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ABSTRACT

Continuous models such as Neural Ordinary Differential Equations (NODEs) are
powerful approaches for modeling time series data, known for their ability to cap-
ture underlying dynamics and generalization. Current continuous models focus
on learning mappings within finite-dimensional time domains, raising two crit-
ical questions for enhancing their effectiveness. First, Is the time domain the
optimal representation for capturing the underlying patterns and features in time
series data? Second, how can we maintain granularity while benefiting from the
generalization capabilities of continuous models? To address the first question,
we propose a novel approach for learning dynamics in the Fourier domain. In
contrast to the time domain, each point in Fourier space summarizes the original
signal at a specific frequency, enabling more comprehensive data representations.
Additionally, time differentiation in the Fourier domain simplifies the modeling
of dynamics as it becomes a multiplication operation. To answer the second ques-
tion, we introduce element-wise filtering, a method designed to compensate for
the bias of continuous models when fitting discrete data points. These techniques
culminate in the introduction of a new approach—Fourier Ordinary Differential
Equations (FODEs). Our experiments provide compelling evidence of FODEs’
superiority in terms of accuracy, efficiency, and generalization capabilities when
compared to existing methods across various time series datasets. By offering a
novel method for modeling time series data capable of capturing both short-term
and long-term patterns, FODEs have the potential to significantly enhance the
modeling and prediction of complex dynamic systems.

1 INTRODUCTION

Neural Ordinary Differential Equations (Chen et al., 2018) redefine the dynamics of hidden state
representations by utilizing ordinary differential equations (ODEs). In contrast to conventional ar-
chitectures with discrete hidden layers, NODEs exhibit a continuous depth that enables them to adapt
to varying inputs while trading numerical precision for computational efficiency. Within NODEs,
the dynamics of hidden features h(t) ∈ RN are governed by an ODE parametrized by a neural
network f(h(t), t, θ) ∈ RN with learnable parameters θ (Xia et al., 2021; Kidger, 2022). This ODE
captures the temporal evolution of a quantity of interest, represented by the vector h, and describes
how it changes over time (Biloš et al., 2021; Dupont et al., 2019; Guo et al., 2023). By specifying
an initial value h(t0), we can determine the state of the dynamic system at any desired time t1.

h(t1) = h(t0) +

∫ t1

0

f(h(t), t, θ)dt = ODESolver(h(t0), f, t0, t1, θ). (1)

When modeling time series data, it is crucial to consider certain factors. Firstly, capturing global
patterns is essential, as time series data often exhibit long-term trends or cyclical patterns that span
the entire dataset. Effectively capturing these global patterns is vital for accurate modeling. Sec-
ondly, identifying long-term relationships among variables is challenging, as simple models may
struggle to capture such complex dependencies.

In the context of Neural ODEs, which learn mappings in the time domain, two key questions arise.
First, is the time domain the optimal representation for capturing underlying patterns and features
in time series data? Second, how can we reconcile the discrete nature of time series data with the
generalization capabilities of continuous models?
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Figure 1: An overview of our predictive model. Input is the time series data x, with an implicit initial
time t0. (Blue part) The FFT and IFFT are used to convert the data from time-space to Fourier space
and from Fourier space to time space, respectively. The dynamics are learned in the Fourier space.
(Orange part) The element-wised filter is applied to the output from the ODESolver to maintain the
granularity of the original data.

To address the first question, exploring the Fourier domain emerges as a potential solution. By
analyzing the frequency components of data using the Fourier transform, we can capture global
patterns and identify long-term relationships between variables (Rao et al., 2021; Zhou et al., 2022).
The Fourier domain represents time series data as frequency components, where each component
represents a specific frequency present in the data. Analyzing these components allows us to identify
dominant frequencies and patterns that may not be evident in the time domain. For example, the
Fourier transform reveals the frequency and amplitude of a periodic signal, such as a sine wave.

Furthermore, the frequency domain facilitates the analysis of relationships between different fre-
quencies, unveiling long-term dependencies between variables that elude simple time-domain mod-
els. Recent studies (Lee-Thorp et al., 2021; Zhou et al., 2022) demonstrate the efficacy of incor-
porating Fourier analysis into models, achieving competitive performance on benchmark tasks such
as the GLUE benchmark (Wang et al., 2018) and capturing global properties of time series using
Transformer-based architectures (Vaswani et al., 2017).

The second question revolves around preserving the granularity of the original data when fitting
continuous models. Adjustments are necessary to align the model predictions with the discrete data
points. One approach is element-wise filtering, accomplished through element-wise multiplication,
also known as the Hadamard product (Horn, 1990). Element-wise filtering plays a vital role in refin-
ing model outputs by introducing correction factors learned from the data or prior knowledge (Xing
et al., 2018; Rao et al., 2021; Chen et al., 2019; Dzanic & Witherden, 2022). Moreover, it can be
leveraged to emphasize specific features or components in the prediction by multiplying the model’s
output with a weight vector or attention mask learned from the data or prior knowledge. This ap-
proach enhances the model’s focus on relevant features or regions of interest.

To address these considerations, we propose Fourier Ordinary Differential Equations (FODEs) that
combine the strengths of both discrete and continuous models (see Figure 1). FODEs leverage the
Fourier domain to capture global patterns and long-term relationships while preserving the granular-
ity of the original data through element-wise filtering. This novel approach enhances the effective-
ness of time series modeling and holds promise for various applications in neural signal processing,
time series forecasting, and other related domains.

2 METHOD

2.1 DISCRETE FOURIER TRANSFORM

We commence by introducing the Discrete Fourier Transform (DFT) (Winograd, 1978; Wang, 1984),
a fundamental tool in digital signal processing. The DFT is applied to a sequence of N complex
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numbers x[n], where 0 ≤ n ≤ N − 1, to convert it into the frequency domain. The 1D DFT is
defined as follows:

X[k] =

N−1∑
n=0

x[n]e−i2πkn/N , (2)

where i denotes the imaginary unit. The DFT maps the input sequence x[n] to its spectrum X[k]
at the frequency ωk = 2πk

N . Since X[k] repeats on intervals of length N , it suffices to consider the
values of X[k] at N consecutive points k = 0, 1, · · · , N − 1.

The DFT is a one-to-one transformation, meaning that given X[k], we can recover the original signal
x[n] using the inverse DFT (IDFT):

x[n] =
1

N

N−1∑
k=0

X[k]ei2πkn/N . (3)

The DFT’s significance lies in its application to signal processing algorithms, particularly within
two important contexts. Firstly, the DFT operates on discrete inputs and produces discrete outputs,
making it computationally suitable for digital signal processing. Secondly, the development of ef-
ficient algorithms, such as the Fast Fourier Transform (FFT) (Brigham, 1988), has revolutionized
DFT computation. The FFT exploits the symmetry properties of the DFT and employs a divide-and-
conquer approach (Gorlatch, 1998), recursively breaking down the DFT into smaller subproblems.
This approach drastically reduces the computational complexity from O(N2) to O(N logN) (Rao
et al., 2021). Notably, the inverse DFT, which exhibits a similar structure as the DFT, can also be
efficiently computed using the inverse Fast Fourier Transform (IFFT). These advancements in DFT
and FFT techniques have significantly enhanced the efficiency and practicality of signal-processing
algorithms across various domains.

2.2 CONSTRUCT DYNAMICS IN FOURIER SPACE

By delving into the frequency components of data in the Fourier domain, we can capture com-
prehensive patterns that extend across the entire dataset and uncover lasting connections between
variables (Rao et al., 2021; Zhou et al., 2022). In the Fourier domain, time series data is repre-
sented as a sequence of frequency components, each representing a unique frequency present in
the data. Analyzing these frequency components enables the identification of dominant frequencies
and patterns that may not be easily discernible in the time domain. Moreover, the frequency do-
main facilitates the exploration of relationships between different frequencies, unveiling long-term
associations between variables that elude simplistic time-domain models.

To leverage these insights, we introduce Fourier Ordinary Differential Equations (FODE) that learn
dynamics in the Fourier domain. Given the input data x and an implicit initial time t0, its corre-
sponding representation X in the Fourier domain can be represented by:

X(k, t0) =

N−1∑
n=0

x(n, t0)e
−i2πkn/N . (4)

X is the complex tensor and represents the spectrum of x. For real input x[n], its DFT is conjugate
symmetric (Rao et al., 2021), i.e. X[N − k] = X∗[k]. The reverse is true as well: if we perform
IDFT to X[k] which is conjugate symmetric, a real discrete signal can be recovered. This property
implies that the half of the DFT {X[k] : 0 ≤ k ≤ ⌈N

2 ⌉} contains the full information about the
frequency characteristics of x[n]. Suppose the real and imaginary parts of X[k] are X[k]real and
X[k]imag , respectively. The complex numbers represent the spectrum of the signal in the Fourier
domain, which provides information about both the amplitude and phase of the frequency compo-
nents present in the original signal. The magnitude of the complex numbers represents the strength
or magnitude of each frequency component, while the phase represents the phase shift or timing
information associated with each component. We concatenate the X[k]real and X[k]imag together
by

Xinfo = X[k]real ⊕X[k]imag, (5)
where the ⊕ represents the concatenate symbol. Thus, Xinfo contains the real and imaginary part
information without the imaginary symbol i. We aim to learn a mapping rule g : X → Z:

Zinfo = g(Xinfo). (6)
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We do this by means of a basic neural network, i.e., g(·) is a basic neural network, which can be
implemented by a Multilayer Perceptron (MLP) (Haykin, 1998) in practice.

The obtained tensor Zinfo contains the information in the Fourier domain, thus we separate it to
extract the real and “imaginary” part by:

Z[k]real ⊕ Z[k]imag = Zinfo. (7)

Note that the Z[k]imag does not contain the imaginary unit i, so we construct the complex tensor
by applying an imaginary unit i on the “imaginary” part Z[k]imag and obtain a real complex tensor
Z[k] = Z[k]real + iZ[k]imag . The complex tensor Z[k] can be seen as a representation in the
Fourier space. Finally, we can map back to the time domain by applying the inverse Fast Fourier
Transform (IFFT):

z[n] =
1

N

N−1∑
k=0

Z[k]e−i2πkn/N . (8)

2.3 FOURIER ORDINARY DIFFERENTIAL EQUATIONS

In the last section, we construct dynamics in Fourier space. Now we can combine them together and
obtain the dynamic function f :

f(x, t) = f

(
1

N

N−1∑
k=0

g(X(k, t))e−i2πkn/N

)
. (9)

By leveraging the Fast Fourier Transform (FFT), a basic neural network g(·), and the Inverse Fast
Fourier Transform (IFFT), we construct the dynamic function f(x, t). This function represents the
change in dynamics in the Fourier space and is a function of the data x and an artificially introduced
time t, rather than an explicit time present in the data.

To obtain the final state of the system at a given time t1, we solve an initial value problem (IVP)
using an ODE solver. The IVP is formulated as:

x(t1) = x(t0) +

∫ t1

0

f(x, t)dt = ODESolver(x(t0), f, t0, t1, θ), (10)

where x(t0) represents the initial state, f is the dynamic function, and θ represents the parameters
in the neural network g(·). The ODE solver approximates the solution of the ODE by iteratively
integrating it forward in time, starting from the initial condition x(t0).

One advantage of ODE-based models is their inherent invertibility, allowing us to reverse the inte-
gration limits or integrate the negative of the function f . This property enables the computation of
gradients for the solutions of initial value problems with respect to both the parameters θf and the
initial values x(t0). The Adjoint Sensitivity Method (Pontryagin et al., 1961), based on reverse-time
integration of an extended ODE, is employed to calculate these gradients. The ODE solver plays a
crucial role in our approach as it provides a computational algorithm to numerically approximate the
solutions of ODEs. It allows us to solve ODE-based models when analytical solutions are not read-
ily available or practical to compute. Commonly used numerical methods such as the Runge-Kutta
method (Butcher, 1996) or the Euler method (Biswas et al., 2013) can be employed as ODE solvers
in this context.

2.4 ELEMENT-WISED FILTERING

To enhance and refine the outcomes, we introduce an element-wise filter as a proposed approach.
The element-wise filter is applied to the input x(t1) using a learnable filter matrix K. The operation
is defined as follows:

x̂(t1) = K ⊙ x(t1), (11)
where ⊙ represents the element-wise multiplication, also known as the Hadamard product. The
element-wise filter matrix K has the same dimensions as x(t1) and acts as a filter for individual
elements. The resulting vector x̂(t1) represents the refined output. For exploration purposes without
introducing biases, we initialize the filter matrix K with a uniform distribution, enabling exploration
of the solution space. We show the pseudocode of our method in Algorithm 1.
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Algorithm 1 Pseudocode of FODE
Input: t0, t1, input data: {xn} = x0, x1, ..., xn

Parameters: W , θ
Construct f : x[n] → z[n]

(FFT) X[k] =
∑N−1

n=0 x[n]e−i2πkn/N

X[k]real, X[k]imag = real(X[k]), imag(X[k])
Xinfo = X[k]real ⊕X[k]imag

Zinfo = g(Xinfo, θg)
Z[k]real ⊕ Z[k]imag = Zinfo

Z[k] = Z[k]real + iZ[k]imag

(IFFT) z[n] = 1
N

∑N−1
k=0 Z[k]e−i2πkn/N

x(t1) = ODESolver(x(t0), f, t0, t1, θ)
output: x̂(t1) = K ⊙ x(t1)

3 EXPERIMENT

In this section, we conduct a comprehensive performance evaluation of the proposed Fourier Ordi-
nary Differential Equations (FODE) model, comparing it with existing continuous models, namely
NODE (Chen et al., 2018), ANODE (Dupont et al., 2019), SONODE (Norcliffe et al., 2020),
and NCDE (Kidger et al., 2020), as well as discrete models including FNO (Li et al., 2020),
RNN (Rumelhart et al., 1985) and LSTM (Hochreiter & Schmidhuber, 1997), on both time series
forecasting and time series classification tasks.

For the time series forecasting tasks, we select three time series datasets from physics systems.
Accurate forecasting of physics formulas is essential for understanding system behavior and making
informed decisions. The chosen datasets cover Damped Oscillation, Forced Vibration, and Newton’s
Equations of Motion. Each model is trained for 50 epochs on each dataset for time series forecasting
tasks. We sample 1000 points at equal intervals from 0 to 10 to create the full dataset. We split the
dataset (Section 3.2) into a training set and a test set with a ratio of 0.75. For the time series
forecasting task, we use a sliding window of length 50 to predict 50 future values based on 50
historical data.

Regarding the time series classification task, our focus is on Electrocardiogram (ECG) classifica-
tion. ECG classification plays a crucial role in diagnosing and monitoring various cardiac con-
ditions (Houssein et al., 2017; Pyakillya et al., 2017). By analyzing the electrical activity of the
heart captured in ECG signals, healthcare professionals can identify abnormalities and determine
appropriate treatments. We employ three real ECG datasets, namely ECGFiveDays, ECG200, and
ECG5000, which are obtained from (Bagnall et al., 2018). For ECGFiveDays, we train each model
for 200 epochs, while for ECG200 and ECG5000, we train each model for 100 epochs. Additional
details regarding the datasets are provided in Section 3.2.

3.1 ENVIRONMENT SETUP

For all experiments, we utilize Adam (Kingma & Ba, 2014) as the optimizer with a learning rate
of 10−3 and a batch size of 32. We use the ReLU as the activate function. For all the ODE-based
models, the solver method we used is “dopri5”. For the time series forecasting tasks, we trained
each model 50 epochs and used the MSE as the loss function. For the time series classification
tasks, we trained each model 100 epochs and used the Cross-Entropy Loss as the loss function. For
a fair comparison, we conduct the FNO with one Fourier layer where modes = 2 and width = 8.
As seen in Table 2, the number of parameters in FNO is more than in FODEs. To ensure reliable
results, we ran each experiment three times to account for experimental variability. The vector field
in all the ODE-based models is parameterized using a 3-layer MLP (Haykin, 1998). These three
layers have the dimension of (F,H), (H,H), and (H,F ), respectively, where the F represents the
number of features and H represents the hidden dimensions set as H = 16. Our implementation
is based on Python 3.8 and realized in PyTorch. The experiments were performed on an Apple M2
device equipped with an 8-core CPU.
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3.2 DATASETS AND PROBLEM SETUP

Damped Oscillation. The damped oscillation (Smith, 1957) represents a system undergoing oscil-
latory motion with damping. The function describing the damped oscillation behavior is given by
x(t) = Ae−βt(cos(ω1t+ϕ1)+sin(ω2t+ϕ2)). Here, x(t) represents the displacement of the system
at time t, A is the initial amplitude, β is the damping coefficient, ω is the angular frequency, and ϕ is
the phase angle. In our experiment, we set the function as x(t) = e−t(cos(πt+0.1)+sin(πt+0.1)).

Forced Vibration. The forced vibration (Trifunac, 1972) represents a system vibrating under the
influence of an external force. In this scenario, we consider a function expressed as the product of
two sine functions: x(t) = sin(ω1t)sin(ω2t). The values ω1 = 0.5 and ω2 = 3 are selected to
define the angular frequencies associated with the sine components.

Newton’s Equations of Motion. Newton’s equations of motion, a fundamental principle in classical
mechanics established by (Papapetrou, 1951), describe the relationship between the motion of an
object and the forces acting upon it. In the context of one-dimensional motion along the x-axis, the
position of the object as a function of time is given by x(t) = x0 + v0t +

1
2at

2. Simplifying this
equation for our experiment, we employ the expression x(t) = 0.1t + 0.5t2 to analyze the motion
of the object.

ECGFiveDays. The ECGFiveDays dataset (Hu et al., 2013) consists of ECG recordings from a
67 year-old male. The dataset includes two distinct classes, corresponding to two different dates
when the ECG measurements were recorded, with a five-day interval between them. Specifically,
the dataset consists of 23 samples in the training set and 861 samples in the test set. Each time series
in the dataset has a length of 136.

ECG200. The ECG200 dataset (Olszewski, 2001) is a binary classification dataset that captures
the electrical activity during a single heartbeat. The two classes represent a normal heartbeat and
an occurrence of myocardial infarction. Each time series in ECG200 has a length of 96. Both the
training and test sets consist of 100 samples.

ECG5000. The ECG5000 dataset is a 20-hour-long ECG dataset obtained from the BIDMC Con-
gestive Heart Failure Database (CHFDB) (Goldberger et al., 2000). The data were pre-processed by
extracting individual heartbeats and equalizing their lengths using interpolation. The dataset consists
of 5, 000 randomly selected heartbeats from a patient with severe congestive heart failure. There are
5 classes, and each time series has a length of 140. The training size is 500, and the test size is 4500.

3.3 TIME SERIES FORECASTING

Figure 2: The test Mean Percentage Er-
ror (MPE) for damped oscillation sys-
tem.

In this section, we evaluate the performance of FODE
compared to baseline models, including NODE, ANODE,
SONODE, RNN, and LSTM for time series forecasting.
The objective is to dynamically forecast the future behav-
ior of a system based on historical data. We employ a
sliding window approach with a length of 50, aiming to
predict the future 50 values given the past 50 values.

Figure 3 provides an intuitive comparison of FODE with
the continuous model NODE and the discrete model RNN
on three different systems: damped oscillation, forced vi-
bration, and Newton’s equations. FODE exhibits supe-
rior predictive accuracy across all systems. Notably, RNN
fails to capture the dynamics of Newton’s equations in the
test set, while NODE achieves a reasonable fit but with
less accuracy. Figure 2 presents the test Mean Percentage
Error (MPE) during the training process for the damped oscillation system. It demonstrates that
FODE consistently outperforms the other models as the training epoch increases.

We further compare our model with additional baseline models and record the test Mean Square
Error (MSE) over three runs, as summarized in Table 1. Our FODE consistently achieves the best
results for two out of three physical systems. Particularly, in the case of damped oscillation, FODE
exhibits an error magnitude lower than the other models by at least one order of magnitude. The
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Figure 3: Performance comparison of FODE, NODE, and RNN on damped oscillation, forced vi-
bration, and Newton’s equations systems. The dotted line separates the training set from the test set.

Table 1: Testing MSE for Time Series Forecasting in Three Functions
Damped oscillation (×10−7) Forced vibration(×10−4) Newton’s Equations

RNN 2105.21± 38.70 1506.26± 484.95 795.12± 3.60
LSTM 1877.76± 130.40 702.09± 280.19 766.79± 5.97
NODE 122.79± 66.79 267.50± 3.73 1.03± 0.55

ANODE 22.58± 7.596 275.35± 8.57 0.49± 0.06
SONODE 36.51± 37.95 266.76± 15.55 1.23± 0.23

FODE 7.68± 6.12 254.31± 28.59 0.68± 0.09
FODE (w/o K) 8.62± 2.53 230.96± 19.51 1.80± 0.48

FODE model without filter K is denoted as FODE (w/o K). Table 1 shows that FODE performs better
than FODE (w/o K) on 2 of the 3 datasets. FODE outperforms all models on all datasets except
for ANODE on Newton’s equations. However, it is noteworthy that FODE has fewer parameters
compared to ANODE, with 506 parameters versus 556. A comparison of the number of parameters
across different datasets is presented in Table 2. In the ODE-based models, ANODE and SONODE
always have more parameters than ours.

3.4 TIME SERIES CLASSIFICATION

In this section, we apply FODE to time series classification tasks and compare its performance
against baseline models including models in Section 3.3, NCDE (Kidger et al., 2020), and FNO (Li
et al., 2020). We measure the test losses for the three datasets. Table 3 presents the MSE values
for FODE and baseline models. It can be observed that FODE achieves comparable or lower MSE
compared to the baselines.

Importantly, FODE exhibits a notable advantage in terms of parameter efficiency. Table 2 provides
a comparison of the number of parameters, revealing that FODE has fewer parameters than SON-
ODE and ANODE. For instance, SONODE has nearly twice the number of parameters compared
to FODE. This advantage in parameter efficiency is a significant characteristic of ODE-based mod-
els (Chen et al., 2018). Excessive parameterization compromises this advantage.

Hidden State Analysis of FODEs. In order to gain insights into the iterative process of FODE,
we conduct a short-time Fourier transform (Griffin & Lim, 1984) on the hidden state during model

Table 2: The number of parameters for each model for six datasets
RNN LSTM NODE ANODE SONODE NCDE FNO FODE FODE (w/o K)

Three Physical Systems 338 1250 423 556 860 - - 506 456

ECGFiveDays 338 1250 595 900 1204 4306 2394 764 628
ECG200 338 1250 515 740 1044 4306 1754 644 548
ECG5000 389 1301 1026 1759 2063 4357 5821 1199 1059
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Table 3: Test Loss for Time Series Classification
ECGFiveDays ECG200 ECG5000

RNN 0.538± 0.001 0.583± 0.002 0.383± 0.015
LSTM 0.523± 0.044 0.605± 0.010 0.318± 0.018
NODE 0.192± 0.034 0.377± 0.005 0.254± 0.010

ANODE 0.189± 0.027 0.393± 0.021 0.253± 0.008
SONODE 0.178± 0.040 0.352± 0.003 0.247± 0.001

NCDE 0.714± 0.022 0.623± 0.013 0.913± 0.004
FNO 0.170± 0.101 0.330± 0.011 0.269± 0.020

FODE 0.114± 0.072 0.320± 0.015 0.556± 0.426
FODE (w/o K) 0.385± 0.220 0.317± 0.026 0.259± 0.005

training. The analysis reveals that FODE effectively maps the time series from one frequency spec-
trum to another. This finding indicates that FODE learns a mapping relationship in the frequency
domain.

Figure 4 presents the results of applying the short-time Fourier transform to the hidden state of
FODEs. The leftmost figure displays the frequency domain information of the original signal. As
the model undergoes training, the frequency domain information is mapped to a different frequency
domain space. FODE captures the dynamic mapping relationship in the frequency domain. It is
worth noting that FODE leverages the Fourier transform in its implementation, and the short-time
Fourier transform is utilized here to enhance the visualization of the signal’s frequency domain
information.

Figure 4: We apply the short-time Fourier transform on the hidden state of FODEs. The results show
that FODE transforms a signal from one frequency domain to another.

Evolution of filter K with different initialization We present the evolution of element-wise filter
values throughout the training epochs. We experiment with different initialization schemes for the
element-wise filter values, namely all zeros, all ones, and Xavier uniform (Glorot & Bengio, 2010)
initialization. The varying values of filter K are visually represented through color changes in Figure
5. On the left side, the corresponding loss is displayed in relation to the epoch.
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Figure 5: The evolution of filter K with different initialization. From left to right, K is initialized
by Zeros, Ones, and Xavier Uniform, respectively. From top to bottom, each subfigure shows the
timeline of the training process (the training loss is from high to low). The changing of colors
represents the changing of weight values in K during training.

4 RELATED WORK

Fourier Transform Differentiation. The Fourier transform has been widely employed in spectral
methods for solving differential equations, leveraging the equivalence between differentiation and
multiplication in the Fourier domain. Its significance extends to the domain of deep learning, where
it has been instrumental in the proof of the universal approximation theorem (Hornik et al., 1989)
and demonstrated practical benefits, such as accelerating convolutional neural networks (Mathieu
et al., 2013). These advancements underscore the profound impact of Fourier transforms in both
theoretical and practical aspects of deep learning (Li et al., 2020; Holt et al., 2022). When ap-
plied to ordinary differential equations (ODEs), the Fourier transform enables the conversion of the
equation into an algebraic equation in the frequency domain, which can be solved using standard
techniques. Specifically, the Fourier transform of a function’s derivative is proportional to the prod-
uct of the Fourier transform of the function and the frequency variable. This property facilitates the
transformation of a first-order ODE into an algebraic equation in the frequency domain. Consider a
first-order ODE: y′(t) = f(t). Taking the Fourier transform of both sides yields iωY (ω) = F (ω),
where Y (ω) and F (ω) are the Fourier transforms of y(t) and f(t), respectively, and ω is the fre-
quency variable. Rearranging this equation gives Y (ω) = F (ω)

iω , which can be inverted back to the
time domain to obtain the solution y(t).

Hadamard Product. The Hadamard product-based layer has garnered attention in various domains
of machine learning and data analysis due to its adaptability and compatibility (Gama et al., 2018;
Ngiam et al., 2011; Trask et al., 2018). For instance, Xing et al. (2018) propose a convolutional
neural network with element-wise filters (CNN-EW) for brain networks, achieving improved accu-
racy in distinguishing subject groups and identifying abnormal brain regions associated with autism
spectrum disorder (ASD). Rao et al. (2021) present the Global Filter Network (GFNet), an efficient
architecture that learns long-term spatial dependencies in the frequency domain with log-linear com-
plexity. Chen et al. (2019) propose a novel convolutional neural network with element-wise filters for
classifying dynamic functional connectivity (DFC-CNN). Furthermore, Dzanic & Witherden (2022)
utilize element-wise filtering to mitigate spurious oscillations near discontinuities in discontinuous
spectral element methods.

5 CONCLUSION

In this work, we introduced FODE, a novel ODE-based model that leverages the Fourier domain to
learn dynamics and enhance the representation of time series data. By operating in the Fourier space,
FODE effectively captures underlying patterns and features, surpassing the capabilities of traditional
continuous models. The incorporation of an element-wise filter maintains granularity while enabling
generalization. Experimental evaluations on various time series datasets demonstrated the superior
performance of FODE, achieved with a reduced parameter footprint. In future research, we plan to
extend FODE to other domains and explore its interpretability and robustness properties.
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