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Abstract

Large language models (LLMs) based on Trans-001
former Decoders have become the preferred002
choice for conversational generative AI. De-003
spite the overall superiority of the Decoder ar-004
chitecture, the gradually increasing Key-Value005
(KV) cache during inference has emerged as006
a primary efficiency bottleneck, both in as-007
pects of memory consumption and data trans-008
fer bandwidth limitations. To address these009
challenges, we propose a paradigm called KV-010
Latent. By down-sampling the Key-Value vec-011
tor dimensions into a latent space, we can sig-012
nificantly reduce the KV Cache footprint and013
improve inference speed, only with a small014
amount of extra training, less than 1% of pre-015
training takes. Besides, we enhanced the sta-016
bility of Rotary Positional Embedding applied017
on lower-dimensional vectors by modifying its018
frequency sampling mechanism, avoiding noise019
introduced by higher frequencies while retain-020
ing position attenuation. Our experiments, in-021
cluding both models with Grouped Query At-022
tention and those without, have yielded satis-023
factory results. Finally, we conducted compar-024
ative experiments to study the impact of sep-025
arately reducing Key and Value components026
on model’s performance. Our approach allows027
for the construction of more efficient language028
model systems, and opens the new possibility029
on KV Cache saving and efficient LLMs.030

1 Introduction031

The release of ChatGPT (Brown et al., 2020)032

launched an generative AI trend, and as the core033

architecture behind these state-of-the-art models,034

the Transformer decoder (Vaswani et al., 2017)035

has gain many attention. Undeniably, as large lan-036

guage models (LLMs) become more integrated into037

people’s lives, the costs associated with training038

and inference are increasingly impossible to ig-039

nore. While training costs remain relatively fixed040

and centralized, inference costs grow linearly with041

user adoption and are often distributed across dif- 042

ferent spaces and timeframes, making the optimiza- 043

tion of model inference costs increasingly urgent. 044

The Transformer decoder architecture, employed 045

by LLMs, operates as a causal model, avoiding 046

the need to recompute most intermediate states 047

during a autoregressive generation. However, it 048

still requires retaining certain intermediate states. 049

Specifically, as a self-attention-based architecture, 050

it necessitates preserving the key and value (KV) 051

states corresponding to each token, and commonly 052

referred to as the KV Cache. The time complex- 053

ity of the self-attention mechanism is uniformly 054

O(n2), meaning that for each additional token in 055

a sequence, the computational workload increases 056

at least by O
(
(n2)′

)
= O(n). Consequently, in 057

typical situations, we need to interact with O(n) 058

cached states. In other words, the required storage 059

for the KV Cache grows linearly with the genera- 060

tion of tokens. This poses a significant challenge. 061

The KV Cache faces two primary challenges: 062

growing volume and non-friendly access pattern. 063

The large volume necessitates increasingly expen- 064

sive hardware for efficient KV Cache storage and 065

retrieval, furthermore, because each inference re- 066

quest maintains its own dedicated KV Cache, ac- 067

celerate the system with batch processing is impos- 068

sible, leading to RAM bandwidth bottlenecks and 069

wasted computational resources on chips (Williams 070

et al., 2009). Meanwhile, the non-friendly memory 071

access arises due to the cache size frequently fluctu- 072

ating. The latter challenge can be significantly mit- 073

igated through more scientifically organized cache 074

structures, such as paged attention (Kwon et al., 075

2023) or heterogeneous inference systems like fast- 076

decode (He and Zhai, 2024). However, the former 077

challenge remains more intricate. 078

To address the issue of KV Cache size, sev- 079

eral methods have been proposed. At attention- 080

head-level, Multi-Query Attention (MQA, Shazeer, 081

2019), Grouped Query Attention (GQA, Ainslie 082
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et al., 2023) are effective and widely proved meth-083

ods. At layer-level, cross-layer reuse methods has084

been proposed, such as You Only Cache Once (Sun085

et al., 2024) and Cross Layer Attention (Brandon086

et al., 2024). At token-level, researchers have fo-087

cused on eviction and merging, methods include088

Heavy Hitter Oracle (Zhang et al., 2023), Pyra-089

midInfer (Yang et al., 2024b), SirLLM (Yao et al.,090

2024), and L2 Norm method proposed by Devoto091

et al..092

Despite the substantial progress made by previ-093

ous research, directly reducing the size of Key and094

Value heads remains a less explored area. In the095

context of MHA, each attention head is a combi-096

nation of two low-rank transformations, the first097

is the pair of K and Q⊤, the second is the pair098

of V and O. We define dimension of each atten-099

tion head is dh, the number of heads is nh, and the100

model’s hidden dimension is d. We observe that101

K and V represent two linear transformations that102

downsample d-dimensional hidden state h to two103

dh-dimensional vector k and v. Correspondingly,104

Q⊤ and O perform up-sampling from dh to d di-105

mensions. The KV Cache stores the latent vectors106

resulting from these two low-rank transformations.107

Typically, we assume that dh × nh = h, but108

when considering an individual head, dh and h109

do not necessarily need to adhere to this prede-110

fined relationship. The work of MQA and GQA,111

and other recent works (Yu et al., 2024; DeepSeek-112

AI et al., 2024; Saxena et al., 2024a), has already113

demonstrated that the retained KV Cache does not114

require complete d-dimensional vectors; low-rank115

representations suffice for transmitting information116

between tokens. However, we aim to go further117

by decoupling the constraint dh ∗ nh = h. Our118

approach involves directly reducing the head size119

from existing models, then restore model’s perfor-120

mance by a minimal amount of additional training121

with a 2-stage strategy, achieving the goal of KV122

Cache reduction. Since we essentially map the Key123

and Value into a latent space then directly decode124

from it by Query-transpose and Output, we name125

our proposed method KV-Latent.126

Furthermore, we observe that even within indi-127

vidual attention heads, the low-rank transforma-128

tions of KQ⊤ and V O do not necessarily require129

the same dimension. Specifically, we can separate130

dh into dqk and dvo, and these dimensions need not131

be equal. Building upon this insight, we explore132

various reduction strategies with different value of133

dqk and dvo, to investigate their impact on training134

time, inference efficiency, and, the most important 135

aspect, model’s capabilities. 136

Lastly, in our experiments, we discovered that 137

the stability of Rotary Position Embedding (RoPE, 138

Su et al.) diminishes at lower dimensions, affect- 139

ing long-range ability. By analyzing RoPE’s sam- 140

pling mechanism, we identified that noise from 141

high-frequency features dominate when the dimen- 142

sionality is low. Consequently, we refined our ap- 143

proach by modifying RoPE’s sampling method in 144

a frequency-aware way to maintain stability even 145

at lower dimensions. 146

Out contribution includes: 147

• We’ve proved that by a small amount of addi- 148

tional training with 2-stage strategy, we can fit 149

the KV Cache into a latent space, thus directly 150

reduces the space occupation and bandwidth 151

requirement of KV Cache. 152

• By using different combinations of dqk and 153

dvo, we observed that model’s performance is 154

more sensitive to dvo comparing to dqk, which 155

reveals how LLMs are affect by different parts 156

of self-attention, providing insights to opti- 157

mize LLMs’ model structure. 158

• By modifying RoPE’s sampling mecha- 159

nism in a frequency-aware way, excluding 160

high frequency portions and amplifying low 161

frequency portions, we successfully make 162

RoPE more stable when applied on lower- 163

dimensional Query and Key. 164

2 Backgrounds and Related Works 165

2.1 Transformer Decoder 166

Our primary focus lies on the masked self-attention 167

of Transformer (Vaswani et al., 2017) decoder. We 168

define h as the hidden vector of the input at l-th 169

layer, token-wise, and H for the whole sequence. 170

Our goal is to compute h′, which represents the 171

output of the attention module. The process is 172

described by Formula 1, where W
(i)
{Q,K,V,O} corre- 173

sponds to the parameter matrices for the Q, K, V , 174

and O transformations of the i-th head. And the 175

K(i),V(i) represents the KV Cache of the i-th head. 176

We apply right multiplication in this context. 177

h′ =

nh∑
i=1

[
softmax

(
q(i)K(i)⊤√

dqk

)
V(i)W

(i)
O

]
q(i) = hW

(i)
Q , K(i) = HW

(i)
K , V(i) = HW

(i)
V

(1)

178
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2.2 KV Cache Reduction Methods179

2.2.1 Head-level180

MQA(Shazeer, 2019) combines all Key and Value181

heads into two single heads and queries the single182

Key head multiple times using various Query heads.183

Building upon this, GQA (Ainslie et al., 2023) pre-184

groups all attention heads. Within each group, mul-185

tiple Query heads share a single Key head and cor-186

respondingly single Value heads. GQA introduces187

a tunable variable, the number of groups ng and188

the corresponding number of heads within each189

group, finding a new trade-off method between190

MQA and MHA (Multi-Head Attention). This ap-191

proach provides a fine-grained balance between ef-192

ficiency and performance, boosts the operational in-193

tensity, and has been widely adopted in models like194

LLaMA2 (Touvron et al., 2023), LLaMA3 (Dubey195

et al., 2024), Mistral (Jiang et al., 2023, 2024),196

and Qwen (Yang et al., 2024a). These works have197

proved the low-rank nature of KV Cache, which198

guaranteed the effectiveness of our method.199

2.2.2 Layer-level200

Cross-layer reuse is another hot topic. Methods201

like You Only Cache Once (Sun et al., 2024) and202

Cross Layer Attention (Brandon et al., 2024) have203

successfully reduced KV Cache size by reusing204

the same KV Cache states across different decoder205

layer. However, Due to the non-continuous nature206

of reused content over time, cross-layer reuse can-207

not optimize computational intensity effectively,208

and bandwidth limitations from data exchanges209

persist, limiting inference speed improvement.210

2.2.3 Token-level211

In token level, eviction (Liu et al., 2023) and merg-212

ing (Pang et al., 2024) are the most essential meth-213

ods, for which the core idea is to evict less attend214

tokens or to merge states from multiple tokens215

into one. Popular works includes Heavy Hitter216

Oracle (Zhang et al., 2023), PyramidInfer (Yang217

et al., 2024b), SirLLM (Yao et al., 2024), and L2218

Norm method proposed by Devoto et al.. Possible219

problem for token level reduction lies in the re-220

liance on the attention score, making them cannot221

be combined with prefill acceleration methods, for222

example flash attention (Dao et al., 2022). Other223

methods that do not rely on attention often lacks224

fine granularity, risking critical information loss.225

Achieving practical large-scale usage remains a226

challenge.227

2.3 Rotary Positional Embedding 228

Rotary Position Embedding (RoPE), proposed by 229

Su et al. in 2021, is a method that enhances position 230

encoding for Decoder models. This type of position 231

encoding has gained widespread adoption due to its 232

various desirable properties. First, it adheres to the 233

characteristic of long-range attenuation: the farther 234

apart two identical vectors are in a sequence, the 235

weaker their attention connection becomes. Sec- 236

ond, RoPE is a form of relative position encoding, 237

meaning that the attenuation remains consistent 238

for the same relative distances. This property con- 239

tributes to better generalization. Finally, RoPE 240

achieves its encoding through sparse matrices, re- 241

sulting in computational efficiency. These favor- 242

able properties make it nearly the sole choice for 243

modern LLMs. However, our experiments revealed 244

that RoPE exhibits instability at lower dimensions 245

due to high periodic noise. We mitigated this issue 246

by modifying its frequency sampling approach. 247

3 Methods 248

3.1 Preliminary and Notations 249

Applying RoPE to Formula 1, we achieve For- 250

mula 2. 251

h′ =

nh∑
i=1

[
softmax

(
q(i)Rθ,δ

x K(i)⊤√
dqk

)
V(i)W

(i)
O

]
q(i) = hW

(i)
Q , K(i) = HW

(i)
K R, V(i) = HW

(i)
V

(2)

252

In which h refers to the hidden state of a single to- 253

ken, correspondingly, H as the hidden states of the 254

whole sequence. The parameter of four linear trans- 255

formation of self-attention is given by W{Q,K,V,O}, 256

and the transformation here is in the form of right 257

matrix multiplication. We define dqk as the dimen- 258

sion of each Query and Key head, and dvo as Value 259

and Output head here. With nh as the amount 260

of heads, we can get W{Q,K} ∈ Rd×nhdqk and 261

WV ∈ Rd×nhdvo , WO ∈ Rnhdvo×d. In this case, 262

we define W
(i)
{Q,K,V,O} as the parameter that cor- 263

responds to the i-th head, i ∈ [1, 2, . . . , nh], as 264

Formula 3. 265

W
(i)
Q = WQ[ : , (i− 1)dqk : idqk] ∈ Rd×dqk

W
(i)
K = WK [ : , (i− 1)dqk : idqk] ∈ Rd×dqk

W
(i)
V = WV [ : , (i− 1)dvo : idvo] ∈ Rd×dvo

W
(i)
O = WO[(i− 1)dvo : idvo, : ] ∈ Rdvo×d

(3) 266
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We additional define x as the position of cur-267

rent token, Rθ,δ(x) as the rotary matrix defined in268

RoPE for the x-th position, δ = d
2 . More precisely,269

according to RoPE, R is given out in Formula 4.270

Rθ,δ(x) =


Rθ,1(x) 0 . . . 0

0 Rθ,2(x) . . . 0
...

...
. . .

...
0 0 . . . Rθ,δ(x)


Rθ,j(x) =

[
cosxθj − sinxθj
sinxθj cosxθj

]
, θj = θ−(j−1)/δ

(4)

271

3.2 KV-Latent with Two-Stage Training272

We propose the KV-Latent paradigm, which aims273

to reduce KV Cache by directly modifying the274

shape of pre-trained model’s WK and WV . Sub-275

sequently, we restore model performance through276

fine-tuning with a smaller amount of data. The277

paradigm involves a RoPE compatible attention278

down-sampling strategy and a two-stage continua-279

tion training.280

3.2.1 Model Preparation281

Before training, we need to initialize a copy of282

the model after dimensionality reduction of the283

attention heads. For any given attention model,284

random sampling alone is sufficient to retain the285

information in the attention matrix in an adequately286

balanced manner, as the channels within each atten-287

tion head exhibit rotational symmetry. This means288

that it suffices to preserve the same channels for289

both QK⊤ and V O.290

However, the introduction of RoPE failed this ap-291

proach, as RoPE involves rotating pairs of channels292
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Figure 1: Model preparation process and trainable pa-
rameters of KV-Latent.

at different frequencies. The specific implementa- 293

tion, which includes sparse matrix multiplication 294

and the modern channel grouping approach found 295

in GPT-NeoX (Black et al., 2022), is detailed in 296

Appendix C, in which uniform down-sampling is 297

enough for weight initializing. Leveraging this 298

methodology, an example of shrinking dvo by half 299

and dqk by three quarters is described in Formula 5. 300

˜
W

(i)
Q = W

(i)
Q [:, ::4] = WQ[:, (i− 1)dqk : idqk :4]

˜
W

(i)
K = W

(i)
K [:, ::4] = WK [:, (i− 1)dqk : idqk :4]

˜
W

(i)
V = W

(i)
V [:, ::2] = WV [:, (i− 1)dvo : idvo :2]

˜
W

(i)
O = W

(i)
O [::2, :] = WO[(i− 1)dvo : idvo : 2, :]

(5)

301

Recent works also apply the singular value de- 302

composition (SVD) for down-sampling (Saxena 303

et al., 2024b; Zhang et al., 2024), however, these 304

methods faces major difficulties since the matrix 305

multiplication does not satisfy the commutative 306

property, which can’t be applied here. 307

After the down-sampling step, we also hope to 308

train FFNs to better let the model fit to it’s mod- 309

ified attention, but not entirely forget what it has 310

learnt in pre-training, so we apply Low Rank Adap- 311

tion (LoRA, Hu et al., 2022) to FFNs’ transforma- 312

tions, includes Up, Down, and Gate in a LLM which 313

typically adapt Gated Linear Unit (GLU) as FFN. 314

Figure 1 describes our down-sampling and model 315

building process. 316

3.2.2 Stage I - In Layer Distillation 317

In the first stage of training, we aim to maintain 318

maximum consistency between the hidden states 319

H(l) within two decoder layers. This approach 320

ensures that we preserve the model’s initial capa- 321

bilities to the greatest extent. To achieve this, we 322

employ an in layer distillation method, depicted in 323

Figure 2. 324

We define H(l+1) = Decoderl
(
H(l)

)
as the op- 325

eration of l-th Transformer decoder block of the 326

initial model, and D̃ecoderl(·) as the modified ver- 327

sion of it with a reduced Q,K, V,O head size that 328

utilize KV-Latent. We first perform inference using 329

the original Decoder(·), retaining the intermediate 330

hidden states H{0,1,...,L} between every two layers. 331

For the l-th layer, we define three hidden states 332

with identical shapes: H(l)
i , H

(l)
t , H

(l)
p , as obtained 333
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Figure 2: Dataflow of two stage training in KV-Latent.

from Formula 6,334

H
(l)
i = H(l−1), H

(l)
t = Decoderl(H

(l)
i ) = H(l)

H(l)
p = D̃ecoderl(H

(l)
i )

(6)

335

serves as the input, target, and predicted hidden336

states. We want to maximize the similarity be-337

tween H
(l)
t and H

(l)
p . To achieve this, we use Mean338

Squared Error (MSE) loss. We define Wdec as the339

trainable weights of D̃ecoder(·). Our optimization340

objective is described in Formula 7.341

min
Wdec

1

L
·

L∑
l=1

|| H(l)
t −H

(l)
p ||2

x · h
(7)342

3.2.3 Stage II - End-to-End Training /343

Distillation344

Despite performing intra-layer distillation, to apply345

KV-Latent on modern LLMs still faces challenges346

due to LLMs’ depth. Even minor perturbations can347

be amplified layer by layer, potentially compromis-348

ing their model’s language capabilities. To address349

this, we need to train the model end-to-end. In this350

stage, we have two choices, Next-Token-Prediction351

(NTP) training and Distillation. We firstly define352

the original model LM(·) and our KV-Latent model353

L̃M(·), and C = {c1, c2, . . . , c|C|} as the corpus we354

use for training, where ci = {t1, t2, . . . , t|ci|}.355

NTP training is part of the model’s pre-training356

and employs cross-entropy loss, described in For-357

mula 8. It requires minimal resources, however,358

cross-entropy loss provides limited information.359

min
Wdec

∑
c∈C

|c|−1∑
x=1

CELoss
(
L̃M(c)[x], c[x+ 1]

)
|C | · (|c | −1)

(8)360

Distillation based on predicted probability distri- 361

butions is commonly used for model recovery, this 362

method relies on KL divergence loss, described in 363

Formula 9. Distillation helps model to learn more 364

with same amount of data. However, distillation 365

involves an additional forward pass to compute the 366

probability distributions and requires maintaining 367

an extra set of parameters. 368

min
Wdec

∑
c∈C

|c|∑
x=1

KLLoss
(
L̃M(c)[x], LM(c)[x]

)
|C | · |c |

(9) 369

3.3 Frequency-aware RoPE for Variable 370

Dimensions 371

3.3.1 Motivation 372

RoPE introduces positional information into the Q 373

and K⊤ components of the attention heads. In our 374

preliminary experiments, we observed that RoPE 375

exhibits significant numerical instability when ap- 376

plied to lower-dimensional vectors, as shown in 377

Figure 3. Specifically, when the dimension d is 378

smaller than 32, the range of oscillation is compa- 379

rable with intended attenuation, indicating the loss 380

of positional encoding capability. According to Su 381

et al., vectors encoded by RoPE should maintain 382

a certain degree of similarity with itself, even at 383

large distances. We can measure this by using spe- 384

cial vector 11d = (1, 1, · · · , 1) ∈ Rd. We define 385

RoPEθ,d(x) in Formula 10 as a representation of 386

the similarity of two same vector across difference 387

distance x, whose value ideally should always be 388

positive to be more similar than two random vector. 389

RoPEθ,d(x) = 11d · Rθ, d
2
(x) · 11⊤d (10) 390
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3.3.2 Pattern Finding391

We investigated the impact of different values of d392

on RoPEθ,d, as shown in Figure 3. We observed393

smaller values of d result in greater noise, along394

with an increased occurrence of negative values.395

We decomposed the vector by channels. Based396

on the 256-dimensional case, Figures 4 and 5 il-397

lustrate the scenarios where low-numbered and398

high-numbered channels are retained, respectively,399

while Figure 6 depicts the RoPE function for re-400

taining different sets of 64 consecutive channels401

(one-quarter of the total). Our findings suggest402

that the low-numbered channels of the RoPE func-403

tion contribute the majority of the noise, while the404

high-numbered channels, despite a slower decay,405

remain relatively stable. Aligned with some previ-406

ous works (bloc97, 2023; Peng et al., 2024).407

3.3.3 Frequency-aware Modification408

We implemented a frequency-aware modification409

strategy, which involves densifying the sampling410

of low-frequency rotations and avoiding high-411

frequency rotation sampling, as described in For-412

mula 11, since that lower-numbered channels cor-413

respond to high-frequency rotations and higher-414

numbered channels correspond to low-frequency415

rotations The results, presented in Figures 7, 8, 9,416

and 10, demonstrate that our approach achieves en-417

hanced stability while also reducing the occurrence418

of negative values.419

θj =


θ−2(j−1+d/8)/d,

for j ∈ [1, 2, . . . , d/4]

θ−(j−1+3d/4)/d,

for j ∈ [d/4 + 1, d/4 + 2, . . . , d/2]
(11)420

3.4 Effectiveness Analysis421

To explain why our method is effective, we present422

the following derivation. From the ideal curve in423

Figure 3, it is evident that as d increases, RoPE424

approaches a smooth decay curve. The calculation425

of this curve is given by Formula 12, detailed in 426

Appendix D.1. 427

lim
d→+∞

1

d
RoPEθ,d(x) =

∫ logθ x

logθ x−1
cos(θp)dp

(12) 428

429

At this point, we transform the stability issue 430

of RoPE into a problem of numerical approxima- 431

tion of an integral. Specifically, for the integral of 432

the function cos(θp) over an interval of size 1 (as 433

shown in Figure 11), we approximate the solution 434

by performing d/2 samples. The function exhibits 435

sharp oscillations when p takes larger values, and 436

as x increases, the integration window slides to 437

the right, inevitably entering regions of these in- 438

tense oscillations. Therefore, to accurately solve 439

the integral, d must be big enough for increased 440

x. If d is too small, the sampling interval may 441

be shorter than the oscillation period, causing the 442

numerical approximation to lose validity and intro- 443

ducing substantial noise. We provided a code block 444

to simulate this in Appendix E. 445

Furthermore, our modifications, by discarding 446

certain sampling points on the right side, increased 447

the overall sampling density while delaying the in- 448

tegration window’s entry into the region of intense 449

oscillations, enhancing the stability of the RoPE, 450

thereby reducing noise amplitude. Additionally, 451

the values of the extra sampling points are typically 452

close to 1, while the discarded points oscillate be- 453

tween 1 and −1. As a result, the frequency-aware 454

RoPE values are almost always greater than the 455

original RoPE values, as detailed in Appendix D.2. 456

4 Experiments 457

4.1 Training 458

We utilized FineWeb-edu (Lozhkov et al., 2024), 459

which is derived from FineWeb (Penedo et al., 460

2024), a web dataset based on open-access web 461

pages consists 15 trillion token. We used a 1 bil- 462

lion token subset from FineWeb-edu, a common 463
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size also utilized by other well-known datasets,464

such as minipile (Kaddour, 2023; Gao et al., 2020).465

Our training hyperparameters are detailed in Ap-466

pendix A. We’ve conduct our training on a single467

node with 8 NVIDIA A100 80G SXM4 GPU.468

Model wise, we’ve trained two versions of KV-469

Latent on LLaMA-3-8B(L3-8B), with (dqk, dvo) =470

(64, 64) and (16, 16) as a GQA examples, one ver-471

sion on LLaMA-2-7B(L2-7B) with (dqk, dvo) =472

(64, 64), as an MHA example.473

4.2 Evaluation474

We conducted tests on the KV-Latent model from475

two perspectives: performance and efficiency. For476

performance, we used 0-shot MMLU (Hendrycks477

et al., 2021), OBQA (Mihaylov et al., 2018), and478

AI2ARC (Clark et al., 2018), as benches. Addition-479

ally, we performed a needle in a haystack (NIH)480

test to assess the ability of information retrieval.481

We put a short sentence randomly in a 3,840 tokens482

context, and check whether the model could retell483

it, repeat 50 times and calculate the pass ratio. Re-484

garding efficiency, we measured the KV Cache size485

skv (MB) during the NIH experiment and the la-486

tency to the first token tttft (ms). We’ve also calcu-487

late the improve ratio rs and rt. Results are shown488

in Table 1 with several key observations. Firstly,489

KV-Latent allows the model to achieve satisfactory490

performance while reducing the KV Cache size.491

Secondly, despite distillation transfer more infor-492

mation, the limited training volume unables it to493

fully recover model’s proficiency. Thirdly, when494

dqk = dvo = 16, the model’s performance failed495

to be recovered, suggesting a lower bound of KV 496

Cache size. Lastly, LLaMA2, which does not uti- 497

lize GQA, relatively outperforms LLaMA3 when 498

trained on fewer tokens, indicating that for mod- 499

els already trained with GQA, adopting KV-Latent 500

presents additional challenges. 501

4.3 Impact of Parameter Selection 502

We investigated the impact of different dqk, dvo, 503

and LoRA rank, on model’s performance. We con- 504

ducted experiments using the LLaMA-3-8B base 505

model and trained multiple versions of KV-Latent 506

with varying configurations. By default, we set 507

dqk = dvo = 64 and LoRA rank= 256. For 508

efficiency-related tests, we generated 256 tokens 509

based on a context length of 2048, repeating the 510

process 15 times and averaging the results. 511

4.3.1 Combinations of QK and VO Head Size 512

We test different combinations dqk and dvo on 513

model performance and efficiency. We encompass 514

three aspects: logarithmic perplexity (log PPL), 515

reflecting model’s language modeling ability; train- 516

ing speed ttrain, measuring the training efficiency; 517

and inference speed, includes time to the first to- 518

ken tttft, and millisecond per new token tmspt. In 519

terms of space KV Cache size skv for the 4,000 to- 520

ken length sequence under bfloat16. For a more 521

intuitive representation, we calculated the maxi- 522

mum KV Cache size nmax supported with 60GB 523

of memory, as an 80GB compute card scenario, ex- 524

cludes approximately 15GB for model parameters 525

and 5GB as buffer. Results are shown in Table 2. 526

We find that, firstly, the efficiency related to the 527

KV Cache aligns with it’s size: the smaller the over- 528

all volume, the faster both pre-filling and genera- 529

tion speeds. However, when comparing the results 530

of reducing dqk versus dvo, in Table 6 Appendix B, 531

we noticed that allocating more resources to dvo 532

consistently yields better efficiency and effective- 533

ness, suggesting that Keys carry less essential infor- 534

mation than Values within the KV Cache, making 535

them more amenable to compression. 536
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Model dqk dvo Method mmlu obqa arc Avg NIH skv rs tttft rt

L3-8B

128 128 Base 35.3 35.5 55.5 42.1 92% 491 - 670 -
64 64 Train 35.0 35.1 53.8 41.3 92% 245 ↓50% 622 ↓8%
64 64 Distill 31.0 29.1 39.1 33.1 94% 245 ↓50% 622 ↓8%
16 16 Train 31.0 29.5 38.5 33.0 6% 64 ↓87% 595 ↓13%

L2-7B
128 128 Base 28.9 29.4 30.7 29.7 32% 1966 - 668 -
64 64 Train 28.1 29.3 27.5 28.3 24% 983 ↓50% 573 ↓17%
64 64 Distill 26.2 28.6 27.0 27.3 4% 983 ↓50% 573 ↓17%

Table 1: KV-Latent model’s performance on benchmarks. NIH refers to Needle in haystack testing result.

dqk 128 64 32 16 64 32 16 128 128 128
dvo 128 64 32 16 128 128 128 64 32 16

LogPPL - 2.74 3.03 3.78 2.47 2.67 2.83 2.80 2.91 3.01

ttrain hour - 18.0 16.6 16.1 20.1 19.1 19.1 20.3 19.6 19.4
tttft ms 303 256 243 238 262 252 260 296 264 238
tmspt ms 35.9 36.4 35.2 34.7 35.9 35.1 35.9 34.9 37.2 34.7

skv MB 256 128 64 32 172 160 144 172 160 144
nmax 106 token 0.40 0.81 1.63 3.27 0.61 0.65 0.72 0.61 0.65 0.72

Table 2: General performance of different dqk and dvo.

Rank 16 32 64 128 256

ttrain(H) 16.9 16.8 17.1 17.5 18.0
LogPPL 2.49 2.47 2.46 2.46 2.45

Table 3: KV-Latent with different LoRA rank.

Method Log PPL Avg skv

KV-L 2.509 128 ↓50%
KV-L + PyI 2.499 64 ↓75%

Table 4: KV-Latent(KV-L) with PyrimaidInfer(PyI).

4.3.2 LoRA Rank537

LoRA rank may impact KV-Latent’s performance538

and efficiency. We focused on evaluating training539

efficiency and log PPL since LoRA possess no ex-540

tra cost in inference. Shown in Table 3, increasing541

the rank corresponds to increase in training time.542

However, we noticed that the change in log PPL is543

less significant. It’s important to note that LoRA544

rank might have a more substantial effect in larger-545

scale training scenarios.546

4.3.3 Cross-method Feasibility547

In terms of compatibility with other methods, KV-548

Latent works well with Head-Level, as evidenced549

by the tests on LLaMA-3. It is also compatible 550

with Layer-Level, although the higher training re- 551

source requirements. Finally, our method is also 552

compatible with Token-Level. Table 4 shows the 553

results when used in conjunction with Pyramid- 554

Infer with 50% compress rate, as one of the pop- 555

ular token-level reduction methods, proving our 556

statement. KV-Latent is orthogonal with all main- 557

stream methods. 558

5 Conclusion 559

We propose KV-Latent, a paradigm that directly 560

reduces the model’s attention head dimensionally, 561

thus KV Cache size, through a two-step training 562

process. This approach achieves cache reduction 563

and enhancing inference speed while using only 564

a small number of additional tokens for training. 565

We have demonstrated that decoupling the relation- 566

ships of nh ·dh = d and dh = dqk = dvo is feasible. 567

Notably, we found that dvo has a greater impact on 568

model performance, revealing an information im- 569

balance between values and keys within the KV 570

Cache. Finally, by modifying the frequency sam- 571

pling method, we enhance RoPE’s stability while 572

preserving its attenuation properties. Out work 573

may contribute to the study of optimizing model 574

structure. 575
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Limitations576

Currently, we are unable to perform a direct com-577

parison with certain related methods, such as Cross578

Layer Attention (CLA) mentioned earlier. Our ap-579

proach only requires a limited amount of additional580

training, the outcome is still based on an existing581

model. Comparing it to CLA, which necessitates582

complete retraining, would be unfair and would ex-583

aggerate the effectiveness of our method, rendering584

the comparison meaningless.585

Another potential direction for extension is the586

integration of SVD into the KV-Latent, which587

could provide the model with additional initial in-588

formation. However, due to the inherent properties589

of RoPE and matrix multiplication, while this re-590

mains a possibility, it is overall highly challenging591

and would require substantial modifications to the592

model.593

Additionally, our paper’s discussion predomi-594

nantly focuses on the pre-training phase of the595

model, without delving deeply into the aspects of596

Supervised Fine-Tuning and Reinforcement Learn-597

ing from Human Feedback and their potential im-598

pacts. But currently, there is no evidence to suggest599

that our method presents any compatibility issues600

with SFT or RLHF.601

Finally, our method aims to accelerate the infer-602

ence of LLM without introducing security concerns603

greater than those inherent to the LLM itself.604
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H2o: Heavy-hitter oracle for efficient generative in-1049
ference of large language models. In Advances in1050
Neural Information Processing Systems, volume 36,1051
pages 34661–34710. Curran Associates, Inc.1052

A Training Hyper-parameters1053

Due to computing resource limitations, we can only1054

use a limited amount of tokens for some training.1055

Hyperparameter Value

(dqk, dvo) (64, 64), (16, 16)
LoRA Rank 256
LoRA α 512

Batch Size 8
Max Seq. Length 4096

Learning Rate
2e-5 (Training)
2e-7 (Distillation)

Token Used

0.1B (Stage I)
0.25B (Stage II Distill)

1B (Stage II Train)
0.25B (Param Selection)

Optimizer AdamW
Adam ϵ 2e-4
Adam βs (0.9, 0.999)
Weight Decay 0.01

Scheduler Cosine Annealing

Table 5: Hyperparameters used for training.

B Other Combinations of QK&VO Heads1056

dqk 64 32 64 16
dvo 32 64 16 64

LogPPL 2.86 2.79 3.12 3.00

ttrain 17.5 17.3 17.2 17.0
tttft 252 245 246 246
tmspt 35.7 35.0 34.9 35.2

skv 96 96 80 80
nmax 1.09 1.09 1.31 1.31

Table 6: Same budget, high dvo gives better result.

C RoPE Implementations 1057

According to Formula 4, RoPE is represented by 1058

a sparse matrix, and its computation in the sparse 1059

state is described by Formula 13. 1060

Rθ, d
2
(x)y =

y1
y2
y3
y4
...

yd−1

yd


⊗



cosxθ1
cosxθ1
cosxθ2
cosxθ2

...
cosxθδ
cosxθδ


+



−y2
y1
−y4
y3
...

−yd
yd−1


⊗



sinxθ1
sinxθ1
sinxθ2
sinxθ2

...
sinxθδ
sinxθδ


(13)

1061

In default RoPE strategy, each dimension of a head 1062

is paired, or shares the same θj , with its neighbor, 1063

2j-th dimension is paired with 2j + 1-th mathe- 1064

matically. However, in popular frameworks like 1065

Transformers (Wolf et al., 2020), this process is 1066

achieved using Formula 14, which is firstly pro- 1067

posed in GPT-NeoX (Black et al., 2022). 1068

Rθ, d
2
(x)y =

y1
y2
...
yδ
yδ+1

yδ+2
...
yd


⊗



cosxθ1
cosxθ2

...
cosxθδ
cosxθ1
cosxθ2

...
cosxθδ


+



−yδ+1

−yδ+2
...

−yd
y1
y2
...
yδ


⊗



sinxθ1
sinxθ2

...
sinxθδ
sinxθ1
sinxθ2

...
sinxθδ


(14)

1069

The actual RoPE matrix involved in computations 1070

pairs the dimensions j and j+ d
2 . Consequently, we 1071

need to simultaneously select dimensions j and j+ 1072
d
2 . To address this, we employ uniform sampling, 1073

which effectively satisfies this characteristic. 1074

13
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D Detailed Formulas1075

D.1 Derivation of Ideal RoPE Curve1076

lim
d→+∞

1

d
RoPEd(x) = lim

d→+∞

1

d

(
11d · Rθ, d

2
(x) · 11d⊤

)
= lim

d→+∞

1

d

d/2∑
j=1

112 ·
(

cos(xθ−2j/d) sin(xθ−2j/d)

− sin(xθ−2j/d) cos(xθ−2j/d)

)
· 112⊤

= lim
d→+∞

d/2∑
j=1

cos(xθ−2j/d)
2

d

= lim
d/2→+∞

d/2∑
j=1

cos(xθ−2j/d)
2

d

=

∫ 1

0
cos(xθ−p)dp

=

∫ 1

0
cos(θlogθ x−p)dp

=

∫ logθ x

logθ x−1
cos(θp)dp

1077

D.2 Proof of Frequency-aware RoPE is Always Larger in Value1078

Firstly,1079 
RoPE =

d/2∑
j=1

cos(xθ−2j/d)
2

d
(1)

RoPEMod =

3d/8∑
j=d/8+1

cos(xθ−2j/d)
2

d
+

d/2∑
j=3d/8+1

cos(xθ−2j/d)
2

d
(2)

=⇒RoPEMod − RoPE =

d/2∑
j=3d/8+1

cos(xθ−2j/d)
2

d
−

d/8∑
j=1

cos(xθ−2j/d)
2

d

1080

And1081

j ∈ (
3d

8
+ 1,

d

2
) ⇒ −2j

d
∈ (−1,−3

4
, )

⇒ xθ−2j/d ≈ 0 (θ ≫ x)

⇒ cos(xθ−2j/d) ≈ 1

1082

Moreover1083

cos(xθ−2j/d) ≤ 11084

So1085

RoPEMod − RoPE > 01086
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E RoPE Decay Curve Drawer Code 1087

A code piece to generate the rope decay curve with python, pytorch, and matplotlib. You can tune theta 1088

and d to see how RoPEθ,d(x) is affected by it’s two hyper-parameters. Commonly, set d = 64 or 128 to 1089

get the curve of most common models like LLaMAs (Dubey et al., 2024). Or set d to a very large value, 1090

i.e. 100000, to draw the ideal curve. 1091

import torch
from tqdm import tqdm
import matplotlib.pyplot as plt

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

theta = 10000. # RoPE theta.
d = 100000 # Head dim.
steps = torch.arange(0, 1, 1 / d, device=device)

vals = []
MAX_POS_ID = 8192
for pos in tqdm(range(MAX_POS_ID)):

with torch.no_grad():
val = (((theta ** -steps) * pos).cos() / d).sum(dim=-1)

vals.append(val.cpu().item())

plt.plot(torch.arange(MAX_POS_ID), vals)
plt.show()
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