
PDE-Controller: LLMs for Autoformalization and Reasoning of PDEs

Mauricio Soroco * 1 Jialin Song * 1 Mengzhou Xia 2 Kye Emond 3 4 Weiran Sun 3 Wuyang Chen 1

Abstract
While recent AI-for-math has made strides in
pure mathematics, areas of applied mathemat-
ics, particularly PDEs, remain underexplored de-
spite their significant real-world applications. We
present PDE-Controller, a framework that en-
ables large language models (LLMs) to control
systems governed by partial differential equations
(PDEs). Our approach enables LLMs to trans-
form informal natural language instructions into
formal specifications, and then execute reason-
ing and planning steps to improve the utility of
PDE control. We build a holistic solution com-
prising datasets (both human-written cases and 2
million synthetic samples), math-reasoning mod-
els, and novel evaluation metrics, all of which
require significant effort. Our PDE-Controller sig-
nificantly outperforms prompting the latest open-
source and GPT models in reasoning, autofor-
malization, and program synthesis, achieving up
to a 62% improvement in utility gain for PDE
control. By bridging the gap between language
generation and PDE systems, we demonstrate the
potential of LLMs in addressing complex scien-
tific and engineering challenges. We release all
data, model checkpoints, and code at https:
//pde-controller.github.io/.

1. Introduction
Recent advancements have significantly enhanced capa-
bilities of Large Language Models (LLMs) (McKinzie
et al., 2025; Huang et al., 2023). LLMs possess pretrained
common knowledge and solves daily life tasks that require
commonsense reasoning without domain-specific expertise.
However, this reliance on generalized knowledge exposes

*Equal contribution 1School of Computing Science, Simon
Fraser University 2Department of Computer Science, Princeton
University 3Department of Mathematics, Simon Fraser University
4Department of Physics, Simon Fraser University. Correspondence
to: Wuyang Chen <wuyang@sfu.ca>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Scientists Natural Language Instructions:

Physics Mechanics

𝑓 𝑡, 𝑥, 𝑢,
𝜕𝑢
𝜕𝑡 	

𝜕𝑢
𝜕𝑥 = 0 Control PDEs

(e.g. Heat Equation)
for scientific problems.

LLMs

Problem Reasoning

Formal Specifications

Informal Problems

“I want to control the temperature of
the material to be lower than 330.”

𝐺(∀𝑥: 𝑢 𝑥 < 330)

Figure 1: We build LLMs for automated, accelerated PDE control.
significant weaknesses in complex domains. LLMs strug-
gle with precise mathematical reasoning (Mirzadeh et al.,
2024; Feng et al., 2024; Ahn et al., 2024), understanding
nuanced constraints (Williams & Huckle, 2024), or making
decisions grounded in physical-world consequences (Wang
et al., 2024; Jia et al., 2024; Cheng et al., 2024). Addressing
these limitations will require enhancing LLMs with external
tools or domain-specific reasoning.

Recent advancements in AI-for-math (Lu et al., 2022; Li
et al., 2024) have significantly enhanced LLMs in logical,
formal, and quantitative reasoning, particularly for pure
mathematics (geometry, probability, calculus, algebra, num-
ber theory, and combinatorics). These efforts address chal-
lenges from grade school math (Cobbe et al., 2021) to the In-
ternational Mathematical Olympiad (Hendrycks et al., 2021;
Trinh et al., 2024). However, the advancement of LLMs for
applied mathematics, such as partial differential equations
(PDEs), remains underexplored. Unlike pure mathematics
for abstract theory, applied mathematics directly addresses
practical challenges, bridging theory and real-world needs.
For example, PDEs are fundamental in modeling physical
dynamics (aerospace engineering, quantum mechanics, fluid
dynamics), providing a framework to understand and con-
trol systems. Integrating LLMs into applied mathematics,
particularly for PDE control, holds substantial potential for
advancing scientific and engineering applications.

1

https://pde-controller.github.io/
https://pde-controller.github.io/

PDE-Controller: LLMs for Autoformalization and Reasoning of PDEs

Solving PDE control problems has never been easy. Tradi-
tional approaches like optimization (McNamara et al., 2004)
and formal methods (Alvarez, 2020) suffer from two bot-
tlenecks: First, manual PDE control requires significant
human efforts to understand problem descriptions and for-
malize into specifications (Alvarez, 2020). Second, PDE
control requires highly specialized knowledge on both cod-
ing and physics, which are challenging even for seasoned
mathematicians and engineers. The alternative is to lever-
age pretrained LLMs. However, commonsense logic cap-
tured by popular language datasets (Gao et al., 2020; Weber
et al., 2024) largely deviates from scientific reasoning that
requires math and physics backgrounds, leading to poor per-
formance (Table 4 and 9). Moreover, unlike conventional
programming languages (Python, Java, etc.) that are rich on
GitHub (Chen et al., 2021), formal languages and special
libraries required by PDE control (Fig. 4) are mainly used
by relatively few mathematicians and engineers, resulting
in limited language datasets. Thus, our core question is:

Can LLMs control PDEs with scientific reasoning?

In this work, we aim to advance AI-for-math for PDEs,
making open-loop PDE control automated and accessible to
broad scientific practitioners with reduced efforts (Fig. 1).
Our framework, PDE-Controller, provides affirmative an-
swers. PDE-Controller enables autoformalization of in-
formal PDE control problems into formal specifications
and executable code, and enhances scientific reasoning by
proposing novel subgoals to improve open-loop control util-
ity. This leads to a new methodology for integrating LLMs
into scientific computing. Our technical contributions are
summarized below:

1. Scientific Reasoning. Our PDE-Controller achieves up
to a 62% improvement in PDE control utility gain, com-
pared to prompting the latest LLMs. This demonstrates
a promising approach to future LLM-based scientific
reasoning. Our Controller is trained via reinforcement
learning from human feedback (RLHF), with rewards
derived from PDE simulations labeled as win or lose.

2. Autoformalization and program synthesis. We train
LLMs via supervised fine-tuning (SFT) to automatically
formalize PDE control problems, transforming informal
natural language descriptions into formal specifications
(over 64% accuracy) and executable programs that inte-
grate with external tools (over 82% accuracy).

3. New Datasets. We build the first comprehensive datasets
for PDE control designed for LLMs, including over 2
million samples of natural and formal language, code
programs, as well as PDE control annotations. We also
collect manually written samples by human volunteers
to evaluate LLMs in real-world scenarios. Our novel
dataset will serve as a high-quality testbed for future
research in AI for PDE reasoning.

Heat Source 𝑞
(time-variant)

Force 𝐹
(time-variant)

Displacement

Temperature

𝑥 = 0											 ⋯ 														𝐿

𝑥 = 0											 ⋯ 														𝐿

Constraints

“The temperature between 𝑥! and
𝑥" must be within 300 ± 30.”

“The section between 𝑥! and 𝑥" must be
stretched/compressed according to 𝑘𝑥 + 𝑏.”

How to control the
heat/force to satisfy
the constraint(s)?

Heat Equation

𝜌
𝜕!𝒖
𝜕𝑡! − 𝐸

𝜕!𝒖
𝜕𝑥! = 0

Wave Equation

𝜌𝑐
𝜕𝒖
𝜕𝑡 − 𝜅

𝜕!𝒖
𝜕𝑥! = 0

𝐸
𝜕𝒖
𝜕𝑥 𝐿, 𝑡 = 𝑭(𝑡)	

𝜅
𝜕𝒖
𝜕𝑥 𝐿, 𝑡 = 𝒒(𝑡)	

Figure 2: PDE control adjusts inputs (heat, force) to ensure sys-
tems (modeled by PDEs) satisfy spatiotemporal constraints.

2. Preliminaries
2.1. Background of PDE Control

Partial differential equations (PDEs) model nearly all of the
physical systems and processes of interest to scientists and
engineers. PDE control involves adjusting external inputs
like heat or force to guide a system governed by physical
laws (PDEs) to meet specific goals or constraints. For ex-
ample, heat flow and mechanical stretching/compression
in a rod are modeled and controlled by the heat and wave
equations (Fig. 2). The goal is to maintain the rod’s tem-
perature or deformation within a safe range, which requires
precise, time-varying control of the heat source and applied
force. This is challenging because PDEs describe complex
interactions across space and time, and small changes at one
point can affect the entire system. Essentially, PDE control
ensures the system behaves predictably and stays within
desired limits. We provide more details in Appendix A.1.

2.2. Formal Methods for PDE Control

Signal Temporal Logic. Following previous works, we
use signal temporal logic (STL) (Maler & Nickovic, 2004;
Alvarez, 2020) to formally represent constraints in PDE
control problems:

ϕ = T[t1,t2] (∀x ∈ [x1, x2], u(x) ≶ (ax+ b)) (1)

where T ∈ {G,F} and ≶ indicates a choice from {<,>
,=}. Specifically:

• Each STL ϕ defines a spatiotemporal constraint on the
target variable u (the quantity to be controlled, like tem-
perature, displacement). For simplicity, we only consider
time-invariant linear constraints ax + b. For example:
∀x ∈ [x1, x2],∀t ∈ [t1, t2], u(x, t)−

(
x
2 + 300

)
≥ −3.

• G (“globally”) means the constraint holds during a spec-
ified interval. F (“eventually”) means the constraint is
satisfied at least once during the temporal interval.

• Composing multiple constraints can form more compli-
cated constraints.

2

PDE-Controller: LLMs for Autoformalization and Reasoning of PDEs

§3.5 Program
Synthesis

PDE-Constrained
Optimization via
External Solver

Utility

Coder
Translator Formal Language (FL)

STL (Signal Temporal Logic)

Controller

§3.4 Multi-Step Reasoning

Subgoal STL Proposal

§3.2 Data
Informal Problem

Natural Language (NL)

Prompt:
• Instruction
• Problem

§3.3 Autoformalization

RLHF

Reasoning
Step

i.

ii.

iii.

Init.
Condition

End of
Control

Figure 3: Overview of our PDE-Controller framework. The Translator directly autoformalizes an informal PDE control problem (yellow)
into formal specifications with STL (blue). The Controller proposes novel STL subgoals (purple). Each STL is synthesized into
specialized Python programs by the Coder (green) and optimized externally (white). From the initial condition (i.), our PDE reasoning
optimizes a subgoal (ii.) before the original problem, improving the utility at the end of control (iii.). We train the Controller with
reinforcement learning from human feedback (RLHF).

Table 1: Overview of our LLM components. “NL”: natural language. “STL”: Signal Temporal Logic.

LLM Purpose Training Method Input Output Evaluation Metric (s)

Translator
(Sec. 3.3)

Autoformalize constraints from
informal NL into formal STL SFT NL STL

IoU: true vs.
predicted constraints

Controller
(Sec. 3.4)

Propose subgoal STLs as intermediate
reasoning steps to improve the final control utility RLHF (DPO) NL + STL Subgoal STL

Success Rate (P)
Utility Gain (∆r)

Coder
(Sec. 3.5)

Generate Python code for
PDE solver (Gurobi) SFT NL + STL Python code

Executability (%),
Utility RMSE (on r(ϕ))

Representing PDE constraints using STL can clearly and
precisely express complex specifications into logical formu-
las and thus remove possible ambiguity in informal natural
language. In addition to binary semantics (“satisfied” or
“unsatisfied”) defined above, STL admits continuous seman-
tics as utility (Kress-Gazit et al., 2009; Donzé & Maler,
2010). The utility an STL ϕ achieves (via simulation and
optimization) can be denoted as r(ϕ) ∈ R. Please refer to
Appendix A.2 for the calculation of r(ϕ).

Problem Example: Heat Equation. Consider a metallic
rod of 100 mm. The temperature at one end of the rod
is fixed at 300K, a heat source is applied to the other end.
The temperature of the rod follows a heat equation. We
want the temperature of the rod to be within 3K of the
linear constraint µ(x) = x

4 + 300 at all times between 4
and 5 seconds between 30 and 60 mm. Furthermore, the
temperature should never exceed 345K at the point where
the heat source is applied (x = 100). We can formulate this
specification using the following composite STL formula:

ϕ = G[4,5]

((
∀x ∈ [30, 60] : u(x)−

(x
4
+ 303

)
< 0

)
∧(

∀x ∈ [30, 60] : u(x)−
(x
4
+ 297

)
> 0

))
∧

G[0,5](∀x ∈ [100, 100] : u(x)− 345 < 0).

For more examples, please read Appendix B.

2.3. Optimization

To solve the PDE control problem defined by initial con-
ditions and STL constraints (Eqn. 1), the PDE is first dis-
cretized into a set of difference equations with the finite
element method. Then, together with STL constraints,
they are formulated into a mixed integer linear program
(MILP) (Sadraddini & Belta, 2015; Alvarez, 2020) where
the utility r can be optimized via external optimizers like
Gurobi (Gurobi Optimization, LLC, 2024). After the op-
timization, if r > 0, that means the system successfully
satisfies ϕ using the control input (i.e. constraints are suc-
cessfully met). This is a non-convex optimization problem.
Please see Appendix A.3 for detailed formulations.

3. Methods
Our core aim is to automate the formalization and reasoning
of PDE control problems using large language models.

3.1. Overview

Problem Definition. As introduced in Sec. 2, the input of
a PDE control problem is the natural language describing
the initial state, system conditions, and target constraints.
The solution is a time-variant trajectory of the control input.
The final output we collect is the control utility r(ϕ) ∈ R.

3

PDE-Controller: LLMs for Autoformalization and Reasoning of PDEs

The temperature staying within 3K of 𝜇(𝑥) =
𝑥/4 + 300 between 4-5 s for 𝑥 ∈ [30, 60]mm.
The temperature must not exceed 345K at 𝑥 =
100. Consider a 100mm rod with one end at
300K and a heat source at the other. The
temperature follows a heat equation.

System Descriptions
(Geometry, PDE, Initial/Boundary Conditions)

Constraints

“Below is a natural language
description of partial differential
equation optimization problem.
Translate the problem into Latex code
following spatial-signal temporal logic.”

Prompt:
• Instruction
• Target Problem

Formal Problem

Formal Language (FL):
STL (signal temporal logic) in LaTeX

Python

Utility

Te
m

pe
ra

tu
re

 (K
)

Location (mm)

Informal Problem
Natural Language (NL)

Translator

Coder

PDE-Constrained
Optimization via
External Solver

Figure 4: Workflow for supervised fine-tuning (SFT) of autoformalization (Translator LLM) and program synthesis (Coder LLM). Note
that the utility is only used for evaluation and not used for SFT. Without reasoning, the Translator and Coder try to faithfully and directly
solve the original problem.

Framework Overview (Fig. 3). We automate the PDE
control problem with the following four steps:
1. Input. Our LLM prompt is composed of 1) an instruction

(to prompt the LLM to formalize the problem, perform
reasoning, or synthesize Python programs) and 2) the tar-
get PDE control problem. We build a large-scale dataset
to support diverse inputs and prompts (Sec. 3.2).

2. Autoformalization. Our Translator LLM will extract in-
formation about the problem constraints from the prompt,
and formalize these into STLs (Sec. 3.3).

3. Reasoning. Before directly solving the target PDE con-
trol problem, our Controller LLM will propose novel
STLs as subgoals. The aim is to better solve the original
PDE control problem by leveraging this subgoal as an
intermediate step, i.e., we will first solve the problem
defined by this subgoal which leads to a new system
state, then solve the original problem (Sec. 3.4).

4. Program Synthesis. Our Coder LLM will take both the
prompt and the formalized STLs as inputs, and generate
Python code to be fed into the external tool (Gurobi
optimizer (Gurobi Optimization, LLC, 2024)) to solve
the PDE control problem (Sec. 3.5).

3.2. Principled Data Synthesis with Augmentations

Training LLMs for PDE problems requires diverse data, but
existing math reasoning datasets (Cobbe et al., 2021; Yang
et al., 2024; Glazer et al., 2024) lack large-scale corpora
for PDEs. We collect key representative problems for PDE
control, use them as templates, and augment them to ensure
sufficient quantity and diversity.

Overview. As shown in Fig. 4 left, each PDE
control problem consists of two components: 1)
constraints (red background), 2) system descriptions
(blue background, including PDE, geometry, initial/bound-
ary conditions). We generate dataset in three steps:

1) Constraints: Principled Syntax Formats via STL.
We first design and organize eligible syntax formats for
generating STLs in two levels:

• For each constraint, the format in Eqn. 1 leads to 6 differ-
ent syntax formats ({G,F} × {<,>,=}).

• We consider STLs up to 3 constraints. For 2 constraints,
we connect ϕ1 and ϕ2 with logical connectives ∧ or ∨. For
3 constraints, we consider both logical connectives and
operator precedence via parentheses: ϕ1 ∨ ϕ2 ∨ ϕ3, ϕ1 ∧
ϕ2∧ϕ3, (ϕ1∨ϕ2)∧ϕ3, ϕ1∨(ϕ2∧ϕ3), (ϕ1∧ϕ2)∨ϕ3, ϕ1∧
(ϕ2 ∨ ϕ3). In total, STLs with 1, 2, 3 constraints will
respectively result in 6, 72, 1296 unique syntax formats,
i.e. 1374 in total (LaTeX in Fig. 4 middle top).

At this moment, these STLs are still abstract, with hyperpa-
rameters like a, b, x1, x2, t1, t2 in Eqn. 1 not yet realized.

2) System Descriptions: Sampling Initial Conditions
and Hyperparameters. To realize each STL format into
a concrete problem, we need to fill numerical values for
its initial conditions and hyperparameters (blue highlight
in Fig. 4 left). We describe our sampling distributions in
Appendix C.1 for the following aspects:

• Initial conditions: the initial temperature or displacement
of the system at the beginning of the PDE simulation.

• Simulation domains: the spatial range xmax and temporal
range tmax.

• Physical properties: such as density, specific heat capacity,
thermal conductivity.

• Coefficients: the linear parameters (a, b) and spatiotem-
poral ranges (x1, x2, t1, t2) for constraints.

3) Dataset Synthesis with Augmentations. We syn-
thesize STLs into informal natural language descriptions
equipped with system descriptions. For each problem, we

4

PDE-Controller: LLMs for Autoformalization and Reasoning of PDEs

Table 2: Our dataset for autoformalization and program synthesis.

Num. Constraints 1 2 3 Total Num.

STLs 6 72 1296 1374
Heat (Train) 3840 45792 817776 867408
Heat (Test) 960 11448 204768 217176
Wave (Train) 3840 45504 795744 845088
Wave (Test) 960 11304 196992 209256

also synthesize ground-truth Python code for optimization
with the Gurobi solver (Fig. 4 middle bottom). These
synthesized samples give us a one-to-one mapping from
the informal problem (natural language) to its STL and
Python code. Details about our dataset synthesis, are in
Appendix C.2. More importantly, to further promote the
diversity of our informal natural language problems, we use
ChatGPT (GPT4o-mini) for augmentation by rephrasing
without affecting semantics. In particular, we prompt five
paraphrases from ChatGPT for every synthesized informal
description. Please see Appendix C.3 for an example of
augmentation via ChatGPT.

As shown in Table 2, in total we have n = 2.13 million
triplets of (natural language, STL, Python) samples. We
merge the training set for both heat and wave problems for
the training of Translator and Coder.

Real-World Manually Written PDE Control Problems.
To evaluate our LLMs on real-world problems with high
variance and noise, we collect PDE control samples de-
signed by humans via questionnaires. To ensure data quality,
we recruit undergraduate and graduate students as partici-
pants with highly relevant backgrounds (majoring in Math,
Electic Engineering, Computer Science, Physics). During
four questionnaire sessions (one hour each), we provide
comprehensive introductions to the settings of our PDE con-
trol problems, with concrete examples and interactive com-
munication. We collect 17 manually written heat problems
and 17 wave problems. Details of this collection and differ-
ences between our training set are shown in Appendix D.

3.3. Autoformalization

After building our dataset, we train our Translator to extract
constraints from informal natural language and autoformal-
ize into STLs. Our LLM needs to (1) separate constraints
from system descriptions, (2) align informal definitions and
concepts to formal STL syntax, and (3) connect multiple
constraints with correct logic operators. This task is further
complicated by context changes in different PDEs.

We leverage a pretrained MathCoder2-DeepSeekMath-
7B (Lu et al., 2024) checkpoint (MathCoder2), to fine-tune
using LoRA (Hu et al., 2021) and supervised fine-tuning
(SFT) with the cross-entropy loss. This measures the error
in predicting each token in the output formal sequence (F̂L)

given tokens in the informal input (NL). It is defined as:

Ltranslator
SFT = −

n∑
i=1

logP
(
F̂Li | NLi,θtranslator

)
(2)

3.4. PDE Reasoning via Controller LLM

3.4.1. WHAT IS REASONING FOR PDE CONTROL?

Beyond autoformalization, an important question is: can
LLMs show reasoning and planning capabilities on scien-
tific problems like PDE control, where pretrained common-
sense knowledge may not be helpful?

Problem Definition. As described in Sec. 2.3, the PDE
control problem is non-convex. Directly optimizing the
target anchor problem may lead to suboptimal solutions or
intractability due to potentially poor initial conditions, loss
landscape barriers, local minima, etc. Inspired by recent
works in robotics (Lin et al., 2024; Wang et al.) and AI-for-
math (Zawalski et al., 2022; Zhao et al., 2023b;a) where
subgoals are decomposed from the original problem, we
propose the following PDE control reasoning strategy:
The solution to a PDE control problem can be improved by
decomposing it into subgoals to be optimized sequentially.

PDE Control Reasoning. We design the following rea-
soning steps for solving PDE control problems:

1. Given a target PDE control problem ϕ (dubbed “anchor”),
we sample its STL constraints into a subgoal STL, ϕ′, of
different spatiotemporal constraints.

2. We directly solve the anchor problem (ϕ) and collect its
utility r(ϕ) and runtime cost t.

3. We solve ϕ′ → ϕ: We optimize ϕ′, apply the system state
as the new initial condition1 solve the anchor problem ϕ,
and collect the final utility r(ϕ|ϕ′).

4. If r(ϕ|ϕ′) > r(ϕ) (the utility of directly solving ϕ), we
call ϕ′ a successful reasoning.

5. We repeat the above steps multiple times to calculate the
expected performance gain.

Whether the subgoal reasoning step can be satisfied (i.e.
whether or not r(ϕ′) > 0 or not) is not our concern. All we
pursue is a new initial condition of the system that can better
solve the original problem. As such, the time constraints of
the subgoal should apply in the period prior to the anchor
constraints and within the global time frame. Please see
Fig. 6 for concrete examples where r(ϕ|ϕ′) outperforms
r(ϕ), and more examples in Appendix B.

1To avoid long runtime of subgoal STLs, we set the Gurobi
runtime threshold to 120 seconds for solving ϕ′.

5

PDE-Controller: LLMs for Autoformalization and Reasoning of PDEs

3.4.2. BUILDING THE CONTROLLER LLM.

Having defined PDE control reasoning in Sec. 3.4.1, our
question is: How to develop LLMs to perform PDE control
reasoning and automatically decompose subgoals?

In this section, we explain how to train a Controller LLM
via reinforcement learning with human feedback (RLHF)
that can perform PDE control reasoning. We illustrate our
training strategy in Fig. 5.

1) Preparing Preference Dataset. We first build a dataset
of paired STLs (ϕ′(w), ϕ′(l)) as win-lose pairs, where ϕ′(w)

is preferred over ϕ′(l). This dataset is used to train our
Controller LLM via RLHF. To build this dataset, given an
anchor (target) STL ϕ, we randomly sample ϕ′ based on ϕ,
solve both, and collect their utilities.

It is up to human preference to determine which STL is
favored. In this work, we prefer r(ϕ|ϕ′(w)) > r(ϕ) > ϕ′(l).
In total, we collect 10772 pairs of win-lose STLs.

2) Fine-tuning Controller LLM with RLHF. During
training, our Controller loads the Translator’s pretrained
checkpoint (inheriting the ability to faithfully formalize nat-
ural language into STLs). We train Controller with Direct
Preference Optimization (DPO) (Rafailov et al., 2024). Un-
like the Translator’s direct formalization into true STLs,
we prompt our Controller to make modifications in propos-
ing new STL variants. We leverage win-lose pairs in our
preference dataset as feedback to fine-tune the generative
distribution of the Controller to shift to the preferred STL:

Lcontroller
DPO = −E(NL,ϕ′(w),ϕ′(l))

[
log σ

(
β log

P
(
ϕ′(w) | NL

)
Pref (ϕ′(w) | NL)

− β log
P
(
ϕ′(l) | NL

)
Pref (ϕ′(l) | NL)

)]
+ λ logP

(
F̂L|NL

)
.

(3)
σ is the sigmoid function. We load the pretrained check-

point of our Translator LLM as the frozen reference model
(“ref”), which serves as the KL divergence target in DPO
training. P and Pref indicate the generative probability of
Controller and Translator respectively (θ omitted for sim-
plicity). β controls the deviation of the Controller from the
reference Translator. To further avoid the degradation of
Controller’s generation, we regularize it with the SFT loss,
with a weight of λ (Pang et al., 2024), which we also found
prevented overfitting compared to the DPO loss alone.

3.5. Program Synthesis

Finally, taking both the prompt (instruction plus the target
PDE control problem) and the formalized STL as inputs,
we train a Coder LLM with supervised fine-tuning (SFT) to
synthesize Python programs provided to the PDE simulator

Subgoal STL
Proposal

𝜙!
"($), 𝜙!

"(&)

⋯
𝜙'
"($), 𝜙'

"(&)

⋯
𝜙(
"($), 𝜙(

"(&)

𝑢())

𝜙

𝜙"
𝑢" 𝜙

𝑟(𝜙)

𝑟 𝜙|𝜙"𝑢∗"
𝑢∗

∆𝑡!= 𝑡" ∆𝑡+= 𝑡 − 𝑡"

∆𝑡 = 𝑡Prompt:
• Instruction
• Problem

𝜙($'() 𝜙(&,-.)≻

Preference Data
RLHF

≻

Controller

SolverCoder

Figure 5: Learning PDE control reasoning via RLHF. Given the
input prompt, our Controller LLM trained with preference data via
reinforcement learning, will propose a subgoal STL ϕ′. From the
initial condition u(0), the PDE system is controlled by ϕ′ to reach
state u′, and then further controlled by the original STL ϕ to reach
the final state u∗′. We expect the utility achieved via this reasoning,
r(ϕ|ϕ′), to outperform r(ϕ) achieved by directly solving ϕ.

and Gurobi optimizer to solve the PDE control problem.

Lcoder
SFT = −

n∑
i=1

logP
(
Ĉodei | F̂Li,NLi,θcoder

)
(4)

Similar to Translator, we merge the training set for both heat
and wave problems for the Coder’s fine-tuning.

4. Experiments
We study 1D heat and wave problems as pioneering show-
cases. All our models are fine-tuned from MathCoder2, and
we compare against few-shot evaluations of MathCoder2,
GPT 4o, and GPT o1-mini (Achiam et al., 2023). Please
read Appendix E for model and training details.

4.1. Accurate Autoformalization and Program Synthesis

We first evaluate the performance of our Translator for
autoformalization and Coder for program synthesis.
Evaluation Metrics. To progressively evaluate the perfor-
mance of our Translator and Coder LLMs in a decoupled
and fine-grained manner, we propose to leverage multiple
metrics for different purposes, as summarized in Table 3.
Among all metrics, the “Utility RMSE” (lower the better)
is the most important final performance. However, it is im-
portant to emphasize that we can only calculate RMSE for
executable Python programs. Consequently, if we observe a
coder achieving a low RMSE but also low executability, it
still implies poor quality.

2For example, switching from ≥ to ≤ will lead to a completely
different constraint, but the STL itself is still a valid logic.

3Remarks for Table 4 and 5: 1) Since IoU ∈ [0, 1], we set
the IoU of any invalid STL as 0. 2) To isolate the evaluation of
program synthesis without being distracted by possibly generated
bad STLs, when calculating the executability and utility RMSE,

6

PDE-Controller: LLMs for Autoformalization and Reasoning of PDEs

Table 3: Metrics for the evaluation of autoformalization (Transla-
tor) and program synthesis (Coder).

Purpose Metric

LLM-generated STL (ϕ̂) could
be valid, but there might be se-
mantic mistakes2.

IoU: Intersection over union
(satisfying areas) between
the true STL, ϕ, and the
LLM’s generation, ϕ̂.

Python programs generated by
Coder may not be runnable due
to bugs.

Executability: The ratio of
executable programs to the
total. This doesn’t ensure the
executed result (utility r) is
correct.

Compare the final PDE control
utility r(ϕ̂) to true utlity r(ϕ).

Utility RMSE: Relative
mean square error on utility.

Results3. The autoformalization can be evaluated using
the intersection over union (IoU) between the predicted
and target STLs (constraints). The code generation should
aim for high executability and low utility RMSE simultane-
ously4. As in Table 4, our Translator and Coder achieve the
best across all metrics with low deviations, indicating strong
and reliable autoformalization and program synthesis.

We further evaluate manually written problems. As shown
in Table 5, the autoformalization may produce STLs with
worse quality (lower IoU), suffering from noisy and unstruc-
tured texts written by humans. Our Translator and Coder
generally outperform other baselines, with the accuracy of
autoformalization over 64% (STL’s IoU) and program syn-
thesis over 82% (code executability). Importantly, despite
the low utility RMSE of GPT o1-mini, since it suffers from
poor executability (only 39.22%), its RMSE cannot faith-
fully characterize its stability in the real world.

Table 4: Autoformalization and program synthesis. Deviations
over 3 seeds are in parentheses. Bold indicates the best, underline
denotes the runner-up.

PDE Model
IoU (↑)

(Translator)
Executability (↑)

(Coder)
Utility

RMSE (↓)

Heat

Ours 0.992 (0.07) 0.9978 (0.0015) 0.0173 (0.0065)
MathCoder2 0.772 (0.35) 0.9592 (0.0166) 0.2058 (0.0672)

GPT (4o) - 0.5807 (0.3244) 0.0445 (0.0437)
GPT (o1-mini) - 0.3561 (0.2857) 0.0898 (0.0165)

Wave

Ours 0.992 (0.07) 0.9620 (0.0098) 0.0076 (0.0011)
MathCoder2 0.772 (0.35) 0.9340 (0.0242) 0.1089 (0.0485)

GPT (4o) - 0.6799 (0.2523) 0.0868 (0.0500)
GPT (o1-mini) - 0.4041 (0.2771) 0.0757 (0.0149)

LLMs are provided with true STLs in their prompts, instead of
LLM-generated STLs. Table 15 and 16 show end-to-end results
but cannot decouple the quality of program synthesis. 4) The utility
RMSE is only calculated for executable Python programs.

4Otherwise, the code generation might trivially generate for
example a runnable “return 0”, which is obviously incorrect;
or it might get lucky and generate the correct code for only a very
limited set of problems.

Table 5: Autoformalization and program synthesis on manually
written data (Sec. 3.2). Deviations over 3 seeds are in parentheses.
Bold indicates the best, underline denotes the runner-up.

PDE Model
IoU (↑)

(Translator)
Executability (↑)

(Coder)
Utility

RMSE (↓)

Heat

Ours 0.7108 (0.0043) 0.8235 (0.0) 2.4687 (0.0)
MathCoder2 0.3383 (0.068) 0.9804 (0.0277) 0.0004 (0.0005)

GPT (4o) - 0.4314 (0.3328) 1.8555 (0.0136)
GPT (o1-mini) - 0.3530 (0.3050) 0.1738 (0.0207)

Wave

Ours 0.6493 (0.0) 1.0 (0.0) 0.0119 (0.0)
MathCoder2 0.1953 (0.045) 1.0 (0.0) 0.0129 (0.0012)

GPT (4o) - 0.5882 (0.4437) 0.0105 (0.0)
GPT (o1-mini) - 0.3922 (0.4160) 0.0098 (0.0)

Generalization to Unseen STL Formats. Although we
only collect data with no more than three STLs, it is still
possible to scale up our method to more constraints. To eval-
uate our generalization to unseen STL formats, we extend
our method to unseen 4-constraint STLs. We evaluate our
Translator (IoU) and Coder (executability & utility) over 5
problems each for heat and wave problems in Table 6, and
compare against MathCoder2. We can see that our method
generalizes much better than MathCoder2. Neither model
has seen problems with 4 STL constraints. MathCoder2 is
evaluated with 2 in-context examples of 4 constraints.

Table 6: Test different models on unseen 4-constraint STL formats,
based on IoU, Executability, and Utility RMSE. Bold indicates the
best. Deviations over 5 seeds are in parentheses.

PDE Model
IoU (↑)

(Translator)
Executability (↑)

(Coder)
Utility

RMSE (↓)

Heat Ours 0.934 (0.0) 0.8 (0.0) 0.0 (0.0)
MathCoder2 0.8154 (0.0) 0.6 (0.0) 0.2600 (0.0)

Wave Ours 1.0 (0.0) 0.8 (0.0) 0.1515 (0.0)
MathCoder2 0.9690 (0.0) 0.8 (0.0) 0.2393 (0.2268)

Ablation Comparisons. We further demonstrate the ne-
cessity of our Translator and Coder in Table 7. We observe
the following by making comparisons:

• Our Translator has better autoformalization abilities, im-
proving +28.5% IoU over MathCoder2.

• Our Coder is robust to noisy autoformalization:

– Given ground truth STLs, our Coder has +4% better ex-
ecutability rate in generated Python than MathCoder2,
and utility RMSE is 91.6% lower (better) than Math-
Coder2.

– When switching from ground truth STL inputs to noisy
Translator predictions, our Coder’s utility RMSE is
only 0.57% worse, indicating that our Coder is robust
under noisy predicted STL inputs.

7

PDE-Controller: LLMs for Autoformalization and Reasoning of PDEs

Heat
Initial Condition Anchor Reasoning

Wave

Figure 6: Case study of LLM reasoning for PDE control on heat (top) and wave (bottom) problems (symbols are aligned with Fig. 5).
From left to right: Directly solving ϕ from the initial condition u(0) (1st column) yields r(ϕ) (2nd column); Reasoning: solving ϕ′ from
u(0) to get u′ (3rd column) then solving ϕ from u′ to get r(ϕ|ϕ′) (4th column). Black curves indicate the system’s states (temperature for
heat, displacement for wave) at t or t′. Colored segments (A, B, C) are constraints, with dashes for inequalities (≥ when dashes are above
the solid, and vice versa). Although we plot constraints, they may constrain temporal ranges [t1, t2] ̸∋ t, t′. Constraint STLs can be found
in Appendix B.3.

Table 7: Ablation comparisons of translators and coders. Bold
indicates the performance change relative to the row above.

Method Metric Performance

Mathcoder’s Translator (Table 4) IoU (↑) 0.772
Our Translator (Table 4) 0.992 (+28.5%)

Mathcoder’s Coder (Table 4) Executability (↑) 0.9592
Our Coder (Table 4) 0.9978 (+4.02%)

Mathcoder’s Coder (Table 4) Utility RMSE (↓) 0.2058
Our Coder (Table 4) 0.0173 (-91.6%)

Translator STL → Coder (Table 15) Utility RMSE (↓) 0.0174
Ground Truth STL → Coder(Table 4) 0.0173 (-0.57%)

4.2. Improved Utility via PDE Reasoning of Controller

Beyond autoformalization and program synthesis, our most
important contribution is the scientific reasoning on PDE
problems by the Controller. In addition to the MathCoder2
and GPT models, we consider another baseline, random
sampling, which naively generates reasoning steps by ran-
domly sampling the anchor’s constraints.

Evaluation Metrics. During inference, we sample from
the Controller multiple times. We evaluate the reasoning
performance on PDE control problems with two metrics:
• Success Rate P : The percentage of sampled reasoning

step (ϕ′) that can improve the anchor problem (ϕ), av-
eraged across all anchor problems. P ≜ EϕP (ϕ) =
Eϕp (r(ϕ|ϕ′) > r(ϕ)).

• Utility Gain ∆r: The expected improvement in utility
via a sampled reasoning step, averaged across all anchor

Table 8: Overview of our reasoning data. We threshold 3 difficulty
levels of questions by the Success Rate P of random sampling.

Heat Training Testing Total

Num. (ϕ′(w), ϕ′(l)) Pairs 4813 1181 5994
Easy P ∈ (0.8, 1) 27.1% 26.1% 26.9%
Medium P ∈ (0.5, 0.8] 37.3% 37.8% 37.4%
Hard P ∈ [0, 0.5] 35.6% 36.2% 35.7%

Wave Training Testing Total

Num. (ϕ′(w), ϕ′(l)) Pairs 3812 966 4778
Easy P ∈ (0.88, 1) 32.5% 33.6% 32.7%
Medium P ∈ (0.55, 0.88] 33.1% 32.5% 33.0%
Hard P ∈ [0, 0.55] 34.4% 33.9% 34.3%

problems. ∆r ≜ EϕEϕ′ [r(ϕ|ϕ′)− r(ϕ)].

Difficulty Levels. Intuitively, some anchor problems are
easy to improve via reasoning, while others may be more
challenging to improve. To comprehensively study the per-
formance of our controller, we design three difficulty levels
based on the Success Rate, P , of random sampling. We
group problems by choosing thresholds on P of random
sampling such that all difficulty levels share a balanced num-
ber of problems during testing. We overview our reasoning
data in Table 8 and provide examples in Appendix B.

5In Table 9, to isolate the evaluation of the PDE reasoning qual-
ity (ϕ′) from influence by autoformalization and code generation,
we provide the true Python code for any valid generated subgoal
STL ϕ′. Table 17 shows end-to-end results but cannot decouple
the quality of LLM PDE reasoning.

8

PDE-Controller: LLMs for Autoformalization and Reasoning of PDEs

Table 9: Scientific reasoning over PDE control problems via our Controller LLM. Deviations over 5 seeds are in parentheses. “Valid STL
ϕ′ (%)”: ratio of valid proposed subgoal STL ϕ′ (i.e. without any syntax errors or improper time constraints). Bold indicates the best,
underline denotes the runner-up. “x” indicates no valid STLs were generated for evaluation. “-” indicates not applicable.

PDE Difficulty
Level

Success Rate P (↑) Utility Gain ∆r (↑)

Ours
Random
Sampling

Math-
Coderv2

GPT
(o1-mini)

GPT
(4o) Ours

Random
Sampling

Math-
Coderv2

GPT
(o1-mini)

GPT
(4o)

Heat

Easy 0.966 (0.0453) 0.886 (0.0365) 0.396 (0.2419) x 0.718 (0.1012) 2.233 (0.6662) 1.594 (1.0333) 0.795 (07985) x 1.614 (0.0262)

Medium 0.877 (0.1010) 0.694 (0.0909) 0.340 (0.2324) 0 (0) 0.468 (0.0912) 1.090 (0.5030) 0.526 (0.6986) -0.109 (0.2659) -0.601 (0) 0.222 (0.0560)

Hard 0.592 (0.1692) 0.356 (0.1319) 0.236 (0.1887) 0 (0) 0.469 (0.1147) 1.035 (0.8486) -0.380 (1.2688) -0.964 (0.5101) -1.489 (0) 0.855 (0.0611)

All 0.812 (0.1052) 0.645 (0.0864) 0.324 (0.221) x 0.552 (0.1024) 1.453 (0.6726) 0.580 (1.0002) -0.093 (0.5249) x 0.897 (0.0477)

Wave

Easy 0.936 (0.0600) 0.928 (0.0232) 0.954 (0.0725) x 1 (0) 1.423 (0.4135) 1.110 (0.4986) 1.601 (0.1794) x 1.706 (0)

Medium 0.833 (0.1009) 0.737 (0.0894) 0.769 (0.0362) x 0.933 (0.0408) 0.901 (0.4389) 0.704 (0.7072) 0.830 (0.2122) x 0.652 (0.0191)

Hard 0.328 (0.1220) 0.294 (0.1620) 0.324 (0.1036) x 0.386 (0.1013) -0.349 (0.4357) -0.531 (0.8028) -0.670 (0.1945) x -0.609 (0.0196)

All 0.699 (0.0943) 0.653 (0.0915) 0.682 (0.0708) x 0.773 (0.0474) 0.658 (0.4293) 0.427 (0.6695) 0.587 (0.1954) x 0.583 (0.0129)

Valid STL ϕ′ (%) (↑) 82.70 (1.97) - 42.45 (10.54) 0.04 (0.10) 2.55 (0.65) 82.70 (1.97) - 42.45 (10.54) 0.04 (0.10) 2.55 (0.65)

Results5. We observe the following from Table 9:
• In general, our Controller consistently outperforms other

models for both heat and wave problems. While second to
GPT-4o by wave success rates, GPT-4o suggests very few
valid STLs caused by syntax errors or time constraints
that occur after the anchor problem.

• In general, our Controller most significantly improves
the utility. For example, on heat problems, our ∆r =
1.453, which improves 62% over the second-best (GPT
4o, ∆r = 0.897). Although no model improves utility for
“hard”-level wave problems, our Controller still proposes
the highest quality subgoals.

• Our Controller suggests far and away the highest ratio
of valid STLs (ϕ′), almost doubling the second-ranked
MathCoder2.

• In most heat cases, MathCoder2 and GPT models are
worse than random sampling. GPT o1-mini fails entirely
due to invalid hallucinations in subgoal STL proposals.

On manual data, due to invalid subgoal STL proposals, all
models fail to generate meaningful reasoning steps. Firstly,
inconsistencies in the natural language of the manual data
cause the models to generate invalid constraint values, such
as different units to describe time within a sentence. Sec-
ondly, new notation such as “:=” in NL, result in unbalanced
brackets, hallucinated numbers, and quantifiers. Thirdly, the
models propose invalid time constraints for reasoning steps,
which should occur before the anchor’s time constraints.

Case Study. To better illustrate our PDE controller, we
show one case for heat and wave in Fig. 6. In both exam-
ples, first optimizing the reasoning steps leads to new initial
conditions that better solve each anchor problem.

5. Related Works
First, our paper belongs to the broader community of auto-
formalization in AI-for-math. Autoformalization converts

informal math into formal logic. LLMs like GPT-3.5/4o
have been used to translate problems into Isabelle/Lean4
sketches (Zhou et al., 2024; Jiang et al., 2023). Verna-
Copter (van de Laar et al., 2024) autoformalizes natural
languages into STL with correctness checks. Hybrid meth-
ods combine manual and automated steps (Xin et al., 2024;
Xiong et al., 2023; Murphy et al., 2024; Mishra et al., 2022).
We introduce LLMs trained to autoformalize informal PDE
control into STL. Second, our paper targets PDE Controls.
PDEs model physical systems; control aims to ensure stabil-
ity or optimize behavior (Alvarez, 2020; Wei et al.). Clas-
sical methods use adjoints (Lions, 1971), while learning-
based ones use differentiable physics (Holl et al., 2020) or
RL (Rabault et al., 2019). LLMs help with multimodal
PDE surrogate modeling (Lorsung & Farimani, 2025). We
reformulate PDE control into MILP via FEM (Sadraddini
& Belta, 2015) and use LLMs to propose initializations for
open-loop control, guided by a utility score (Appendix A.2).
Finally, our work also studies LLM-based Task Plan-
ning. LLMs translate natural language to formal plans (e.g.,
LTL)(Pan et al., 2023). Recent work improves plan reliabil-
ity (Wang et al.; Ren et al., 2023), with CLMASP refining
outputs via ASP (Lin et al., 2024). We extend LLM-based
reasoning to PDE control for the first time.

Please read Appendix G for more related works.

6. Conclusion
In this paper, we aim to transform the automation of PDE
control problems. By utilizing LLMs to interpret natural
language problem descriptions, formalize mathematical ex-
pressions, and apply scientific reasoning, we demonstrate
that LLMs can fully automate PDE control while even im-
proving control performance. Our research emphasizes the
importance of LLMs in applied mathematics, and seeks to
enable more accessible, scalable, and robust PDE solutions,
ultimately expanding the practical reach and reliability of
PDE applications across scientific and engineering domains.

9

PDE-Controller: LLMs for Autoformalization and Reasoning of PDEs

Acknowledgements
We thank Dr. Danqi Chen for her helpful comments. We
thank all participants in our questionnaire for manually writ-
ing PDE control problems. For privacy reasons, we do not
disclose their names.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Ahn, J., Verma, R., Lou, R., Liu, D., Zhang, R., and Yin, W.
Large language models for mathematical reasoning: Pro-
gresses and challenges. arXiv preprint arXiv:2402.00157,
2024.

Alvarez, F. P. Formal Methods for Partial Differential Equa-
tions. PhD thesis, Boston University, 2020.

Barry-Straume, J., Sarshar, A., Popov, A. A., and Sandu, A.
Physics-informed neural networks for pde-constrained op-
timization and control, 2022. URL https://arxiv.
org/abs/2205.03377.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

Cheng, G., Zhang, C., Cai, W., Zhao, L., Sun, C., and Bian,
J. LLM+ a: Grounding large language models in physical
world with affordance prompting. 2024.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Donzé, A. and Maler, O. Robust satisfaction of temporal
logic over real-valued signals. In International Confer-
ence on Formal Modeling and Analysis of Timed Systems,
pp. 92–106. Springer, 2010.

Farahmand, A.-m., Nabi, S., and Nikovski, D. N. Deep
reinforcement learning for partial differential equation
control. In 2017 American Control Conference (ACC),
pp. 3120–3127. IEEE, 2017.

Feng, G., Yang, K., Gu, Y., Ai, X., Luo, S., Sun, J., He,
D., Li, Z., and Wang, L. How numerical precision af-
fects mathematical reasoning capabilities of LLMs. arXiv
preprint arXiv:2410.13857, 2024.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N.,
et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027,
2020.

Garnier, P., Viquerat, J., Rabault, J., Larcher, A., Kuhnle, A.,
and Hachem, E. A review on deep reinforcement learning
for fluid mechanics. Computers & Fluids, 225:104973,
2021.

Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, J. W.,
Wallach, H., Iii, H. D., and Crawford, K. Datasheets for
datasets. Communications of the ACM, 64(12):86–92,
2021.

Glazer, E., Erdil, E., Besiroglu, T., Chicharro, D., Chen, E.,
Gunning, A., Olsson, C. F., Denain, J.-S., Ho, A., Santos,
E. d. O., et al. Frontiermath: A benchmark for evaluating
advanced mathematical reasoning in ai. arXiv preprint
arXiv:2411.04872, 2024.

Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2024. URL https://www.gurobi.com.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Holl, P., Koltun, V., and Thuerey, N. Learning to con-
trol pdes with differentiable physics. arXiv preprint
arXiv:2001.07457, 2020.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

Huang, C., Mees, O., Zeng, A., and Burgard, W. Visual
language maps for robot navigation. In 2023 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pp. 10608–10615. IEEE, 2023.

Hwang, R., Lee, J. Y., Shin, J. Y., and Hwang, H. J. Solving
pde-constrained control problems using operator learn-
ing. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 4504–4512, 2022.

Jia, J., Yuan, Z., Pan, J., McNamara, P. E., and Chen,
D. Decision-making behavior evaluation framework
for LLMs under uncertain context. arXiv preprint
arXiv:2406.05972, 2024.

10

https://arxiv.org/abs/2205.03377
https://arxiv.org/abs/2205.03377
https://www.gurobi.com

PDE-Controller: LLMs for Autoformalization and Reasoning of PDEs

Jiang, A. Q., Li, W., and Jamnik, M. Multilingual mathemat-
ical autoformalization. arXiv preprint arXiv:2311.03755,
2023.

Kress-Gazit, H., Fainekos, G. E., and Pappas, G. J.
Temporal-logic-based reactive mission and motion plan-
ning. IEEE transactions on robotics, 25(6):1370–1381,
2009.

Li, S., Puig, X., Paxton, C., Du, Y., Wang, C., Fan, L.,
Chen, T., Huang, D.-A., Akyürek, E., Anandkumar, A.,
et al. Pre-trained language models for interactive decision-
making. Advances in Neural Information Processing
Systems, 35:31199–31212, 2022.

Li, Z., Sun, J., Murphy, L., Su, Q., Li, Z., Zhang, X., Yang,
K., and Si, X. A survey on deep learning for theorem
proving. arXiv preprint arXiv:2404.09939, 2024.

Lin, X., Wu, Y., Yang, H., Zhang, Y., Zhang, Y., and Ji, J.
Clmasp: Coupling large language models with answer set
programming for robotic task planning. arXiv preprint
arXiv:2406.03367, 2024.

Lions, J. Optimal control of systems governed by partial
differential equations, 1971.

Lorsung, C. and Farimani, A. B. Explain like i’m five: Using
llms to improve pde surrogate models with text, 2025.
URL https://arxiv.org/abs/2410.01137.

Lu, P., Qiu, L., Yu, W., Welleck, S., and Chang, K.-W.
A survey of deep learning for mathematical reasoning.
arXiv preprint arXiv:2212.10535, 2022.

Lu, Z., Zhou, A., Wang, K., Ren, H., Shi, W., Pan, J., Zhan,
M., and Li, H. Mathcoder2: Better math reasoning from
continued pretraining on model-translated mathematical
code. arXiv preprint arXiv:2410.08196, 2024.

Maler, O. and Nickovic, D. Monitoring temporal properties
of continuous signals. In International symposium on
formal techniques in real-time and fault-tolerant systems,
pp. 152–166. Springer, 2004.

McKinzie, B., Gan, Z., Fauconnier, J.-P., Dodge, S., Zhang,
B., Dufter, P., Shah, D., Du, X., Peng, F., Belyi, A., et al.
Mm1: methods, analysis and insights from multimodal
llm pre-training. In European Conference on Computer
Vision, pp. 304–323. Springer, 2025.

McNamara, A., Treuille, A., Popović, Z., and Stam, J. Fluid
control using the adjoint method. ACM Transactions On
Graphics (TOG), 23(3):449–456, 2004.

Mirzadeh, I., Alizadeh, K., Shahrokhi, H., Tuzel, O., Bengio,
S., and Farajtabar, M. Gsm-symbolic: Understanding the
limitations of mathematical reasoning in large language
models. arXiv preprint arXiv:2410.05229, 2024.

Mishra, S., Finlayson, M., Lu, P., Tang, L., Welleck, S.,
Baral, C., Rajpurohit, T., Tafjord, O., Sabharwal, A.,
Clark, P., et al. Lila: A unified benchmark for math-
ematical reasoning. arXiv preprint arXiv:2210.17517,
2022.

Mowlavi, S. and Nabi, S. Optimal control of pdes using
physics-informed neural networks, 2022. URL https:
//arxiv.org/abs/2111.09880.

Mukherjee, A. and Liu, J. Actor-critic methods using
physics-informed neural networks: Control of a 1d pde
model for fluid-cooled battery packs. arXiv preprint
arXiv:2305.10952, 2023.

Murphy, L., Yang, K., Sun, J., Li, Z., Anandkumar, A.,
and Si, X. Autoformalizing euclidean geometry. arXiv
preprint arXiv:2405.17216, 2024.

Pan, J., Chou, G., and Berenson, D. Data-efficient learning
of natural language to linear temporal logic translators for
robot task specification, 2023. URL https://arxiv.
org/abs/2303.08006.

Pan, Y., Farahmand, A.-m., White, M., Nabi, S., Grover, P.,
and Nikovski, D. Reinforcement learning with function-
valued action spaces for partial differential equation con-
trol. In International Conference on Machine Learning,
pp. 3986–3995. PMLR, 2018.

Pang, R. Y., Yuan, W., Cho, K., He, H., Sukhbaatar, S.,
and Weston, J. Iterative reasoning preference optimiza-
tion, 2024. URL https://arxiv.org/abs/2404.
19733.

Paunonen, L. and Humaloja, J.-P. On robust regulation of
pdes: from abstract methods to pde controllers. In 2022
IEEE 61st Conference on Decision and Control (CDC),
pp. 7352–7357. IEEE, 2022.

Paunonen, L. and Phan, D. Reduced order controller de-
sign for robust output regulation. IEEE Transactions on
Automatic Control, 65(6):2480–2493, 2019.

Protas, B. Adjoint-based optimization of pde systems with
alternative gradients. Journal of Computational Physics,
227(13):6490–6510, 2008.

Rabault, J., Kuchta, M., Jensen, A., Réglade, U., and Cer-
ardi, N. Artificial neural networks trained through deep re-
inforcement learning discover control strategies for active
flow control. Journal of fluid mechanics, 865:281–302,
2019.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Er-
mon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. Ad-
vances in Neural Information Processing Systems, 36,
2024.

11

https://arxiv.org/abs/2410.01137
https://arxiv.org/abs/2111.09880
https://arxiv.org/abs/2111.09880
https://arxiv.org/abs/2303.08006
https://arxiv.org/abs/2303.08006
https://arxiv.org/abs/2404.19733
https://arxiv.org/abs/2404.19733

PDE-Controller: LLMs for Autoformalization and Reasoning of PDEs

Ramos, L. A., Van Kan, R. F., Mezaroba, M., and
Batschauer, A. L. A control strategy to smooth power
ripple of a single-stage bidirectional and isolated ac-dc
converter for electric vehicles chargers. Electronics, 11
(4):650, 2022.

Ren, A. Z., Dixit, A., Bodrova, A., Singh, S., Tu, S., Brown,
N., Xu, P., Takayama, L., Xia, F., Varley, J., et al. Robots
that ask for help: Uncertainty alignment for large lan-
guage model planners. arXiv preprint arXiv:2307.01928,
2023.

Sadraddini, S. and Belta, C. Robust temporal logic model
predictive control. In 2015 53rd Annual Allerton Confer-
ence on Communication, Control, and Computing (Aller-
ton), pp. 772–779. IEEE, 2015.

Shah, D., Osiński, B., Levine, S., et al. Lm-nav: Robotic
navigation with large pre-trained models of language,
vision, and action. In Conference on robot learning, pp.
492–504. PMLR, 2023.

Singh, I., Blukis, V., Mousavian, A., Goyal, A., Xu, D.,
Tremblay, J., Fox, D., Thomason, J., and Garg, A. Prog-
prompt: Generating situated robot task plans using large
language models. In 2023 IEEE International Conference
on Robotics and Automation (ICRA), pp. 11523–11530.
IEEE, 2023.

Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li,
X., Guestrin, C., Liang, P., and Hashimoto, T. B.
Stanford alpaca: An instruction-following llama
model. https://github.com/tatsu-lab/
stanford_alpaca, 2023.

Trinh, T. H., Wu, Y., Le, Q. V., He, H., and Luong, T. Solv-
ing olympiad geometry without human demonstrations.
Nature, 625(7995):476–482, 2024.

van de Laar, T., Zhang, Z., Qi, S., Haesaert, S., and
Sun, Z. Vernacopter: Disambiguated natural-language-
driven robot via formal specifications. arXiv preprint
arXiv:2409.09536, 2024.

Wang, J., Tong, J., Tan, K., Vorobeychik, Y., and Kantaros,
Y. Conformal temporal logic planning using large lan-
guage models.

Wang, J., Wu, Z., Li, Y., Jiang, H., Shu, P., Shi, E., Hu, H.,
Ma, C., Liu, Y., Wang, X., et al. Large language models
for robotics: Opportunities, challenges, and perspectives.
arXiv preprint arXiv:2401.04334, 2024.

Weber, M., Fu, D., Anthony, Q., Oren, Y., Adams, S.,
Alexandrov, A., Lyu, X., Nguyen, H., Yao, X., Adams, V.,
et al. Redpajama: an open dataset for training large lan-
guage models. arXiv preprint arXiv:2411.12372, 2024.

Wei, L., Hu, P., Feng, R., Du, Y., Zhang, T., Wang, R.,
Wang, Y., Ma, Z.-M., and Wu, T. Generative pde control.
In ICLR 2024 Workshop on AI4DifferentialEquations In
Science.

Wei, L., Hu, P., Feng, R., Feng, H., Du, Y., Zhang, T., Wang,
R., Wang, Y., Ma, Z.-M., and Wu, T. Diffphycon: A
generative approach to control complex physical systems.
arXiv preprint arXiv:2407.06494, 2024a.

Wei, S., Li, Y., Yu, L., Wu, M., Li, W., Hao, M., Li, W.,
Liu, J., and Deng, Y. Closed-form symbolic solutions: A
new perspective on solving partial differential equations.
arXiv preprint arXiv:2405.14620, 2024b.

Williams, S. and Huckle, J. Easy problems that LLMs get
wrong. arXiv preprint arXiv:2405.19616, 2024.

Xin, H., Guo, D., Shao, Z., Ren, Z., Zhu, Q., Liu, B., Ruan,
C., Li, W., and Liang, X. Deepseek-prover: Advancing
theorem proving in LLMs through large-scale synthetic
data. arXiv preprint arXiv:2405.14333, 2024.

Xiong, J., Shen, J., Yuan, Y., Wang, H., Yin, Y., Liu, Z.,
Li, L., Guo, Z., Cao, Q., Huang, Y., et al. Trigo: Bench-
marking formal mathematical proof reduction for genera-
tive language models. arXiv preprint arXiv:2310.10180,
2023.

Yang, K., Swope, A., Gu, A., Chalamala, R., Song, P.,
Yu, S., Godil, S., Prenger, R. J., and Anandkumar, A.
Leandojo: Theorem proving with retrieval-augmented
language models. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Zawalski, M., Tyrolski, M., Czechowski, K., Odrzygóźdź,
T., Stachura, D., Piękos, P., Wu, Y., Kuciński, Ł.,
and Miłoś, P. Fast and precise: Adjusting planning
horizon with adaptive subgoal search. arXiv preprint
arXiv:2206.00702, 2022.

Zhao, X., Li, W., and Kong, L. Decomposing the enigma:
Subgoal-based demonstration learning for formal theo-
rem proving. arXiv preprint arXiv:2305.16366, 2023a.

Zhao, X., Li, W., and Kong, L. Subgoal-based demonstra-
tion learning for formal theorem proving. In Forty-first
International Conference on Machine Learning, 2023b.

Zhou, J. P., Staats, C., Li, W., Szegedy, C., Weinberger,
K. Q., and Wu, Y. Don’t trust: Verify–grounding LLM
quantitative reasoning with autoformalization. arXiv
preprint arXiv:2403.18120, 2024.

12

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

PDE-Controller: LLMs for Autoformalization and Reasoning of PDEs

A. More Background on Formal Methods for PDE Control
A.1. PDEs

We consider controlling systems governed by two popular PDEs (in 1D space):

• Heat Equation: Describes how heat diffuses through a material over time. Applications: temperature in buildings, pollution
in the environment.

ρc
∂u

∂t
− κ

∂2u

∂x2
= 0,

κ
∂u

∂x
(L, t) = q(t),

u(0, t) = g0, ∀t ∈ [0, tmax],

u(x, 0) = u0(x), ∀x ∈ [0, L].

(5)

ρ, c, κ > 0: density, specific thermal capacity, thermal conductivity of the material respectively. u the spatiotemporal
temperature of the material. x ∈ [0, L] is the spatial location. t ∈ [0, tmax] is the time. q is the time-variant external heat
source, applied at x = L. g0 is the boundary condition applied at x = 0. u0 is the initial condition (temperature).

• Wave Equation: Models the propagation of waves (sound, electromagnetic, or water waves). Applications: Acoustic
control, vibration control in structures (e.g., bridges, buildings).

ρ
∂2u

∂t2
− E

∂2u

∂x2
= 0,

E
∂u

∂x
(L, t) = F (t),

u(0, t) = g0, ∀t ∈ [0, tmax],

u(x, 0) = u0(x), ∀x ∈ [0, L].

(6)

ρ,E > 0: density, Young’s Modulus of the material respectively. u the spatiotemporal displacement of the material.
x ∈ [0, L] is the spatial location. t is the time. F is the time-variant external fource, applied at x = L. g0 is the boundary
condition applied at x = 0. u0 is the initial condition (displacement), and typically we set it as 0.

A.2. Utility of STL

The continuous utility value of STL r(ϕ) is calculated with the following cases and rules:

r (u,u ≥ ax+ b, t) = u(x, t)− (ax+ b) (7)
r (u,u ≤ ax+ b, t) = (ax+ b)− u(x, t) (8)
r (u, ϕ1 ∧ ϕ2, t) = min {r (u, ϕ1, t) , r (u, ϕ2, t)} (9)
r (u, ϕ1 ∨ ϕ2, t) = max {r (u, ϕ1, t) , r (u, ϕ2, t)} (10)

r
(
u,F[a,b)ϕ, t

)
= sup

tf∈[t+a,t+b)

{r (u, ϕ, tf)} (11)

r
(
u,G[a,b)ϕ, t

)
= inf

tg∈[t+a,t+b)
{r (u, ϕ, tg)} (12)

Here, Eq. 7 and 8 indicates the linear constraint we consider in Eq. 1.

A.3. MILP Formulation of Control Synthesis

Solving the PDE control problem can be relaxed and formulated into a PDE-constrained optimization problem, which can
be further solved by mixed-integer linear programming (MILP). We brief the high-level steps, and we recommend readers to
read (Sadraddini & Belta, 2015; Alvarez, 2020) for more details.

We start with spatially and temporally discretizing the PDE. This is achieved by the finite element method (FEM):

1. The PDE is converted into its weak (variational) form by integrating against suitable test functions v(x). The purpose is
to reduce the second-order derivatives of u to first derivatives so that we can obtain (linear) approximations to u. This
also simplifies boundary condition handling and smoothness requirements in the original PDE.

13

PDE-Controller: LLMs for Autoformalization and Reasoning of PDEs

2. The spatial domain of the PDE’s weak form is discretized by dividing it into small, simple geometric elements (intervals
in 1D, triangles/quadrilaterals in 2D; tetrahedra in 3D), essentially forming a mesh, and choosing local basis functions on
each element.

3. Contributions from local (spatial) elements are assembled across the entire mesh into a global linear system, often written
as M ˙̃u+Kũ = F . The stiffness matrix (K) and mass matrix (M) encode the PDE’s structure. The banded stiffness
matrix (K) arises from terms involving derivatives (e.g., ∇u · ∇v in the weak form). The diagonal mass matrix (M)
comes from non-derivative terms (e.g., u · v). F is the “force” vector (from external source terms/boundary conditions
like heat and force). This step transforms the PDE into an ordinary differential equation (ODE) in time for the discretized
spatial domain.

4. The temporal domain is further discretized using finite difference schemes, obtaining a set of difference equations that
must be solved at each time step. This final step produces the final linear (or nonlinear) system of equations that is solved
numerically to approximate the solution of the original PDE.

M
ũn+1 − ũn

∆t
+Kũn+1 = F n+1. (13)

This can be further rearranged to a linear system:

(M +∆tK)ũk+1 = Mũk +∆tF k+1. (14)

At this moment, we can re-formulate the original PDE control problem into the following PDE-constrained optimization
problem:

max r (ϕ, ũ) (15)

s.t. (M +∆tK)ũk+1 = Mũk +∆tF k+1, (16)

ũ0 = ũ(0).

This formulation is equivalent to an MILP problem because:

• ϕ is only applied to limited spatiotemporal ranges. After the discretization of PDE, essentially ϕ is only selectively applied
to certain areas of grids over our (1D) mesh. That means, we need binary variables to encode the absence/presence of ϕ
over the spatiotemporal domain.

• The discretized PDE constraints Eq. 16 is linear in ũ. Additionally, based on Appendix A.2, the objective function r(ϕ, ũ)
(Eq. 15) is also linear in ϕ and ũ.

This MILP problem is non-convex, due to the min,max operation and non-differentiability (Appendix A.2) of the objective
function r (ϕ, ũ) in Eq. 15. This MILP problem is solved using the off-the-shelf Gurobi solver (Gurobi Optimization, LLC,
2024).

A.4. Metrics - Additional Design Considerations

The careful design of our utility score, in Appendix A.2, can faithfully quantify whether the STLs (constraints) are fully met
by the solution simulated by the Gurobi solver. This utility score is inherited from prior work (Alvarez, 2020).

Compared with standard metrics such as pass@k, our metrics can better quantify our LLMs’ performance. IoU is designed
to provide fine-grained quantification of the logic structures (junctions, temporal operators, boundary constraints) while
pass@k lacking nuance will fail or succeed from trivial text-level differences in STL. We further explain the connection
between our metrics and pass@k below:

• For autoformalization (Translator), IoU is equivalent to “average@k”, it averages the alignment between predictions
and targets over multiple generations and problems. We can discretize IoU into “pass@k” by considering only pass/fail
cases based on token-level differences; but this ignores fine-grained quantifications of autoformalization. Namely, in
tables 10 and 11 below, IoU and pass@k are not always aligned.

• For code generation (Coder), the executability metric is essentially pass@k from the executability perspective.

14

PDE-Controller: LLMs for Autoformalization and Reasoning of PDEs

Table 10: Performance comparison for autoformalization (Translator) on Heat. Deviations over 3 seeds are in parentheses.

Model IoU Pass@1 Pass@2 Pass@3

Ours 0.992 (0.07) 0.978 (0.142) 0.980 (0.134) 0.982 (0.131)
MathCoder2 0.772 (0.35) 0.538 (0.480) 0.565 (0.484) 0.583 (0.493)

Table 11: Performance comparison for autoformalization (Translator) on Wave. Deviations over 3 seeds are in parentheses.

Model IoU Pass@1 Pass@2 Pass@3

Ours 0.992 (0.07) 0.971 (0.161) 0.975 (0.152) 0.977 (0.149)
MathCoder2 0.772 (0.35) 0.3305 (0.4396) 0.3726 (0.4663) 0.3971 (0.4893)

Heat
Easy

Initial Condition Anchor Reasoning

Med.

Hard

Figure 7: Case study of heat problems with different difficulty levels: easy (top), medium (middle), hard (bottom). Symbols are aligned
with Fig. 5. From left to right: Directly solving ϕ from the initial condition u(0) (1st column) yields r(ϕ) (2nd column). Reasoning:
solving ϕ′ from u(0) to get u′ (3rd column) then solving ϕ from u′ to get r(ϕ|ϕ′) (4th column) Black curves indicate the system’s states
(temperature for heat, displacement for wave) at t or t′. Colored segments are constraints, with dashes for inequalities (≥ when dashes are
above the solid, ≤ when dashes are below the solid). Note that although we always plot constraints (segments), they actually constrain
different temporal ranges [t1, t2] and it is possible that t, t′ /∈ [t1, t2].

B. Case Examples and Visualizations
To better illustrate our PDE reasoning, we show more cases with visualizations and their corresponding STLs (constraints).
All time constraints are rounded to two decimal places, and parameters that describe the linear profiles are rounded to four
decimal places.

B.1. Heat

We show easy/medium/hard problems in Fig. 7, with their anchor STL (ϕ) and subgoal STL (ϕ′) listed below.

15

PDE-Controller: LLMs for Autoformalization and Reasoning of PDEs

1) Easy:

Anchor Constraints STL (ϕ):

F[1.17,3.48](∀x ∈ [10, 25](u(x)− (−0.2169 · x+ 286.5171) > 0))∧
(G[4.64,5.13](∀x ∈ [41, 55](u(x)− (−0.2225 · x+ 311.8826) < 0))∨
F[6.04,11.77](∀x ∈ [61, 89](u(x)− (0.0988 · x+ 310.7904) > 0)))

Subgoal STL Proposal (ϕ′) by Controller:

F[0.42,0.99](∀x ∈ [10, 25](u(x)− (−0.2907 · x+ 323.3970) > 0))∧
(G[0.10,0.57](∀x ∈ [31, 46](u(x)− (−0.1338 · x+ 368.9958) < 0))∨
F[0.30,0.96](∀x ∈ [61, 89](u(x)− (0.0788 · x+ 390.7948) > 0)))

2) Medium:

Anchor Constraints STL (ϕ):

G[2.18,2.70](∀x ∈ [0, 30](u(x)− (0.4159 · x+ 293.2549) > 0))∨
(G[4.03,7.79](∀x ∈ [46, 63](u(x)− (−0.0956 · x+ 296.0596) < 0))∧
F[8.33,13.41](∀x ∈ [75, 96](u(x)− (0.2602 · x+ 309.7111) > 0)))

Subgoal STL Proposal (ϕ′) by Controller:

G[0.66,1.68](∀x ∈ [0, 30](u(x)− (0.3616 · x+ 387.4454) > 0))∨
(G[0.52,2.03](∀x ∈ [46, 63](u(x)− (−0.1061 · x+ 435.4267) < 0))∧
F[0.22,1.17](∀x ∈ [75, 96](u(x)− (0.1779 · x+ 374.4556) > 0)))

3) Hard:

Anchor Constraints STL (ϕ):

G[2.62,4.50](∀x ∈ [22, 87](u(x)− (−0.0122 · x+ 294.2976) > 0))

Subgoal STL Proposal (ϕ′) by Controller:

G[1.29,2.50](∀x ∈ [22, 87](u(x)− (−0.0157 · x+ 408.1535) > 0))

B.2. Wave

We show easy/medium/hard problems in Fig. 8, with their anchor STL (ϕ) and subgoal STL (ϕ′) listed below.

1) Easy:

Anchor Constraints STL (ϕ):

(G[0.25,0.54](∀x ∈ [7207, 23479](u(x)− (2.2684e− 05 · x+ 1.4129) < 0))∧
F[0.76,0.84](∀x ∈ [42469, 65095](u(x)− (1.8952e− 06 · x− 1.7928) > 0)))∨
F[1.12,1.33](∀x ∈ [77653, 85444](u(x)− (−4.0675e− 05 · x+ 2.1560) > 0))

Subgoal STL Proposal (ϕ′) by Controller:

(G[0.10,0.24](∀x ∈ [7207, 23479](u(x)− (3.0242e− 05 · x+ 1.1961) < 0))∧
F[0.05,0.09](∀x ∈ [42469, 65095](u(x)− (2.3575e− 06 · x− 1.5473) > 0)))∨
F[0.10,0.18](∀x ∈ [77653, 85444](u(x)− (−4.4208e− 05 · x+ 2.7018) > 0))

16

PDE-Controller: LLMs for Autoformalization and Reasoning of PDEs

Wave Initial Condition Anchor Reasoning

Easy

Med.

Hard

Figure 8: Case study of wave problems with different difficulty levels: easy (top), medium (middle), hard (bottom). Symbols are aligned
with Fig. 5. From left to right: Directly solving ϕ from the initial condition u(0) (1st column) yields r(ϕ) (2nd column). Reasoning:
solving ϕ′ from u(0) to get u′ (3rd column) then solving ϕ from u′ to get r(ϕ|ϕ′) (4th column) Black curves indicate the system’s states
(temperature for heat, displacement for wave) at t or t′. Colored segments are constraints, with dashes for inequalities (≥ when dashes are
above the solid, ≤ when dashes are below the solid). Note that although we always plot constraints (segments), they actually constrain
different temporal ranges [t1, t2] and it is possible that t, t′ /∈ [t1, t2].

2) Medium:

Anchor Constraints STL (ϕ):

G[0.10,0.24](∀x ∈ [13787, 21080](u(x)− (−9.5400e− 06 · x− 0.3744) < 0))∨
F[0.05,0.09](∀x ∈ [49923, 59039](u(x)− (1.2003e− 05 · x− 1.5231) > 0))∨
G[0.78,1.31](∀x ∈ [78762, 86964](u(x)− (4.3983e− 05 · x− 1.5994) > 0))

Subgoal STL Proposal (ϕ′) by Controller:

G[0.06,0.16](∀x ∈ [9084, 26246](u(x)− (−4.3491e− 05 · x− 2.1348) > 0))∧
G[0.04,0.04](∀x ∈ [27204, 39168](u(x)− (4.2688e− 06 · x− 2.6843) > 0))∧
G[0.01,0.07](∀x ∈ [58194, 97070](u(x)− (−4.0965e− 05 · x+ 0.2641) < 0))

3) Hard:

Anchor Constraints STL (ϕ):

(G[0.23,0.30](∀x ∈ [12400, 20684](u(x)− (4.0369e− 05 · x− 0.9002) > 0))∧
F[0.72,0.82](∀x ∈ [33059, 46052](u(x)− (3.5491e− 07 · x− 1.4933) < 0)))∨
F[1.10,1.11](∀x ∈ [67963, 79313](u(x)− (1.6090e− 06 · x− 1.1675) > 0))

17

PDE-Controller: LLMs for Autoformalization and Reasoning of PDEs

Subgoal STL Proposal (ϕ′) by Controller:

(G[0.07,0.22](∀x ∈ [12400, 20684](u(x)− (3.4256e− 05 · x− 0.5172) > 0))∧
F[0.04,0.11](∀x ∈ [33059, 46052](u(x)− (2.9472e− 07 · x− 1.8896) < 0)))∨
F[0.01,0.20](∀x ∈ [67963, 79313](u(x)− (2.3060e− 06 · x− 0.7148) > 0))

B.3. STLs for Examples in Fig. 6

Heat:

Anchor Constraints STL (ϕ) shown as A, B, C respectively in the Initial Condition, Anchor and right Reasoning columns of
Fig. 6:

G[1.63,3.13](∀x ∈ [2, 29](u(x)− (0.4565 · x+ 287.7909) > 0))∨
(G[4.25,4.58](∀x ∈ [38, 47](u(x)− (0.2137 · x+ 287.1038) < 0))∧
F[5.94,9.86](∀x ∈ [54, 77](u(x)− (0.3008 · x+ 299.3877) > 0)))

Subgoal STL Proposal (ϕ′) by Controller shown as A, B, C respectively in the left Reasoning column of Fig. 6:

G[0.69,1.49](∀x ∈ [2, 29](u(x)− (0.4088 · x+ 294.5123) > 0))∨
(G[0.26,0.33](∀x ∈ [38, 47](u(x)− (0.2907 · x+ 404.7615) < 0))∧
F[0.06,0.10](∀x ∈ [54, 77](u(x)− (0.3503 · x+ 316.1354) > 0)))

Wave:

Anchor Constraints STL (ϕ) shown as A, B, C respectively in the Initial Condition, Anchor and right Reasoning columns of
Fig. 6:

(G[0.16,0.20](∀x ∈ [14057, 29980](u(x)− (2.8994e− 05 · x− 2.5372) > 0))∧
G[0.28,0.37](∀x ∈ [38096, 58208](u(x)− (−2.9597e− 05 · x− 0.8070) > 0)))∨
F[0.45,0.92](∀x ∈ [71793, 88339](u(x)− (1.2523e− 05 · x− 2.4337) < 0))

Subgoal STL Proposal (ϕ′) by Controller shown as A, B, C respectively in the left Reasoning column of Fig. 6:

(G[0.00,0.01](∀x ∈ [14057, 29980](u(x)− (3.0385e− 05 · x− 1.3785) > 0))∧
G[0.03,0.07](∀x ∈ [38096, 58208](u(x)− (−2.2655e− 05 · x− 0.5356) > 0)))∨
F[0.00,0.11](∀x ∈ [71793, 88339](u(x)− (1.6430e− 05 · x− 1.7368) < 0))

B.4. Solutions to Examples in Fig. 6

Fig.9 presents the optimized control inputs for the heat and wave problems shown in Fig.6. The figure illustrates how the
heat source (qt) and the force (Ft) applied at the end of the rod change over time. We provide the solutions for 2 cases, the
first column shows the solution obtained by directly solving the problem ϕ, while the second column shows the solution to
solve the problem ϕ after the subgoal ϕ′.

C. Dataset Details
C.1. PDE Parameter Ranges

For generating our dataset, we sample hyperparameters (that define control problems) in the following range (Table 12
and 13). Note that our heat and wave problems are all 1D, making some dimension-related units different from those in 3D.

C.2. Rules for Data Generation

From STL to Natural Language. Each natural language problem consists of two parts: one part defines the premises,
such as the material density, initial temperature, and rod length; the other part describes the constraints, which can be
expressed as an STL formula.

18

PDE-Controller: LLMs for Autoformalization and Reasoning of PDEs

(N
)

(m
W
)

(S) (S)

Figure 9: Synthesized control inputs for the heat (top) and the wave (bottom) problems in Fig.6. Left: Solution for directly solving ϕ.
Right: Solution for solving ϕ based on subgoal ϕ′, where red vertical dashes indicate the control shift from ϕ′ to ϕ.

Table 12: Ranges for hyperparameters used in heat problems.

Rod Length
(mm)

Fixed Temp.
(K)

Max Time
(s) Linear Profile Param.

Thermal Conductivity
(mW ·mm/K)

Density
(kg/mm)

Specific Heat Capacity
(µJ/kg/K)

L temp tmax a b κa (×106) κb (×106) ρa (×10−6) ρb (×10−6) ca (×108) cb (×108)
[50, 300] [250, 350] [5, 15] [-0.5, 0.5] temp + [-20, 20] [1.2, 1.8] [0.4, 1.2] [3, 6] [3, 6] [3, 4.5] [4.5, 4.8]

Table 13: Ranges for hyperparameters used in wave problems.

Rod Length
(mm)

Density
(kg/mm)

Young’s Modulus
(N)

Max Time
(s) Linear Profile Param.

L ρsteel (×10−6) ρbrass (×10−6) Esteel (×108) Ebrass (×108) tmax a (×10−5) b
[60000, 140000] [7.6, 8] [8.4, 8.8] [2, 2.4] [1, 1.8] [0.5, 2] [-5, 5] [-3, 3]

To convert the STL formula into informal language, each constraint and condition is mapped to corresponding phrases. For
instance, the constraint conditions F and G are described as “for one point during” and “for all time between”, respectively.
The comparison conditions are mapped based on the problem type: for heat problems, > indicates “the temperature
distribution of the rod should be greater than”; for wave problems, > indicates “the displacement of the rod should be
stretched over”.

We then consider the ∨ and ∧ logical operators after converting each individual constraint. For problems with two constraints,
we introduce transition words such as “moreover” for ∧ and “either. . . or. . . ” for ∨. For problems with three constraints, we
design templates that account for the hierarchy of constraints based on the placement of parentheses in the STL formula that
defines the logical order.

For example, given the STL syntax (A ∧B) ∨C, the template is: “Either satisfy the conditions that A and also B; or satisfy
the condition that C.” For A ∧ (B ∨C), the template is: “Satisfy A. Afterwards, either consider B or C.”

From STL to Python. To parse the predicted STL into Python in Table 9, we first extract logical connectives (∨,∧), rod
intersections, and constraint equations. Based on the number of constraints, the corresponding variables are inserted into a
Python script template. The time intervals and constraint conditions (G,F) are passed directly into the script to preserve the
original STL syntax. The generated outputs may fail to convert due to hallucinations or syntax errors.

19

PDE-Controller: LLMs for Autoformalization and Reasoning of PDEs

For example, given the STL Logic below:

G[0.049,0.053](∀x ∈ [9829, 19907](u(x)− (1.882e− 05 · x+ 0.187) < 0))∧
F[0.051,0.149](∀x ∈ [40199, 56082](u(x)− (3.356e− 06 · x+−0.510) < 0)))∨
F[0.061,0.169](∀x ∈ [75646, 98769](u(x)− (−1.390e− 05 · x+ 2.844) > 0)

We convert into its Python snippet:

apc0 = l o g i c . APCont ([9 8 2 9 , 19907] , " <" ,
lambda x : 1 .882 e −05 * x + 0 . 1 8 7 , lambda x : 1 .882 e −05)

apc1 = l o g i c . APCont ([4 0 1 9 9 , 56082] , " <" ,
lambda x : 3 .356 e −06 * x + −0.510 , lambda x : 3 .356 e −06)

apc2 = l o g i c . APCont ([7 5 6 4 6 , 98769] , " >" ,
lambda x : −1.390 e −05 * x + 2 . 8 4 4 , lambda x : −1.390 e −05)

c r e g i o n s = {"A" : apc0 , " B " : apc1 , " C " : apc2 }
c s p e c = " (((G_ [0 . 0 4 9 , 0 . 0 5 3] (A)) &

(F_ [0 . 0 5 1 , 0 . 1 4 9] (B))) |
(F_ [0 . 0 6 1 , 0 . 1 6 9] (C))) "

C.3. ChatGPT Augmentation

We adopt the data augmentation pipeline proposed by (Pan et al., 2023), where ChatGPT 4o-mini is prompted to rephrase
each natural language problem five times. The problems are formulated based on STL logic with PDE parameter variables
enclosed in squared brackets, which are further replaced with randomly values sampled from ranges in Appendix C.1. For
example:

Prompt: Rephrase the source sentence in 5 different ways. Make the outputs as diverse as possible. Make sure not to change
the equations starting with mu and parameters in the squared brackets, and maintain all the parameters while rephrasing.

Source (original problem): For one point during the time interval [t0] and [t1], the temperature distribution of the rod
should be larger than the linear profile mu0(x) = [a0] * x + [b0] between section [r0] and [r1].

GPT Outputs:

1. At a specific moment within the time period [t0] to [t1], the temperature distribution along the rod must exceed the linear
profile mu0(x) = [a0] * x + [b0] in the segment defined by [r0] and [r1].

2. Within the time frame of [t0] to [t1], there should be at least one instance where the rod’s temperature distribution
surpasses the linear profile mu0(x) = [a0] * x + [b0] from [r0] to [r1].

3. During the interval between [t0] and [t1], there is a moment at which the temperature across the rod must be greater than
the linear profile mu0(x) = [a0] * x + [b0] within the range of [r0] and [r1].

4. Throughout the duration from [t0] to [t1], there exists a point in time where the temperature distribution of the rod should
be greater than the linear profile mu0(x) = [a0] * x + [b0] applicable between the sections [r0] and [r1].

5. At some time during the interval between [t0] and [t1], it is required that the temperature distribution of the rod exceeds
the linear profile mu0(x) = [a0] * x + [b0] in the region from [r0] to [r1].

Table 14 shows the character-level relative edit distance between each natural language problem and its 5 augmentations
based on the problem type and the number of constraints.

D. Collection of Manually Written PDE Control Problems
We overview our questionnaire in Fig. 10. For the questionnaire collection, each Zoom session takes one hour, including
background instruction and manual design (with interactive guidance). Although it is challenging to make a fair statistical
comparison with human experts in terms of performance (both time cost and accuracy), our LLMs (autoformalization →
Controller → code generation) complete the task in under 120 seconds on a single 6000 Ada GPU. This is significantly
faster than the human volunteers we recruited (for collecting our real-world samples), who required several minutes just to
read the original informal problem. We further show the statistics of the background of participants in Fig. 11.

20

PDE-Controller: LLMs for Autoformalization and Reasoning of PDEs

Table 14: Averaged relative edit distance between the problem’s natural language and 5 GPT augmentions. Deviations are in parentheses.

PDE

Relative Edit Distance

Number of Constraints
1 2 3

Heat 0.431 (0.0545) 0.456 (0.0505) 0.490 (0.0398)

Wave 0.455 (0.0524) 0.472 (0.0433) 0.484 (0.0352)

Difference between Synthetic and Manual Data We observe some differences between synthetic and manually generated
data that may lead to the model’s failure to produce valid STL logic:

• Ambiguous symbol usage, such as using “ho” instead of “rho” to denote material density.

• Inconsistent units within a single sentence. For example, “Assume that the discretized time interval is 0.05s and the
maximum time is 7400 milliseconds.”

• Insufficient information, where four samples fail to fully describe the material properties. For instance, the manual data
only provides the density of one material after the statement "the rod is composed of two materials".

Figure 10: Google Form for collecting manually written PDE control problems.

21

PDE-Controller: LLMs for Autoformalization and Reasoning of PDEs

Major

16 responses

Education Level

16 responses

Math
EE/CS
Physics
Mechanics
Others6.3%

50%

43.8%

PhD (graduated or
current)
Master (graduated or
current)
Undergraduate
(graduated or current)

18.8%43.8%

37.5%

Major

16 responses

Education Level

16 responses

Math
EE/CS
Physics
Mechanics
Others6.3%

50%

43.8%

PhD (graduated or
current)
Master (graduated or
current)
Undergraduate
(graduated or current)

18.8%43.8%

37.5%

Figure 11: Background of our questionnaire participants.

E. Training Details
We leverage the pretrained MathCoder2-DeepSeekMath-7B (Lu et al., 2024) checkpoint (MathCoder2) which has a 4096-
token context length. All our trained models are evaluated zero-shot. For fair comparison of our models with MathCoder2,
we provide two few-shot examples for the latter to leave sufficient tokens to generate a valid output (whether STL or Python).
We similarly provide two few-shot examples for GPT-4o and o1-mini.

Our instructions are structured in the Alpaca format (Taori et al., 2023).

E.1. Autoformalization: SFT of Translator

The Translator was trained with two 6000Ada GPUs using a per-GPU batch size of 16 and 4 gradient accumulation steps for
a total of 3000 steps. We fine-tuned the MathCoder2-DeepSeekMath-7B parameter model from (Lu et al., 2024) with LoRA
rank r = 64 and α = 256.

Prompt: Below is a natural language description of partial differential equation optimization problem. Translate the problem
into Latex code following spatial-signal temporal logic.

E.2. Program Synthesis: SFT of Coder

The Coder further fine-tuned the Translator with supervised fine-tuning and LoRA, rank r = 64 and α = 256, to produce
Python code from natural language and STL pairs. This was trained with two 6000Ada GPUs using a per-GPU batch size of
8 and 8 gradient accumulation steps for a total of 3000 steps.

We design two prompts, firstly for generating python code aligned with the anchor STL, and secondly for generating python
code aligned with the proposed subgoal STL. The natural language problem is provided in both cases to extract system
settings.

Prompt: Below is a natural language description of partial differential equation optimization problem, paired with your
spatial-signal temporal logic description of the same problem provided earlier. Note that there may be mistakes in the
spatial-signal temporal logic statement but the natural language description is accurate. Translate the problem into Python
code following spatial-signal temporal logic.

Prompt: Below is a natural language description of partial differential equation optimization problem, paired with your
spatial-signal temporal logic description of an intermediate problem provided earlier. Instead of optimizing the natural
language problem directly, we want to optimize the intermediate problem to produce a state that will better serve to achieve
the final conditions outlined in the natural language problem. Your spatial-signal temporal logic description in latex paired
to the original problem describes this intermediate problem. Translate the intermediate problem into Python code following
spatial-signal temporal logic.

In practice, we find it to be helpful to supervise fine-tune the Coder with misaligned (NL, STL) pairs to promote the subgoal
STL constraints when synthesizing the corresponding Python program for the subgoal STL.

22

PDE-Controller: LLMs for Autoformalization and Reasoning of PDEs

E.3. Reasoning: RLHF of Controller

The Controller is trained with DPO (Rafailov et al., 2024) from the Translator checkpoint with LoRA rank r = 64 and
α = 256. We train with two 6000Ada GPUs using a per-GPU batch size of 2 and 4 gradient accumulation steps for a total
of 16,800 steps. For DPO, we set β = 0.1, and λ = 1 in Eq. 3.

Prompt: Below is a natural language description of partial differential equation optimization problem. Instead of optimizing
the provided problem directly, we want to optimize an intermediate problem to produce a state that will better serve to
achieve the final conditions outlined in the natural language problem. Generate a spatial-signal temporal logic description in
Latex code for such an intermediate problem.

F. More Experiment Results
F.1. End-to-End Evaluation of Program Synthesis

In Table 15 and Table 16, we provide end-to-end results of program synthesis on synthetic and manual data, respectively.
In these results, coders take LLM-generated (noisy) STLs in their prompt. Overall, our Coder LLM still achieves strong
results. Moreover, we also show another baseline “Coder-only”, where the Coder LLM takes only natural language as the
input without explicitly formalized STLs. In Table 16, we can see that our method (autoformalization + program synthesis)
outperforms “Coder-only” (direct program synthesis without autoformalization), emphasizing the importance of leveraging
formal language (STL).

Table 15: End-to-end autoformalization and program synthesis. The Coder produces Python using the Translator’s STL output.
MathCoder2 produces Python using its own STL output. Coder-only is a MathCoder2 model fine-tuned to produce python directly
from natural language and seeing no STL. To be comparable with the Translator + Coder autoformalization and program synthesis,
Coder-only is trained for 6000 steps with the same settings as the Translator and Coder (Appendix E). The evaluation for Coders is
zero-shot. MathCoder2 is evaluated with two few-shot examples. Deviations over 3 seeds are in parentheses. Bold indicates the best,
underline indicates the runner up.

PDE Model
Executability (↑)

(Coder)
Utility

RMSE (↓)

Heat
Ours 0.9978 (0.0015) 0.0174 (0.0065)

MathCoder2 0.9197 (0.02731) 1.3841 (0.1196)
Ours (Coder-only) 0.9978 (0.0009) 0.0235 (0.00163)

Wave
Ours 0.9620 (0.0098) 0.0076 (0.0011)

MathCoder2 0.8305 (0.0475) 0.8332 (0.0965)
Ours (Coder-only) 0.9779 (0.002148) 0.02522 (0.000583)

Table 16: End-to-end autoformalization and program synthesis on manually written data (Sec. 3.2). The Coder produces Python using
the Translator’s STL output. MathCoder2 produces Python using its own STL output. Coder-only is a MathCoder2 model fine-tuned to
produce python directly from natural language and seeing no STL. To be comparable with the Translator + Coder autoformalization and
program synthesis, Coder-only is trained for 6000 steps with the same settings as the Translator and Coder (Appendix E). The evaluation
for Coders is zero-shot. MathCoder2 is evaluated with two few-shot examples. Deviations over 3 seeds are in parentheses. Bold indicates
the best, underline indicates the runner up.

PDE Model
Executability (↑)

(Coder)
Utility

RMSE (↓)

Heat
Ours 0.4510 (0.0832) 0.1837 (0.0095)

MathCoder2 0.4902 (0.1386) 0.2928 (0.0780)
Ours (Coder-only) 0.6078 (0.0555) 2.442 (0.0)

Wave
Ours 1.0 (0.0) 0.0119 (0.0)

MathCoder2 0.9020 (0.0277) 1.767 (0.8109)
Ours (Coder-only) 0.4706 (0.0) 0.0890 (0.0)

F.2. PDE Reasoning

F.2.1. END-TO-END EVALUATION OF PDE REASONING

We include end-to-end evaluation results, where we use the Coder LLM to generate Python code after the Controller LLM
propose subgoal STLs in Table 17. In general, our Controller still shows strong reasoning capability (both the success rate

23

PDE-Controller: LLMs for Autoformalization and Reasoning of PDEs

Table 17: End-to-end scientific reasoning over PDE control problems via our Controller LLM. Deviations over 5 seeds are in parentheses.
“Valid STL ϕ′ (%)” is the ratio of proposed subgoal STL ϕ′ without any syntax errors. Bold indicates the best, underline denotes the
runner-up. “x” indicates no valid STLs were generated for evaluation. “-” indicates not applicable.

PDE Difficulty
Level

Success Rate P ↑ Utility Gain ∆r ↑

Ours
Math-

Coderv2
GPT

(o1-mini)
GPT
(4o) Ours

Math-
Coderv2

GPT
(o1-mini)

GPT
(4o)

Heat

Easy 0.490 (0.1666) 0.399 (0.2605) 0.154 (0) 0.160 (0.0686) 0.651 (1.1150) 0.352 (1.3309) -1.262 (0) -0.865 (2.0310)

Medium 0.345 (0.1640) 0.339 (0.2345) 0 (0) 0.121 (0.0497) -1.055 (0.9657) -0.061 (0.4098) -2.455 (0) -2.294 (1.7773)

Hard 0.307 (0.1363) 0.239 (0.1895) 0.074 (0.0262) 0.150 (0.0797) -1.788 (2.1369) -1.254 (0.8047) -3.992 (0.5175) -2.603 (2.4486)

All 0.381 (0.1556) 0.326 (0.2282) x 0.144 (0.0660) -0.731 (1.4059) -0.321 (0.8485) x -1.921 (2.0856)

Wave

Easy 0.897 (0.0502) 0.854 (0.0894) x 1 (0) 1.423 (0.4135) 1.173 (0.6424) x 1.907 (0.0333)

Medium 0.836 (0.0936) 0.743 (0.0410) x 0.958 (0.0105) 0.865 (0.4508) 0.758 (0.4265) x 0.803 (0.2279)

Hard 0.331 (0.1214) 0.336 (0.1041) x 0.416 (0.1113) -0.289 (0.5723) -0.649 (0.3948) x -0.376 (0.2142)

All 0.688 (0.0884) 0.644 (0.0781) x 0.791 (0.0406) 0.698 (0.5773) 0.427 (0.4879) x 0.778 (0.1585)

Valid STL ϕ′ (%) (↑) 82.70 (1.97) 42.45 (10.54) 0.04 (0.10) 2.55 (0.65) 82.70 (1.97) 42.45 (10.54) 0.04 (0.10) 2.55 (0.65)

Valid Python Code (%) (↑) 75.65 (1.50) 27.95 (5.72) 0.09 (0.78) 3.25 (0.63) 75.65 (1.50) 27.95 (5.72) 0.09 (0.78) 3.25 (0.63)

Table 18: Proportion of valid subgoal STL generations by different controller models in Table 9 and 17 (in decimal form). Deviations
over 5 seeds are in parentheses.

PDE Difficulty
Level

Proportion (∈ [0, 1]) of valid STL ϕ′ (↑)

Ours
Math-

Coderv2
GPT

(o1-mini)
GPT
(4o)

Heat

Easy 0.8851 (0.0110) 0.507 (0.1354) 0 0.028 (0.0078)

Medium 0.891 (0.0243) 0.491 (0.0962) 0.0004 (0.0015) 0.031 (0.0046)

Hard 0.881 (0.0148) 0.493 (0.0956) 0.002 (0.0045) 0.052 (0.0113)

All 0.886 (0.0167) 0.497 (0.1091) 0.0008 (0.002) 0.037 (0.0079)

Wave

Easy 0.756 (0.0228) 0.309 (0.1113) 0 0.008 (0.0066)

Medium 0.748 (0.0257) 0.397 (0.0947) 0 0.015 (0.0052)

Hard 0.799 (0.0197) 0.349 (0.0990) 0 0.018 (0.0036)

All 0.768 (0.0227) 0.352 (0.1016) 0 0.014 (0.0051)

Table 19: Proportion of valid subgoal Python program generations by different coder models in Table 17 (in decimal form). Deviations
over 5 seeds are in parentheses.

PDE Difficulty
Level

Proportion (∈ [0, 1]) of valid Python program (↑)

Ours
Math-

Coderv2
GPT

(o1-mini)
GPT
(4o)

Heat

Easy 0.754 (0.0244) 0.301 (0.0624) 0.014 (0.0193) 0.047 (0.0113)

Medium 0.767 (0.0261) 0.295 (0.0503) 0.012 (0.0124) 0.039 (0.0048)

Hard 0.828 (0.0113) 0.329 (0.0532) 0.027 (0.0147) 0.058 (0.0085)

All 0.783 (0.0206) 0.308 (0.0553) 0.018 (0.0155) 0.048 (0.0082)

Wave

Easy 0.702 (0.0080) 0.211 (0.0675) 0 0.012 (0.0048)

Medium 0.713 (0.0113) 0.278 (0.0538) 0 0.018 (0.0041)

Hard 0.776 (0.0086) 0.265 (0.0561) 0 0.021 (0.0044)

All 0.730 (0.0093) 0.251 (0.0591) 0 0.017 (0.0044)

and utility gain), and also high rate of proposing valid subgoal STL (ϕ′).

F.2.2. PROPORTION OF VALID PREDICTIONS

We notice that the number of valid predictions varied significantly depending on the model. Therefore, we include Table 18
for STL and Table 19 for Python program to comprehensively show the number of valid predictions that each model makes
under each type of problem and difficulty level. Please note that the values in Table 18 and Table 19 are not expressed as
percentages.

24

PDE-Controller: LLMs for Autoformalization and Reasoning of PDEs

G. More Related Works
G.1. Autoformalization in AI-for-math

Autoformalization, the process of converting informal mathematical statements or instructions into formal representations,
is explored through a variety of techniques. A significant subset of works employed LLMs to translate informal descriptions
into formal representations. VernaCopter (van de Laar et al., 2024) leveraged LLMs to convert natural language commands
into Signal Temporal Logic (STL) specifications, integrating syntax and semantic checkers for correctness. Pretrained LLMs
like GPT-3.5 and GPT-4o were leveraged to translate informal problems into Isabelle proof sketches, refining outputs through
iterative prompting and heuristic-based validation (Zhou et al., 2024). Back-translation (Jiang et al., 2023) trained LLMs
to map between informal and formal theorem statements in Lean4 and Isabelle. These approaches focused on leveraging
LLMs for direct autoformalization while incorporating filtering mechanisms to improve reliability. In contrast, hybrid
approaches interact between manual and autoformalization. Several studies combined expert-curated manual formalization
with automated techniques to improve accuracy. DeepSeek-Prover (Xin et al., 2024), Trigo (Xiong et al., 2023), and (Murphy
et al., 2024) used an iterative pipeline where initial formalization was manually crafted, followed by automated expansion
and refinement. LILA (Mishra et al., 2022) similarly applied domain-specific rules and Python-based DSL annotations for
automatic formalization while relying on human annotators for cases where automation failed. These hybrid approaches
aimed to balance the scalability of automation with the precision of manual verification. In our work, we for the first time
train LLMs to autoformalize informal PDE control problems into formalized STL logic.

G.2. PDE Controls

PDEs are essential for modeling physical phenomena, helping researchers predict behaviors, optimize processes, and drive
innovation across fields like climate modeling and material design. PDE control focuses on manipulating system behaviors,
ensuring stability in applications like robotics and reactors, while enabling systems to adapt to changing conditions for more
sustainable solutions (Alvarez, 2020; Holl et al., 2020; Ramos et al., 2022; Mukherjee & Liu, 2023; Wei et al.; 2024b).
Adjoint methods have been widely used for controlling physical systems governed by PDEs due to their accuracy, despite
being computationally expensive (Lions, 1971; McNamara et al., 2004; Protas, 2008), while deep learning-based approaches,
such as supervised learning with differentiable physics losses (Holl et al., 2020; Hwang et al., 2022), optimize control
directly via backpropagation through time. (Mowlavi & Nabi, 2022; Barry-Straume et al., 2022) optimizes control problems
and the PDE system state with physics-informed neural networks. Reinforcement learning (RL) (Farahmand et al., 2017;
Pan et al., 2018; Rabault et al., 2019) optimizes control by treating signals as actions for sequential decision-making in fluid
dynamics applications like drag reduction, heat transfer, and swimming (Garnier et al., 2021). Pretrained LLMs can enhance
PDE surrogate modeling by integrating textual descriptions of system information–such as boundary conditions and the
governing PDE–into a multimodal learning framework (Lorsung & Farimani, 2025). PDE control can also be discretized and
formulated into a mixed-integer linear programming (MILP) problem via finite element method (FEM) (Sadraddini & Belta,
2015; Alvarez, 2020). More recently, diffusion-based generation has been leveraged to jointly optimize the PDE simulations
and control signals (Wei et al., 2024a). Different from traditional PDE control objectives such as setpoint/trajectory tracking
and disturbance rejection (Paunonen & Phan, 2019; Paunonen & Humaloja, 2022), our utility score objective (Appendix A.2),
which mainly aims to reduce distance to the target, can better handle inequality constraints compared to tracking errors.
From an optimization perspective, our work leverages LLMs to propose better initializations (initial conditions) to solve
the open-loop PDE control problem. Extensions to closed-loop control are possible by appending the utility from the
LLM-proposed optimization into future optimization rounds. This increases the complexity of LLM fine-tuning; thus, as the
first step in this direction we focus on open-loop control.

G.3. LLM-based Task Planning

Natural language (NL)-based task planning in robotics has gained increasing attention. Approaches such as (Pan et al.,
2023) enable task-specific translations from informal language to Linear Temporal Logic (LTL), allowing robots to follow
structured plans even in low-resource scenarios. Building on this foundation, recent research has explored the use of LLMs
for task planning, demonstrating models’ potential in decision-making and executing complex plans (Singh et al., 2023;
Shah et al., 2023; Li et al., 2022). For instance, (Wang et al.) leveraged LLMs to arrange and predict execution sequences
for robots, achieving a comparable success rate to human users. Additionally, (Ren et al., 2023) addressed the hallucination
issue from LLM-based planners by incorporating uncertainty alignment, improving the reliability of generated plans. More
recently, CLMASP (Lin et al., 2024) refined LLM-generated skeleton plans using Answer Set Programming (ASP) for
robotic task execution. Inspired by these subgoal approaches, we for the first time train LLMs to perform reasoning and
planning on PDE control problems.

25

PDE-Controller: LLMs for Autoformalization and Reasoning of PDEs

H. Datasheets for Datasets
This document is based on Datasheets for Datasets by (Gebru et al., 2021).

H.1. Motivation

For what purpose was the dataset created? Was there a specific task in mind? Was there a specific gap that needed to be
filled? Please provide a description.
The dataset was created to enable large language models (LLMs) to tackle complex Partial Differential Equation (PDE)
control problems. The specific purpose is to advance automated formalization and reasoning in applied mathematics,
addressing the lack of datasets tailored to PDE-related tasks. The dataset bridges informal natural language problems and
formal specifications/code for PDE systems, fostering research in scientific computing and engineering.

Who created this dataset (e.g., which team, research group) and on behalf of which entity (e.g., company, institution,
organization)?
The dataset was created by the anonymous authors of this PDE-Controller paper, affiliated with a research group focused on
AI-for-math applications.

What support was needed to make this dataset? (e.g.who funded the creation of the dataset? If there is an associated
grant, provide the name of the grantor and the grant name and number, or if it was supported by a company or government
agency, give those details.)
The creation of the dataset was supported by research funding for developing novel applications of LLMs in applied
mathematics. Further support included computational resources for fine-tuning LLMs and manual curation by domain
experts.

Any other comments?
The dataset represents a pioneering effort to merge AI capabilities with PDE-based scientific reasoning, significantly
expanding the potential applications of LLMs.

H.2. Composition

What do the instances that comprise the dataset represent (e.g., documents, photos, people, countries)? Are there
multiple types of instances (e.g., movies, users, and ratings; people and interactions between them; nodes and edges)?
Please provide a description.
Each instance represents a PDE control problem, including: 1) Informal problem descriptions in natural language; 2)
Formal specifications in Signal Temporal Logic (STL); 3) Python code that integrates PDE simulation and optimization tools.

How many instances are there in total (of each type, if appropriate)?
The dataset comprises over 2.13 million synthetic (natural language, STL, Python code) triplets, with additional real-world
examples including 17 manually written heat problems and 17 wave problems.

Does the dataset contain all possible instances or is it a sample (not necessarily random) of instances from a larger
set? If the dataset is a sample, then what is the larger set? Is the sample representative of the larger set (e.g., geographic
coverage)? If so, please describe how this representativeness was validated/verified. If it is not representative of the
larger set, please describe why not (e.g., to cover a more diverse range of instances, because instances were withheld or
unavailable).
It is a synthesized dataset designed to cover a diverse range of PDE control problems, sampled and augmented from
representative templates to ensure coverage of key scenarios and complexities.

What data does each instance consist of? “Raw” data (e.g., unprocessed text or images) or features? In either case, please
provide a description.

26

PDE-Controller: LLMs for Autoformalization and Reasoning of PDEs

Each instance includes: 1) Informal natural language descriptions of PDE problems; 2) Formal representations in STL
syntax; 3) Python code for solving the PDE problem using optimizers such as Gurobi.

Is there a label or target associated with each instance? If so, please provide a description.
Yes, each instance includes ground-truth STL and Python code, verified for alignment and executability.

Is any information missing from individual instances? If so, please provide a description, explaining why this
information is missing (e.g., because it was unavailable). This does not include intentionally removed information, but
might include, e.g., redacted text.
Not Applicable.

Are relationships between individual instances made explicit (e.g., users’ movie ratings, social network links)? If so,
please describe how these relationships are made explicit.
Yes, relationships between natural language, STL specifications, and Python code are explicitly maintained for traceability.

Are there recommended data splits (e.g., training, development/validation, testing)? If so, please provide a description
of these splits, explaining the rationale behind them.
Yes, the dataset is split into training and testing sets, with specific splits for heat and wave problems.

Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a description.
Synthetic data is validated through automated checks and human verification. Errors may arise from annotation
inconsistencies, especially in manually curated problems.

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g., websites, tweets, other
datasets)? If it links to or relies on external resources, a) are there guarantees that they will exist, and remain constant, over
time; b) are there official archival versions of the complete dataset (i.e., including the external resources as they existed at the
time the dataset was created); c) are there any restrictions (e.g., licenses, fees) associated with any of the external resources
that might apply to a future user? Please provide descriptions of all external resources and any restrictions associated with
them, as well as links or other access points, as appropriate.
The dataset is self-contained, with no reliance on external or dynamic resources.

Does the dataset contain data that might be considered confidential (e.g., data that is protected by legal privilege or
by doctor-patient confidentiality, data that includes the content of individuals’ non-public communications)? If so,
please provide a description.
No.

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening, or might otherwise
cause anxiety? If so, please describe why.
No.

Does the dataset relate to people? If not, you may skip the remaining questions in this section.
No.

Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please describe how these subpopulations are
identified and provide a description of their respective distributions within the dataset.
No.

Is it possible to identify individuals (i.e., one or more natural persons), either directly or indirectly (i.e., in
combination with other data) from the dataset? If so, please describe how.

27

PDE-Controller: LLMs for Autoformalization and Reasoning of PDEs

No.

Does the dataset contain data that might be considered sensitive in any way (e.g., data that reveals racial or ethnic
origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or
health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal
history)? If so, please provide a description.
No.

Any other comments?
The dataset’s richness in complexity and diversity makes it a significant resource for advancing applied mathematics via AI.

H.3. Collection

How was the data associated with each instance acquired? Was the data directly observable (e.g., raw text, movie
ratings), reported by subjects (e.g., survey responses), or indirectly inferred/derived from other data (e.g., part-of-speech
tags, model-based guesses for age or language)? If data was reported by subjects or indirectly inferred/derived from other
data, was the data validated/verified? If so, please describe how.
The data was synthesized from key PDE control templates, augmented through principled methods, and verified by experts.
Real-world problems were collected via a questionnaire-based manual curation process involving students and researchers.

Over what timeframe was the data collected? Does this timeframe match the creation timeframe of the data associated
with the instances (e.g., recent crawl of old news articles)? If not, please describe the timeframe in which the data associated
with the instances was created. Finally, list when the dataset was first published.
The synthetic dataset was generated in late 2024, with real-world problems curated in 2025.

What mechanisms or procedures were used to collect the data (e.g., hardware apparatus or sensor, manual human
curation, software program, software API)? How were these mechanisms or procedures validated?
Procedures included automated STL generation, natural language augmentation using GPT-4, and manual problem
formulation.

What was the resource cost of collecting the data? (e.g. what were the required computational resources, and the
associated financial costs, and energy consumption - estimate the carbon footprint.)
Resource costs included computational expenses for data synthesis and human time for manual curation and validation.

If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic, probabilistic with
specific sampling probabilities)?
Not applicable.

Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and how were they
compensated (e.g., how much were crowdworkers paid)?
Graduate students and researchers with expertise in applied mathematics and AI.

Were any ethical review processes conducted (e.g., by an institutional review board)? If so, please provide a description
of these review processes, including the outcomes, as well as a link or other access point to any supporting documentation.
No.

Does the dataset relate to people? If not, you may skip the remainder of the questions in this section.
No.

28

PDE-Controller: LLMs for Autoformalization and Reasoning of PDEs

Did you collect the data from the individuals in question directly, or obtain it via third parties or other sources (e.g.,
websites)?
Our manually written data is collected from each individual with questions.

Were the individuals in question notified about the data collection? If so, please describe (or show with screenshots or
other information) how notice was provided, and provide a link or other access point to, or otherwise reproduce, the exact
language of the notification itself.
N/A

Did the individuals in question consent to the collection and use of their data? If so, please describe (or show with
screenshots or other information) how consent was requested and provided, and provide a link or other access point to, or
otherwise reproduce, the exact language to which the individuals consented.
N/A

If consent was obtained, were the consenting individuals provided with a mechanism to revoke their consent in the
future or for certain uses? If so, please provide a description, as well as a link or other access point to the mechanism (if
appropriate)
N/A

Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a data protection impact
analysis)been conducted? If so, please provide a description of this analysis, including the outcomes, as well as a link or
other access point to any supporting documentation.
No. Our data are intended to be used in evaluation only and all charts are publicly avialable.

Any other comments? N/A

H.4. Preprocessing / Cleaning / Labeling

Was any preprocessing/cleaning/labeling of the data done(e.g.,discretization or bucketing, tokenization, part-of-
speech tagging, SIFT feature extraction, removal of instances, processing of missing values)? If so, please provide a
description. If not, you may skip the remainder of the questions in this section.
Yes, preprocessing included: 1) Reformatting natural language prompts; 2) Validating STL and Python code for correctness
and executability; 3) Augmenting natural language data using rephrasing techniques.

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support unanticipated future
uses)? If so, please provide a link or other access point to the “raw” data.
Yes, raw data and intermediate representations are retained for reproducibility and future use.

Is the software used to preprocess/clean/label the instances available? If so, please provide a link or other access point.
The tools and scripts for preprocessing are included in the supplementary materials of the PDE-Controller framework.

Any other comments?
Preprocessing ensures high-quality alignment between natural language, formal logic, and executable code.

H.5. Uses

Has the dataset been used for any tasks already? If so, please provide a description.
Yes, it was used to train and evaluate the PDE-Controller framework and benchmark its performance against state-of-the-art
LLMs.

29

PDE-Controller: LLMs for Autoformalization and Reasoning of PDEs

Is there a repository that links to any or all papers or systems that use the dataset? If so, please provide a link or other
access point.
N/A

What (other) tasks could the dataset be used for?
The dataset could be used for: 1) Training models for scientific reasoning and formalization; 2) Developing tools for
automated program synthesis; 3) Advancing research in AI-driven engineering and physics.

Is there anything about the composition of the dataset or the way it was collected and preprocessed/cleaned/labeled
that might impact future uses? For example, is there anything that a future user might need to know to avoid uses that
could result in unfair treatment of individuals or groups (e.g., stereotyping, quality of service issues) or other undesirable
harms (e.g., financial harms, legal risks) If so, please provide a description. Is there anything a future user could do to
mitigate these undesirable harms?
N/A

Are there tasks for which the dataset should not be used? If so, please provide a description.
The dataset is not suitable for tasks unrelated to PDE control or tasks requiring real-world human data.

Any other comments?
The dataset’s structured format supports reproducible and extensible research in applied mathematics.

H.6. Distribution

Will the dataset be distributed to third parties outside of the entity (e.g., company, institution, organization) on behalf
of which the dataset was created? If so, please provide a description.
Yes, the dataset will be made publicly available for research purposes.

How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Does the dataset have a digital object
identifier (DOI)?
The dataset will be distributed via GitHub and academic repositories, with accompanying documentation.

When will the dataset be distributed?
The dataset is expected to be released following the ICML 2025 conference.

Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or under applicable
terms of use (ToU)? If so, please describe this license and/or ToU, and provide a link or other access point to, or otherwise
reproduce, any relevant licensing terms or ToU, as well as any fees associated with these restrictions.
Yes, it will be distributed under a permissive license (e.g., CC BY-SA 4.0) to encourage research use.

Have any third parties imposed IP-based or other restrictions on the data associated with the instances? If so, please
describe these restrictions, and provide a link or other access point to, or otherwise reproduce, any relevant licensing terms,
as well as any fees associated with these restrictions.
All charts are subjected to their respective copyrights by the authors of this paper.

Do any export controls or other regulatory restrictions apply to the dataset or to individual instances? If so, please
describe these restrictions, and provide a link or other access point to, or otherwise reproduce, any supporting documentation.

30

PDE-Controller: LLMs for Autoformalization and Reasoning of PDEs

N/A

Any other comments?
Distribution will include detailed usage guidelines to ensure proper application of the dataset.

H.7. Maintenance

Who is supporting/hosting/maintaining the dataset?
The authors of the PDE-Controller framework.

How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
Contact information will be provided with the dataset release.

Is there an erratum? If so, please provide a link or other access point.
https://pde-controller.github.io/

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)? If so, please
describe how often, by whom, and how updates will be communicated to users (e.g., mailing list, GitHub)?
Yes, periodic updates will incorporate additional real-world problems and refinements.

If the dataset relates to people, are there applicable limits on the retention of the data associated with the instances
(e.g., were individuals in question told that their data would be retained for a fixed period of time and then deleted)?
If so, please describe these limits and explain how they will be enforced.
N/A

Will older versions of the dataset continue to be supported/hosted/maintained? If so, please describe how. If not,
please describe how its obsolescence will be communicated to users.
Yes, previous versions will remain accessible for reproducibility.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for them to do so? If so,
please provide a description. Will these contributions be validated/verified? If so, please describe how. If not, why not? Is
there a process for communicating/distributing these contributions to other users? If so, please provide a description.
Yes, contributions will be encouraged through a collaborative platform (e.g., GitHub).

Any other comments?
The dataset’s maintainers are committed to ensuring its long-term usability and relevance for scientific research.

I. Misc.
URL to benchmark. The benchmark URL can be found here: https://pde-controller.github.io/

URL to Croissant metadata. The Croissant metadata URL can be found here: https://huggingface.co/
datasets/delta-lab-ai/pde-controller/tree/main

Author statement & license information. We the authors bear all responsibility in case of violation of rights.

Hosting and maintenance. We have a dedicated webpage for hosting instructions: https://pde-controller.
github.io/. We are committed to performing major maintenance periodically.

Dataset Structure. All files are stored in the JSONL format. For the translator dataset, we store separate files based on STL
syntax formats, the number of constraints, and the train-test split. Each training file contains more than 600 samples, and
each test file contains more than 150 samples. Each sample includes the informal question in natural language, the STL

31

https://pde-controller.github.io/
https://pde-controller.github.io/
https://huggingface.co/datasets/delta-lab-ai/pde-controller/tree/main
https://huggingface.co/datasets/delta-lab-ai/pde-controller/tree/main
https://pde-controller.github.io/
https://pde-controller.github.io/

PDE-Controller: LLMs for Autoformalization and Reasoning of PDEs

representation in LaTeX, and the corresponding Python script.

For the preference dataset, we split the files based on three difficulty levels and the train-test split. Each sample in the file
contains the informal question in natural language, the winner STL that improves the informal question, and the loser STL
that worsens it. For each STL, we also provide the resulting utility score.

32

