by
Ramakrishnan et al. (2020). We greatly outperform the transformations considered in Rabin &
Alipour (2020) (Appendix B).

We compare our work to gradient-based adversarial perturbations proposed by Ramakrishnan et al.
(2020), in which they attack a CODE2SEQ-SM model. We consider the variable replacement, print
statement insertion, try-catch statement insertion, and worst-case single transformation attacks for
our comparison. Note: to establish a fair comparison, we include the 17,000 examples in the
testing set that do not include a local variable, and thus we do not even attempt to perturb them,
hence why the F1 scores of the adversarial examples are larger than as reported in Table 2. We
find that STRATA outperforms all attacks performed by Ramakrishnan et al. (2020) except for the
worst-case transformation, which is inherently a larger transformation than our varible-replacement
attack. This includes greatly outperforming the gradient-based local variable replacement attack and
performing similarly to the worst-case transformation, despite the fact that STRATA generates smaller
perturbations with less computational effort, and with less information about the model (Table 5).
These results indicate that STRATA attacks are state-of-the-art on CODE2SEQ.

Adversarial attack F1 % of baseline score

Baseline (Ramakrishnan et al.) .414 100
Variable Replacement (Ramakrishnan et al.) .389 93.9
Try-catch Statement Insertion (Ramakrishnan et al.) .336 81.2
Print Statement Insertion (Ramakrishnan et al.) .312 75.3
Worst-case Transformation (Ramakrishnan et al.) .246 59.4

Baseline (STRATA) .425 100
Top 1k by L2 (STRATA) .316 74.4
Top 1.8k by frequency (STRATA) .328 77.2

Table 5: Comparison of F1 scores our method to gradient-based attacks described by Ramakrishnan
et al. (2020). Both our model and the Ramakrishnan et al. (2020) model are trained on java-small.
We perform 5-same attacks.
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6 RELATED WORK

Adversarial examples for models of code Allamanis et al. (2018) provide a comprehensive survey
of prior research on models of code. Several papers develop techniques for generating adversarial
examples on models of source code: Quiring et al. (2019) perform adversarial attacks on source
code by applying a Monte-Carlo tree search over possible transformations, and Zhang et al. (2020)
apply Metropolis-Hastings sampling to perform identifier replacement to create adversarial examples.
Bielik & Vechev (2020) improve on the adversarial robustness of models of code by developing a
model that can learn to abstain if uncertain.

Adversarial examples for CODE2VEC and CODE2SEQ Yefet et al. (2020) generate both gradient-
based targeted and untargeted adversarial examples for CODE2VEC Alon et al. (2019b). Most directly
related to our paper, Ramakrishnan et al. (2020) perform gradient-based adversarial attacks and
adversarial training on CODE2SEQ. Rabin & Alipour (2020) evaluate the robustness of CODE2SEQ to
semantic-preserving transformations.

Targeted attacks on models of code As previously noted, Yefet et al. (2020) propose a method
for targeted adversarial examples for CODE2VEC (Alon et al., 2019b). To our knowledge, at the time
of writing, no other paper performs targeted attacks on CODE2SEQ.

Adversarial training for robustness Many recent papers have examined the robustness of neural
network models to adversarial perturbations. Szegedy et al. (2014) demonstrates that neural networks
are vulnerable to adversarial perturbations, but that training on these perturbations, i.e., adversarial
training, can increase robustness. Further papers explore faster and more effective methods of
adversarial training to improve robustness, though mostly in the continuous domain (Madry et al.,
2018; Shafahi et al., 2019; Wong et al., 2019). Ramakrishnan et al. (2020) perform adversarial
training on CODE2SEQ to improve robustness. Yefet et al. (2020) propose multiple methods to improve
robustness of models of source code, including adversarial training, outlier detection, and excluding
variable names from model input.

7 CONCLUSION

In this work, we presented STRATA, a simple, gradient-free method for generating adversarial
examples in discrete space that can be used to help build robustness in models of code. Because the
L2 norm of an embedding vector can be approximated by the frequency in the training data, STRATA
can be used to generate gradient-free white- and black-box attacks. We presented effective attacks
using this method, including targeted attacks, and also showed that adversarial fine-tuning using
STRATA examples can lead to increased robustness, even when the fine-tuned model is only being
tested on clean data.

Our work does have some limitations. In the continuous domain, many adversarial attacks may not
even be detected by humans; in the discrete domain, this is not possible, but some attacks in the
discrete space are more realistic (harder to spot) than others. The most powerful attack we propose,
5-same, is also the least realistic; single is a smaller perturbation but it has less effective attacks.
We expect that the attack could be expanded by adding dummy local variables to methods that do
not initially contain a local variable, mitigating the current inability to attack methods without local
variables.

STRATA does not just have application as an attack, but also as a defense. We present preliminary
adversarial training results in the appendix which suggest that using adversarial examples generated
with STRATA for adversarial training can improve robustness to adversarial attacks. Since we show
that standard gradient-based adversarial training is ineffective at defending against STRATA, it is
important for robust models to be adversarial training with STRATA adversarial examples to ensure
a comprehensive robustness. A complete study and evaluation of the effectiveness of adversarial
training using STRATA is an important future direction.

Another exciting area of future inquiry would be the application of this attack to other models,
including natural language models. The magnitude differences in subtoken frequency in code is
similar to the magnitude differences in word frequency in natural language (Piantadosi, 2014). In fact,
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tokens in software follow the same distribution as words in natural language (Zhang, 2008). Thus we
believe that our technique should be applicable in the NLP setting (with modification; for example,
replacement dictionaries might only be filled with high-impact synonyms). We theorize that STRATA
could be used to good effect in models of natural language as well as models of code, and that the
basic intuitions underlying the attack can extend even to domains where the actual training data is not
available, as long as a suitably similar dataset is available. Our results stem from fundamental features
of dataset distribution and training process, and so they should generalize to other applications.

STRATA has a broad application to the field of machine learning in discrete spaces with large
vocabularies. We present the insight that subtoken frequency correlates with L2 norm and thus can
be used to determine high impact subtokens; this technique is not a priori exclusive to code2seq or
even models of code in general since it relies on properties of the dataset distribution and training
technique and not the model architecture. STRATA is a high-impact, low-cost attack strategy that can
be used to bolster robustness; we have made its code open-source so that those who wish to use it
may do so.
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A ADVERSARIAL TRAINING

We perform adversarial training in order to make CODE2SEQ most robust to adversarial attacks. To test
the robustness of an adversarially-trained CODE2SEQ model, we perform the following experiment:

1. We train a CODE2SEQ-SM model.
2. We generate STRATA perturbations of the java-small training dataset using a vocabulary

of the top-1000 subtokens by L2 norm of the embedding. For each training example, we
generate five adversarial perturbations for each concatenation strategy, single, 5-diff, and
5-same.

3. We fine-tune the CODE2SEQ-SM model with the adversarial examples for a final epoch.

Baseline single 5-diff 5-same

Clean-Tr .369 .362 .263 .214
Adv-Tr .371 .382 .370 .366

Table 6: Results of adversarial training of CODE2SEQ-SM on L2-based adversarial examples.

Our adversarial training results are preliminary. Further work is needed to evaluate the robustness
of the model after adversarial training. Nonetheless, our results strongly suggest that adversarial
training with STRATA adversarial examples is highly effective at defending against STRATA attacks
(Table 6). Unexpectedly, training with adversarial examples slightly improves the ability of the model
to classify clean data (improvement from F1 of 0.369 to 0.371), suggesting that the added robustness
forces the model to learn a better representation of the source code. This adversarial fine-tuning was
not more computationally intensive than standard training and represents a simple way to make this
model of code more robust.

Our method differs from standard adversarial training method proposed in Madry et al. (2018) in
which adversarial examples are regenerated at every epoch. Since our adversarial examples only rely
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on knowing the top-n subtokens by embedding L2 norm which does not change drastically over time,
we do not have to recompute new adversarial examples after each epoch and instead can compute large
batches of adversarial examples prior to training. Since STRATA is gradient-free and does not require
re-computation every step in the adversarial training process, our method is extremely inexpensive,
whereas traditional gradient-based methods for developing adversarial examples are highly expensive,
and are less effective (Table 5). Therefore, our method can represent an extremely easy hardening
technique for all types of models operating in the discrete domain with a large vocabulary space.
Further, we have shown that traditional gradient-based adversarial training is largely ineffective at
defending against our attack (Table 4), thus our method is vital for a comprehensive defense against
adversarial attacks.

B FULL COMPARISON WITH OTHER CODE2SEQ ATTACKS

We have shown that STRATA works well to attack the CODE2SEQ model and can outperform the
attacks by Ramakrishnan et al. (2020). Here, we present a comparison by the transformations
proposed by Rabin & Alipour (2020). In order to be able to compare the same metrics, we calculate
the percent prediction change, which is the percent of the time that an adversarial change resulted in
a change in prediction. A higher percent prediction change indicates a better attack.

In Table 7, we compare the performance of our attack to the performance of the transformations
generated by Rabin & Alipour (2020) We find that the transformations performed by Rabin & Alipour
(2020) result in fewer prediction changes than STRATA. As above, the most effective strategy is our
5-same attack.

Adversarial attack % prediction change

Variable renaming (Rabin et al.) 47.04
Boolean Exchange (Rabin et al.) 51.43
Loop Exchange (Rabin et al.) 42.51
Permute Statement (Rabin et al.) 43.53

All (STRATA, 5-same) 77.3
Top 6k by L2 (STRATA, 5-same) 86.3
Top 10k by Frequency (STRATA, 5-same) 84.5

Table 7: Comparison of the percent of the time the prediction is changed by STRATA and by an
attack from Rabin et al. Both our attack and the attack from Rabin et al. target a CODE2SEQ-LG. Note
that our model is evaluated on the java-small testing dataset.

C CROSS-DATASET ATTACKS

We present two fully black-box attacks that do not require any information about the targeted
CODE2SEQ model or dataset:

As a surrogate model, we train a CODE2SEQ model on any available dataset for the targeted pro-
gramming language. To obtain adversarial examples from the surrogate, we identify optimal L2 and
frequency cutoffs for this model. Using these cutoffs, we construct a vocabulary of the optimal top-n
by frequency or by L2 norm. We show that these adversarial examples can be transferred to other
models.

We present the results of the cross-dataset transfer attack proposed in Section 3.3. In particular,
we generate both frequency and L2 STRATA adversarial examples. We use the L2 norm of the
embeddings of CODE2SEQ-SM, CODE2SEQ-MD, and CODE2SEQ-LG, and the subtoken frequencies of
java-small, java-medium, and java-large to construct six different collections of adversarial examples,
of which each collection is a perturbation of the java-small test set. We test each dataset on each
model. Tables 8 and 9 show the results of the experiments, revealing that while the white-box
and known-dataset attacks (the diagonals of the tables) outperform the cross-dataset attacks, the
cross-dataset attacks are nonetheless effective. Furthermore, we note that L2-based cross-dataset
attacks are more effective than frequency-based cross-dataset attacks, confirming that L2 norms can
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effectively identify subtokens that are high impact in other models. We conclude that STRATA can
be performed in a true black-box setting with no information about the model parameters nor the
training dataset. The cross-dataset attack is likely effective due to similar distributions of the Java
datasets. Similar to word frequencies in natural language corpora, we expect that most Java datasets
should have a similar subtoken distributions, and thus STRATA should transfer across models trained
on different datasets.

java-small (1k, L2) java-medium (3k, L2) java-large (6k, L2)

CODE2SEQ-SM .214 .253 .290
CODE2SEQ-MD .359 .349 .433
CODE2SEQ-LG .373 .361 .358

Table 8: F1 scores on adversarial data generated by a cross-dataset attack where vocabularies are
constructed by using the L2 norm of the embeddings of the CODE2SEQ model trained on the particular
dataset. The first column corresponds with the model that is being attacked, and the other columns
correspond with the dataset from which the attack is constructed. Lower score means a better attack.
All adversarial subtokens are concatenated with 5-same. The boxed scores correspond with the
baseline same-dataset attacks.

java-small (1.8k, freq) java-medium (3k, freq) java-large (10k, freq)

CODE2SEQ-SM .235 .248 .279
CODE2SEQ-MD .381 .377 .417
CODE2SEQ-LG .397 .392 .387

Table 9: F1 scores on adversarial data generated by a cross-dataset attack where vocabularies are
constructed by using the frequency of subtokens in the associated training dataset. The first column
corresponds with the model that is being attacked, and the other columns correspond with the dataset
from which the attack is constructed. Lower score means a better attack. All adversarial subtokens
are concatenated with 5-same. The boxed scores correspond with the baseline same-dataset attacks.

D EXAMPLES OF TARGETED ATTACKS

(a) Predicted as sum (b) Predicted as getInt

Figure 3: Changing local variable identifiers affects prediction. Left: Original Java method sum
computes the sum of a list of integers. CODE2SEQ, trained on java-large, predicts that the method
name is sum. Right: Perturbed Java method with the same behavior, but the local variable total
has been replaced with answer, causing CODE2SEQ to misclassify this method as getInt.

To illustrate the effectiveness of STRATA targeted attacks more concretely, we target particular
arbitrarily-picked subtokens and measure the success rate over the entire testing set (Table 10) and
find that though effectiveness can vary across different targets, the average effectiveness is quite high.

D.1 COMPUTATIONALLY INEXPENSIVE

Current alternative methods for attacking models of source code with comparable results involve
either an extensive search for optimal transformations or gradient-based optimization for token
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Target % Target % Target % Target %

tournament 86.3 ftp 53.4 concat 41.5 combat 26.6
redaction 70.5 podam 45.3 eternal 37.3 thursday 23.9
outliers 62.4 wind 44.7 orderby 32.8 girth 21.5
mission 56.8 weld 42.4 reentry 29.8 ixor 16.4

Table 10: Effectiveness of targeted attacks on CODE2SEQ-LG using uncurated and arbitrarily picked
subtokens of high embedding vector, sorted by % success.

replacement, or a combination of the two (Rabin & Alipour, 2020; Ramakrishnan et al., 2020; Yefet
et al., 2020). Extensive searches are inherently computationally expensive and, in the case of gradient-
based optimization, oftentimes require a GPU for efficient implementation. STRATA, however, can be
implemented to run quickly on even CPU-only machines. After an initial pre-processing step to mark
local variable names for easy replacement which took less than five minutes on our 24-core CPU-only
machine, we were able to construct adversarial examples using STRATA on a dataset of 20,000
within seconds. The analogous gradient-based method proposed by Ramakrishnan et al. (2020)
took multiple hours on the same machine. The combined speed and effectiveness of STRATA will
allow researchers to quickly harden their models against adversarial attacks with efficient large-scale
adversarial training.
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