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Abstract001

Research on LLM agents has shown remark-002
able progress, particularly in planning meth-003
ods that leverage the reasoning capabilities of004
LLMs. However, challenges such as robust-005
ness and efficiency remain in LLM-based plan-006
ning, with robustness, in particular, posing a007
significant barrier to real-world applications.008
In this study, we propose a framework that in-009
corporates human reasoning abilities into plan-010
ning. Specifically, this framework mimics the011
human ability to break down complex problems012
into simpler problems, enabling the decompo-013
sition of complex tasks into preconditions and014
subsequently deriving subtasks. The results of015
our evaluation experiments demonstrated that016
this human-like capability can be effectively017
applied to planning. Furthermore, the proposed018
framework exhibited superior robustness, offer-019
ing new perspectives for LLM-based planning020
methods.021

1 Introduction022

The evolution of Large Language Models (LLMs)023

has been remarkable, revolutionizing the field of024

natural language processing (NLP) and extend-025

ing their influence to interdisciplinary domains.026

Among these advancements, the emergence of027

LLM-powered agent technology (LLM Agents) has028

garnered significant attention due to its potential029

for real-world applications. These agents leverage030

the linguistic and reasoning capabilities of LLMs031

not only for conversational tasks but also for com-032

plex planning and decision-making processes (Liu033

et al., 2023; Singh et al., 2023; Wang et al., 2023b).034

Planning, in the context of LLM agents, refers035

to the process of devising a sequence of actions036

required to achieve a specific goal. This process037

inherently relies on the reasoning and decision-038

making capabilities of LLMs, which are rooted in039

their ability to understand, generate, and manipu-040

late natural language. For instance, achieving the041

goal of brushing one's teeth involves a series of 042

steps such as heading to the sink, locating tooth- 043

paste, picking up the toothbrush, etc. If a subtask, 044

such as locating toothpaste, fails, the agent must 045

adapt by either setting a new goal (e.g., purchasing 046

toothpaste) or skipping ahead to the next actionable 047

step. 048

While LLMs have demonstrated success in plan- 049

ning tasks, challenges remain, particularly in sce- 050

narios involving long-horizon goals or complex 051

sequences of actions. As the number of required 052

actions increases, the accuracy of LLM-based plan- 053

ning tends to decline significantly (Valmeekam 054

et al., 2024b). This is because long-horizon 055

tasks expand the search space, and approximate 056

retrieval-based reasoning—typical of current LLMs 057

—struggles to maintain coherence and robustness 058

over extended sequences. This issue highlights 059

the need for a framework that enhances the robust- 060

ness of LLMs in solving long-horizon tasks within 061

planning scenarios, while also improving their ef- 062

ficiency in utilizing current conditions to create 063

effective plans. 064

To tackle this challenge, we draw inspiration 065

from human cognition, particularly the ability to 066

break down complex problems into simpler, man- 067

ageable subproblems. Cognitive psychology, such 068

as that by Simon and Newell (1971); Chipman et al. 069

(2000) suggests that humans naturally decompose 070

difficult tasks into smaller, sequential steps, facili- 071

tating reasoning and execution . By mimicking this 072

strategy, LLMs can construct hierarchical plans, en- 073

abling more robust and efficient solutions to com- 074

plex goals. 075

In this study, we introduce a planning framework 076

that leverages human-inspired decomposition to 077

enhance LLMs'planning capabilities. While most 078

prior methods rely on forward reasoning, our ap- 079

proach is based on backward reasoning, which de- 080

composes goals into subgoals in a top-down man- 081

ner. As shown in Figure 1, the framework incorpo- 082
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Figure 1: Overview Diagram of the DRIP Concept (Right). The left side illustrates the structure of existing methods
using forward reasoning, while the right side represents the proposed method utilizing backward reasoning.

rates Backward Reasoning, a strategy well-suited083

to the hierarchical nature of goal decomposition, to084

achieve both efficiency and robustness in planning.085

The contributions of this paper are as follows:086

• We propose a planning framework that mimics087
human-like hierarchical goal decomposition,088
leveraging LLMs'natural language reasoning089
for task breakdown.090

• Improved robustness in classical planning091
tasks: Through experiments on classical plan-092
ning tasks, we demonstrate that the proposed093
framework enhances the robustness of LLM094
agents compared to existing methods.095

• Efficiency through Backward Reasoning: We096
show that the framework reduces the number097
of actions required to achieve goals, highlight-098
ing its efficiency compared to Forward Rea-099
soning approaches.100

• Applicability to stochastic environments: The101
framework demonstrates effectiveness in dy-102
namic and partially observable environments,103
such as household tasks, where goals are un-104
derspecified and actions may have uncertain105
outcomes.106

By integrating insights from human cognition107

and leveraging the linguistic strengths of LLMs,108

this study aims to advance in LLM-based planning,109

paving the way for more reliable and versatile agent110

technologies.111

2 Related Work112

2.1 LLM Reasoning with decompose113

The ability to simplify complex tasks by breaking114

them down into smaller, manageable subtasks is115

a hallmark of human cognition (Chipman et al.,116

2000). This concept, deeply rooted in cognitive117

psychology and logic (Simon and Newell, 1971), 118

has inspired recent advancements in multi-step rea- 119

soning using LLMs (Xue et al., 2024; Junbing et al., 120

2023; Zhou et al., 2023). These studies commonly 121

employ decomposition strategies, where a com- 122

plex question is divided into simpler sub-questions, 123

solved iteratively, and integrated to achieve the fi- 124

nal solution. This approach often aligns with back- 125

ward reasoning, a process of reasoning from the 126

goal state to the initial state. 127

Empirical results from these studies have demon- 128

strated significant improvements in the accuracy of 129

solving challenging reasoning tasks. For instance, 130

Xue et al. (2024) reported not only enhanced accu- 131

racy but also increased efficiency in reasoning tasks 132

through decomposition. These findings suggest 133

that decomposition-based reasoning is a promising 134

approach for addressing the limitations of LLMs 135

in handling complex problems. Building on this 136

foundation, our study extends the application of 137

backward reasoning from question-answering tasks 138

to planning tasks. 139

2.2 Regression Planning 140

Backward reasoning, or regression planning, has 141

long been studied in classical AI planning liter- 142

ature. It has played a central role in traditional 143

planning algorithms, dating back to early works 144

such as Waldinger (1977). Regression planning 145

involves reasoning backward from the goal state to 146

identify the sequence of actions required to achieve 147

it. However, traditional regression planning meth- 148

ods often rely on symbolic planners, which ne- 149

cessitate predefined causal relationships between 150

actions (Xu et al., 2019; Silver et al., 2022). This 151

reliance on symbolic representations poses signifi- 152
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cant challenges for real-world applications, where153

the dynamics of the environment are often too com-154

plex or uncertain to be fully captured by static,155

predefined rules.156

In contrast, LLMs offer a unique advantage in157

their ability to dynamically generate and adapt rules158

based on their extensive pre-trained knowledge.159

This generative capability enables LLMs to over-160

come the rigidity of symbolic approaches, making161

them more suitable for real-time applications. Our162

study leverages this strength of LLMs to implement163

a regression planning framework that dynamically164

decomposes goals into sub-goals, addressing the165

limitations of traditional symbolic methods.166

2.3 Planning for LLM Agents167

Planning methods for LLM agents have been exten-168

sively studied, with various approaches proposed169

to enhance their reasoning and decision-making170

capabilities. According to the taxonomy by Huang171

et al. (2024), our study falls under the category of172

task decomposition, a strategy that has been widely173

adopted in LLM-based planning.174

One prominent approach is Chain-of-Thought175

(CoT) prompting (Wei et al., 2023; Kojima et al.,176

2023), which encourages LLMs to explicitly con-177

sider intermediate reasoning steps. This method ef-178

fectively breaks down problems into subtasks, facil-179

itating step-by-step reasoning. The Plan-and-Solve180

framework (Wang et al., 2023a) further refines this181

approach by decomposing tasks into sequential sub-182

tasks, reducing reasoning leaps. While effective183

for static problems, its applicability to dynamic184

environments remains limited. Another notable185

approach is ReAct (Yao et al., 2023), which alter-186

nates between reasoning and planning, enabling187

decision-making in dynamic environments. This188

method significantly enhances planning capabili-189

ties but still relies on forward reasoning.190

Forward reasoning, while widely used, faces in-191

herent challenges in handling complex tasks due192

to the exponential growth of the search space (Yu193

et al., 2023). Even advanced reasoning models194

designed to enhance forward reasoning have strug-195

gled to achieve robust performance in long-horizon196

planning tasks (Valmeekam et al., 2024b). These197

limitations highlight the need for alternative ap-198

proaches that can efficiently navigate the complexi-199

ties of planning.200

Backward reasoning has recently been explored201

in the context of LLM agent planning. For ex-202

ample, Ren et al. (2024) proposed a method that203

redefines the goal state as the initial state and “flips” 204

the initial state to the goal state, simulating back- 205

ward reasoning using LLMs. While promising, 206

this approach encounters limitations in scenarios 207

with multiple goal states or ambiguous goal rep- 208

resentations. For instance, in environments like 209

Blockworld, a goal such as “The red block is on 210

top of the blue block” may allow for multiple valid 211

configurations, leading to inconsistencies in the 212

generated plans. 213

To address these challenges, our study proposes 214

a stricter adherence to backward reasoning by ex- 215

plicitly decomposing the goal into intermediate sub- 216

goals. This approach ensures that each sub-goal 217

is well-defined and contributes directly to achiev- 218

ing the final objective. By leveraging the extensive 219

knowledge embedded in LLMs, our framework can 220

handle ambiguous or underspecified goal represen- 221

tations, enhancing its applicability to diverse and 222

dynamic problem-solving contexts. 223

3 Planning Framework:DRIP 224

Building upon cognitive psychology and logical 225

reasoning, this study introduces DRIP— a frame- 226

work that integrates hierarchical decomposition 227

with dynamic planning for LLM agents. Inspired 228

by the theory that humans solve problems by break- 229

ing them into subgoals (Simon and Newell, 1971; 230

Chipman et al., 2000), DRIP operationalizes this 231

mechanism through structured backward reason- 232

ing. This decomposition process aligns closely 233

with the principles of backward reasoning, enabling 234

the systematic breakdown of high-level goals into 235

actionable subtasks. A high-level overview of the 236

algorithm is presented in Algorithm 1, followed by 237

detailed descriptions of each phase in the subse- 238

quent subsections. 239

3.1 Decompose 240

Figure 2: Decompose the goal into actions

In DRIP, “decomposition” refers to the process 241

where the LLM recursively breaks down a goal 242

into simpler subtasks by identifying the necessary 243

preconditions. This forms a reasoning tree T = 244
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Algorithm 1 DRIP Planning Algorithm
Require: Initial condition S0, Goal G
Ensure: Plan π : a sequence of executable actions
1: Initialize reasoning tree T = (N,E), with root node

n0 = G
2: Set current conditionS ← S0, plan π ← [ ]
3: Set current frontier F ← {n0}
4: for i = 1 to MAX_ITER do
5: Fnext ← ∅
6: for all node n ∈ F do
7: if exec(n, S) = true then
8: π ← π ∪ {n}
9: S ← apply(n, S)

10: else
11: {g1, g2, . . . , gk} ← dec(n)
12: for all gi ∈ dec(n) do
13: Add gi as child of n in tree T
14: Fnext ← Fnext ∪ {gi}
15: end for
16: end if
17: end for
18: if exec(G,S) = true then
19: break
20: end if
21: F ← Fnext
22: end for
23: return π

(N,E), where each node n ∈ N stores. Let the245

goal be G and the condition be S, and the others246

are defined as follows.:247

• π(Plan): A list of actions leading from S to248
G.249

• Fnext: The set of nodes currently being pro-250
cessed. Fnext ∈ N251

• gn: Actions (subgoals) required to achieve the252
parent node's goal. gn ∈ G253

At each step, the LLM is prompted to generate254

subtasks for a given parent node:255

{g1, g2, . . . , gk} ← dec(n)256

For example (Figure 2), consider the fol-257

lowing initial condition from the BlockWorld258

dataset(Valmeekam et al., 2023a):259

S0: “The yellow block and orange block are clear,260

the hand is empty. The orange block is on the table,261

the blue block is on top of the red block, and the262

yellow block is on top of the blue block.”(Initial263

condition in Figure 2 (right))264

G(g0): “The red block is on top of the orange265

block and the yellow block is on top of the red266

block.”(Goal in Figure 2 (left))267

As shown in the first-level box of Figure 2, this268

G can be decomposed into the actions “Stack red269

orange” and “Stack yellow red”.270

3.2 Executability271

The executability step evaluates whether each sub-272

task can be performed given the current condition.273

This evaluation is handled by an actuator, which 274

assesses action feasibility. We define the function: 275

exec(n, S) ∈ {True, False} 276

The apply function takes a node n and a con- 277

dition S as input and returns a new condi- 278

tion S′. In other words, it represents the 279

execution of a valid action by the actuator. 280

S′ ← apply(n, S) 281

Consider the example from Figure 3: initially, 282

“Stack red orange” is executable, but “Stack yellow 283

red” is not, as the red block is not clear. There- 284

fore, as shown in Figure 3, the executability of the 285

actions in the initial condition is labeled as EXE- 286

CUTABLE and UNEXECUTABLE, respectively. 287

Upon executing the former, the condition up- 288

dates, triggering a reevaluation of pending actions. 289

This process is repeated until no executability 290

changes remain.

Figure 3: Execution of actions and changes in conditions 291

3.3 Re-decomposition and Termination of tree 292

construction 293

Figure 4: Execution of actions and changes in conditions

When executability updates stall, any remaining 294

unexecutable actions are reinterpreted as sub-goals 295

and recursively decomposed. For example (Figure 296

4), to execute “Stack yellow red”, the LLM infers 297

prerequisite actions like “Put-down yellow” and 298

“Unstack blocks red”. A node's decomposition is 299

complete when all its child actions become exe- 300

cutable. Once this occurs, executability propagates 301

upward—if all children of a parent node are exe- 302

cutable, the parent becomes executable as well. As 303

shown Figure 5, this process continues until the 304
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Table 1: The benchmark and the used models.(Manual) refers to experiments where humans executed the actions
proposed by the LLM.

Methods Models Accuracy

DRIP
gpt-4o(OpenAI et al., 2024) 16.4% (18/110)

Claude 3.7 Sonnet1 40.9% (45/110)
DRIP(Manual) gpt-4o 82.7% (91/110)

CoT(Kojima et al., 2023)
gpt-4o 13.6%(15/110)

Claude 3.7 Sonnet 23.6% (26/110)
ReACT(Yao et al., 2023) gpt-4o 1.8%(2/110)

ReACT(Manual) gpt-4o 31.8% (35/110)

root node is executable, indicating that the original305

goal can now be achieved.306

The entire planning process follows a breadth-307

first search pattern, alternating decomposition and308

executability updates at each level.309

Figure 5: Execution of actions and changes in conditions

4 Experiment310

4.1 BlockWorld311

The BlockWorld task involves stacking blocks to312

achieve a specified goal state, making it a widely313

studied problem in classical planning. For this314

study, we utilized the BlockWorld_hard dataset315

(Valmeekam et al., 2023b, 2024a), which includes316

scenarios with stacking tasks involving between317

6 and 15 blocks. This dataset is particularly chal-318

lenging due to the increased complexity of the goal319

states and the number of actions required to achieve320

them. Detailed statistics regarding the number of321

blocks and configurations in the dataset are pro-322

vided in Appendix A.1.323

4.1.1 Experiment setup324

In the original BlockWorld setting (Valmeekam325

et al., 2023b, 2024a), the available actions in-326

clude Pick up, Unstack, Put down, and Stack.327

However, for this study, we simplified the ac-328

tion space to focus on three core actions: “Stack329

[blockA] [blockB],” “Put-down [block],” and “Un-330

stack blocks [block].” The Pick up action was ex- 331

cluded as it is inherently performed as part of the 332

other three actions. Additionally, while the origi- 333

nal setting restricts the agent to holding only one 334

block at a time, we relaxed this constraint to allow 335

multiple blocks to be held simultaneously. This 336

modification was made to better utilize the current 337

condition for planning purposes. The specific ex- 338

perimental settings, including the prompts used for 339

the LLM, are fully described in Appendix A.3. All 340

experiments were conducted in Japanese. 341

4.1.2 Benchmark 342

We evaluated DRIP against baseline methods sum- 343

marized in Table 1. DRIP uses LLMs for both 344

decomposition and executability evaluation. In con- 345

trast, DRIP (Manual) uses a human to perform the 346

actions. The LLM is only responsible for decom- 347

pose, while the human checks if the actions are 348

possible and then carries them out. The planning 349

ends when the main goal (root action) is confirmed 350

to be executable. 351

For comparison, we include CoT (Kojima et al., 352

2023) using GPT-4o and Claude 3.7 Sonnet2, and 353

ReACT (Yao et al., 2023), which alternates be- 354

tween reasoning and acting. In ReACT (LLM), 355

actions are generated based on the initial condition 356

and goal. In ReACT (Manual), humans execute 357

the actions and provide the updated condition to 358

the LLM, enabling iterative planning. Unlike other 359

methods, ReACT (Manual) does not immediately 360

fail on invalid actions. A run is considered failed 361

only if five consecutive unexecutable actions are 362

proposed or if the plan exceeds 40 steps. For all 363

automated settings, humans evaluate whether the 364

final plan achieves the goal. 365

2https://www.anthropic.com/claude/Sonnet
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Figure 6: Experimental results.The horizontal axis represents the number of blocks, while the vertical axis indicates
the accuracy for each block count. The blue is DRIP (Manual), the red is DRIP (Claude), the green is DRIP (LLM),
the yellow is CoT (GPT-4), the purple is CoT (Claude) the cyan is ReACT (Manual), and the brown is ReACT
(LLM). The dotted lines indicate the overall accuracy for each method.

Figure 7: The difference in the number of actions in-
cluded in the planning.The horizontal axis represents
the instance numbers correctly solved by both methods.,
while the vertical axis represents the number of actions
included.A lower action count indicates more efficient
planning.

4.1.3 Results366

The experimental results are summarized in Figure367

6. As shown in Figure 6, DRIP (Manual) achieved368

the highest accuracy across all benchmarks, main-369

taining stable performance even as the number of370

blocks increased. This demonstrates its robustness371

and scalability in complex planning. Among LLM-372

only methods, DRIP (Claude) achieved the best373

performance. This result indicates that DRIP is374

capable of demonstrating sufficient ability in au-375

tonomous planning. On the other hand, the main376

reason why DRIP (Claude) could not match the per-377

formance of DRIP (Manual) lies in the difficulty of378

accurately describing block conditions using natu-379

ral language such as “block X is clear” or “block380

Y is on block Z.”. The decline highlights a key381

limitation: as task complexity grows, condition de- 382

scriptions become verbose and ambiguous, leading 383

LLMs to misjudge action feasibility. This suggests 384

that performance issues stem from condition repre- 385

sentation, not from the planning framework itself. 386

Future solutions may include multimodal models 387

or formal representations like PDDL. 388

To assess planning efficiency, we analyzed the 389

number of actions used by DRIP (Claude) and 390

CoT (Claude) in successful cases (Figure 7). DRIP 391

(Claude) consistently used fewer actions by avoid- 392

ing unnecessary steps—unlike CoT, which decom- 393

posed all blocks regardless of context. On average, 394

the difference in the number of actions between 395

DRIP (Claude) and CoT (Claude) was 4.29 steps. 396

This indicates DRIP'superior planning efficiency. 397

4.1.4 error analysis 398

Table 2: Details of DRIP (Manual) 's error type.

Error type Number of datasets
Errors in decomposition by LLMs 14

Errors in the Framework 5
total 19

We analyzed the 19 cases (17.3% of the total) 399

where DRIP (Manual) failed, summarized in Table 400

2. Of these, 14 errors stemmed from incorrect de- 401

composition by the LLM. Despite the structured 402

nature of BlockWorld and clear prompts, the model 403

occasionally generated invalid action sequences, es- 404

pecially in configurations with ambiguous or com- 405

plex block relationships. 406

The remaining 5 errors were found to be caused 407
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Move a mug with a knife in it to a small table.
|––– Explore the [kitchen]
| |––– Open the [kitchen door]
| |––– Explore the [kitchen area]
| |––– Explore the [doorknob]
| |––– Hold the [doorknob]
|––– Hold the [mug]
| |––– Find the [mug]
| |––– Explore the [room]
| |––– Explore the [shelf]
|––– Explore the [knife]
| |––– Explore the [drawer]
|––– Hold the [knife]
| |––– Pick up the [knife]
|––– Place the [knife] in the [mug]
|––– Explore the [small table]
|––– Place the [mug] on the [small table]

|––– Hold the [mug]
|––– Place the [mug] on the [small table]

Figure 8: The DRIP results for the task “Move a mug
with a knife in it to a small table” in ALFRED environ-
ment.

by fundamental limitations of the current frame-408

work. These errors highlight scenarios where409

the framework's reliance on goal-based reasoning410

alone is insufficient. For example, consider a goal411

is: “block a is on top of block j, block b is on top412

of block d, block c is on top of block b, block d is413

on top of block a, block f is on top of block i, block414

g is on top of block f, block i is on top of block c,415

block j is on top of block h” (i.e., ‘g-f-i-c-b-d-a-j-h’).416

Suppose the current condition is: ‘c-b-d-a-j-h-e-g-417

f-i’. In this case, the remaining action to achieve418

the goal is “stack i c”. Decomposing this action419

requires clearing block ‘c’ and moving it to create420

a separate tower with ‘i’ and ‘c’. However, creat-421

ing such a separate tower is not feasible because422

the goal condition (‘c-d-b-a-j-h’) has already been423

partially achieved. Moving block ‘c’ would vio-424

late the goal condition, making it impossible to425

proceed without undoing previously achieved sub-426

goals. This example illustrates a key limitation of427

the current framework: it considers actions solely428

based on the goal state and does not account for429

the constraints imposed by the current condition.430

In certain scenarios, achieving the goal requires431

reasoning that integrates both the goal state and the432

current condition, as well as the ability to dynam-433

ically adjust the plan to avoid conflicts between434

intermediate subgoals.435

4.2 ALFRED436

In the previous section, we evaluated DRIP in437

BlockWorld— a highly structured environment438

where rule-based planning is often sufficient. How-439

ever, real-world tasks are far more dynamic and un-440

1. Explore the [kitchen]
- Find the mug and the knife

2. Hold the [mug]
- Confirm that hands are free and hold the mug
- Confirm that the knife is inside the mug

3. Explore the [living room]
- Find the small table

4. Place the [mug]
- Place the mug on the small table

Figure 9: The CoT (GPT-4o) results for the task “Move
a mug with a knife in it to a small table”in ALFRED
environment.

derspecified, making them unsuitable for rigid sym- 441

bolic approaches. To explore DRIP's applicability 442

in such settings, we conduct a qualitative analysis 443

using ALFRED(Shridhar et al., 2019), a household 444

simulation benchmark for language-guided action 445

generation. 446

4.2.1 Challenges in Language Instructions 447

and Action Generation 448

ALFRED(Shridhar et al., 2019) provides a visu- 449

ally and physically realistic household simulation 450

environment designed for models that translate lan- 451

guage into sequences of actions and interactions. It 452

highlights many challenges faced when translating 453

human language into robot actions to accomplish 454

household tasks. 455

In robotics tasks, it is essential to develop meth- 456

ods that can cover the vast rules of the real world, 457

which cannot be fully described using rule-based 458

approaches. For example, consider the language 459

directive “clean up the dining table” after eating a 460

meal. The actions involved in this “clean up” direc- 461

tive differ from those in “clean up the room.” The 462

former may include actions such as “carry dirty 463

dishes to the sink” and “wipe the table,” while the 464

latter may involve “make the bed” and “vacuum 465

the floor.” This variability demonstrates the im- 466

practicality of predefining all possible language 467

directives and their corresponding actions. Instead, 468

it is necessary to dynamically devise actions based 469

on the specific context and translate language in- 470

structions into actionable elements that robots can 471

execute. This challenge underscores the impor- 472

tance of frameworks like DRIP, which can adapt 473

to diverse scenarios by leveraging the reasoning 474

capabilities of LLMs. 475

4.2.2 Qualitative Evaluation Using ALFRED 476

To evaluate DRIP's ability to interpret and opera- 477

tionalize real-world instructions, we compared its 478
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Table 3: Comparison of DRIP and CoT action plans for “Move a mug with a knife in it to a small table.”

Aspect DRIP CoT

Granularity
Fine-grained steps including

High-level, abstract steps only
environment exploration and tool use

Environmental
Explicit (e.g., shelves, doorknob, drawer) Implicit or omitted

Interaction

Causal Structure
Maintains logical order Partially unordered;

(e.g., place knife before moving mug) assumes end-state is satisfied

State Transitions
Models each state change Assumes preconditions

(e.g., knife pickup, mug update) (knife already in mug)

Physical Realism Suitable for robot execution
Risk of infeasibility

in real-world settings

output with that of CoT for the instruction: “Move479

a mug with a knife in it to a small table.” DRIP in480

Figure 10 decomposed this instruction into detailed,481

physically grounded substeps, such as: exploring482

the environment (e.g., the kitchen and shelves),483

locating and holding the mug and the knife, plac-484

ing the knife into the mug, and transporting the485

mug to the target location. This decomposition486

respects causal and spatial dependencies between487

actions and reflects realistic environmental interac-488

tions (e.g., opening drawers, holding doorknobs).489

In contrast, CoT in Figure 10 produced a high-level490

plan that omitted critical steps. It assumed the knife491

was already in the mug and skipped over retrieval,492

insertion, and exploration steps. This resulted in493

a less complete and potentially unexecutable plan494

in real-world settings.The comparison highlights495

DRIP's ability to generate execution-ready plans496

that align more closely with embodied reasoning497

and physical manipulation. A summary of the dif-498

ferences is shown in Table 3. Additional results in499

Appendix B.1 confirm similar trends.500

Limitations501

The proposed DRIP framework demonstrates ro-502

bustness and efficiency in planning by mimicking503

human capabilities. However, it has several lim-504

itations. First, there are challenges related to the505

decomposition capabilities of LLMs. While LLMs506

possess vast amounts of knowledge, the extent to507

which they can perform commonsense reasoning508

remains largely unexplored. For instance, execut-509

ing an action like “move A to the position of B”510

requires the preconditionthat “A is located some-511

where other than B.” In this study, we explicitly512

specified feasible actions and utilized structured513

tasks in the experiments. However, in real-world514

applications, this limitation could have a significant515

impact.516

Second, the number of LLM calls required is 517

an issue. While CoT requires a single call, DRIP 518

(Manual) uses hierarchical reasoning, averaging 519

5.98 calls, and DRIP (Claude) averages 6.18 calls. 520

On the other hand, the average number of LLM 521

calls for ReACT (Manual) is 28.3, whereas DRIP 522

achieves a significant reduction in comparison. Hu- 523

mans are said to switch between different types of 524

reasoning, as exemplified by the “Fast and Slow” 525

theory(Kahneman, 2011). Building on these in- 526

sights, further exploration is needed to develop 527

methods that appropriately combine backward rea- 528

soning and forward reasoning. 529

Conclusion 530

This paper proposed a planning framework for 531

LLM agents inspired by human problem-solving, 532

particularly the ability to decompose complex prob- 533

lems into simpler components. By employing a 534

backward reasoning approach, the framework dy- 535

namically decomposes tasks into preconditions and 536

subtasks, enhancing planning robustness and align- 537

ing with human cognitive processes. 538

Experimental results show that the framework 539

outperforms forward reasoning-based methods in 540

robustness and efficiency, particularly in long- 541

horizon tasks. It achieves goals with fewer steps by 542

leveraging the current state to avoid unnecessary 543

actions, demonstrating its potential for real-world 544

applications. 545

Looking ahead, we plan to extend this frame- 546

work to real-world applications by integrating mul- 547

timodal inputs and actuators, such as robotics sys- 548

tems. By bridging the gap between natural lan- 549

guage understanding and action generation, we en- 550

vision this framework contributing to the develop- 551

ment of more intelligent, adaptable, and context- 552

aware agents. 553
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A Experience(Blockworld)675

A.1 Details of the Blockworld dataset676

We summarize the number of blocks and the num-677

ber of instances for each dataset in the Blockworld678

dataset in a table4.

Table 4: Details of the number of blocks in the dataset

Number of blocks Number of datasets
6 1
7 1
8 7
9 14
10 13
11 13
12 12
13 18
14 21
15 10

total 110

679

A.2 Details of the Benchmark680

DRIP(LLM) refers to a method where the actuator681

is also implemented using an LLM. In other words,682

this method involves having the LLM determine683

executability and reason about changes in the state684

after executing an action. DRIP (Manual) refers685

to a method where a human acts as the actuator to686

stack the blocks. In this method, humans determine687

executability and provide feedback on whether the688

actions proposed by the LLM were successfully689

executed or not. The LLM responsible for action690

decomposition only reasons about actions based691

on the goal and does not receive feedback on the692

condition. The termination condition is when the693

root node action (data set goal) is determined to be694

executable.695

Claude 3.5 Sonnet3, which belongs to the same696

Claude family as Claude 3.7 Sonnet, has achieved697

the best performance among LLMs on datasets698

3https://www.anthropic.com/news/claude-3-5-Sonnet

involving stacking five or fewer blocks4. In ReACT 699

(Manual), humans execute the actions proposed by 700

the LLM and return the resulting new state as an 701

observation after each action. In this approach, 702

the goal and initial condition are provided at the 703

beginning, and the LLM generates actions based on 704

this information. After executing an action, humans 705

provide the updated condition to the LLM, which 706

then generates the next action based on the new 707

condition. This cycle continues iteratively. 708

For methods without the “Manual” label, hu- 709

mans evaluate the plans output by the LLM as well. 710

A.3 Prompt 711

The prompts used in the Blockworld experiments 712

are attached. 713

Table 5 is the prompt used for decomposition and 714

is utilized in both DRIP (Manual) and DRIP (LLM). 715

The Japanese versions used in the experiments are 716

followed by their English translations. 717

Table 6,7 and table 9 are prompts used in DRIP 718

(LLM) to utilize LLM as an actuator. Table 6,7. 719

Table 6 is a prompt used to determine whether an 720

action is executable, while table 9 is a prompt used 721

to describe how the condition of the blocks changes 722

after an action is performed. Table 7 is the English 723

translation of table 6. 724

4https://github.com/karthikv792/LLMs-Planning
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私はブロックを積み上げてスタックに整理する必要があるブロックセットで遊んでいます。
私の究極の目標は、できるだけ失敗せず、効率的にゴール状態にすることです。

私の目標「task」。このゴールを達成するために必要な唯一の条件に基づいてアクションを示してください。

実行可能なアクション：
1.stack [block1] [block2]block1>block1
を[block2]の上に積む。
2.unstack blocks [block2]
blocksを[block2]の上からテーブルへ外して[block2]をクリアにする。
3.put-down [block2]block2>block2
をテーブルの上に置く。

**制約と注意事項**:
-「stack [block1] [block2]」という形の文字列がゴール状態の場合のみ、以下を返します:
unstack blocks [block2]
put-down [block2]
-それ以外の条件では:
stack [block1] [block2]のアクションを返します。
-余計な情報の排除:
常にアクションのみをリスト形式で回答してください。他の余計な文章や構文（[ ]や括弧、番号など）は含めないでく
ださい。具体例として以下の形式を必ず守ってください:
action1
action2
action3
【回答例】

【目標】
stack blue yellow

【条件に基づくアクション】
unstack blocks yellow
put-down yellow
【目標】 task
【条件に基づくアクション】
(English)
I am playing with a block set where I need to stack and organize the blocks into a stack. My ultimate goal is to reach the goal state as
efficiently as possible without making mistakes.

My Goal"task". Please provide actions based solely on the conditions required to achieve this goal.

Available Actions:
1.stack [block1] [block2]
Place [block1] on top of [block2].
2.unstack blocks [block2]
Remove blocks from the top of [block2] and clear [block2] by placing them on the table.
3.put-down [block2]
Place [block2] on the table.

Constraints and Notes:
- Only when the goal state is in the form of "stack [block1] [block2]", return the following actions:
unstack blocks [block2]
put-down [block2]
- For all other conditions:
Return the action stack [block1] [block2].
- Eliminate unnecessary information:
Always respond with actions in a list format. Do not include extra sentences, structures (e.g., [ ] or parentheses), or numbers. Always
adhere to the following format:
action1
action2
action3

[Example Responses]

[Goal]
stack blue yellow

[Actions Based on Conditions]
unstack blocks yellow
put-down yellow
[Goal]
task

[Actions Based on Conditions]

Table 5: Decomposition Prompt for Blockworld.The Japanese prompts used in the experiments are followed by
their English translations.
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あなたはブロックを積み上げてスタックに整理する必要があるブロックセットで遊んでいます。与えられた状態で、
指定された行動が実行可能かどうかを判断してください。

##ブロックワールドのアクションルール
unstack blocks [block2]
- blocksは[block2]の上のブロックを意味します。[block2]をクリアにするために、[block2]の上のブロックを[block2]の上
から外し、テーブルに置く行為です。[block2]の上のブロックを動かした場合、上にあるブロック全ても一緒に動きま
す。
put-down [block2]
- [block1]と[block2]を別の塔にするために、[block2]をテーブルの上に置く行為です。 **[block2]の上にあるブロック全
ても一緒に動きます。**
stack [block1] [block2]
- [block1]を[block2]の上に積む行為です。[block2]がクリアである必要があります。**[block1]の上にあるブロック全ても
一緒に動きます。**

##ブロックワールドのルール
-ブロックは何個でも持つことができます。
- **ブロックは上に他のブロックがあっても、下のブロックからまとめて持つことができます。**
-あるブロックを動かす場合、**そのブロックの上のブロックすべてを同時に動かします**。
-同じ塔にあるブロック同士をstackすることはできません。

##判断手順
以下の手順で分析し、各ステップの結果を明示的に出力してください:
1. 現在の状態分析
-各ブロックの位置関係を箇条書きで列挙
-各ブロックの上に他のブロックがあるかを確認
-各ブロックがテーブルの上にあるかを確認
2. 実行したい行動の分析
-移動するブロック:どのブロックを動かすか
* 「移動するブロック」とは指定された基準ブロックを指します。ただし、このブロックの上に他のブロックがあれ
ば、それらすべてをまとめて動かす必要があります。 -移動先:ブロックまたはテーブル
-移動先の状態:
ブロックの場合:[block2]上に他のブロックがあるか
テーブルの場合:常に置くことが可能 3. 実行不要かの判断
「実行不要」:以下に該当
-アクション:unstack blocks [block2]
すでに[block2]の上に何もブロックがないとき
-アクション:stack [block1] [block2]
すでに[block1]が[block2]に積まれているとき
-アクション:put-down [block2]
すでに[block1]と[block2]が別の塔であるとき
**[block2]がすでにテーブルに置かれているかどうかは関係ありません。**
4. 実行可能性の判断(実行不要であった場合は飛ばす)
「実行不可能」:以下のいずれかに該当
-移動先がブロックの場合、そのブロック([block2])の上に他のブロックがある
-移動先のブロック([block2])と移動するブロック([block1])が同じ塔にある
「実行可能」:
-移動するブロックの上にブロックがあっても常に動かすことができます。
-移動先([block2])がクリアであれば、移動先([block2])にブロックを積むことができます。
-テーブルにはいつでもブロックを積むことができます。
-移動するブロックが移動先のブロックとは異なる塔にある場合、積む操作は可能です。
「END」:
-アクションが"END"の場合
##現在の判断対象
状態:{initial_condition}
行動:{action_list}
1. 状態分析:ここに各ブロックの位置関係を箇条書きで記述
2. 行動分析:ここに移動元と移動先の状態を記述
3. 実行不要かの判断
4. 判断結果:判断,理由(判断と理由の間に,を入れる)

Table 6: Executability prompt for Blockworld(japanese)
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You are playing with a block set where you need to stack and organize the blocks into a stack. Based on the given state, determine
whether the specified action is executable.

##Blockworld Action Rules unstack blocks [block2] - blocks refers to the blocks above [block2]. This action involves removing the
blocks above [block2] to clear [block2] and placing them on the table. If you move the blocks above [block2], all blocks stacked on
top of them will also be moved together.
put-down [block2] - This action involves placing [block2] on the table to separate [block1] and [block2] into different towers. **All
blocks stacked on top of [block2] will also be moved together.**
stack [block1] [block2]
- This action involves stacking [block1] on top of [block2]. [block2] must be clear for this action to be performed. **All blocks stacked
on top of [block1] will also be moved together**.

##Blockworld Rules
- You can hold any number of blocks at once.
- Even if there are blocks above a block, you can pick up the block along with all the blocks stacked on top of it.
- When moving a block, all blocks stacked on top of it must be moved together.
- You cannot stack blocks that are already part of the same tower.M
##Decision Procedure
Analyze the situation using the following steps and explicitly output the results for each step:
1. Analyze the Current State
- List the positional relationships of all blocks in bullet points.
- Check if there are any blocks above each block.
- Check if each block is on the table.
2. Analyze the Desired Action
- Moving Block: Identify which block is being moved.
* The "moving block" refers to the specified base block. However, if there are other blocks stacked on top of this block, all of them
must be moved together.
- Destination: Specify whether the destination is a block or the table.
- State of the Destination: If the destination is a block: Check if there are any blocks on top of [block2].
If the destination is the table: It is always possible to place blocks on the table.
3. Determine if the Action is Unnecessary
"Unnecessary Action": The action is unnecessary if any of the following conditions are met:
Action: unstack blocks [block2]
The action is unnecessary if there are no blocks above [block2].
Action: stack [block1] [block2]
The action is unnecessary if [block1] is already stacked on [block2].
Action: put-down [block2]
The action is unnecessary if [block1] and [block2] are already part of different towers.
Whether [block2] is already on the table is irrelevant.
4. Determine Executability (Skip this step if the action is unnecessary)
"Not Executable": The action is not executable if any of the following conditions are met:
If the destination is a block ([block2]), and there are other blocks on top of [block2].
If the moving block ([block1]) and the destination block ([block2]) are part of the same tower.
"Executable": You can always move a block, even if there are blocks stacked on top of it.
You can stack a block on the destination ([block2]) if [block2] is clear.
You can always place blocks on the table.
If the moving block is part of a different tower from the destination block, stacking is possible.
"END":If the action is END.
##Current Target for Evaluation
State: initial_condition
Action: action_list
1.State Analysis:[Describe the positional relationships of all blocks in bullet points here.]
2.Action Analysis:[Describe the state of the source and destination here.]
3.Determine if the Action is Unnecessary
4.Decision Result:[Decision],[Reason] (Separate the decision and reason with a comma)

Table 7: Executability prompt for Blockworld(Translation to English)

13



あなたはブロックを積み上げるブロックセットで遊んでいます。{condition}という状況か
ら{action}という行動を取った場合、状況がどう変わるかを考え、文章で記載してください。

##ブロックワールドのアクションルール
unstack [block1] [block2]
- [block1]は[block2]の上のブロックを意味します。 [block2]をクリアにするために、
[block1]を[block2]の上から外し、テーブルに置く行為です。 [block1]を動かした場合、
[block1]の上にあるブロック全ても一緒に動きます。[block2]はクリアになります。
put-down [block2]
- [block1]と[block2]を別の塔にするために、 [block2]をテーブルの上に置く行為です。
**[block2]の上にあるブロック全ても一緒に動きます。 **[block2]はクリアになり、テー
ブルに置かれます。
stack [block1] [block2]
- [block1]を[block2]の上に積む行為です。 [block2]がクリアである必要があります。
**[block1]の上にあるブロック全ても一緒に動きます。**
##ブロックワールドのルール
-ブロックは何個でも持つことができます。
- **ブロックは上に他のブロックがあっても、下のブロックからまとめて持つことができま
す。**
-あるブロックを動かす場合、**そのブロックの上のブロックすべてを同時に動かします**。

-同じ塔にあるブロック同士をstackすることはできません。
-移動先のブロック([block2])がクリアでない場合、stack [block1] [block2]は行うことができま
せん。
-ブロックが空である/クリアである、ということはそのブロックの上に何も載っていないこ
とを意味します。
最終的な回答として、与えられた状況と同じように、空のブロック、ブロックの状態、テー
ブルの上にあるブロックの順で記述してください。
記述の仕方は「〜〜は〜〜にある。」で統一してください。
答え方は以下の通りにしてください。
##現在の判断対象
状態:{condition}
行動:{action}
考え方:
最終的な状態:[答え]
(English)
You are playing with a block set where you stack blocks. Consider how the situation will change if you
take the action {action} from the situation {condition}, and describe it in writing.
## Block World Action Rules unstack [block1] [block2]
- [block1] refers to the block above [block2]. This action removes [block1] from [block2] and places it
on the table, clearing [block2]. If [block1] is moved, all blocks above [block1] move with it. [block2] is
cleared.

put-down [block2]
- This action places [block2] on the table to separate [block1] and [block2] into different towers. **All
blocks on top of [block2] move together.** [block2] is cleared and placed on the table.
stack [block1] [block2]
- This action places [block1] on top of [block2]. [block2] must be cleared. **All blocks above [block1]
will move together.**
## Block World Rules
- You can have as many blocks as you want.
- **Blocks can be picked up together from the bottom even if there are other blocks on top of them.**
- When moving a block, **all blocks above it will move together.**
- You cannot stack blocks that are in the same tower.
- If the destination block ([block2]) is not clear, you cannot stack [block1] [block2].
- An empty/clear block means that there is nothing on top of it.

As your final answer, describe the empty blocks, the state of the blocks, and the blocks on the table in
the same order as the given situation. Use the format“X is in Y” consistently.
Answer in the following format.
## Current target for judgment
State: {condition}
Action: {action}
Thought process:
Final state: [answer ]

Table 8: The prompt for updating conditions for Blockworld. The Japanese prompts used in the experiments are
followed by their English translations.
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B Experience(ALFRED)725

B.1 Results726

The results for other tasks in ALFRED are provided727

here. For all tasks, the characteristics shown in728

Table 3 were observed.

Place a heated tomato slice in the sink.
|––– 1) Explore the kitchen
| |––– - Explore the entrances
| | |––– - Explore entrance surroundings
| | |––– - Explore the doorknob
| |––– - Explore the refrigerator
| | |––– - Locate the refrigerator
| | |––– - Open the refrigerator
| |––– - Explore the cabinets
| |––– Move to the front of the cabinets
| |––– Open the cabinets
| |––– Explore the cabinets interior
|––– 2) Pick up the tomato
| |––– - Find the tomato
| | |––– 2) Explore the refrigerator
| | |––– 3) Explore the pantry
| |––– - Pick up/hold the tomato
|––– 3) Cut the tomato
| |––– Locate the knife
| | |––– Open the drawer
| | |––– Find the knife
| |––– Hold the knife
| |––– Place the cutting board
| | |––– - [Explore the kitchen]
| | |––– - [Explore the cutting board]
| | |––– - [Hold the cutting board]
| | |––– - [Explore the desired location]
| |––– Locate the tomato
| |––– Hold the tomato
| |––– Place the tomato on the cutting board
| |––– Cut the tomato with the knife
|––– 4) Explore the stove
|––– 5) Turn on the stove
| |––– - Locate the stove
| |––– - Hold the stove switch
| | |––– - Explore the stove switch
| |––– - Turn on the stove switch
|––– 6) Hold the tomato slices
|––– 7) Place the tomato slices on the stove
|––– 10) Explore the sink

|––– [Explore the room]

Figure 10: The DRIP results for the task “Place a heated
tomato slice in the sink.”729

In the task “Place a cooled-off apple inside the730

garbage bin,” using a cooled-off apple requires ei-731

ther taking an apple out of the refrigerator or plac-732

ing an apple in the refrigerator and waiting for a733

while. However, it seems that neither approach734

demonstrates sufficient contextual understanding735

to achieve this.736

1. Explore the [kitchen] - To find the tomato.
2. Hold the [tomato] - Pick up the tomato.
3. Explore the [counter] - To find the knife.
4. Hold the [knife] - To cut the tomato.
5. Cut the [tomato]
- Slice the tomato into pieces.
6. Place the [knife] - To free your hands.
7. Hold the [tomato slice]
- Take one of the sliced pieces.
8. Explore the [stove]
- To find a device for heating.
9. Turn on the [stove]
- Start the heating process.
10. Place the [tomato slice]
- Heat it on the stove.
11. Hold the [heated tomato slice]
- Take the heated tomato slice.
12. Explore the [sink]
- To find a place to put the tomato slice.
13. Place the [heated tomato slice]
- Put the heated tomato slice in the sink.

Figure 11: The CoT results for the task “Place a heated
tomato slice in the sink.”

Place a cooled-off apple inside the garbage bin.
|––– Explore the [kitchen]
| |––– Explore the [kitchen entrance]
| |––– Explore the [current location]
|––– Explore the [apple]
| |––– 1) Explore the [kitchen]
| | |––– Explore the [kitchen entrance]
| | |––– Explore the [kitchen counter]
| | |––– Explore the [kitchen cabinet]
| |––– 2) Explore the [dining table]
| |––– 3) Explore the [fridge]
| |––– Open the [fridge]
| |––– Explore [fridge interior]
|––– Hold the [apple]
| |––– Explore the [room]
| |––– Find the [apple]
| |––– Pick up/hold the [apple]
|––– Explore the [fridge]
| |––– Explore the [fridge]
| |––– Find the [fridge]
| |––– Open the [fridge]
| |––– Explore [fridge interior]
|––– Close the [fridge]
| |––– Find the [fridge]
| | |––– Explore the [living room]
| |––– Close the [fridge]
| |––– Explore the [kitchen]
|––– Explore the [garbage bin]
| |––– 1) Explore the [room]
| | |––– 1) Open the [door]
| | |––– 2) Explore the [room]
| |––– 2) Find the [garbage bin]
|––– Drop the [apple]
|––– Close the [garbage bin]

Figure 12: The DRIP results for the task “Place a heated
tomato slice in the sink.”

1. [Explore the kitchen]
- To search for the apple.
2. [Hold the apple]
- Hold it in hand to prepare for the next action.
3. [Explore the garbage bin]
- To locate the garbage bin.
4. [Open the garbage bin]
- To place the apple inside.
5. [Drop the apple]
- Put the apple into the garbage bin.
6. [Close the garbage bin]
- To complete the task.

Figure 13: The CoT results for the task “Place a cooled-
off apple inside the garbage bin. ”
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B.2 Prompt737

あなたはブロックを積み上げるブロックセットで遊んでいます。{condition}という状況から{action}という行動を取っ
た場合、状況がどう変わるかを考え、文章で記載してください。
##ブロックワールドのアクションルール
unstack [block1] [block2]
- [block1]は[block2]の上のブロックを意味します。[block2]をクリアにするために、[block1]を[block2]の上から外し、テ
ーブルに置く行為です。 [block1]を動かした場合、[block1]の上にあるブロック全ても一緒に動きます。 [block2]はクリ
アになります。
put-down [block2]
- [block1]と[block2]を別の塔にするために、[block2]をテーブルの上に置く行為です。 **[block2]の上にあるブロック全
ても一緒に動きます。**[block2]はクリアになり、テーブルに置かれます。
stack [block1] [block2]
- [block1]を[block2]の上に積む行為です。[block2]がクリアである必要があります。**[block1]の上にあるブロック全ても
一緒に動きます。**
##ブロックワールドのルール
-ブロックは何個でも持つことができます。
- **ブロックは上に他のブロックがあっても、下のブロックからまとめて持つことができます。**
-あるブロックを動かす場合、**そのブロックの上のブロックすべてを同時に動かします**。
-同じ塔にあるブロック同士をstackすることはできません。
-移動先のブロック([block2])がクリアでない場合、stack [block1] [block2]は行うことができません。
-ブロックが空である/クリアである、ということはそのブロックの上に何も載っていないことを意味します。
最終的な回答として、与えられた状況と同じように、空のブロック、ブロックの状態、テーブルの上にあるブロック
の順で記述してください。
記述の仕方は「〜〜は〜〜にある。」で統一してください。
答え方は以下の通りにしてください。
##現在の判断対象
状態:{condition}
行動:{action}
考え方:
最終的な状態:[答え]
(English)
You are playing with a block set where you stack blocks. Consider how the situation will change if you take the action {action} from
the situation {condition}, and describe it in writing.
## Block World Action Rules unstack [block1] [block2]
- [block1] refers to the block above [block2]. This action removes [block1] from [block2] and places it on the table, clearing [block2].
If [block1] is moved, all blocks above [block1] move with it. [block2] is cleared.

put-down [block2]
- This action places [block2] on the table to separate [block1] and [block2] into different towers. **All blocks on top of [block2] move
together.** [block2] is cleared and placed on the table.
stack [block1] [block2]
- This action places [block1] on top of [block2]. [block2] must be cleared. **All blocks above [block1] will move together.**
## Block World Rules
- You can have as many blocks as you want.
- **Blocks can be picked up together from the bottom even if there are other blocks on top of them.**
- When moving a block, **all blocks above it will move together.**
- You cannot stack blocks that are in the same tower.
- If the destination block ([block2]) is not clear, you cannot stack [block1] [block2].
- An empty/clear block means that there is nothing on top of it.

As your final answer, describe the empty blocks, the state of the blocks, and the blocks on the table in the same order as the given
situation. Use the format“X is in Y” consistently.
Answer in the following format.
## Current target for judgment
State: {condition}
Action: {action}
Thought process:
Final state: [answer ]

Table 9: The prompt for updating conditions for Blockworld. The Japanese prompts used in the experiments are
followed by their English translations.
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