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ABSTRACT

We present FreeMorph, the first tuning-free method for image morphing that
accommodates inputs with varying semantics or layouts. Unlike existing methods,
which rely on fine-tuning pre-trained diffusion models and are limited by time con-
straints and semantic/layout discrepancies, FreeMorph delivers high-fidelity image
morphing without extensive training. Despite its efficiency and potential, tuning-
free methods still face challenges in maintaining high-quality image morphing due
to the non-linear nature of the multi-step denoising process and bias inherited from
the pre-trained diffusion model. In this paper, we introduce FreeMorph to address
this challenge by integrating two key innovations. 1) We first propose a guidance-
aware spherical interpolation design that incorporates the explicit guidance from
the input images by modifying the self-attention modules, addressing identity loss,
and ensuring consistent transitions throughout the generated sequences. 2) We
further introduce a step-oriented motion flow that blends self-attention modules
derived from each input image to achieve controlled and directional transitions that
respect both input images. Our extensive evaluations demonstrate that FreeMorph
outperforms existing methods with training that is 10× ∼ 50× faster, establishing
a new state-of-the-art for image morphing. The code will be released.

1 INTRODUCTION

Given two distinct input images, image morphing (Zope & Zope, 2017; Nri, 2022) aims to grad-
ually change the attributes such as shape, texture, and overall image layout to produce a series of
intermediate images that transit smoothly from one image to the other. This process is now widely
utilized in fields such as animation, film transitions, and photo-editing tools (Aloraibi, 2023; Wolberg,
1996; 1998), offering an effective means to enhance creative expression and imagination. Historically,
image morphing has relied on image warping (Smythe, 1990; Wolberg, 1990; Fant, 1986) for aligning
corresponding points and color interpolation (Beier & Neely, 1992; Lee et al., 1998) for blending.
These methods, however, often fall short in handling complex textural and semantic transitions,
making them less effective for images with intricate details. With the advancements in deep learning,
GANs (Goodfellow et al., 2014; Karras et al., 2019; Brock et al., 2019; Sauer et al., 2023) and
VAEs (Kingma & Welling, 2013) have significantly improved image morphing by allowing latent
code interpolations. Despite their capabilities, these approaches still face challenges with real-world
images due to limited training data and issues with information loss during GAN inversion. This
underscores the need for more identity-preserved and generalized methods in image morphing.

Recently, thanks to the collections of large datasets with extensive text-image pairs, vision-language
models (e.g., Chameleon (Team, 2024)), diffusion models (e.g., Stable Diffusion (Stability.AI,
2022; Saharia et al., 2022; Rombach et al., 2022)), and transformers (e.g., PixArt-α (Chen et al.,
2023), FLUX (Black, 2024)) have demonstrated impressive capabilities in generating high-quality
images from text prompts. These advancements have paved the way for the development of new
generative image morphing techniques. Specifically, Wang & Golland (2023) leverages the local
linearity of CLIP-based text embeddings to create smooth transitions between input images by
interpolating the latent image features; Building upon this idea, IMPUS (Yang et al., 2023) introduces
a multi-phase training framework that includes the optimization of text embeddings and training of
Low-rank Adaptation (LoRA) modules to capture the semantics better. While this method yields
more visually appealing results, it requires extensive training, typically around 30 minutes for each
case. DiffMorpher (Zhang et al., 2024) proposes to directly interpolate the latent noise and leverage
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Input source Input target
Generated transitions

Figure 1: Examples of image morphing obtained via FreeMorph. Given two input images,
FreeMorph effectively generates smooth transitions between them within 30 seconds.

Adaptive Instance Normalization (AdaIN) to improve performance. However, they still encounter
significant challenges in processing images with diverse semantics and intricate layouts, which limits
their effectiveness in practical applications.

Given these issues, our objective is to accomplish image morphing without requiring further tuning.
Nonetheless, this goal introduces two key challenges: 1) Inconsistent transition and identity loss.
While using a pre-trained diffusion model to convert input images into latent features and applying
spherical interpolation might seem straightforward, this approach often results in inconsistent transi-
tions. This is due to the non-linear characteristics of the multi-step denoising process. Additionally,
this method inherits biases from the pre-trained model, which can lead to a loss of identity in the
generated images. 2) Limitations in directional transitions. The diffusion model does not inherently
provide an effective "motion flow" to capture the gradual changes between images. As a result,
without additional adjustments, achieving smooth and gradual transitions in a tuning-free manner
remains a significant challenge.

In this paper, we present FreeMorph, a novel tuning-free method that is capable of generating
directional and realistic transitions between two images instantly. Our method comprises two novel
components: 1) Guidance-aware spherical interpolation: We first enhance the pre-trained diffusion
model by incorporating explicit guidance from the input images through modifications to the self-
attention modules. This is achieved through spherical interpolation, which produces intermediate
features used in two key ways. Firstly, we perform spherical feature aggregation to blend the key and
value features from the self-attention modules, ensuring consistent transitions across the generated
image sequences. Additionally, to address the issue of identity loss, we introduce an prior-driven
self-attention mechanism which incorporates explicit guidance from the input images to preserve their
unique identities. 2) Step-oriented motion flow: To address the limitation in directional transitions,
we introduce a novel step-oriented motion flow. This method blends two self-attention modules
respectively derived based on each input image, enabling a controlled and directional transition that
respects both input images. To further improve the quality of the generated image sequences, we
have crafted an improved reverse diffusion and forward denoising process, seamlessly integrating
these innovative components into the original DDIM framework. As shown in Fig. 1 and Fig. 4, our
approach adeptly handles diverse input types, whether they share similar or distinct semantics/layouts,
producing smooth and realistic transitions between images.

To thoroughly assess FreeMorph and benchmark it against current methods, we further develop a
comprehensive evaluation system. This system includes 1) four distinct sets of image pairs categorized
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by their semantic and layout similarity, and 2) specialized metrics designed to measure the smoothness,
fidelity, and directness of image morphing methods. Our extensive evaluations demonstrate that
FreeMorph substantially outperforms existing approaches. FreeMorph can produce high-fidelity
image sequences with smooth and coherent transformations in under 30 seconds, which is 50× faster
than IMPUS (Yang et al., 2023) and 10× faster than DiffMorpher (Zhang et al., 2024).

2 RELATED WORK

Text-to-Image Generation. Recently, diffusion models (Rombach et al., 2022; Podell et al., 2023;
Saharia et al., 2022; Ramesh et al., 2022) have emerged as the de facto method for text-to-image
generation tasks. These models employ a series of denoising steps (DDIM, DDPM) (Ho et al., 2020;
Song et al., 2021) to transform Gaussian noise into images, effectively capturing and interpreting the
details conveyed by textual prompts. Moreover, trained on billions of text-image pairs(Schuhmann
et al., 2022), these methods exhibit a remarkable ability to understand the distribution of real-world
images, generating high-quality and diverse outputs while maintaining generalization. Our work
harnesses the powerful capabilities of diffusion models, particularly their ability to generate smooth
transition sequences between two specified images (Samuel et al., 2024; Khrulkov et al., 2023; He
et al., 2024) to address the image morphing task.

Image Morphing. Image morphing is a long-standing computer vision and graphics problem.
Before the deep learning era, techniques such as mesh warping (Smythe, 1990; Wolberg, 1990;
Fant, 1986) and field morphing (Beier & Neely, 1992; Lee et al., 1998) were the primary approaches
employed in this domain. Recently, advancements in diffusion models have led to significant progress,
as demonstrated by methods like DiffMorpher (Zhang et al., 2024), IMPUS (Yang et al., 2023), and
Wang & Golland (2023). These approaches focus on optimizing text embeddings for two images
and fine-tuning pre-trained text-to-image diffusion models to achieve smooth interpolation between
them. However, they often necessitate extensive fine-tuning for each image pair and are limited
to images with similar semantics and layouts. This can also hinder the generalizability of the pre-
trained diffusion models due to the constraints imposed by LoRA modules in the U-Net architecture.
In contrast, our method offers a tuning-free framework that makes no additional modifications to
the original diffusion models, thereby preserving their inherent generalizability. Additionally, our
approach significantly enhances training efficiency and is capable of handling images with varying
layouts and semantics, addressing a challenging aspect for existing techniques.

Tuning-Free Text-Guided Image Editing. Recent image translation methods have emerged that
edit either generated or real-world images through text in a training-free manner, without altering
the internal computation of the U-Net. For instance, SDEdit (Meng et al., 2022) proposes a straight-
forward method to add T time steps of Gaussian noise to the original images and denoise them
using the guided text. Conversely, EDICT (Wallace et al., 2023) and FPI (Meiri et al., 2023) focus
on inverting the reference image back to the latent space and subsequently applying the inverted
latent condition guided by text. Additionally, methods like P2P (Hertz et al., 2023), PnP (Tumanyan
et al., 2023), and MasaCtrl (Cao et al., 2023) modify the attention mechanism within diffusion
models to enhance the alignment between guided text and the consistency of generated images with
their original counterparts. Drawing inspiration from these existing techniques, our method aims to
facilitate image morphing in a tuning-free manner. Notably, our approach also achieves comparable
image editing performance by framing text-guided editing as a special case of morphing between real
and generated images.

3 METHODOLOGY

Given two independent images Ileft, Iright as input, our objective is to generate a sequence of
intermediate images S = {Ij}Jj=1 that smoothly transform from one image to the other in a tuning-
free manner. Note that we set J = 5 for experiments reported in this paper. As illustrated in
Algorithm 1, our pipeline employs the pre-trained diffusion model as our foundation and integrates
guidance from the input images into the multi-step denoising process. In the subsequent sections,
we first introduce the preliminaries that underpin our method in Sec. 3.1. Next, we will describe
the FreeMorph framework in detail. This illustration comprises three main components: 1) the
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Figure 2: Replacing the key and value feature in the attention mechanism. We can observe that
good key and value features would lead to smooth transitions and identity preservation.

guidance-aware spherical interpolation outlined in Sec 3.2, which includes our proposed spherical
feature aggregation and prior-driven self-attention mechanism, 2) step-oriented motion flow that
enables a controlled and directional image morphing (see Sec. 3.3), and 3) our improved reverse
diffuison and forward denoising processes depicted in Sec. 3.4.

3.1 PRELIMINARIES

Denoising Diffusion Implicit Model (DDIM). DDIM (Song et al., 2021), trained on extensive
text-image paired datasets, is designed to recover images from noisy inputs. It involves two main
processes: 1) a series of reverse diffusion steps {q(zt)|t = 0, 1, ..., T} that progressively add noise
to the data, and 2) corresponding forward denoising steps p(zt)|t = T, T − 1, ..., 0 that reconstruct
clean data from the Gaussian noise. Here, zt represents the latent features, and T indicates the
number of diffusion steps.

Once trained, DDIM provides a deterministic mapping between z0 and zt through the reverse diffusion
model q (zt | z0) := N

(
zt;

√
βtz0, (1− βt) I

)
and a parameterized noise estimator ϵθ(xt, t). The

relationship between these variables is given by:

zt+1√
βt+1

− zt√
βt

=

(√
1− βt+1

βt+1
−

√
1− βt

βt

)
ϵ
(t)
θ (zt) . (1)

In practice, the noise estimator ϵθ(xt, t) is typically implemented using a UNet (Ronneberger et al.,
2015).

Latent Diffusion Model (LDM). Building upon DDIM, the Latent Diffusion Model (LDM) (Rom-
bach et al., 2022) is a refined variant of diffusion models that effectively balances image quality with
denoising efficiency. Specifically, LDM utilizes a pre-trained variational auto-encoder (VAE) (Kingma
& Welling, 2013) to map images into a latent space and then trains the diffusion model within this
space. Furthermore, LDM enhances the UNet architecture by incorporating self-attention modules,
cross-attention layers, and residual blocks to integrate text prompts as conditional inputs during image
generation. The attention mechanism in LDM’s UNet can be formulated as:

ATT(Q,K, V ) = softmax(
Q ·KT

√
dk

) · V (2)

where Q denotes the query features from spatial data, and K and V are key and value features
derived from either spatial data (for self-attention) or text embeddings (for cross-attention). The noise
estimator in LDM is then extended to ϵθ(xt, t, y), where y denotes the text embedding.

Our approach builds upon the Stable Diffusion model (Stability.AI, 2022), a pre-trained LDM
developed by StabilityAI, and utilizes a vision-language model (VLM), LLaVA (Liu et al., 2024), for
generating captions for the input images.

3.2 GUIDANCE-AWARE SPHERICAL INTERPOLATION

Existing image morphing methods (Nri, 2022; Zhang et al., 2024; Yang et al., 2023) typically
involve training Low-rank Adaptation (LoRA) modules for each input image to enhance semantic
comprehension and achieve smooth transitions. However, this approach is often inefficient and
time-consuming and struggles with images that differ in semantics or layout. In this paper, we
propose a tuning-free image morphing approach built on the pre-trained Stable Diffusion model.
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Algorithm 1 FreeMorph
Input: Ileft, Iright

1: Caption the input images via pre-trained LLaVA → Textleft, Textright.
2: Obtain image features z0−left, z0−right, and text embedding yleft, yright via VAE and text encoder
of pre-trained Stable Diffusion.
3: Applying spherical interpolation to obtain z0−j where j ∈ [1, J ] as initialization.
4: Reverse diffusion steps:
for t = 1 to T do

if t < λ1 · T then
Apply the original attention mechanism.

else if t < λ2 · T then
Apply the prior-driven self-attention mechanism as in Eq. 5.

else
Apply the step-oriented motion flow as in Eq. 6.

end if
end for
5: High-frequency Gaussian noise injection.
6: Forward denoising steps:
for t = 1 to T do

if t < λ3 · T then
Apply the step-oriented motion flow as in Eq. 6.

else if t < λ4 · T then
Apply the spherical feature aggregation as in Eq. 4.

else
Apply the original attention mechanism.

end if
end for
7: Add text-conditioned features.

Output: J intermediate images gradually change from Ileft to Iright.

By leveraging the capabilities of DDIM for image inversion and interpolation, one might consider
converting the input images (Ileft, Iright) into latent features (z0−left, z0−right) and applying spherical
interpolation may seem like a simple straightforward solution:

z0−j =
sin((1− j) · ϕ)

sinϕ
· z0−left +

sin(j · ϕ)
sinϕ

· z0−right, (3)

where j ∈ [1, J ] is the index of intermediate images, and ϕ = arccos( zT
0−left·z0−right

||z0−left||·||z0−right
). Recall that

we set J = 5 in our paper. However, directly inverting these interpolated latent features z0−j to
generate images often results in inconsistent transitions and identity loss (see Fig. 2). This issue
arises because (1) the multi-step denoising process is highly non-linear, leading to discontinuous
image sequences, and (2) there is no explicit guidance to control the denoising, causing the model to
inherit biases from the pre-trained diffusion model.

Spherical Feature Aggregation. Drawing on insights from previous image editing techniques (Cao
et al., 2023; Hertz et al., 2023; Parmar et al., 2023; Shi et al., 2024; Tumanyan et al., 2023), we
observed that using the features z0−j as initialization and replacing the key and value features (K
and V ) in the attention mechanism (as described in Eq. 2) with features from the right image Iright
can largely enhance the smoothness and identity preservation of the image transitions, although some
imperfections may remain (see Fig. 2). Motivated by this finding, and recognizing that the query
features (Q) largely reflect the overall image layout, we propose first blending features from both the
left and right images (Ileft, Iright) to provide explicit guidance for the multi-step denoising process.
Specifically, in the denoising step t, we first feed the latent of the input images zt−left and zt−right to
the pre-trained UNet ϵθ to obtain the key and value features. Following that, We then substitute the
original K and V with those derived from the input images and compute their average to modify the
attention mechanism:

ATT(Qt−j ,Kt−j , Vt−j) :=
1

2
· (ATT(Qt−j ,Kt−left, Vt−left) + ATT(Qt−j ,Kt−right, Vt−right)) (4)
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Figure 3: Effectiveness of the latent noise on the generated images. The pre-trained diffusion
model is robust to the noise distortion within the latent space.

where Qt−j , Kt−j , Vt−j are obtained by inputting zt−j to the pre-trained UNet ϵθ. Note that zt−j ,
zt−left and zt−right are derived based on Eq. 2.

Prior-driven Self-attention Mechanism. While our feature blending technique significantly im-
proves identity preservation in image morphing, we found that using this approach uniformly in both
reverse diffusion and forward denoising stages can result in transitions where the image sequences
change minimally and fail to accurately represent the input images (see Fig. 6). This outcome is
anticipated because the latent noise will largely influence the forward denoising process, as shown
in Fig. 3. Consequently, applying our feature blending, depicted in Eq. 4, introduces ambiguity
as the consistent and strong constraints from the input images cause each latent noise i to appear
similar, thereby limiting the effectiveness of the transitions. To tackle this issue, we further propose a
prior-driven self-attention mechanism that prioritizes the latent features from spherical interpolation
to ensure smooth transitions within the latent noise, while emphasizing the input images to maintain
identity preservation afterward. Specifically, during the forward denoising stage, we use the approach
described in Eq. 4, while for the reverse diffusion steps, we employ a different attention mechanism
as follows by modifying the self-attention modules:

ATT(Qt−j ,Kt−j , Vt−j) :=
1

J

J∑
k=1

ATT(Qt−j ,Kt−k, Vt−k) (5)

Refer to Sec. 4.3 for detailed ablation studies on this design.

3.3 STEP-ORIENTED MOTION FLOW

After obtaining image sequences that are both coherent and accurately reflect the input identities,
the next challenge is to achieve a smooth and gradual transition from the left image Ileft to the right
image Iright. This problem stems from the lack of a "motion flow" that captures the changes from Ileft
to Iright. To this end, we propose a step-oriented motion flow that gradually changes the influence
between the input images (Ileft and Iright):
ATT(Qt−j ,Kt−j , Vt−j) := (1− αj) · ATT(Qt−j ,Kt−left, Vt−left) + αj · ATT(Qt−j ,Kt−right, Vt−right),

(6)
where αj = j/(J + 2− 1), with J + 2 representing the total number of images, which includes the
J generated images and the 2 input images.

3.4 REVERSE DIFFUSION AND FORWARD DENOISING PROCESS

High-frequency Gaussian Noise Injection. As discussed earlier, FreeMorph incorporates features
from both the left and right images during the reverse diffusion and forward denoising stages.
Nevertheless, we have observed that this can occasionally impose overly stringent constraints on the
generation process. To mitigate this issue and allow for greater flexibility, we propose introducing
Gaussian noise into the latent vector z in the high-frequency domain after the reverse diffusion steps:

z :=

{
IFFT(FFT(z)), if m = 1
IFFT(FFT(g)), if m = 0

(7)

Here, IFFT(·) and FFT(·) denote the inverse fast Fourier transform and fast Fourier transform,
respectively. g ∼ N (0, 1) represents a randomly sampled noise vector, and m is a binary high-pass
filter mask of the same size as z.

To enhance the efficacy of our image morphing process, we have found that consistently applying
either guidance-aware spherical interpolation or step-oriented motion flow across all denoising steps
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Table 1: Quantitative comparison with existing image morphing techniques.
Method MorphBench Morph4Data Overall

LPIPSsum ↓ FIDmean ↓ PPLsum ↓ LPIPSsum ↓ FIDmean ↓ PPLsum ↓ LPIPSsum ↓ FIDmean ↓ PPLsum ↓
IMPUS Yang et al. (2023) 130.52 152.43 3263.03 134.88 210.66 3199.90 265.40 174.76 6462.93
DiffMorpher Zhang et al. (2024) 90.57 157.18 2264.20 98.56 292.54 2394.05 189.13 209.10 4658.25
Spherical Interpolation 119.77 169.17 2994.35 103.74 245.22 2593.58 223.52 198.34 5587.93
Ours 84.91 141.32 2122.80 80.30 201.09 2007.52 162.99 152.88 4192.82

Input
source

Input
target

Generated transitions Input
source

Input
target

Generated transitions

Figure 4: More results produced by FreeMorph. Our method can achieve smooth and high-fidelity
image transitions for input images with either similar or different semantics and layouts.

yields suboptimal results (see Sec. 4.3). To address this, we have developed a refined approach for
both reverse diffusion and forward denoising processes. We provide an overview algorithm of our
proposed FreeMorph in Algorithm. 1. Specifically:

• Reverse diffusion: We use the standard self-attention mechanism for the first λ1 · T steps.
From λ1 ·T to λ2 ·T , we apply the feature blending technique from Eq. 5. For the remaining
steps, we implement the step-oriented motion flow.

• Forward denoising: We begin with the step-oriented motion flow for the first λ3 · T steps,
followed by the feature blending method from Eq. 4 for steps between λ3 · T and λ4 · T .
The process ends with the original self-attention mechanism for the final steps to produce
images with higher fidelity.

Here, λ1, λ2, λ3, and λ4 are hyper-parameters and T = 50 is the total number of steps.

4 EXPERIMENTS

We now evaluate the performance of FreeMorph across various scenarios, comparing it with state-of-
the-art image morphing techniques and conducting ablation studies to highlight the effectiveness of
our proposed methods.

Implementation Details. We utilize version 2.1 of the publicly available Stable Diffusion model.
Both the reverse diffusion and forward denoising processes use a DDIM schedule with T = 50
steps. Following the setting Stable Diffusion, we operate on the image resolution of 768× 768. We
configure the classifier-free guidance (CFG) parameter to 7.5 to incorporate text-conditioned features.
The hyperparameters are set as follows: λ1 = 0.3, λ2 = 0.6, λ3 = 0.2, λ4 = 0.6. Additional
implementation details can be found in the Appendix.

Evaluation Datasets. DiffMorpher (Zhang et al., 2024) introduces MorphBench, which includes
24 animation pairs and 66 image pairs, predominantly featuring images with similar semantics or
layouts. To complement this and mitigate potential biases, we present Morph4Data, a newly curated
evaluation dataset comprising four categories: 1) Class-A consisting of 25 image pairs with similar
layouts but differing semantics, sourced from Wang & Golland (2023); 2) Class-B containing image
pairs with both similar layouts and semantics, including 11 pairs of faces from CelebA-HQ (Karras
et al., 2018) and 10 pairs of various car types; 3) Class-C featuring 15 pairs of randomly sampled
images from ImageNet-1K (Deng et al., 2009) with no semantic or layout similarity.; 4) Class-D
comprising 15 pairs of dog and cat images randomly sampled from the internet.

7
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Figure 5: Qualitative comparison with existing image morphing techniques. Unlike other methods
that struggle or fail to generate smooth and high-fidelity results without identity loss, our approach
consistently achieves high-quality transitions, yielding superior results.

4.1 QUANTITATIVE EVALUATIONS

Following IMPUS (Yang et al., 2023) and DiffMorpher (Zhang et al., 2024), we conducted additional
quantitative comparisons using the following metrics: 1) Frechet Inception Distance (FID) (Heusel
et al., 2017), which assesses the similarity between the distributions of input and generated images; 2)
Perceptual Path Length (PPL) (Karras et al., 2020), where we calculate the sum of PPL loss between
adjacent images; and 3) Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018),
which we also sum for adjacent images to evaluate the smoothness and coherence of the generated
transitions. The results, detailed in Table1, demonstrate the superior performance of our image
morphing network across both datasets, showing enhanced fidelity, smoothness, and directness in the
generated transitions.

4.2 QUALITATIVE EVALUATIONS

More Qualitative Results. In Fig. 1 and Fig. 4, we present a wide range of results produced by
FreeMorph, consistently showcasing its ability to generate high-quality and smooth transitions. Our
method excels across diverse scenarios, accommodating images with varying semantics and layouts,
as well as those with similar characteristics. Additionally, FreeMorph effectively handles subtle
variations, such as cakes with different colors and individuals with different expressions.

Qualitative Comparisons. We provide qualitative comparisons with existing image morphing
methods in Fig. 5. The key observations are as follows: 1) When handling images with varying
semantics and layouts, IMPUS (Yang et al., 2023) exhibits identity loss and produces unsmooth
transitions; 2) Although Diffmorpher (Zhang et al., 2024) achieves smoother transitions compared
to IMPUS, its results often suffer from blurriness and lower overall quality; 3) We also evaluate a
baseline approach, which involves simply applying the spherical interpolation and DDIM process
to obtain the results. Through the visualizations, we notice that this baseline approach experiences
(i) challenges in accurately interpreting the input images due to the absence of explicit guidance,
and (ii) suboptimal results in terms of image quality. In contrast, our method consistently delivers
superior performance, characterized by smoother transitions and higher image quality. Additional
comparisons are available in the Appendix.

4.3 FURTHER ANALYSIS

Analysis of Guidance-aware Spherical Interpolation. In Fig. 6, we present ablation studies to
evaluate the effects of the proposed spherical feature aggregation (described in Eq. 4) and prior-driven

8
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Table 2: Quantitative comparison for ablation studies.
Method MorphBench Morph4Data Overall

LPIPSsum ↓ FIDmean ↓ PPLsum ↓ LPIPSsum ↓ FIDmean ↓ PPLsum ↓ LPIPSsum ↓ FIDmean ↓ PPLsum ↓
w/ only Eq. 5 157.01 320.05 3425.19 141.12 411.80 3028.05 298.13 355.24 6453.24
w/ only Eq. 4 99.69 155.51 2491.10 90.80 217.26 2270.05 190.49 179.20 4761.15
w/ only Eq. 5 and Eq. 4 211.52 243.08 5288.10 139.55 290.11 3488.87 351.08 261.12 8776.96
w/o noise injection 99.49 154.53 2487.16 89.12 211.23 2228.03 188.61 176.28 4715.19
w/o Eq. 4 87.41 155.46 2185.30 81.10 218.95 2027.58 168.52 179.82 4212.88
w/o Eq. 5 120.01 148.54 3000.35 101.28 215.43 2572.06 221.30 174.19 5572.41
w/o step-oriented motion flow 118.50 154.71 2962.48 93.39 214.93 2334.68 211.89 177.80 5297.17
Ours (Var-A) 153.40 184.54 3835.08 115.91 243.20 2897.63 269.31 207.04 6732.70
Ours (Var-B) 93.54 158.44 2338.62 85.76 245.36 2144.08 179.31 191.78 4482.70

Ours 84.91 141.32 2122.80 80.30 201.09 2007.52 162.99 152.88 4192.82
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Figure 6: Analysis of guidance-aware spherical interpolation.

self-attention mechanism (as in Eq. 5) within our method. The results indicate that using either
component alone yields suboptimal outcomes. Specifically, (i) spherical feature aggregation is crucial
for achieving directional transitions where the characteristics of Ileft should gradually diminish; (ii)
the prior-driven self-attention mechanism is vital for preserving identity in the generated images. The
combination of both components allows FreeMorph to produce smooth transitions while effectively
maintaining identity. Furthermore, by comparing the last two rows in Fig.6, we demonstrate the
importance of our step-oriented motion flow and the crafted reverse and forward processes.

Analysis of Reverse and Forward Process. In Fig. 7, we evaluate our method against two variants:
(i) “Ours (Var-A)”, which omits the original attention mechanism, and (ii) “Ours (Var-B)”, which
swaps the employed steps of the guidance-aware spherical interpolation and the step-oriented motion
flow in both the reverse and forward processes. Comparing these variants with our final design
reveals that (i) the original attention mechanism is crucial for achieving high-fidelity results, and
(ii) the specific configuration of the reverse and forward processes in our final design yields optimal
performance.

Analysis of Step-oriented Motion Flow. In Fig. 8, we first disable our proposed step-oriented
motion flow to assess its impact. We observe that without this component, the model tends to produce
abrupt changes rather than smooth transitions in the generated images. Additionally, the ending point,
i.e., the last generated image, exhibits high-contrast colors that differ from the target image Iright. In
comparison, the step-oriented motion flow enables our method to achieve smoother transitions and
results in an ending point that is more closely aligned with the target image.

Analysis of High-frequency Noise Injection. We then disable high-frequency noise injection and
present the ablation studies in Fig. 8. The results indicate that incorporating our proposed high-
frequency noise injection enhances the model’s flexibility and contributes to smoother transitions.
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Figure 7: Analysis of reverse diffusion and forward denoising process.
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Figure 8: Analysis of high-frequency noise injection and step-oriented motion flow.
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Figure 9: Failure cases.

Limitations and Failure Cases. While estab-
lishing a new state-of-the-art, we recognize that
our model has certain limitations. We illustrate
several failure cases in Fig.9. Specifically: 1) Al-
though our model can achieve reasonable results
when processing images that have no similarity
in semantics and layouts, the generated transi-
tions may not be smooth, potentially leading to
abrupt changes during the transition; and 2) Our
method inherits biases from Stable Diffusion(Stability.AI, 2022), leading to difficulties in accurately
transitioning images that model the limbs of human subjects.

5 CONCLUSION

We have introduced FreeMorph, a novel tuning-free pipeline that is capable of generating smooth
and high-quality transitions between two input images within 30 seconds. Specifically, we propose
to incorporate explicit guidance from the input images through modifications to the self-attention
modules. This is achieved by two novel components, i.e., spherical feature aggregation and prior-
driven self-attention mechanism. Additionally, we introduce a step-oriented motion flow that ensures
directional transitions consistent with both input images. We also carefully designed an improved
reverse diffusion and forward denoising process to integrate our proposed modules into the original
DDIM framework. Extensive experiments reveal that FreeMorph delivers high-fidelity results across
various scenarios, significantly outperforming existing image morphing techniques.
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