
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

An Advanced Physics-Informed Neural Operator for Comprehensive Design
Optimization of Highly-Nonlinear Systems: An Aerospace Composites

Processing Case Study

Anonymous Authors1

Abstract

Deep Operator Networks (DeepONet) and their
physics-informed variants have shown significant
promise in learning mappings between function
spaces of partial differential equations (PDEs),
enhancing the generalization of traditional neural
networks. However, for highly nonlinear real-
world applications like aerospace composites pro-
cessing, existing models often fail to capture un-
derlying solutions accurately and are typically lim-
ited to single input functions, constraining rapid
process design development. This paper intro-
duces an advanced physics-informed DeepONet
tailored for such highly nonlinear systems with
multiple input functions. Equipped with architec-
tural enhancements like nonlinear decoders and
effective training strategies such as curriculum
learning and domain decomposition, the proposed
model handles high-dimensional design spaces
with significantly improved accuracy, outperform-
ing the vanilla physics-informed DeepONet by
two orders of magnitude. Its zero-shot prediction
capability across a broad design space makes it a
powerful tool for accelerating composites process
design and optimization, with potential applica-
tions in other engineering fields characterized by
strong nonlinearity.

1. Introduction
The simulation and optimization of engineering and scien-
tific systems involves solving a set of partial differential
equations (PDEs) across a range of system parameters. The
study of these parametric PDEs involves obtaining the solu-
tion under different input functions such as initial condition

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

(IC), boundary conditions (BCs), source functions, geome-
tries, and coefficients. This entails repeated execution of
computationally expensive numerical solvers such as finite
element/volume methods (FEM/FVM) (Zauderer, 2011).
Reduced-order methods have been introduced to enhance
computational efficiency at the expense of reduced accuracy,
offering a more practical solution for exploring the design
space of parametric PDEs (Lucia et al., 2004). Similarly,
recent advancements in deep learning, specifically in the
field of scientific machine learning (SciML) empower the
use of ML models for facilitating scientific discovery and
optimization (Cuomo et al., 2022). SciML models infuse the
unparallel approximation capabilities of ML models with
the established governing physical laws to primarily accom-
plish one of the following tasks: 1) solve PDEs, 2) discover
PDE parameters, and 3) learn operators. Methods such as
physics-informed neural networks (PINNs) (Raissi et al.,
2019) and deep Galerkin method (Sirignano & Spiliopoulos,
2018) have been introduced to approximate the solution of
PDEs, however, they are inherently problem-specific and
thus require retraining/finetuning in order to adapt to new
system configurations. Although some enhancements have
been introduced to improve their generalizability (Jagtap
& Karniadakis, 2020; Gao et al., 2021; Ramezankhani &
Milani, 2023; Majumdar et al., 2024), they still lack the
adaptability required for the optimization tasks. Opera-
tor learning on the other hand targets the discovery of an
unknown mathematical operator governing a PDE system
(Boullé & Townsend, 2023). It seeks to capture a nonlinear
mapping from one space of functions (inputs) to another
space of functions (outputs). For a physical system de-
scribed by PDEs, the input functions typically are the initial
condition u0(x), boundary conditions ubc(t, x), and forcing
term f(t, x). The solution of PDE u(t, x) is considered as
the output function (Lu et al., 2022).

The operator is typically represented by a neural operator,
a generalized form of neural networks, which can take func-
tions (in a discretized form) as the inputs and outputs (Boullé
& Townsend, 2023). Unlike PINNs, neural operators offer
real-time prediction capabilities for varying system config-
urations without the need for retraining. This makes the

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Under review at ICML 2024 AI for Science workshop

neural operator an ideal tool for performing parametric PDE
studies. The training of neural operators, however, is com-
putationally expensive and can incur poor generalization
performance. Hence, several architectures have been intro-
duced to tackle such shortcomings, including deep neural
operator (DeepONet) (Lu et al., 2021), Fourier neural op-
erator (FNO) (Li et al., 2020a), Graph neural operator (Li
et al., 2020b) and Wavelet Neural Operator (WNO) (Tripura
& Chakraborty, 2022), and deep Green network (Gin et al.,
2021). These models are different in terms of discretization
approach as well as approximation techniques employed for
efficiency and scalability.

DeepONet, a neural operator method theoretically motivated
by the universal operator approximation theorem (Chen &
Chen, 1995), offers a more generalized operator learning
framework to discover nonlinear function mappings. The
two-part architecture of DeepONet consists of a branch net
responsible for distilling the operator’s input function into a
fixed-size latent vector, and a trunk net, which decodes the
output of the branch net to generate the final output at the
specified locations. While DeepONet is primarily developed
as a fully data-driven method, physical governing laws can
also be incorporated to learn the solution operators in a fully
physics-informed (i.e., data-agnostic) manner. Specifically,
the existing governing equations and physical laws are inte-
grated into the training of the DeepONet as additional loss
terms (Wang et al., 2021). Despite the success of DeepONet
and its physics-informed variant in effectively learning oper-
ators for a range of benchmark problems, it has been shown
that the existing architectures may struggle to accurately
capture the dynamics of PDE systems in complex real-life
scenarios. In particular, for nonlinear submanifolds in func-
tion spaces, the finite-dimensional linear representation of
DeepONet’s decoder might be insufficient to learn the true
target functions (Seidman et al., 2022). They also fall short
when trained against multiphysics problems with coupled
PDEs due to interactions between system variables, intri-
cate geometries and lack of sufficient training data (Rahman
et al., 2024). Furthermore, the physics-informed DeepONet
(PIDON) also shares the same shortfalls as PINNs (Wang
et al., 2022). Among them are failure to learn the long
temporal domain, reduced accuracy against sharp edges
and nonlinearities, and poor performance in multi-scale and
multi-physics problems (Krishnapriyan et al., 2021).

This paper introduces an enhanced PIDON architecture ca-
pable of learning the solution operator mapping multiple in-
put functions (i.e., design variables) to multiple output func-
tions (i.e., decision variables) in a complex, highly nonlinear,
and multi-physics engineering problem with a long temporal
domain. Specifically, we explore the data-agnostic learning
of the solution operator associated with coupled PDEs gov-
erning the thermochemical behavior of the aerospace-grade
composites curing process in an autoclave under various

input functions (i.e., process and material design configura-
tions). Our investigation reveals the failure of DeepONets’
original architecture to capture the complex dynamics inher-
ent in the problem domain. To address this, we introduce
a series of architectural improvements by integrating non-
linear decoders and employing multiple branch networks as
well as leveraging advanced learning techniques such as cur-
riculum learning and domain decomposition. We show that
the proposed enhanced PIDON architecture can successfully
learn the solution operator for this highly nonlinear PDE
system and generate accurate predictions across various sys-
tem configurations. While previous attempts have explored
the application of data-driven neural operators (Chen et al.,
2021; Rashid et al., 2022; Chen et al., 2023) and recently
physics-informed FNO (Meng et al., 2023) in composites
processing, their scope has been largely limited to singular
design variables. Our work, on the other hand, broadens
the horizon by incorporating multiple design parameters in-
cluding but not limited to the cure cycle recipe, heat transfer
coefficients (HTCs), and material thickness. This enhances
the generalizability of neural operators, paving the path
toward building scientific foundation models for more com-
prehensive and full-scale modeling and design optimization
of complex engineering scenarios. Furthermore, we show
that our enhanced PIDON outperforms previous models in
terms of predictive performance.

The proposed framework refines the original DeepONet ar-
chitecture to better tackle the inherent complexities present
in real-world engineering scenarios, thereby enhancing its
applicability and effectiveness. The contributions of this
paper can be summarized as follows:

• Introduce an enhanced PIDON framework, featuring
nonlinear decoders and multiple branch networks, to
account for high nonlinearity and diverse input func-
tions in complex PDE systems;

• Investigate the effectiveness of a series of remedies,
such as curriculum learning and domain decomposi-
tion, typically used for efficient learning of PINNs, on
the performance of PIDON;

• Develop a customized neural operator framework via
introducing local spatial coordinates, enabling seam-
less learning of solution operators for the thermochem-
ical curing process of composites in autoclave across
multiple process design variables.

1.1. Application to advanced composites manufacturing

Superior mechanical properties, light weight and high dura-
bility have made fiber-reinforced polymer composites a pop-
ular choice of materials in high-performance applications
where very large unified structures with intricate geometries
are manufactured. Specifically in autoclave processing (Fig-
ure 6), a system of resin-impregnated fibers and a tool is

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Under review at ICML 2024 AI for Science workshop

placed in an autoclave and subjected to a predefined tempera-
ture and pressure cycle (i.e., cure cycle) (Strong, 2008). The
objective of this process is to cure the resin system in a way
to achieve a uniform resin cure, optimum resin content, and
a void-free product while minimizing any process-induced
residual stress and deformation (Hubert et al., 2001). The
through-thickness temperature profiles in the part and tool-
ing as well as the evolution of the resin degree of cure are
the key state variables of the composite system and crucial
for foreseeing the process-induced defects. For any new sce-
nario including modifications in part geometry and material
properties, a process design optimization needs to be carried
out via modifying a baseline cure cycle as well as optimiz-
ing the tooling and structure designs to ensure the above
criteria are met. This iterative trial-and-error procedure is
very expensive and time-consuming, especially for large
structures, and thus prohibitive for real-world applications.
Computational models have been developed as a more ef-
ficient alternative to model various aspects of the curing
process such as heat transfer, resin cure kinetics, and resid-
ual stress development (Van Ee & Poursartip, 2009). While
numerical methods such as FEM provide accurate approx-
imations to the solution of PDEs, they can easily become
computationally prohibitive when it comes to the iterative
procedure of curing process optimization. The proposed
PIDON model, on the other hand, can generate real-time
predictions for various process configurations, significantly
expediting the design optimization procedure. This enables
a much faster exploration of the design space (e.g., pro-
cessing scenarios, part and tooling designs) to identify the
optimum process configurations for obtaining the desired
material properties. In particular, following the terminology
developed in (Fabris, 2018), for a composites manufactur-
ing system with four main constitutive components (i.e.,
Process, Tools, Equipment and Parts), the following design
variables can be handled by the proposed PIDON model
(Figure 6):

• Process: cure cycle specifications including heating
rate (r1 and r2), hold duration (hd1 and hd2), and hold
temperature (ht1 and ht2)

• Tools and consumables: tool thickness (Lt)
• Equipment: convective HTCs in the autoclave (htop

and hbot)
• Parts: composite part thickness (Lc)

The parameters concerning Parts are typically predeter-
mined in practice according to the application requirements.
During the design optimization phase, the design engineer
can conveniently select and fix the values of such variables
and optimize the remaining design variables accordingly.
Since the part and tool thicknesses are considered among
the input functions (design variables) in the training of the
neural operator and vary for each prediction task, it results

Figure 1. Schematic of composite-tool system in an autoclave with
local coordinates x1 and x2.

in inconsistencies in the system dimensions as well as the
composite-tool interface location (key for satisfying the con-
tinuity condition). In order to represent all training and test
cases in a unified learning framework, we introduce two
local spatial coordinates that independently describe the
length of each material (Figure 1). The details regarding the
governing equations of the thermochemical curing process
as well as the implementation of local spatial coordinates
are presented in A.1 and A.2.

The rest of the paper is structured as follows. Section 2
presents the proposed framework and discusses the con-
stituents of the PIDON architecture. Section 3 is dedicated
to an in-depth discussion of the results, investigating the
performance of the proposed PIDON against the composites
autoclave processing case study. Finally, the Conclusions
section provides a summary and outlines future research
directions.

2. Methodology
2.1. Physics-informed DeepONet

DeepONet’s architecture is composed of a branch net
and a trunk net. The branch net takes the sensor point
evaluations u = [u(x1), u(x2), . . . , u(xm)] as input and
produces a finite-dimensional feature representation b =
[b1, b2, . . . , bq]

T ∈ Rq as output. Similarly, the trunk net
encodes the inputs of the PDE system y to a feature em-
bedding t = [t1, t2, . . . , tq]

T ∈ Rq with the same size
as the branch net’s output. The output of the branch and
trunk nets is then combined to calculate DeepONet’s out-
put using an element-wise product operation followed by a
summationGθ(u)(y) =

∑q
k=1 bktk + b0. In a supervised

learning fashion, the DeepONet can be trained by minimiz-
ing the error between the model’s predicted output and the
actual operator solution across a range of training input
functions. Appendix B provides a detailed explanation of
DeepONet’s architecture along with a visual representation.

Drawing inspiration from PINNs, which learn the solutions
of PDE systems by penalizing the residuals of the governing
equations, a parallel approach is adopted in the development
of PIDON framework (Wang et al., 2021). Specifically, the

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Under review at ICML 2024 AI for Science workshop

output of DeepONet is constrained to align with the govern-
ing equations through the minimization of the loss function
L(θ) = LIC(θ) + LBC(θ) + Lphysics(θ), where LIC and
LBC are the IC and BC losses. Assuming a constant initial
condition and a Robin boundary condition, LIC and LBC

become

LIC(θ) =
1

NQic

N∑
i=1

Qic∑
j=1

|Gθ(u
(i))(y

(i)
j))− s(i)(y

(i)
j)|2

(1)

LBC(θ) =
1

NQbc

N∑
i=1

Qbc∑
j=1

∣∣αGθ(u
(i))(y

(i)
j)

+ β∇Gθ(u
(i))(y

(i)
j)− γ

∣∣2 (2)

where u(i) is the i-th input function, y(i)j is the j-th colloca-
tion point in the operator domain and Gθ is the DeepONet
output. s(i)(y(i)j) is the initial loss represents the PDE so-

lution at y(i)j conditioned on the i-th input function. For
the Robin boundary condition α, β, and γ are non-zero
constants specified based on the physics of the problem.
Similarly, LPhysics is defined as:

Lphysics(θ) =
1

NQm

N∑
i=1

Q∑
j=1

∣∣∣N (u(i)(x), Gθ(u
(i))(y

(i)
j))

∣∣∣2
(3)

where N is the nonlinear differential operator. In the above
equations, N denotes the number of distinct input function
combinations sampled from the design space and Q repre-
sents the number of residual points randomly sampled to
enforce the physical constraints. They are considered hyper-
parameters and can be optimized based on the performance
of the DeepONet and computational constraints.

2.2. Nonlinear decoder and multi-input functionality

The original architecture of DeepONet uses a linear decoder
to learn the nonlinear operator. This results in approximat-
ing the target functions with a finite-dimensional linear sub-
space. However, for cases where the target functional data
is concentrated in nonlinear manifolds, the vanilla Deep-
ONet can easily fail unless a very high-dimensional linear
decoder architecture is implemented (Lanthaler et al., 2022;
Lee et al., 2023). This would result in a very large number
of basis functions and coefficients determined by the out-
put size of trunk and branch nets, respectively. Thus, the
training of DeepONet can become computationally inten-
sive for complex and non-smooth target functions. Different

variants of DeepONet have been introduced to tackle the
above limitation (Fang et al., 2024; Haghighat et al., 2024).
One way to address this limitation is to integrate a nonlinear
decoder (ND) into the architecture of DeepONet. Seid-
man et al. (2022) introduced NOMAD, a novel nonlinear
manifold decoder leveraging neural networks to incorporate
nonlinearity in the DeepONet’s decoder. In this approach,
the model merges the input function sensor values with the
query points, forming a concatenated input, which is then
fed to the decoder’s network to predict the operator’s out-
put. Lee et al. (2023) proposed HyperDeepONet which
substitutes the branch net with a hypernetwork to reduce
the required network size for learning the solution operator.
The hypernetwork is tasked with generating the weights of
the trunk net given the input functions. Unlike the original
architecture that distilled input function information into
an embedding vector and fed it to the trunk net only in the
final layer, the hypernetwork disperses this information at
all layers of the trunk net. Here, while preserving the origi-
nal architecture of DeepONet, we incorporate nonlinearity
in the form of a fully-connected neural network immedi-
ately after merging the branch and trunk nets as depicted
in Figure 2. Instead of summing the element-wise product
of the trunk and branch networks’ last layer, we channel
the resulting vector to a neural network responsible for cap-
turing the nonlinearity in the target functions space. We
show that replacing the linear layer with a neural network
as the ND not only improves the performance of DeepONet
in complex PDE systems but also allows learning nonlinear
operators with low-dimensional feature representations in
the output of branch and trunk nets.

The DeepONet architecture is originally designed to map
a single input function to the target output function. This
imposes constraints, particularly in the process design opti-
mization of engineering systems where there’s a necessity to
optimize multiple input functions (i.e., design variables) si-
multaneously with the optimization of engineering systems’
process designs. To overcome this limitation, the proposed
architecture utilizes a multi-input functionality as depicted
in Figure 2, which allows the neural operator to effectively
process multiple input functions. In particular, one branch
network is dedicated to processing the time-dependent pro-
cess parameters (BN2) while the second branch net is tasked
to collectively process all time-invariant design variables
(BN1). This is as opposed to assigning a separate network
to each process parameter (Kumar et al., 2023), which sig-
nificantly reduces the computational cost during the training
of the DeepONet. The output layer size of the branch nets is
the same as that of the trunk net. The branch nets’ outputs
b1 and b2 are merged via the Hadamard product, resulting
in a q-dimensional vector b =

∑q
i=1 b

1
i b

2
i . The resulting

embedding which carries information about all input func-
tions is then combined with the output of the trunk network,

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Under review at ICML 2024 AI for Science workshop

Figure 2. Schematic of proposed multi-input PIDON with NDs.
Two branch nets are integrated to process time-dependent and time-
independent input functions. NDs are responsible for learning the
solution operators at different subdomains.

similar to vanilla DeepONet.

2.3. Domain decomposition

Similar to PINN, PIDON also enforces governing laws
by incorporating physical constraints in the form of ad-
ditional loss terms and minimizing them using optimization
algorithms such as gradient descent or its variants. Thus,
naturally, PIDON would inherit the limitations PINN en-
countered when learning highly nonlinear and non-smooth
systems (Wang et al., 2022). The presence of nonlinear
time-varying characteristics and sharp transitions (e.g., stiff
PDEs) hugely deteriorates the performance of physics-
informed models. Long temporal domains and the F-
principle effect in neural networks are other common rea-
sons for the failure of physics-informed models (Wang et al.,
2024). Specifically, the curing process of composites in the
autoclave occurs over a long period of time and involves
highly nonlinear characteristics. To improve the perfor-
mance of PIDON in such a system, we decompose the PDE
domain into smaller subdomains and learn each subdomain
using a separate ND. This is similar to sequential learning
(Mattey & Ghosh, 2022; Wight & Zhao, 2020) and extended
PINN approaches proposed for the training of PINNs (Jag-
tap & Karniadakis, 2020). As illustrated in Figure 2, we
implement a multi-head decoder architecture where the NDs
share the same branch and trunk nets, with each subnet ded-
icated to learning a segment of the time domain. The size
of the subdomains depends on the physical characteristics
of the problem at hand. By splitting the temporal domain
into smaller intervals, we effectively break down the prob-
lem into multiple PDE instances, easier to handle by the
NDs. The time intervals can be spread uniformly across
the domain or selected according to the complexity of the
problem, e.g., more intervals are concentrated around sharp
transitions and less where the behavior is not as chaotic and

nonlinear. Formally, we decompose the domain of the PDE
problem Ω into Nd subdomains as Ω =

⋃Nd

k=1 Ωk. Each
subdomain Ωk is associated with an ND fk(θk) tasked to
learn the solution of the PDE within its subdomain. The
continuity between the subdomains is enforced via an addi-
tional interface loss term, which is minimized along with
the initial, boundary, and residual loss components dur-
ing the training. The interface loss is calculated using the
collocation points on the interface of adjacent subdomains
∂Ωp ∩ ∂Ωq where i, j ∈ 1, 2, ..., Nd. The full solution of
the PDE problem in the domain Ω is achieved by combining
all trained NDs. In this paper, the interface loss between the
p-th and q-th subdomains is defined as:

LIF (θp, θq) =
1

NQif

N∑
i=1

Qif∑
j=1

∣∣∣Gθp(u
(i))(y

(i)
j)

−Gθq (u
(i))(y

(i)
j)

∣∣∣2 (4)

2.4. Decoupled DeepONets for multi-output prediction

As elaborated in Section 1.1, the thermochemical analysis
of composites during the curing process requires learning
multiple target functions, namely, part temperature, tooling
temperature, and part DoC. One way to achieve this is to
devise multiple neurons in the output layer of DeepONet’s
ND, where each neuron is responsible for predicting one
of the output functions. However, we observed that this
configuration results in poor performance, mainly due to the
significant discrepancies in the behavior of output functions
and the limitation of the shared DeepONet architecture to
capture those fully. Another approach would be to introduce
a multi-head functionality where each output function has its
own dedicated ND. The decoders take the branch and trunk
networks’ embedding as the shared input and separately
learn the mappings to each target function. However, while
more effective than the first strategy, it is yet unable to accu-
rately learn the system’s solution. We hypothesize that the
presence of distinct thermal behaviors in this bi-material sys-
tem as well as its multi-scale physics poses a challenge for a
single branch-trunk network to effectively support the learn-
ing of the entire temperature and DoC fields. To address
this, we utilize a fully decoupled DeepONet architecture
where each output function has its own dedicated branch net,
trunk net, and ND, as shown in Figure 3. This design yields
three distinct neural operators denoted as GTc , GTt , and
Gα. It is worth noting that decoupling the output functions
automatically imposes a spatial domain decomposition as
the temperature profiles of the part and tooling are learned
via 2 separate DeepONets. This essentially allows some of
NDs to concentrate exclusively on understanding the tool-
ing’s thermal characteristics, while the rest are dedicated
to learning the thermochemical behavior of the composite

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Under review at ICML 2024 AI for Science workshop

Figure 3. Schematic of proposed multi-input PIDON with nonlinear decoder for thermochemical analysis of composites curing process.

part.

2.5. Curriculum learning

It has been shown that the vanilla PINN model has difficulty
learning highly nonlinear PDEs with large coefficients (Kr-
ishnapriyan et al., 2021). This can be due to the sensitivity of
the PINN’s loss landscape to the values of these coefficients.
Particularly, when coefficients have large values, the loss
landscape tends to become complex and asymmetric, posing
significant challenges to the training process. To mitigate
this issue, one effective approach involves utilizing curricu-
lum learning strategies (Krishnapriyan et al., 2021; Bengio
et al., 2009). By initially training the model on PDE solu-
tions with smaller coefficients (i.e., smoother loss landscape)
and gradually increasing the coefficient values, the model
error can be reduced significantly by several orders of mag-
nitude. We also observed similar challenges in training the
PIDON model. Specifically, in the context of thermochemi-
cal analysis of composite curing processes, the presence of
a heat generation term within the heat transfer governing
equation introduces a sharp nonlinearity into the PDE solu-
tion (A.1). This nonlinearity substantially contributes to the
poor predictive performance of physics-informed models.
Particularly for large values of the heat generation coef-
ficient (bc), training the PIDON model becomes notably
challenging. To address this issue, we employed the cur-
riculum learning strategy described above. This involves
initiating the training process with no heat generation term
(bc = 0) and gradually introducing internal heat generation
to the equation through step-wise increments in the value of
bc.

3. Results
This section presents a series of experimental results demon-
strating the effectiveness of the nonlinear decoders, curricu-
lum learning and domain decomposition in the training of

PIDON. The performance of PIDON against the highly non-
linear composites curing process across a high-dimensional
design space is investigated. For model training and evalu-
ation, 500 and 20 random combinations of input functions
were generated from the specified ranges presented in Table
4. All branch, trunk and NDs of DeepONet models consist
of 5 hidden layers with 50 neurons equipped with tanh ac-
tivation function. A 50-neuron output layer is selected for
both branch and trunk nets. PIDON was trained using Adam
optimizer with an initial learning rate of 1× 10−3 and a de-
cay rate of 0.9 per 1000 steps. A batch size of 1024 and 200
training epochs was employed. The Jax library (Bradbury
et al., 2018) was used for developing and training the mod-
els on a single NVIDIA T4 GPU with 104 GB of memory.
For validation, an in-house Python FE code was developed
and used to randomly generate unseen test cases from the
design spaces. AS4/8552 prepreg and Invar tooling are con-
sidered as the materials for this case study. The model’s
average performance on these unseen test cases is reported.
Details regarding the training procedure of PIDON models
are presented in A.3.

3.1. Evaluation of PIDON’s predictive performance

We trained the PIDON model on the design space char-
acterized by the design variables outlined in Section 1.1.
Three DeepONets equipped with NDs were trained to pre-
dict the output functions, specifically Tc, Tt, and α. The
training of DeepONets was conducted sequentially (Niaki
et al., 2021), where two Adam optimizers sequentially min-
imize temperature- and DoC-related losses (Figure 3) for
improved stability and convergence. To capture the com-
plex dynamics of the composite part, the time domain was
decomposed into 7 intervals, with smaller intervals centered
around the DoC sharp transition (Figure 7). The paramet-
ric coupled PDEs were learned via a curriculum learning
strategy by incrementally increasing the heat generation co-
efficient bc from 0 (no heat generation) to its real value in 5

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Under review at ICML 2024 AI for Science workshop

Figure 4. Temperature (a) and DoC (b) prediction performance of
PIDON at composite part mid-point for two curing scenarios: thin
tooling (T maximum absolute error = 3.2°C, α maximum error =
0.024) and thick tooling (T maximum error = 0.9°C, α maximum
absolute error = 0.021). An identical two-hold cure cycle was used
for both scenarios (shown in gray.)

steps.

Figures 4 and 9 illustrates the model’s predictions of the
part’s mid-point temperature and DoC across various de-
sign variable combinations. The model achieved an average
maximum absolute error of 2.3°C and 0.022 for temperature
and DoC across test cases. Figure 10 provides a visual com-
parison between PIDON’s predictions and FE simulations,
along with the absolute error fields for part temperature,
part DoC, and Tool temperature. The real-time inference
capability of PIDON (20 times faster than FE simulations
in this case) as well as its accurate predictions across a high-
dimensional design space, makes it an excellent tool for
process design optimization tasks.

Figure 5. Effect of implementing ND in the architecture of Deep-
ONet. The model with ND (dark red) results in considerably
smaller training loss and exhibits a more stable behavior.

3.2. Effect of nonlinear decoder

To showcase the impact of integrating NDs into the architec-
ture of PIDON, two training scenarios were considered: one
with NDs and one without (using the original DeepONet’s
linear decoder.) As depicted in Figure 5, the model lacking
the ND struggles to capture the complexities within the so-
lution, ultimately converging to a relatively high training
loss. Despite experimenting with various sizes of branch
and trunk output layers within the vanilla DeepONet archi-
tecture, the model’s performance remains unsatisfactory. In
contrast, the PIDON model equipped with ND successfully
learns the underlying physics, resulting in a significantly
reduced training loss. Moreover, the addition of ND enables
a more stable training process for learning the solution of
the coupled PDEs, concurrently reducing both temperature
and DoC losses to satisfactory levels. Conversely, PIDON’s
linear decoder initially converges to a trivial solution by
equating the rate of change of DoC to zero (hence, a very
small DoC loss at the initial stage of training). This, con-
sequently, prevents the temperature loss from decreasing
to small values. Upon exiting the trivial solution, while
the temperature loss is improved, the DoC loss increases
significantly and remains at large values. This observation
underscores the inability of the linear decoder in the original
architecture of DeepONet to learn nonlinear operators.

3.3. Curriculum learning

While utilizing NDs significantly improves the performance
of PIDON, we still observed notable deviation between
the PIDON’s predictions and the FE solutions, particularly
around sharp boundary edges and nonlinear trends during

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Under review at ICML 2024 AI for Science workshop

Table 1. Comparison of PIDON’s temperature prediction perfor-
mance with and without curriculum learning across different de-
sign space sizes. The description of design spaces is provided in
A.3. All models were trained using 7 NDs.

DESIGN METRIC REGULAR CURRICULUM
SPACE SIZE (AVG.) TRAINING LEARNING

SMALL REL. L2 6.8× 10−3 2.8× 10−3

MAE 0.74 0.285

MEDIUM REL. L2 9.22× 10−3 3.27× 10−3

MAE 0.83 0.361

LARGE REL. L2 1.3× 10−2 4.35× 10−3

MAE 1.1 0.447

the steep rise of DoC. This discrepancy is exacerbated as
the problem complexity increases with broadening the in-
put function range and expanding the design space. We
hypothesize that one contributing factor is the nonsmooth,
asymmetric, and complex loss landscape of the PIDON,
hindering convergence to small loss values (Krishnapriyan
et al., 2021). The presence of multiple loss components,
including PDE, ODE, IC, BC, interface, and continuity
losses compounds the optimization challenge. Here, we
explored the impact of a curriculum learning strategy across
three different design space sizes. Specifically, PIDONs
were trained with and without curriculum learning on small,
medium, and large input function ranges. For curriculum
learning, training commenced with solving a simplified
heat transfer problem without heat generation by setting
the heat generation coefficient bc (A.1) to zero. Then, the
training gradually progressed to more complex scenarios
by incrementally increasing the value of bc in a step-wise
fashion (Figure 11). At each stage, the trained weights from
the previous step served as initialization. Table 1 presents
a comparative analysis of PIDON performance with and
without curriculum learning across various design space
sizes. While PIDON accuracy diminishes with larger design
spaces, those trained with curriculum learning consistently
exhibit strong performance across all design space scales.

3.4. Role of domain decomposition in capturing
nonlinearities

We conducted experiments to evaluate the efficacy of do-
main decomposition in enhancing the performance of PI-
DON for modeling the thermochemical analysis of com-
posites curing process. Notably, while curriculum learning
improved the model’s overal performance, we observed that
it still struggled to fully capture the behavior around sharp
nonlinearities, particularly during the rapid increase in the
DoC, responsible for the heat generation phenomena. This
directly affects the model’s performance on the prediction
of exotherm (maximum part temperautre), a key factor in

Table 2. Effect of Domain Decomposition on PIDON’s tempera-
ture prediction performance in highly nonlinear regions.

METRIC NUMBER OF NDS (Nd)
(AVG.) 1 5 7

Rel. L2(×10−3) 6.1 3.6 2.8
Max error (°C) 6.1 3.1 2.3
Training time (s/epc.) 40 56 61

determining the quality of the manufactured part. To address
this limitation, we utilized domain decomposition by parti-
tioning the time domain into smaller intervals centered on
the nonlinear region and allocating NDs to learn the physics
within each interval. This approach further improved the
model’s performance around the nonlinearities. Specifi-
cally, we tested three architectures with different number
of subnets as shown in Table 2. All models followed an
identical training procedure, including the implementation
of the curriculum learning strategy and an equal number of
training epochs. The exotherm prediction error decreased
substantially as the number of NDs increased. These results
suggest that despite the effectiveness of curriculum learning
in mitigating the adverse impacts of nonsmooth landscapes
associated with large PDE coefficients, achieving more ac-
curate predictions in highly nonlinear regimes necessitates
more expressivity, which can be attained through the intro-
duction of multiple NDs.

Conclusions
In this study, we presented an advanced PIDON framework
designed to address the challenges posed by highly nonlin-
ear and complex physical systems, specifically in the context
of composites autoclave processing. Our approach inte-
grates nonlinear decoders, domain decomposition, and cur-
riculum learning strategies, which together notably improve
the model’s ability to capture complex solution operators
and provide accurate predictions and generalizability across
a wide range of input functions and design spaces. The intro-
duced enhancements effectively addressed the shortcomings
of vanilla PIDON architecture, resulting in a robust and
reliable predictive performance. The advanced PIDON’s
zero-shot and real time inference capabilities make it highly
suitable for applications in digital twins and Industry 4.0,
where real-time data and simulations are crucial for monitor-
ing and controlling manufacturing processes. This ability to
provide swift and precise insights ensures that PIDON can
play a pivotal role in enhancing the efficiency and reliability
of composites manufacturing and other related fields.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Under review at ICML 2024 AI for Science workshop

References
Bengio, Y., Louradour, J., Collobert, R., and Weston, J.

Curriculum learning. In Proceedings of the 26th annual
international conference on machine learning, pp. 41–48,
2009.

Boullé, N. and Townsend, A. A mathematical guide to oper-
ator learning. arXiv preprint arXiv:2312.14688, 2023.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Chen, G., Li, Y., Meng, Q., Zhou, J., Hao, X., et al. Resid-
ual fourier neural operator for thermochemical curing of
composites. arXiv preprint arXiv:2111.10262, 2021.

Chen, G., Li, Y., Liu, X., Mehdi-Souzani, C., Meng, Q.,
Zhou, J., and Hao, X. Physics-guided neural operator for
data-driven composites manufacturing process modelling.
Journal of Manufacturing Systems, 70:217–229, 2023.

Chen, T. and Chen, H. Universal approximation to nonlinear
operators by neural networks with arbitrary activation
functions and its application to dynamical systems. IEEE
transactions on neural networks, 6(4):911–917, 1995.

Cuomo, S., Di Cola, V. S., Giampaolo, F., Rozza, G., Raissi,
M., and Piccialli, F. Scientific machine learning through
physics–informed neural networks: Where we are and
what’s next. Journal of Scientific Computing, 92(3):88,
2022.

Fabris, J. N. A framework for formalizing science based
composites manufacturing practice. PhD thesis, Univer-
sity of British Columbia, 2018.

Fang, Z., Wang, S., and Perdikaris, P. Learning only on
boundaries: A physics-informed neural operator for solv-
ing parametric partial differential equations in complex
geometries. Neural Computation, 36(3):475–498, 2024.

Gao, H., Sun, L., and Wang, J.-X. Phygeonet: Physics-
informed geometry-adaptive convolutional neural net-
works for solving parameterized steady-state pdes on
irregular domain. Journal of Computational Physics, 428:
110079, 2021.

Gin, C. R., Shea, D. E., Brunton, S. L., and Kutz, J. N. Deep-
green: deep learning of green’s functions for nonlinear
boundary value problems. Scientific reports, 11(1):21614,
2021.

Haghighat, E., bin Waheed, U., and Karniadakis, G. En-
deeponet: An enrichment approach for enhancing the

expressivity of neural operators with applications to seis-
mology. Computer Methods in Applied Mechanics and
Engineering, 420:116681, 2024.

Hubert, P., Johnston, A., Poursartip, A., and Nelson, K.
Cure kinetics and viscosity models for hexcel 8552 epoxy
resin. In International SAMPE symposium and exhibition,
pp. 2341–2354. SAMPE; 1999, 2001.

Jagtap, A. D. and Karniadakis, G. E. Extended physics-
informed neural networks (xpinns): A generalized space-
time domain decomposition based deep learning frame-
work for nonlinear partial differential equations. Commu-
nications in Computational Physics, 28(5), 2020.

Krishnapriyan, A., Gholami, A., Zhe, S., Kirby, R., and
Mahoney, M. W. Characterizing possible failure modes
in physics-informed neural networks. Advances in Neural
Information Processing Systems, 34:26548–26560, 2021.

Kumar, V., Goswami, S., Smith, D. J., and Karniadakis,
G. E. Real-time prediction of gas flow dynamics in diesel
engines using a deep neural operator framework. arXiv
preprint arXiv:2304.00567, 2023.

Lanthaler, S., Mishra, S., and Karniadakis, G. E. Error
estimates for deeponets: A deep learning framework in
infinite dimensions. Transactions of Mathematics and Its
Applications, 6(1):tnac001, 2022.

Lee, J. Y., Cho, S. W., and Hwang, H. J. Hyperdeeponet:
learning operator with complex target function space
using the limited resources via hypernetwork. arXiv
preprint arXiv:2312.15949, 2023.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier
neural operator for parametric partial differential equa-
tions. arXiv preprint arXiv:2010.08895, 2020a.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural
operator: Graph kernel network for partial differential
equations. arXiv preprint arXiv:2003.03485, 2020b.

Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis, G. E.
Learning nonlinear operators via deeponet based on the
universal approximation theorem of operators. Nature
machine intelligence, 3(3):218–229, 2021.

Lu, L., Meng, X., Cai, S., Mao, Z., Goswami, S., Zhang,
Z., and Karniadakis, G. E. A comprehensive and fair
comparison of two neural operators (with practical exten-
sions) based on fair data. Computer Methods in Applied
Mechanics and Engineering, 393:114778, 2022.

Lucia, D. J., Beran, P. S., and Silva, W. A. Reduced-order
modeling: new approaches for computational physics.
Progress in aerospace sciences, 40(1-2):51–117, 2004.

9

http://github.com/google/jax

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Under review at ICML 2024 AI for Science workshop

Majumdar, R., Jadhav, V., Deodhar, A., Karande, S., Vig, L.,
and Runkana, V. Hxpinn: A hypernetwork-based physics-
informed neural network for real-time monitoring of an
industrial heat exchanger. Numerical Heat Transfer, Part
B: Fundamentals, pp. 1–22, 2024.

Mattey, R. and Ghosh, S. A novel sequential method to
train physics informed neural networks for allen cahn and
cahn hilliard equations. Computer Methods in Applied
Mechanics and Engineering, 390:114474, 2022.

Meng, Q., Li, Y., Liu, X., Chen, G., and Hao, X. A novel
physics-informed neural operator for thermochemical
curing analysis of carbon-fibre-reinforced thermosetting
composites. Composite Structures, 321:117197, 2023.

Niaki, S. A., Haghighat, E., Campbell, T., Poursartip, A.,
and Vaziri, R. Physics-informed neural network for mod-
elling the thermochemical curing process of composite-
tool systems during manufacture. Computer Methods in
Applied Mechanics and Engineering, 384:113959, 2021.

Rahman, M. A., George, R. J., Elleithy, M., Leibovici, D.,
Li, Z., Bonev, B., White, C., Berner, J., Yeh, R. A., Kos-
saifi, J., et al. Pretraining codomain attention neural
operators for solving multiphysics pdes. arXiv preprint
arXiv:2403.12553, 2024.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
physics, 378:686–707, 2019.

Ramezankhani, M. and Milani, A. S. A sequential meta-
transfer (smt) learning to combat complexities of physics-
informed neural networks: Application to composites
autoclave processing. arXiv preprint arXiv:2308.06447,
2023.

Rashid, M. M., Pittie, T., Chakraborty, S., and Krishnan,
N. A. Learning the stress-strain fields in digital com-
posites using fourier neural operator. Iscience, 25(11),
2022.

Seidman, J., Kissas, G., Perdikaris, P., and Pappas, G. J. No-
mad: Nonlinear manifold decoders for operator learning.
Advances in Neural Information Processing Systems, 35:
5601–5613, 2022.

Sirignano, J. and Spiliopoulos, K. Dgm: A deep learning al-
gorithm for solving partial differential equations. Journal
of computational physics, 375:1339–1364, 2018.

Strong, A. B. Fundamentals of composites manufactur-
ing: materials, methods and applications. Society of
manufacturing engineers, 2008.

Tripura, T. and Chakraborty, S. Wavelet neural operator: a
neural operator for parametric partial differential equa-
tions. arXiv preprint arXiv:2205.02191, 2022.

Van Ee, D. and Poursartip, A. Hexply 8552 material proper-
ties database for use with compro cca and raven. Version
0.9. NCAMP. Wichita, KS, 2009.

Wang, S., Wang, H., and Perdikaris, P. Learning the solution
operator of parametric partial differential equations with
physics-informed deeponets. Science advances, 7(40):
eabi8605, 2021.

Wang, S., Yu, X., and Perdikaris, P. When and why pinns
fail to train: A neural tangent kernel perspective. Journal
of Computational Physics, 449:110768, 2022.

Wang, S., Sankaran, S., and Perdikaris, P. Respecting causal-
ity for training physics-informed neural networks. Com-
puter Methods in Applied Mechanics and Engineering,
421:116813, 2024.

Wight, C. L. and Zhao, J. Solving allen-cahn and cahn-
hilliard equations using the adaptive physics informed
neural networks. arXiv preprint arXiv:2007.04542, 2020.

Zauderer, E. Partial differential equations of applied mathe-
matics. John Wiley & Sons, 2011.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Under review at ICML 2024 AI for Science workshop

A. Composites autoclave processing case study
A.1. Governing equations

The one-dimensional thermochemical behavior of a composite-tool system in an autoclave is governed by an anisotropic
heat conduction equation with an internal heat generation term Q̇ = bc

∂α
∂t accounting for the exothermic chemical reaction

of the resin matrix during the curing process:


∂Tt

∂t
= at

∂2Tt

∂z2
z ∈ [0, L1]

∂Tc

∂t
= ac

∂2Tc

∂z2
+ bc

∂α

∂t
z ∈ [L1, L2]

where a =
k

ρCp
and b =

vrρrHr

ρCp
. (5)

where, T is the temperature α is the DoC, L is the material length, and t and z are the spatiotemporal coordinates. Subscripts
t, c, and r, represent the tool, composite part and resin, respectively. a denotes the thermal diffusivity, b is the heat generation
coefficient, and k, p and Cp are the thermal conductivity, density and specific heat capacity. v and H represent the volume
fraction and heat of reaction per unit mass. In the curing process of a composite system with thermoset resin, the cure rate
∂α
∂t is determined by the resin’s cure kinetics and is typically described by an ordinary differential equation. For the 8552
epoxy resin system, used in this study, the cure kinetics have been previously developed (Hubert et al., 2001), and can be
expressed as follows:

∂α

∂t
=

A exp(−∆E
RT))

1 + exp(C(α− (C0 + CTT)))
αm(1− α)n. (6)

Here, ∆E represents the activation energy, R is the gas constant, and C0, CT , m, n and A are experimentally determined
constants. Table 3 provides a summary of the parameter values used in the cure kinetics equations for this study.

Table 3. Summary of parameters used in heat transfer and cure kinetics governing equations.

PARAMETER DESCRIPTION VALUE

∆E ACTIVATION ENERGY 66.5 (kJ/gmol)
R GAS CONSTANT 8.314
A PRE-EXPONENTIAL CURE RATE COEFFICIENT 1.53× 105 (1/S)
m FIRST EXPONENTIAL CONSTANT 0.813
n SECOND EXPONENTIAL CONSTANT 2.74
C DIFFUSION CONSTANT 43.1
C0 CRITICAL DEGREE OF CURE AT T = 0 K -1.684
CT CRITICAL RESIN DEGREE OF CURE CONSTANT 5.475× 10−3 (1/K)

The initial conditions of the coupled system described above can be specified as:

Tc |t=0= T0(x)

Tt |t=0= T0(x)

α |t=0= α0(x).

(7)

T0 represents the part’s initial temperature, which is typically considered uniform throughout. In this study, the initial
temperature is assumed to be 20°C. α0 denotes the initial DoC of the resin system, and for an uncured part, it is assumed to
be zero or a very small value; in this study, a value of 0.05 is used. Considering the convective heat transfer between the
autoclave air Ta and the composites system, the boundary conditions are governed by:

(Ta − Tc |z=L2
) =

kc
htop

∂Tc

∂z
|z=L2

(Tt |z=0 −Ta) =
kt
hbot

∂Tt

∂z
|z=0

(8)

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Under review at ICML 2024 AI for Science workshop

where htop and hbot are the HTCs on the top and bottom surfaces of the composite-tool system. Furthermore, the solution of
the described system must satisfy the following continuity conditions between the part and the tool:

kt
∂Tt

∂z
|z=L−

1
= kc

∂Tc

∂z
|z=L+

1

Tt |z=L−
1
= Tc |z=L+

1
.

(9)

Figure 6. Schematic of Autoclave pressure vessel and typical two-hold cure cycle recipe for autoclave air temperature Ta in composites
manufacturing.

A.2. Spatial local coordinates

Figure 1 illustrates the local coordinates x1 and x2, which are defined to manage inconsistencies in the total length of the
system and the interface location resulting from the varying part and tool thicknesses. Substituting the local coordinates into
the heat conduction, heat convection, and continuity equations results in the following transformed governing equations:


∂Tt

∂t
=

at
L2
t

∂2Tt

∂x2
1

x1 ∈ [0, 1]

∂Tc

∂t
=

ac
L2
c

∂2Tc

∂x2
2

+ bc
∂α

∂t
x2 ∈ [0, 1]

(10)

∂Tc

∂x2
|x2=1 =

htopLc

kc
(Ta − Tc |x2=1)

∂Tt

∂x1
|x1=0 =

hbotLt

kt
(Tt |x1=0 −Ta)

Tt |x1=1 = Tc |x2=0

kt
Lt

∂Tt

∂x1
|x1=1 =

kc
Lc

∂Tc

∂x2
|x2=0 .

(11)

The use of local coordinates ensures identical coordinate domain size across all bi-material systems selected for training
and testing. The thickness variation is then appropriately accounted for within the parameters of the differential equations
(i.e., via the presence of Lc and Lt in such equations). This also enables treating the composite part and tool as standalone
systems trained on separate networks with input variables normalized to 0 and 1. Specifically, as discussed in Section 2.4,
two DeepONets are allocated to capture the thermal behaviors of the part and tooling separately. While the individual
DeepONets are responsible for learning separate systems, they also need to simultaneously satisfy the continuity conditions

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Under review at ICML 2024 AI for Science workshop

at the interface of the two materials. This is accomplished by defining two additional loss terms:

LCT1(θt, θc) =
1

NQct

N∑
i=1

Qct∑
j=1

|GTt

θt
(u(i))(y

(i)
j))−GTc

θc
(u(i))(y

(i)
j))|2

LCT2
(θt, θc) =

1

NQct

N∑
i=1

Qct∑
j=1

| kt
Lt

∂GTt

θt
(u(i))(y

(i)
j))

∂x1
− kc

Lc

∂GTc

θc
(u(i))(y

(i)
j))

∂x2
|2.

(12)

Here θt and θc denote the weights associated with the part DeepONet GTt and tool DeepONet GTc , respectively (see Figure
3). Qct is the number of residual points evaluated at the materials’ interface.

A.3. Training procedure

During the training phase, GTt is responsible for enforcing the tool’s IC, bottom surface BC, and tool’s PDE. Similarly, GTc

ensures the part’s IC, top surface BC, and the part’s PDE are satisfied. Additionally, the continuity conditions between the
tool and part are maintained by jointly updating the weights of GTt and GTc . Similarly, ODE loss (resin cure kinetics) is
minimized by the sequential co-training of GTc and Gα. Furthermore, Gα is tasked with minimizing the initial condition
loss associated with DoC. We implemented the sequential learning approach (Niaki et al., 2021) to train the operators. The
training began with updating the weights of GTc and GTt through their associated loss terms for 10 epochs while keeping
the Gα’s weights constant. Subsequently, Gα was trained for 10 epochs while the other two operators remained frozen. The
training ends after repeating this procedure 10 times.

The input of BN2 is the sensory information of the air profile (i.e., cure cycle) surrounding the composite system during the
curing process which enforces the boundary conditions. Various cure cycles with different numbers of isothermal holds as
well as different heat ramp rates and hold durations are considered. For each cure cycle, the air temperature is recorded
at 100 specified time steps (i.e., sensor locations) and the data is passed to BN2. BN1 on the other hand is fed with the
remaining time-invariant process parameters. In this study, four process parameters including the top HTC, bottom HTC,
tool’s thickness, and composite part’s thickness are considered (Figure 7). Table 4 summarizes the design parameters and
their corresponding ranges used for training the PIDON models in this study.

Figure 7. Proposed PIDON input-output functions mapping. PIDON takes in time-dependent (cure cycle) and time-independent
(Lt, Lc, htop, hbot) functions as input and outputs temperature and DoC fields. The arrangement of temporal subdomains is also
presented.

B. DeepONet
Based on the universal approximation theorem for operators, (Chen & Chen, 1995) proposed operator nets, a neural network
architecture that approximates nonlinear operators that map infinite dimensional Banach spaces. An operator net consists of

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Under review at ICML 2024 AI for Science workshop

Table 4. Design variables (input functions) and their corresponding ranges for three different design space sizes.

DESIGN DESCRIPTION DESIGN SPACE SIZE
PARAMETER SMALL MEDIUM LARGE

htop (W/m2 K) TOP HTC [90, 120] [80, 120] [70, 120]
hbot (W/m2 K) BOTTOM HTC [60, 90] [50, 90] [50, 100]
r1 (°C/min) RAMP 1 [1.9, 2.8] [1.7, 3] [1.5, 3]
ht1 (°C) HOLD 1 TEMPERATURE [110, 115] [105, 115] [105, 120]
hd1 (min) HOLD 1 DURATION [55, 63] [52, 63] [50, 65]
r2 (°C/min) RAMP 2 [1.9, 2.8] [1.7, 3] [1.5, 3]
ht2 (°C) HOLD 2 TEMPERATURE [178, 183] [175, 185] [170, 185]
hd2 (min) HOLD 2 DURATION [105, 115] [105, 120] [105, 120]
Lt (cm) TOOL THICKNESS [2, 3.5] [2, 4] [2, 5]
Lc (cm) PART THICKNESS [2.5, 3.5] [2.5, 3.5] [2.5, 3.5]

two shallow neural networks, namely, branch net and trunk net, which encode the input functions and system coordinates,
respectively. The branch and trunk nets are merged to approximate the underlying operator solution. (Lu et al., 2021)
proposed a more expressive variant of the operator net named DeepONet by replacing shallow networks with deep neural
networks. The architecture of the DeepONet can naturally be decomposed into three main components: an encoder, an
approximator, and a decoder, as illustrated in Figure 8.a (Lanthaler et al., 2022). The encoder is responsible for mapping
the infinite-dimensional input space to a finite-dimensional space. This is crucial for training the operator as the input
functions must be expressed discretely to implement the network approximations. In other words, the continuous input
functions are mapped to their discretized representation (i.e., finite-dimensional space) by pointwise evaluations at m fixed
sensor points xj . The approximator is parameterized by a deep neural network that maps the sensor point evaluations
u = [u(x1), u(x2), ..., u(xm)] to a finite-dimensional feature representation b = [b1, b2, ..., bq]

T ∈ Rq. The composition
of the encoder and approximator results in the branch net of DeepONet expressed by β(u) = A ◦ E(u). Similar to the
branch net, the trunk net is parameterized by a deep neural network that encodes the inputs of the PDE system y to a feature
embedding t = [t1, t2, ..., tq]

T ∈ Rq with the same size as the branch net’s output (Figure 8.b). Finally, the decoder takes
the output of the branch (q coefficients) and trunk nets (q basis functions) and calculates the DeepONet’s output using an
element-wise product operation followed by a summation, Gθ(u)(y) =

∑q
k=1 bktk + b0. The bias term b0 is added in

practice to improve the generalization performance of DeepONet G. The decoder can also be seen as a single network (trunk
net) with its weights in the last layer parameterized by another network (branch net). In a supervised learning fashion, the
DeepONet can be trained by minimizing the error between the model’s predicted output and the actual operator solution
across a range of training input functions.

Figure 8. Schematic of DeepONet decomposition into Encoder, Approximator, and Decoder (a); architecture of vanilla DeepONet with a
branch net, a trunk net, and a linear decoder.

C. Additional results

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Under review at ICML 2024 AI for Science workshop

Figure 9. Zero-shot prediction performance of PIDON at composite part mid-point for: a) high HTCs and thin tool vs. low HTCs and
thick tool; b) two different cure cycles (shown in gray.)

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Under review at ICML 2024 AI for Science workshop

Figure 10. Comparison of PIDON prediction and FE simulation for Part temperature (a), tool temperature (b) and DoC (c) for a test case
with the design variables: htop = 75, hbot = 115, r1 = r2 = 2.2, ht1 = 110, hd1 = 58, ht2 = 180, hd2 = 105, Lt = 0.025, Lc =
0.03.

Figure 11. The evolution of temperature and DoC training losses during curriculum learning at various values of heat generation coefficient
bc.

16

