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Abstract

Research on LLM agents has shown remark-
able progress, particularly in planning meth-
ods that leverage the reasoning capabilities of
LLMs. However, challenges such as robust-
ness and efficiency remain in LLM-based plan-
ning, with robustness, in particular, posing a
significant barrier to real-world applications.
In this study, we propose a framework that in-
corporates human reasoning abilities into plan-
ning. Specifically, this framework mimics the
human ability to break down complex problems
into simpler problems, enabling the decompo-
sition of complex tasks into preconditions and
subsequently deriving subtasks. The results of
our evaluation experiments demonstrated that
this human-like capability can be effectively
applied to planning. Furthermore, the proposed
framework exhibited superior robustness, offer-
ing new perspectives for LLM-based planning
methods.

1 Introduction

The evolution of Large Language Models (LLMs)
has been remarkable, revolutionizing the field of
natural language processing (NLP) and extend-
ing their influence to interdisciplinary domains.
Among these advancements, the emergence of
LLM-powered agent technology (LLM Agents) has
garnered significant attention due to its potential
for real-world applications. These agents leverage
the linguistic and reasoning capabilities of LLMs
not only for conversational tasks but also for com-
plex planning and decision-making processes (Liu
et al., 2023; Singh et al., 2023; Wang et al., 2023b).

Planning, in the context of LLM agents, refers
to the process of devising a sequence of actions
required to achieve a specific goal. This process
inherently relies on the reasoning and decision-
making capabilities of LLMs, which are rooted in
their ability to understand, generate, and manipu-
late natural language. For instance, achieving the

goal of brushing one's teeth involves a series of
steps such as heading to the sink, locating tooth-
paste, picking up the toothbrush, etc. If a subtask,
such as locating toothpaste, fails, the agent must
adapt by either setting a new goal (e.g., purchasing
toothpaste) or skipping ahead to the next actionable
step.

While LLMs have demonstrated success in plan-
ning tasks, challenges remain, particularly in sce-
narios involving long-horizon goals or complex
sequences of actions. As the number of required
actions increases, the accuracy of LLM-based plan-
ning tends to decline significantly (Valmeekam
et al.,, 2024b). This is because long-horizon
tasks expand the search space, and approximate
retrieval-based reasoning—typical of current LLMs
—struggles to maintain coherence and robustness
over extended sequences. This issue highlights
the need for a framework that enhances the robust-
ness of LLMs in solving long-horizon tasks within
planning scenarios, while also improving their ef-
ficiency in utilizing current conditions to create
effective plans.

To tackle this challenge, we draw inspiration
from human cognition, particularly the ability to
break down complex problems into simpler, man-
ageable subproblems. Cognitive psychology, such
as that by Simon and Newell (1971); Chipman et al.
(2000) suggests that humans naturally decompose
difficult tasks into smaller, sequential steps, facili-
tating reasoning and execution . By mimicking this
strategy, LLMs can construct hierarchical plans, en-
abling more robust and efficient solutions to com-
plex goals.

In this study, we introduce a planning framework
that leverages human-inspired decomposition to
enhance LLMs'planning capabilities. While most
prior methods rely on forward reasoning, our ap-
proach is based on backward reasoning, which de-
composes goals into subgoals in a top-down man-
ner. As shown in Figure 1, the framework incorpo-
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Figure 1: Overview Diagram of the DRIP Concept (Right). The left side illustrates the structure of existing methods
using forward reasoning, while the right side represents the proposed method utilizing backward reasoning.

rates Backward Reasoning, a strategy well-suited

to the hierarchical nature of goal decomposition, to

achieve both efficiency and robustness in planning.
The contributions of this paper are as follows:

* We propose a planning framework that mimics
human-like hierarchical goal decomposition,
leveraging LLMs'natural language reasoning
for task breakdown.

* Improved robustness in classical planning
tasks: Through experiments on classical plan-
ning tasks, we demonstrate that the proposed
framework enhances the robustness of LLM
agents compared to existing methods.

* Efficiency through Backward Reasoning: We
show that the framework reduces the number
of actions required to achieve goals, highlight-
ing its efficiency compared to Forward Rea-
soning approaches.

» Applicability to stochastic environments: The
framework demonstrates effectiveness in dy-
namic and partially observable environments,
such as household tasks, where goals are un-
derspecified and actions may have uncertain
outcomes.

By integrating insights from human cognition
and leveraging the linguistic strengths of LL.Ms,
this study aims to advance in LLM-based planning,
paving the way for more reliable and versatile agent
technologies.

2 Related Work

2.1 LLM Reasoning with decompose

The ability to simplify complex tasks by breaking
them down into smaller, manageable subtasks is
a hallmark of human cognition (Chipman et al.,
2000). This concept, deeply rooted in cognitive

psychology and logic (Simon and Newell, 1971),
has inspired recent advancements in multi-step rea-
soning using LLMs (Xue et al., 2024; Junbing et al.,
2023; Zhou et al., 2023). These studies commonly
employ decomposition strategies, where a com-
plex question is divided into simpler sub-questions,
solved iteratively, and integrated to achieve the fi-
nal solution. This approach often aligns with back-
ward reasoning, a process of reasoning from the
goal state to the initial state.

Empirical results from these studies have demon-
strated significant improvements in the accuracy of
solving challenging reasoning tasks. For instance,
Xue et al. (2024) reported not only enhanced accu-
racy but also increased efficiency in reasoning tasks
through decomposition. These findings suggest
that decomposition-based reasoning is a promising
approach for addressing the limitations of LLMs
in handling complex problems. Building on this
foundation, our study extends the application of
backward reasoning from question-answering tasks
to planning tasks.

2.2 Regression Planning

Backward reasoning, or regression planning, has
long been studied in classical Al planning liter-
ature. It has played a central role in traditional
planning algorithms, dating back to early works
such as Waldinger (1977). Regression planning
involves reasoning backward from the goal state to
identify the sequence of actions required to achieve
it. However, traditional regression planning meth-
ods often rely on symbolic planners, which ne-
cessitate predefined causal relationships between
actions (Xu et al., 2019; Silver et al., 2022). This
reliance on symbolic representations poses signifi-



cant challenges for real-world applications, where
the dynamics of the environment are often too com-
plex or uncertain to be fully captured by static,
predefined rules.

In contrast, LLMs offer a unique advantage in
their ability to dynamically generate and adapt rules
based on their extensive pre-trained knowledge.
This generative capability enables LLMs to over-
come the rigidity of symbolic approaches, making
them more suitable for real-time applications. Our
study leverages this strength of LLMs to implement
a regression planning framework that dynamically
decomposes goals into sub-goals, addressing the
limitations of traditional symbolic methods.

2.3 Planning for LLM Agents

Planning methods for LLM agents have been exten-
sively studied, with various approaches proposed
to enhance their reasoning and decision-making
capabilities. According to the taxonomy by Huang
et al. (2024), our study falls under the category of
task decomposition, a strategy that has been widely
adopted in LLM-based planning.

One prominent approach is Chain-of-Thought
(CoT) prompting (Wei et al., 2023; Kojima et al.,
2023), which encourages LLMs to explicitly con-
sider intermediate reasoning steps. This method ef-
fectively breaks down problems into subtasks, facil-
itating step-by-step reasoning. The Plan-and-Solve
framework (Wang et al., 2023a) further refines this
approach by decomposing tasks into sequential sub-
tasks, reducing reasoning leaps. While effective
for static problems, its applicability to dynamic
environments remains limited. Another notable
approach is ReAct (Yao et al., 2023), which alter-
nates between reasoning and planning, enabling
decision-making in dynamic environments. This
method significantly enhances planning capabili-
ties but still relies on forward reasoning.

Forward reasoning, while widely used, faces in-
herent challenges in handling complex tasks due
to the exponential growth of the search space (Yu
et al., 2023). Even advanced reasoning models
designed to enhance forward reasoning have strug-
gled to achieve robust performance in long-horizon
planning tasks (Valmeekam et al., 2024b). These
limitations highlight the need for alternative ap-
proaches that can efficiently navigate the complexi-
ties of planning.

Backward reasoning has recently been explored
in the context of LLLM agent planning. For ex-
ample, Ren et al. (2024) proposed a method that
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redefines the goal state as the initial state and “flips’
the initial state to the goal state, simulating back-
ward reasoning using LLMs. While promising,
this approach encounters limitations in scenarios
with multiple goal states or ambiguous goal rep-
resentations. For instance, in environments like
Blockworld, a goal such as “The red block is on
top of the blue block” may allow for multiple valid
configurations, leading to inconsistencies in the
generated plans.

To address these challenges, our study proposes
a stricter adherence to backward reasoning by ex-
plicitly decomposing the goal into intermediate sub-
goals. This approach ensures that each sub-goal
is well-defined and contributes directly to achiev-
ing the final objective. By leveraging the extensive
knowledge embedded in LLMs, our framework can
handle ambiguous or underspecified goal represen-
tations, enhancing its applicability to diverse and
dynamic problem-solving contexts.

3 Planning Framework:DRIP

Building upon cognitive psychology and logical
reasoning, this study introduces DRIP — a frame-
work that integrates hierarchical decomposition
with dynamic planning for LLM agents. Inspired
by the theory that humans solve problems by break-
ing them into subgoals (Simon and Newell, 1971;
Chipman et al., 2000), DRIP operationalizes this
mechanism through structured backward reason-
ing. This decomposition process aligns closely
with the principles of backward reasoning, enabling
the systematic breakdown of high-level goals into
actionable subtasks. A high-level overview of the
algorithm is presented in Algorithm 1, followed by
detailed descriptions of each phase in the subse-
quent subsections.

3.1 Decompose

N . -
Goal ! Initial condition

B i
=R~

Stack red orange  Stack yellow red

Figure 2: Decompose the goal into actions

In DRIP, “decomposition” refers to the process
where the LLM recursively breaks down a goal
into simpler subtasks by identifying the necessary
preconditions. This forms a reasoning tree 1" =



Algorithm 1 DRIP Planning Algorithm

Require: Initial condition S, Goal G
Ensure: Plan 7 : a sequence of executable actions
1: Initialize reasoning tree 7' = (N, E)), with root node
nog = G

2: Set current conditionS — Sp, plan 7 < []
3: Set current frontier F < {no}
4: fori=1to MAX_ITERdo
5: Frext ]
6:  for all node n € F do
7: if exec(n,S) = true then
8: m U {n}
9: S + apply(n, S)
10: else
11: {91,92,--., gk} < dec(n)
12: for all g; € dec(n) do
13: Add g; as child of n in tree T'
14: ]:next — ]:next U {gz}
15: end for
16: end if
17: end for
18:  if exec(G, S) = true then
19: break
20: end if
21: F fnexl
22: end for

23: return T

(N, E), where each node n € N stores. Let the
goal be GG and the condition be S, and the others
are defined as follows.:

» 7w(Plan): A list of actions leading from S to

* Fuext: The set of nodes currently being pro-
cessed. Fpext € NV

* gy, Actions (subgoals) required to achieve the
parent node's goal. g, € G

At each step, the LLM is prompted to generate

subtasks for a given parent node:
{91, 92, -, g} < dec(n)

For example (Figure 2), consider the fol-
lowing initial condition from the BlockWorld
dataset(Valmeekam et al., 2023a):
So: “The yellow block and orange block are clear,
the hand is empty. The orange block is on the table,
the blue block is on top of the red block, and the
yellow block is on top of the blue block.”(Initial
condition in Figure 2 (right))
G(go): “The red block is on top of the orange
block and the yellow block is on top of the red
block.”(Goal in Figure 2 (left))

As shown in the first-level box of Figure 2, this
G can be decomposed into the actions “Stack red
orange” and “Stack yellow red”.

3.2 Executability

The executability step evaluates whether each sub-
task can be performed given the current condition.

This evaluation is handled by an actuator, which
assesses action feasibility. We define the function:
exec(n, S) € {True, False}

The apply function takes a node n and a con-
dition S as input and returns a new condi-
tion S’. In other words, it represents the
execution of a valid action by the actuator.
S’ « apply(n, S)

Consider the example from Figure 3: initially,
“Stack red orange” is executable, but “Stack yellow
red” is not, as the red block is not clear. There-
fore, as shown in Figure 3, the executability of the
actions in the initial condition is labeled as EXE-
CUTABLE and UNEXECUTABLE, respectively.

Upon executing the former, the condition up-
dates, triggering a reevaluation of pending actions.
This process is repeated until no executability
changes remain.
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Figure 3: Execution of actions and changes in conditions

3.3 Re-decomposition and Termination of tree
construction

Initial condition
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“Stack red orange”
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Figure 4: Execution of actions and changes in conditions

When executability updates stall, any remaining
unexecutable actions are reinterpreted as sub-goals
and recursively decomposed. For example (Figure
4), to execute “Stack yellow red”, the LLM infers
prerequisite actions like “Put-down yellow” and
“Unstack blocks red”. A node's decomposition is
complete when all its child actions become exe-
cutable. Once this occurs, executability propagates
upward—if all children of a parent node are exe-
cutable, the parent becomes executable as well. As
shown Figure 5, this process continues until the



Table 1: The benchmark and the used models.(Manual) refers to experiments where humans executed the actions

proposed by the LLM.
Methods ‘ Models ‘ Accuracy

DRIP gpt-40(OpenAl et al., 2024) | 16.4% (18/110)
Claude 3.7 Sonnet! 40.9% (45/110)
DRIP(Manual) gpt-4o 82.7% (91/110)
.. gpt-4o 13.6%(15/110)
CoT(Kojima etal., 2023) Claude 3.7 Sonnet 23.6% (26/110)

ReACT(Yao et al., 2023) gpt-4o 1.8%(2/110)
ReACT(Manual) gpt-4o 31.8% (35/110)

root node is executable, indicating that the original
goal can now be achieved.

The entire planning process follows a breadth-
first search pattern, alternating decomposition and
executability updates at each level.

Goal Initial condition i
EXECUTABLE EXECUTABLE Condition after executing
“Stack red orange”
s [ S
Stack red orange Stack yellow red
Condition after executing
“Put-down yellow”
Condition after executing
EXECUTABLE EXECUTABLE “Unstack blocks red” J:L-E
| —
Condition after executing
A — Sonition afer o 4_5
put-down yellow unstack blocks red Goall!

Figure 5: Execution of actions and changes in conditions

4 Experiment

4.1 BlockWorld

The BlockWorld task involves stacking blocks to
achieve a specified goal state, making it a widely
studied problem in classical planning. For this
study, we utilized the BlockWorld_hard dataset
(Valmeekam et al., 2023b, 2024a), which includes
scenarios with stacking tasks involving between
6 and 15 blocks. This dataset is particularly chal-
lenging due to the increased complexity of the goal
states and the number of actions required to achieve
them. Detailed statistics regarding the number of
blocks and configurations in the dataset are pro-
vided in Appendix A.1.

4.1.1 Experiment setup

In the original BlockWorld setting (Valmeekam
et al.,, 2023b, 2024a), the available actions in-
clude Pick up, Unstack, Put down, and Stack.
However, for this study, we simplified the ac-
tion space to focus on three core actions: “Stack
[blockA] [blockB],” “Put-down [block],” and “Un-

stack blocks [block].” The Pick up action was ex-
cluded as it is inherently performed as part of the
other three actions. Additionally, while the origi-
nal setting restricts the agent to holding only one
block at a time, we relaxed this constraint to allow
multiple blocks to be held simultaneously. This
modification was made to better utilize the current
condition for planning purposes. The specific ex-
perimental settings, including the prompts used for
the LLM, are fully described in Appendix A.3. All
experiments were conducted in Japanese.

4.1.2 Benchmark

We evaluated DRIP against baseline methods sum-
marized in Table 1. DRIP uses LLMs for both
decomposition and executability evaluation. In con-
trast, DRIP (Manual) uses a human to perform the
actions. The LLM is only responsible for decom-
pose, while the human checks if the actions are
possible and then carries them out. The planning
ends when the main goal (root action) is confirmed
to be executable.

For comparison, we include CoT (Kojima et al.,
2023) using GPT-40 and Claude 3.7 Sonnet?, and
ReACT (Yao et al., 2023), which alternates be-
tween reasoning and acting. In ReACT (LLM),
actions are generated based on the initial condition
and goal. In ReACT (Manual), humans execute
the actions and provide the updated condition to
the LLM, enabling iterative planning. Unlike other
methods, ReACT (Manual) does not immediately
fail on invalid actions. A run is considered failed
only if five consecutive unexecutable actions are
proposed or if the plan exceeds 40 steps. For all
automated settings, humans evaluate whether the
final plan achieves the goal.

Zhttps://www.anthropic.com/claude/Sonnet
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Figure 6: Experimental results.The horizontal axis represents the number of blocks, while the vertical axis indicates
the accuracy for each block count. The blue is DRIP (Manual), the red is DRIP (Claude), the green is DRIP (LLM),
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Figure 7: The difference in the number of actions in-
cluded in the planning.The horizontal axis represents
the instance numbers correctly solved by both methods.,
while the vertical axis represents the number of actions
included.A lower action count indicates more efficient
planning.

4.1.3 Results

The experimental results are summarized in Figure
6. As shown in Figure 6, DRIP (Manual) achieved
the highest accuracy across all benchmarks, main-
taining stable performance even as the number of
blocks increased. This demonstrates its robustness
and scalability in complex planning. Among LLM-
only methods, DRIP (Claude) achieved the best
performance. This result indicates that DRIP is
capable of demonstrating sufficient ability in au-
tonomous planning. On the other hand, the main
reason why DRIP (Claude) could not match the per-
formance of DRIP (Manual) lies in the difficulty of
accurately describing block conditions using natu-
ral language such as “block X is clear” or “block
Y is on block Z.”. The decline highlights a key

limitation: as task complexity grows, condition de-
scriptions become verbose and ambiguous, leading
LLMs to misjudge action feasibility. This suggests
that performance issues stem from condition repre-
sentation, not from the planning framework itself.
Future solutions may include multimodal models
or formal representations like PDDL.

To assess planning efficiency, we analyzed the
number of actions used by DRIP (Claude) and
CoT (Claude) in successful cases (Figure 7). DRIP
(Claude) consistently used fewer actions by avoid-
ing unnecessary steps—unlike CoT, which decom-
posed all blocks regardless of context. On average,
the difference in the number of actions between
DRIP (Claude) and CoT (Claude) was 4.29 steps.
This indicates DRIP'superior planning efficiency.

4.1.4 error analysis

Table 2: Details of DRIP (Manual) 's error type.

Error type ‘ Number of datasets
Errors in decomposition by LLMs 14
Errors in the Framework 5
total ‘ 19

We analyzed the 19 cases (17.3% of the total)
where DRIP (Manual) failed, summarized in Table
2. Of these, 14 errors stemmed from incorrect de-
composition by the LLM. Despite the structured
nature of BlockWorld and clear prompts, the model
occasionally generated invalid action sequences, es-
pecially in configurations with ambiguous or com-
plex block relationships.

The remaining 5 errors were found to be caused



Move a mug with a knife in it to a small table.

|-—— Explore the [kitchen]

| |-—- Open the [kitchen door]

| |-—— Explore the [kitchen area]

| |-—— Explore the [doorknob]

| |-—= Hold the [doorknob]

|-—- Hold the [mug]

| |-—= Find the [mug]

| |-—— Explore the [room]

| |-—— Explore the [shelf]

|-—— Explore the [knife]

| |-—— Explore the [drawer]

|-—— Hold the [knife]

| |-—= Pick up the [knife]

|-—— Place the [knife] in the [mug]

|-— Explore the [small table]

|-—— Place the [mug] on the [small table]
|-—- Hold the [mug]
|-—— Place the [mug] on the [small table]

Figure 8: The DRIP results for the task “Move a mug
with a knife in it to a small table” in ALFRED environ-
ment.

by fundamental limitations of the current frame-
work. These errors highlight scenarios where
the framework's reliance on goal-based reasoning
alone is insufficient. For example, consider a goal
is: “block a is on top of block j, block b is on top
of block d, block c is on top of block b, block d is
on top of block a, block fis on top of block i, block
g is on top of block f, block i is on top of block c,
block j is on top of block h” (i.e., ‘g-f-i-c-b-d-a-j-h’).
Suppose the current condition is: ‘c-b-d-a-j-h-e-g-
f-i’. In this case, the remaining action to achieve
the goal is “stack i ¢”. Decomposing this action
requires clearing block ‘c’ and moving it to create
a separate tower with ‘i’ and ‘c’. However, creat-
ing such a separate tower is not feasible because
the goal condition (‘c-d-b-a-j-h’) has already been
partially achieved. Moving block ‘c’ would vio-
late the goal condition, making it impossible to
proceed without undoing previously achieved sub-
goals. This example illustrates a key limitation of
the current framework: it considers actions solely
based on the goal state and does not account for
the constraints imposed by the current condition.
In certain scenarios, achieving the goal requires
reasoning that integrates both the goal state and the
current condition, as well as the ability to dynam-
ically adjust the plan to avoid conflicts between
intermediate subgoals.

4.2 ALFRED

In the previous section, we evaluated DRIP in
BlockWorld—a highly structured environment
where rule-based planning is often sufficient. How-
ever, real-world tasks are far more dynamic and un-

1. Explore the [kitchen]
- Find the mug and the knife

2. Hold the [mug]
- Confirm that hands are free and hold the mug
- Confirm that the knife is inside the mug

3. Explore the [living room]
- Find the small table

4. Place the [mug]
- Place the mug on the small table

Figure 9: The CoT (GPT-40) results for the task “Move
a mug with a knife in it to a small table”in ALFRED
environment.

derspecified, making them unsuitable for rigid sym-
bolic approaches. To explore DRIP's applicability
in such settings, we conduct a qualitative analysis
using ALFRED(Shridhar et al., 2019), a household
simulation benchmark for language-guided action
generation.

4.2.1 Challenges in Language Instructions
and Action Generation

ALFRED(Shridhar et al., 2019) provides a visu-
ally and physically realistic household simulation
environment designed for models that translate lan-
guage into sequences of actions and interactions. It
highlights many challenges faced when translating
human language into robot actions to accomplish
household tasks.

In robotics tasks, it is essential to develop meth-
ods that can cover the vast rules of the real world,
which cannot be fully described using rule-based
approaches. For example, consider the language
directive “clean up the dining table” after eating a
meal. The actions involved in this “clean up” direc-
tive differ from those in “clean up the room.” The
former may include actions such as “carry dirty
dishes to the sink” and “wipe the table,” while the
latter may involve “make the bed” and “vacuum
the floor.”” This variability demonstrates the im-
practicality of predefining all possible language
directives and their corresponding actions. Instead,
it is necessary to dynamically devise actions based
on the specific context and translate language in-
structions into actionable elements that robots can
execute. This challenge underscores the impor-
tance of frameworks like DRIP, which can adapt
to diverse scenarios by leveraging the reasoning
capabilities of LLMs.

4.2.2 Qualitative Evaluation Using ALFRED

To evaluate DRIP's ability to interpret and opera-
tionalize real-world instructions, we compared its



Table 3: Comparison of DRIP and CoT action plans for “Move a mug with a knife in it to a small table.”

Aspect | DRIP | CoT
. Fine-grained steps including .
Granularity . . High-level, abstract steps only
environment exploration and tool use
Envi tal - . .
nvironmenta Explicit (e.g., shelves, doorknob, drawer) Implicit or omitted
Interaction

Causal Structure

Maintains logical order
(e.g., place knife before moving mug)

Partially unordered;
assumes end-state is satisfied

State Transitions

Models each state change
(e.g., knife pickup, mug update)

Assumes preconditions
(knife already in mug)

Physical Realism

Suitable for robot execution

Risk of infeasibility
in real-world settings

output with that of CoT for the instruction: “Move
a mug with a knife in it to a small table.” DRIP in
Figure 10 decomposed this instruction into detailed,
physically grounded substeps, such as: exploring
the environment (e.g., the kitchen and shelves),
locating and holding the mug and the knife, plac-
ing the knife into the mug, and transporting the
mug to the target location. This decomposition
respects causal and spatial dependencies between
actions and reflects realistic environmental interac-
tions (e.g., opening drawers, holding doorknobs).
In contrast, CoT in Figure 10 produced a high-level
plan that omitted critical steps. It assumed the knife
was already in the mug and skipped over retrieval,
insertion, and exploration steps. This resulted in
a less complete and potentially unexecutable plan
in real-world settings.The comparison highlights
DRIP's ability to generate execution-ready plans
that align more closely with embodied reasoning
and physical manipulation. A summary of the dif-
ferences is shown in Table 3. Additional results in
Appendix B.1 confirm similar trends.

Limitations

The proposed DRIP framework demonstrates ro-
bustness and efficiency in planning by mimicking
human capabilities. However, it has several lim-
itations. First, there are challenges related to the
decomposition capabilities of LLMs. While LLMs
possess vast amounts of knowledge, the extent to
which they can perform commonsense reasoning
remains largely unexplored. For instance, execut-
ing an action like “move A to the position of B”
requires the preconditionthat “A is located some-
where other than B.” In this study, we explicitly
specified feasible actions and utilized structured
tasks in the experiments. However, in real-world
applications, this limitation could have a significant
impact.

Second, the number of LLM calls required is
an issue. While CoT requires a single call, DRIP
(Manual) uses hierarchical reasoning, averaging
5.98 calls, and DRIP (Claude) averages 6.18 calls.
On the other hand, the average number of LLM
calls for ReACT (Manual) is 28.3, whereas DRIP
achieves a significant reduction in comparison. Hu-
mans are said to switch between different types of
reasoning, as exemplified by the ‘“Fast and Slow”
theory(Kahneman, 2011). Building on these in-
sights, further exploration is needed to develop
methods that appropriately combine backward rea-
soning and forward reasoning.

Conclusion

This paper proposed a planning framework for
LLM agents inspired by human problem-solving,
particularly the ability to decompose complex prob-
lems into simpler components. By employing a
backward reasoning approach, the framework dy-
namically decomposes tasks into preconditions and
subtasks, enhancing planning robustness and align-
ing with human cognitive processes.

Experimental results show that the framework
outperforms forward reasoning-based methods in
robustness and efficiency, particularly in long-
horizon tasks. It achieves goals with fewer steps by
leveraging the current state to avoid unnecessary
actions, demonstrating its potential for real-world
applications.

Looking ahead, we plan to extend this frame-
work to real-world applications by integrating mul-
timodal inputs and actuators, such as robotics sys-
tems. By bridging the gap between natural lan-
guage understanding and action generation, we en-
vision this framework contributing to the develop-
ment of more intelligent, adaptable, and context-
aware agents.
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A Experience(Blockworld)
A.1 Details of the Blockworld dataset

We summarize the number of blocks and the num-
ber of instances for each dataset in the Blockworld
dataset in a table4.

Table 4: Details of the number of blocks in the dataset

Number of blocks ‘ Number of datasets

6 1
7 1
8 7
9 14
10 13
11 13
12 12
13 18
14 21
15 10
total | 110

A.2 Details of the Benchmark

DRIP(LLM) refers to a method where the actuator
is also implemented using an LLM. In other words,
this method involves having the LLM determine
executability and reason about changes in the state
after executing an action. DRIP (Manual) refers
to a method where a human acts as the actuator to
stack the blocks. In this method, humans determine
executability and provide feedback on whether the
actions proposed by the LLM were successfully
executed or not. The LLM responsible for action
decomposition only reasons about actions based
on the goal and does not receive feedback on the
condition. The termination condition is when the
root node action (data set goal) is determined to be
executable.

Claude 3.5 Sonnet?, which belongs to the same
Claude family as Claude 3.7 Sonnet, has achieved
the best performance among LLMs on datasets

3https://www.anthropic.com/news/claude-3-5-Sonnet

10

involving stacking five or fewer blocks*. In ReACT
(Manual), humans execute the actions proposed by
the LLM and return the resulting new state as an
observation after each action. In this approach,
the goal and initial condition are provided at the
beginning, and the LLM generates actions based on
this information. After executing an action, humans
provide the updated condition to the LLM, which
then generates the next action based on the new
condition. This cycle continues iteratively.

For methods without the “Manual” label, hu-
mans evaluate the plans output by the LLM as well.

A.3 Prompt

The prompts used in the Blockworld experiments
are attached.

Table 5 is the prompt used for decomposition and
is utilized in both DRIP (Manual) and DRIP (LLM).
The Japanese versions used in the experiments are
followed by their English translations.

Table 6,7 and table 9 are prompts used in DRIP
(LLM) to utilize LLM as an actuator. Table 6,7.
Table 6 is a prompt used to determine whether an
action is executable, while table 9 is a prompt used
to describe how the condition of the blocks changes
after an action is performed. Table 7 is the English
translation of table 6.

*https://github.com/karthikv792/LLMs-Planning
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BE7uy 7E2FA LT TCAR Yy JIZBHET 20 ENH L 70y 7y NTHATVWET,
OO HIEL, TE2ZFERE S, SRMCT—IVREBIZTZZ LT,

HOHEE Taskl, ZOIT—)V2ERT B DIZBERME—DRIFITHEINTT 72 a v ERUTLEI WY,

FITAEERT v ay

1.stack [block1] [block2]block1>block1

% [block2] D EIZFEL,

2.unstack blocks [block2]

blocks % [block2] D _EA* & 5 — 70 A~Sh L Tlblock2]% 7 V) 712§ 3,
3.put-down [block2]block2>block2

BF—7ND EIziEL,

il & R ST

- [Istack [block1] [block2]] & WS DX FHIN T VREOEEDHA PAREZEKEL £
unstack blocks [block2]

put-down [block2]

- ZNBS D &t TI:

stack [blockl] [block2]D 7 7> a v &KL £9,

- REH RO HERR:

WIZT 7Y arDA%E ) AMERTHEL T ZI W, MORGHRCEPH ([ 1PN BE52Y) EEDRVTHL
ZEW, BRI UTUTORREBTFo T AW

actionl

action2

action3

(EESY))
(H#%]

stack blue yellow

Gz o7 7V a V]
unstack blocks yellow
put-down yellow
[E#E] task
(RfFzEEI<Torvay]
(English)
I am playing with a block set where I need to stack and organize the blocks into a stack. My ultimate goal is to reach the goal state as
efficiently as possible without making mistakes.

My Goal"task". Please provide actions based solely on the conditions required to achieve this goal.

Available Actions:

1.stack [block1] [block2]

Place [block1] on top of [block2].

2.unstack blocks [block2]

Remove blocks from the top of [block2] and clear [block2] by placing them on the table.
3.put-down [block2]

Place [block2] on the table.

Constraints and Notes:

- Only when the goal state is in the form of "stack [block1] [block2]", return the following actions:
unstack blocks [block2]

put-down [block2]

- For all other conditions:

Return the action stack [block1] [block2].

- Eliminate unnecessary information:

Always respond with actions in a list format. Do not include extra sentences, structures (e.g., [ ] or parentheses), or numbers. Always
adhere to the following format:

action]

action2

action3

[Example Responses]

[Goal]
stack blue yellow

[Actions Based on Conditions]
unstack blocks yellow
put-down yellow

[Goal]

task

[Actions Based on Conditions]

Table 5: Decomposition Prompt for Blockworld.The Japanese prompts used in the experiments are followed by
their English translations.
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HRTETOY I ERMA LT TRy JIZBHT 2 0EN’HE 70y 7€y FTHATVWET, SFXSNRET,
BRI NIGHHPELARP LS P 2HE LTI W,

#WIOY 7T =V RDT I av)L—

unstack blocks [block2]

- blocksl[block2]D LD 70w 7 & FEK L £F, [block2]% 2V 7IZF 572812, [block2]D LD 71 v 7 % [block2] D I
MPHAL, T—=TNICELTATT, [block2]D EO 7oy 228 Uzgs, bbb 7ay 7eTs —fHc#Hhsx
R
put-down [block2]

- [block1] & [block2] % B DEEIZ T 272812, [block2)% T — 7D EIZELTATT, **[block2]® LizH b T oy 74
TH—FEIcBE £, ==

stack [block1] [block2]

- [block1]% [block2] D L8174 T9, [block2]h3 27 V) 7 TH 2 M H Y £9, *#[blockl]D LizhHs 7oy 7eThH
—fBIE & £,

#H7OY 2T —)LRDL—)

- T7ay ZIHETERO I LN TEET.

7Oy ZIF RO Ty 283H-oTH, FOTOY IRSELHTHOIENTEET, **
-HBTay IEFPTIHA HTOT Ry 7O LD T Oy I TRTERRHZEIN U T
SFEUBIZH B Tay st EstackdT B I L IZTEEEA,

4 H F TIE

UTOFETHFT L. FAT Y TOEREIRINTHAI LT EE W

1. BIEDARFE

-&7ay o ONEBRE EREE THZ

-E£7ay oo kizioTay 203H 50 &R

- ETBYy IR TF—TND LITH B EER

2. T U WTEID 94

BT A Tuy s roTay 22 1T H

* (BET57ny 0] LidEEINEET DY JEBLES, 2L, ZoTay o kitfioTay Zibh
X, TNOTRTE2FDTEHNTHERSVET, -BEHL: Ty IrE3r—7L
-BEokiE:

Ty 2 D block2] LIZMbDd Ty 2 3 B H

F— TN DOEEHITE L T L ATAHE 3. FTARED O H M

[T ARE] AT Ty

-7 2 ¥ 2 v:unstack blocks [block2]

I TIZ[block2]D Lizfild 7w 7 ik &

-7 23 a V:stack [blockl1] [block2]

9 TIZ[blockl]Ai[block2]IZFBEiENT VWS & =

-7 7 ¥ 3 V:put-down [block2]

3 TIZ[block1] & [block2]| DS HIDIETH % & &

##[block2] g TIZT — T IIZEPNTWENE S DIEBEFRD ) FHA, **

4. EATREVED YW (EATARETH - G EIERET)

[EAFARAEE] ATOWThHLITHY

-BEES T Oy 2 DGA, TD T8 Y Z([block2)D_EIZMD T Ty 2 3H D
-BEo Ty Z((block2)) EBEIT 5 71 v 7 ([block1))MSF LT 5

[EATRIRE] -

SBETET7 0y ID I TR Y IR B o TEHICENT I ENTEET,

- BE(block2) 27 U 7 Th X BEI(block2)ic 7H Y 72O I LN TEE T,
STF=T7MZEWDTE TR Y 7RO I BN TEE T,

-BEITETuy 2B BEEDO T Oy 2 LIZRLBIEICH DIGE, BOBRERTRETT,
TEND] :

-7 7Y ayhBEND" DA

H## FRLAE D T 4

JR#E: {initial_condition}

178): {action_list}

LOREESHZ Zic& 70y 7 O EERE fHEE cild

2. 4TE 3 T 2R BT & BB S DR & Bk

3. FATAE I DYl

4. PR S LR CRIMT & B O AN, 2 AN D)

Table 6: Executability prompt for Blockworld(japanese)
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You are playing with a block set where you need to stack and organize the blocks into a stack. Based on the given state, determine
whether the specified action is executable.

##Blockworld Action Rules unstack blocks [block2] - blocks refers to the blocks above [block2]. This action involves removing the
blocks above [block2] to clear [block2] and placing them on the table. If you move the blocks above [block2], all blocks stacked on
top of them will also be moved together.

put-down [block2] - This action involves placing [block2] on the table to separate [block1] and [block2] into different towers. **All
blocks stacked on top of [block2] will also be moved together.**

stack [block1] [block2]

- This action involves stacking [block1] on top of [block2]. [block2] must be clear for this action to be performed. **All blocks stacked
on top of [block1] will also be moved together**.

##Blockworld Rules

- You can hold any number of blocks at once.

- Even if there are blocks above a block, you can pick up the block along with all the blocks stacked on top of it.
- When moving a block, all blocks stacked on top of it must be moved together.

- You cannot stack blocks that are already part of the same tower.M

##Decision Procedure

Analyze the situation using the following steps and explicitly output the results for each step:
1. Analyze the Current State

- List the positional relationships of all blocks in bullet points.

- Check if there are any blocks above each block.

- Check if each block is on the table.

2. Analyze the Desired Action

- Moving Block: Identify which block is being moved.

* The "moving block" refers to the specified base block. However, if there are other blocks stacked on top of this block, all of them
must be moved together.

- Destination: Specify whether the destination is a block or the table.

- State of the Destination: If the destination is a block: Check if there are any blocks on top of [block2].
If the destination is the table: It is always possible to place blocks on the table.

3. Determine if the Action is Unnecessary

"Unnecessary Action": The action is unnecessary if any of the following conditions are met:
Action: unstack blocks [block2]

The action is unnecessary if there are no blocks above [block2].

Action: stack [block1] [block2]

The action is unnecessary if [block1] is already stacked on [block2].

Action: put-down [block2]

The action is unnecessary if [block1] and [block2] are already part of different towers.
Whether [block2] is already on the table is irrelevant.

4. Determine Executability (Skip this step if the action is unnecessary)

"Not Executable": The action is not executable if any of the following conditions are met:

If the destination is a block ([block2]), and there are other blocks on top of [block2].

If the moving block ([block1]) and the destination block ([block2]) are part of the same tower.
"Executable": You can always move a block, even if there are blocks stacked on top of it.

You can stack a block on the destination ([block2]) if [block2] is clear.

You can always place blocks on the table.

If the moving block is part of a different tower from the destination block, stacking is possible.
"END":If the action is END.

##Current Target for Evaluation

State: initial_condition

Action: action_list

1.State Analysis:[Describe the positional relationships of all blocks in bullet points here.]
2.Action Analysis:[Describe the state of the source and destination here.]

3.Determine if the Action is Unnecessary

4.Decision Result:[Decision],[Reason] (Separate the decision and reason with a comma)

Table 7: Executability prompt for Blockworld(Translation to English)
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B E7ay 7EEAETFE 70y 7y FTHEATWET, {condition} &\ 5 R H
5{action} & WA T EI R B> 728548, RN E S L L2 0EE X, XETRHMLTLLEZI W,

#H7Oay 77—V RDT7 7Y av—

unstack [block1] [block2]

- [blockl]iX[block2]® E D 7 v v 7 % ZK L £ 9, [block2]Z 7 UV 727
[blockl]% [block2]®D E 54 L, F— 7 NIZEL T4 TY, [blockl]% &7
[blockl]D EIZH B 70w 72 THE—#IZEE£9, [block2[lx27 ) 72k £7,

put-down [block?2]

- [blockl] ¥ [block2]% Bl D HEIZ T 5 7212, [block2]2 T — 7 VD EIZELTATT,
#k[block2]D FIZH B 70y 78 TH—FIZEH E E3, **block2[ix 27V TIZHH, F—
TVIZEIPNET,

stack [block1] [block2]

- [block1]%[block2]® LIZFBE L7 A T, [block2] 27 VT THEILENDH D £7,
##[blockl | D LIZH D70y 7 8TH —fICEE 4, *=

# 7Oy 27— )L RDIL—)

-7ay ZIHMIEATHER/ O LN TEET,

SOy 23 IO T ey 2 8B -oTH, FOTRY IR 5F O T/HOIENTESE
j-o Kk

-HDHT7ay I EENTIHE, HZTD Ty 7O EOTOY 7T RTRERIZEID L X9

N

-FAUCEIZH B Tay JEL EstackT B 2 IZTEEEA,

-BEIfD T 1y Z(block2DH3 7 V) T THWIEGE, stack [block1] [block2]idf75 Z LA TE &
A,

Uy INETHEIZVTTHE, WS LIFZFDTay 70 EIZMEE->TWRWTD
EERERUET,

BN REZL LT, 5200 RHEAU LI, EoTuy s, Juy sORE 7—
TNDEIZHB7THy 7DIETHB L TLZIW,

FLBRDAEF I T~~lF~~ZH B, | TH LT ZIW,
BZHFUTO@EDIZLTLEE W,

## BLTE O i o

JR%&:{condition}

17H): {action)

2 Hh:

S O PAS N E

(English)

You are playing with a block set where you stack blocks. Consider how the situation will change if you
take the action {action} from the situation {condition}, and describe it in writing.

## Block World Action Rules unstack [block1] [block2]

- [block1] refers to the block above [block2]. This action removes [block1] from [block2] and places it
on the table, clearing [block2]. If [block1] is moved, all blocks above [block1] move with it. [block2] is
cleared.

put-down [block2]

- This action places [block2] on the table to separate [block1] and [block2] into different towers. **All
blocks on top of [block2] move together.** [block2] is cleared and placed on the table.

stack [block1] [block2]

- This action places [block1] on top of [block2]. [block2] must be cleared. **All blocks above [block1]
will move together.**

## Block World Rules

- You can have as many blocks as you want.

- **Blocks can be picked up together from the bottom even if there are other blocks on top of them.**
- When moving a block, **all blocks above it will move together.**

- You cannot stack blocks that are in the same tower.

- If the destination block ([block2]) is not clear, you cannot stack [block1] [block2].

- An empty/clear block means that there is nothing on top of it.

As your final answer, describe the empty blocks, the state of the blocks, and the blocks on the table in
the same order as the given situation. Use the format “Xisin Y” consistently.

Answer in the following format.

## Current target for judgment

State: {condition}

Action: {action}

Thought process:

Final state: [answer ]

Table 8: The prompt for updating conditions for Blockworld. The Japanese prompts used in the experiments are
followed by their English translations.
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B Experience(ALFRED)

B.1 Results

The results for other tasks in ALFRED are provided
here. For all tasks, the characteristics shown in
Table 3 were observed.

. Explore the [kitchen] - To find the tomato.
. Hold the [tomato] - Pick up the tomato.
. Explore the [counter] - To find the knife.
. Hold the [knife]l - To cut the tomato.
. Cut the [tomato]

Slice the tomato into pieces.

Place the [knife] - To free your hands.
Hold the [tomato slicel]
Take one of the sliced pieces.
. Explore the [stovel
To find a device for heating.
9. Turn on the [stovel
- Start the heating process.
10. Place the [tomato slice]
- Heat it on the stove.
11. Hold the [heated tomato slice]
- Take the heated tomato slice.
12. Explore the [sink]
- To find a place to put the tomato slice.
13. Place the [heated tomato slice]
- Put the heated tomato slice in the sink.

10 I N | OhwN =

Place a heated tomato slice in the sink.
|-—— 1) Explore the kitchen
| |-—— - Explore the entrances
| |-—— - Explore entrance surroundings
| |-—= - Explore the doorknob
|-—— - Explore the refrigerator
| |-—— - Locate the refrigerator
| |-—= - Open the refrigerator
|-—= - Explore the cabinets
|-— Move to the front of the cabinets
|-—— Open the cabinets
|-—— Explore the cabinets interior
ﬁfﬁﬁz :EZ E‘,jﬁjig Figure 11: The CoT results for the task “Place a heated

| |-—— 2) Explore the refrigerator tomato slice in the sink.”
| |-— 3) Explore the pantry

|
|
|
|
|
|
|
|
|
|
|
|
|
| |-—— - Pick up/hold the tomato
|
|
|
|
|
|
|
|
|
|
|
|
|
|

——— 3) Cut the tomato
|-—- Locate the knife

| |-——— Open the drawer Place a cooled-off apple inside the garbage bin.
| |—— Find the knife |-— Explore the [kitchen]

|--— Hold the knife | |-—— Explore the [kitchen entrance]

|-—- Place the cutting board | |-—= Explore the [current location]

| |-— - [Explore the kitchen] |=== Explore the [apple]

| |-— - [Explore the cutting board] | I=== 1) Explore the [kitchen]

| |-—— Explore the [kitchen entrance]
| |-—— Explore the [kitchen counter]
|--— Locate the tomato | |-— Explore the [kitchen cabinet]

| |-— - [Hold the cutting board]
|
|
|-—— Hold the tomato | |-— 2) Explore the [dining table]
|
|
|

| |-— - [Explore the desired location]

|-—— 3) Explore the [fridgel]
|-—— Open the [fridge]
|-—— Explore [fridge interior]

|-—— Place the tomato on the cutting board
|-—— Cut the tomato with the knife
|-—— 4) Explore the stove

|-—— 5) Turn on the stove | === Hold the [apple]
| |-—- - Locate the stove I I-== Explore the [room]
| |-—= - Hold the stove switch | |-—= Find the [apple]
| | |-— - Explore the stove switch I 1-=— Pick up/hold the [applel]
| |-— - Turn on the stove switch |=== Explore the [fridgeq
|-—— 6) Hold the tomato slices | [— Explore the [frlége]
|-—— 7) Place the tomato slices on the stove | [-== Find the [fr}dge]
|--- 10) Explore the sink | |-—— Open the [fridge]
|-—— [Explore the room] | |-—— Explore [fridge interior]
|--= Close the [fridgel
Figure 10: The DRIP results for the task “Place a heated : lm|ngigiozriﬁie%nvmg roon]
tomato slice in the sink.” | |--- Close the [fridgel
« .. | |-—- Explore the [kitchen]
In the task “Place a cooled-off apple inside the |--- Explore the [garbage bin]
c ey . . . | |-== 1) Explore the [room]
garbage bin,” using a cooled-off apple requires ei- I | 1= 1) open the [door]
ther taking an apple out of the refrigerator or plac- : : |5—F%>dE:E1°Ee tge [rgf?m%
. . . . - in e [garbage bin
ing an apple in the refrigerator and waiting for a |-— Drop the [apple]

|-—— Close the [garbage bin]

while. However, it seems that neither approach
demonstrates sufficient contextual understanding  Figure 12: The DRIP results for the task “Place a heated
to achieve this. tomato slice in the sink.”

[Explore the kitchen]

To search for the apple.
[Hold the apple]

Hold it in hand to prepare for the next action.
[Explore the garbage bin]

To locate the garbage bin.
[Open the garbage bin]

To place the apple inside.
[Drop the apple]

Put the apple into the garbage bin.
[Close the garbage bin]

To complete the task.

o1 a1l b1 wil N =

Figure 13: The CoT results for the task “Place a cooled-
off apple inside the garbage bin. ”
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B.2 Prompt

HEEEITay 2 EBALEITFE 70y 7y FTHEATWETS, {condition} &\ 5 IR A 5 {action} &\ S {7 E) % B -

G KRR ESBEDEnEFX, XETHRH LTI EZI W,

IRV IV RDOT 7Y a v =

unstack [block1] [block2]

- [block1]i[block2]D LD 7'a v 7 & ZIKL £9, [block2]% 27V 723 %7282, [blockl] % [block2]D EM S L, 7

—TMZEL T/ TS, [blockl1ZEH L 75A, [blockl]D EiZH b 70y 72 TE—MHICH & 3, [block2]i&2 V)

TIZRYET,

put-down [block2]

- [block1] & [block2] % B DEEIZ T 272812, [block2)% T — 7D EIZELTATT, **[block2]® LizH b T oy 74

THHICEE £ T, **block2]lE 27V 7IZRYD, F—TVTEINET,

stack [block1] [block2]

- [block1]% [block2] D _EIZFEL 174 T, [block2]h2 V7 THEBENH Y £9, **[blockl|D LIZHB TRy 7E£TH
AEIZE & ET,

#W70y 77—V RDOL—)

S T7BY ZIMIATEROZENTEET,

7Ry 7 EICOT Oy I0HoTH, FTOTHY IRSEEHTRDOIENTEEY, **

BTy EHPTEE 07RO EOT Y 2T RTEFKICEINL T

SFAULEBIZHETay VL EstackT B I L IZTEEEA,

-BENED T Ty Z([block2))3 7 U 7 TRWEA, stack [blockl] [block2]iEfT 5 Z & R TE £ A,

STRYIWRETHDB/IZ7) T THD, LW IEFEZTOTO Yy 70 I TWARWI EE2ERL T,

Bk REZE L LT, GAoNRMEFALC LD, EoTry s, Jay I oRE T—7V0 EIZHE TRy o

DIETFBR L TLZE W,

FURDMAES L T~~F~~ZH B, | TH—-LTLEI W,

BRAHIEUTO@DIZLTLZI W,

## BUE O It 5

JRHE: {condition}

178): {action}

EF T

SR R IE: [ 2

(English)

You are playing with a block set where you stack blocks. Consider how the situation will change if you take the action {action} from

the situation {condition}, and describe it in writing.

## Block World Action Rules unstack [block1] [block2]

- [block1] refers to the block above [block2]. This action removes [block1] from [block2] and places it on the table, clearing [block2].

If [block1] is moved, all blocks above [block1] move with it. [block2] is cleared.

put-down [block2]

- This action places [block2] on the table to separate [block1] and [block?2] into different towers. **All blocks on top of [block2] move
together.** [block2] is cleared and placed on the table.

stack [block1] [block2]

- This action places [block1] on top of [block2]. [block2] must be cleared. **All blocks above [block1] will move together.**
## Block World Rules

- You can have as many blocks as you want.

- **Blocks can be picked up together from the bottom even if there are other blocks on top of them.**

- When moving a block, **all blocks above it will move together.**

- You cannot stack blocks that are in the same tower.

- If the destination block ([block2]) is not clear, you cannot stack [block1] [block2].

- An empty/clear block means that there is nothing on top of it.

As your final answer, describe the empty blocks, the state of the blocks, and the blocks on the table in the same order as the given
situation. Use the format “Xisin Y” consistently.

Answer in the following format.

## Current target for judgment

State: {condition}

Action: {action}

Thought process:

Final state: [answer ]

Table 9: The prompt for updating conditions for Blockworld. The Japanese prompts used in the experiments are
followed by their English translations.
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