
Published as a conference paper at ICLR 2024

CAN SENSITIVE INFORMATION BE DELETED FROM
LLMS? OBJECTIVES FOR DEFENDING AGAINST
EXTRACTION ATTACKS

Vaidehi Patil∗ Peter Hase∗ Mohit Bansal
UNC Chapel Hill
{vaidehi, peter, mbansal}@cs.unc.edu

ABSTRACT

Pretrained language models sometimes possess knowledge that we do not wish
them to, including memorized personal information and knowledge that could
be used to harm people. To mitigate these safety and informational issues, we
propose an attack-and-defense framework for studying the task of deleting sensitive
information directly from model weights. We study direct edits to model weights
because (1) this approach should guarantee that particular deleted information is
never extracted by future prompt attacks, and (2) it should protect against whitebox
attacks, which is necessary for making claims about safety/privacy in a setting
where publicly available model weights could be used to elicit sensitive information.
Our threat model assumes that an attack succeeds if the answer to a sensitive
question is located among a set of B generated candidates, based on scenarios
where the information would be insecure if the answer is among B candidates.
Experimentally, we show that even state-of-the-art model editing methods such
as ROME struggle to truly delete factual information from models like GPT-J,
as our whitebox and blackbox attacks can recover “deleted” information from
an edited model 38% of the time. These attacks leverage two key observations:
(1) that traces of deleted information can be found in intermediate model hidden
states, and (2) that applying an editing method for one question may not delete
information across rephrased versions of the question. Finally, we provide new
defense methods that protect against some extraction attacks, but we do not find a
single universally effective defense method. Our results suggest that truly deleting
sensitive information is a tractable but difficult problem, since even relatively low
attack success rates have potentially severe implications for the deployment of
language models in a world where individuals enjoy ownership of their personal
data, a right to privacy, and safety from harmful model outputs.1

1 INTRODUCTION

Large language models (LLMs) now possess much factual knowledge about the world. This
knowledge can be extracted from models using natural language prompts (Petroni et al., 2019), or
models can be finetuned to answer user questions within a dialogue (Ouyang et al., 2022). Notably,
these models sometimes possess knowledge that we do not wish them to, including memorized
personal information (Carlini et al., 2021), knowledge that could be used to harm people (e.g. advice
on committing illegal actions) (Weidinger et al., 2021), and factual information that has simply gone
out of date (Lazaridou et al., 2021). Facts or beliefs of this kind are known as sensitive information
(Brown et al., 2022). Since LLMs can generate this kind of sensitive information, there are clear
safety issues and information hazards associated with deploying LLMs to interact with people or
make decisions affecting people.

This situation leads us to ask:

∗Equal contribution.
1Our code is available at: https://github.com/Vaidehi99/InfoDeletionAttacks

1

https://github.com/Vaidehi99/InfoDeletionAttacks

Published as a conference paper at ICLR 2024

• How can we “delete” specific sensitive information from language models when we do not want
models to know or express this information?

• How do we test whether that specific information was successfully deleted?

Language
Model

Language
Model

1. Notice sensitive info

2. Deletion defense

3. Extraction attack

Language
Model

Figure 1: In our attack-and-defense frame-
work for deleting sensitive information from
an LLM, a malicious actor (or a regulator,
or a user) attempts to extract “deleted” in-
formation. We introduce new methods for
defending against extraction attacks.

Scrubbing Sensitive Info From LLM Outputs.
Currently, the predominant approach to eliminating
sensitive information from LLM outputs (while
preserving informativeness) is to use reinforcement
learning from human or AI feedback, known as RLHF
or RLAIF (Ouyang et al., 2022; Bai et al., 2022). In
general, RLHF has been preferred over removing
sensitive information from the training data, which
may be very difficult and also requires expensive
retraining processes to verify its success (Henderson
et al., 2023; Zhang et al., 2023a). Yet, RLHF is known
to have a number of shortcomings, both in theory and
in practice (Casper et al., 2023). Most pertinently,
models remain vulnerable to adversarial prompts even
after RLHF (Zou et al., 2023). A possibly deeper
shortcoming of RLHF is that a model may still know
the sensitive information. While there is much debate
about what models truly “know” (Jiang et al., 2020;
Andreas, 2022), it seems problematic for a model to,
e.g., be able to describe how to make a bioweapon
but merely refrain from answering questions about
how to do this. Additionally, it is possible for legal
regulations to require that model developers remove
sensitive information about an individual from a
model upon the individual’s request (Mohan et al.,
2019; Henderson et al., 2023; Zhang et al., 2023a). Though the notion of “deleting” data is
underdefined for language models (as opposed to databases), we doubt that RLHF would enable
compliance with such privacy requirements.

Model Editing for Information Deletion. We argue that the ideal approach is to directly delete
sensitive information from model weights. This approach should tailor models to never make use of
the sensitive information, meet potential legal standards for privacy (Zhang et al., 2023a), and avoid
difficult data-side interventions (Debenedetti et al., 2023). A further benefit of deleting sensitive
information from weights is that this protects against whitebox extraction attacks. Anyone with
sufficient technical knowledge might be able to extract sensitive information from model weights
(or hidden states) using representation probing techniques, which is a problem as model weights
continue to proliferate publicly through open-source release (Touvron et al., 2023).

When Is Information Truly Deleted? In this paper, we first adapt model editing methods (Meng
et al., 2022; 2023) for deleting sensitive information. Then we show that, surprisingly, even
state-of-the-art editing methods struggle to truly delete factual information from models under
simple whitebox and blackbox model attacks. We elaborate a threat model in Sec. 3, where our key
assumption is that an attack succeeds on a given input if a “deleted” model output can be recovered
from a set of B extracted candidates for a small number B. This view is based on three plausible
scenarios: an attacker could (1) make B “password attempts” to verify the answer, (2) pursue B
malicious ends in parallel, or (3) make a legal demand for the answer to be unobtainable within B
candidates (when the attacker is actually the data owner or a regulator). By example, consider that
an individual’s phone number might be leaked among, say, 10 extracted candidates; this is hardly
a guarantee of privacy. The attack-and-defense perspective in this paper is represented in Fig. 1.

Whitebox Attacks. The whitebox attacks we consider leverage the insight from interpretability
research that output information accrues over time in the hidden states of a Transformer forward pass
(nostalgebraist, 2020; Geva et al., 2021). In experiments with GPT-J (Wang & Komatsuzaki, 2021)
and Llama-2 (Touvron et al., 2023), we show that by projecting intermediate hidden states onto the
model vocabulary embeddings, we are able to extract model knowledge from these hidden states
even when the model has been edited to assign zero probability to the knowledge. We are able to

2

Published as a conference paper at ICLR 2024

extract the “deleted” answer from the hidden states a full 38% of the time when using a budget of
B = 20. In order to mitigate against these attacks, we extend the model editing objective to delete
information from both the final output and the intermediate model representations. This defense
lowers the attack success rate from 38% to 2.4%. We also show that our defense methods fare well
on a second whitebox attack that they were not designed to defend against.

Blackbox Attacks. Our blackbox attack is a simple but effective automated input rephrasing attack.
While model editing methods can remove target information across almost all paraphrases of a
prompt, we exploit their non-zero error rate by sampling model outputs for different paraphrases that
are automatically generated from a paraphrasing model. This blackbox attack succeeds 29% of the
time with a budget of B = 20. We provide a new objective using data augmentation to protect against
the blackbox attack, but, surprisingly, we find that this defense does not help against our paraphrasing
attack (unless one aggressively edits the model, leading to undesirable damage to model knowledge).

Findings. We summarize our contributions and conclusions as follows:

1. We introduce a threat model for sensitive information deletion based on the idea that information
is incompletely deleted if it can be extracted from a model within a set of B candidates.

2. We show that model editing methods like ROME fail to fully delete factual information from
LLMs, as facts can still be extracted 38% of the time by whitebox attacks and 29% of the time by
blackbox attacks with low attack budgets (B = 20).

3. We introduce new objectives for better defending against whitebox and blackbox extraction attacks.
Our approach reduces whitebox attack success from 38%→2.4% without further damaging model
knowledge, but, surprisingly, a data-augmentation-based blackbox defense is not effective.

4. Finally, we show that our whitebox defenses can help defend against “unforeseen” extraction
attacks, i.e. attacks that they were not specially designed for.

2 RELATED WORK

Evidence That LLMs Memorize Sensitive Information. Early work shows that models like GPT-2
memorize personal information and exact code snippets present in their training data (Carlini et al.,
2021; Ziegler, 2021). These works aim to “indiscriminately extract training data” (starting with hun-
dreds of thousands of model generations as candidates) rather than “extract targeted pieces of training
data,” which is our goal as we start with a specific question we aim to extract the model’s answer to.
More recently, Carlini et al. (2023) show that GPT-J memorizes at least 1% of its entire training dataset.
We point to Brown et al. (2022) for broader discussion of memorization in LLMs and user privacy.

Attacking LLMs for Sensitive Information. Our attacks are related to existing work on privacy
attacks. Membership inference attacks aim to verify whether particular samples are in a model’s
training data (Dwork et al., 2006; Shokri et al., 2017). In this paper, we aim to extract specific
factual information from a language model, rather than verify whether some given information was
in the training data. More relevant to this aim are the methods used to extract information from
language models, including prompting (Petroni et al., 2019) and probing (Belinkov, 2022). Some
works (Henderson et al., 2018; Lukas et al., 2023) explore prompting as a blackbox extraction attack,
but, in contrast, (1) we do not assume the attacker has the exact text from the pretraining data that
prefaced the sensitive information, and (2) our threat model does not restrict the candidate set to
be a single element (B = 1). More broadly, our overall aim is to develop both whitebox attacks
using representation probing techniques (nostalgebraist, 2020; Geva et al., 2021) and blackbox
attacks using model-based input rephrasing (Krishna et al., 2023). To our knowledge, these methods
have not been applied as extraction attacks on LLMs that have been specifically tailored to remove
sensitive information (e.g. with model editing methods). Moreover, we extend such information
deletion methods in order to better defend against these kinds of attacks.

Machine Unlearning and Model Editing. So-called machine unlearning is an old problem where
the goal is to remove information from a model without damaging the model’s performance on
the task it was trained for (Cao & Yang, 2015). Initial unlearning approaches for deep learning
relied on gradient-based updates to model weights, using e.g. influence functions (Guo et al., 2019)
or continual learning methods (Tanno et al., 2022). However, unlearning methods are generally
focused on removing the influence of a training (x, y) pair on a supervised model. This may not
be the appropriate framework for deleting sensitive information from language models, since the

3

Published as a conference paper at ICLR 2024

information is an undesirable output given in response to prompts or questions that are harmless
on their own. In contrast, model editing is an approach focused on changing particular outputs for
certain model inputs, with methods designed to update factually incorrect knowledge in models (Zhu
et al., 2020; Dai et al., 2022; De Cao et al., 2021; Hase et al., 2021). Model editing has already been
used widely within computer vision for deleting specific concepts from image generation models
(Gandikota et al., 2023; Heng & Soh, 2023; Kumari et al., 2023; Zhang et al., 2023b). Past work with
language models conducts simple experiments on “fact erasure” (Hase et al., 2023), but its main focus
is on the relationship between interpretability (localization) and model editing, while we explore the
problem of extracting or deleting information from a language model. Lastly, recent work introduces
methods for removing particular features (like word part-of-speech) from a model (Belrose et al.,
2023b) or even a model’s ability to perform a particular task (Ilharco et al., 2023). Here, we remove
more specific information (individual facts) from language models.

3 PROBLEM STATEMENT

We frame the information deletion problem in terms of adversarial attack and defense (Carlini et al.,
2019). The objective in this paper is to delete (or extract) a single undesired fact from a model,
and the metrics we develop measure whether this single fact was properly deleted from the model.

3.1 THREAT MODEL

Adversary’s Objective: We assume that an adversary seeks to obtain the answer A to a question
Q, where this pair (Q,A) is sensitive information. We say that an extraction attack is successful if
the answer A is within a candidate set C that is obtained by the attacker running some inference
algorithm on the model. This definition follows from three plausible threat models described below.
We refer to the size of the candidate set, |C| = B, as the attack budget.

1. Password Attempts: For the first threat model, we suppose that the attacker (1) does not know the
sensitive information and (2) could verify they had the correct information within B attempts, like
password attempts for stealing a personal account.

2. Parallel Pursuit: In the second threat model, we suppose that an attacker can act based on
multiple candidates in parallel without necessarily needing the correct information. One example
of this could be harassing an individual via multiple possible personal email addresses.

3. Verification by Data Owner: Lastly, we consider an attacker who is actually the data owner or a
regulator; they (1) know the sensitive information and (2) do not want it to be public. Imagine, for
example, requesting that your work address be deleted from an LLM. If there were a method that
reliably produced your real work address in a set of B possible addresses, you might not be satisfied
with concluding that your private information had been properly “deleted” from the model.

Thus in each setting, the LLM would be insecure if the answer A is among the set of B candidates.

Attack Success Metric. Following our threat models, we define an attack success metric below. We
compute this metric using data {xi, yi}Ni=1, with label yi = A representing an answer and input xi =

Q representing a question: AttackSuccess@B(M) = 1
N

∑N
i=1 1[yi ∈ Ci], where Ci is the candidate

set produced for model M on datapoint xi (with |Ci| = B), and 1[·] is the indicator function.

Adversary’s Capabilities: We delineate two possible levels of adversary model access, aiming to
simulate real-world constraints an attacker may face (Carlini et al., 2019): whitebox and blackbox ac-
cess. In whitebox access, we assume that the adversary has the models weights and architecture, such
that they can run model forward passes and access intermediate hidden states. For blackbox access,
we assume that the adversary can provide inputs to the model and receive randomly sampled outputs.

3.2 METRICS FOR INFORMATION DELETION

The goal of an information deletion method is to remove specific information from a model. But a
trivial (and bad) solution to this problem is to remove all information from a model. Thus the objective
is to (1) remove specific information, while (2) avoiding damaging the model’s knowledge in general:
argminM∗ AttackSuccess@B(M∗) + λDamage(M∗,M) where M∗ is the edited model, M is
the pre-edit model, and Damage(·, ·) denotes some measurement of damage to the model’s knowledge

4

Published as a conference paper at ICLR 2024

Relation
Conjunction
The
A

2.
3.
4.

Downtown
Central
Front
London

Downtown
Dublin
Switzerland
Spain

......

Madrid
Spain
Catalonia
Barcelona

Madrid
the
Spain
Catalonia

the
a
Madrid
one

The

Autonomous

University

Of

Madrid

Is

In

Hidden State

Vocab Projection

1.

Top K Preds

Spain "deleted"
from the model

"Deleted" information obtained
from intermediate hidden states

Logit Lens Attacks Rephrasing Attack

Next Token
Distribution

Head Projection

Probability Delta2.

1.

Random Sampling
From LM

The Autonomous University of Madrid is in

The Autonomous University of Madrid is
located in the country of

Spain "deleted"
from the model

"Deleted" information obtained
from rephrased input

the
a

Barcelona
Catalonia

Madrid
downtown

Spain
Dublin

Rephrasing
Module

Attacking Input (Successful)

Original Input

Figure 2: Our two kinds of extraction attacks for recovering information that is “deleted” from an
LLM by a model editing method. Left: whitebox Logit Lens Attacks leverage the fact that traces of
deleted information are often present in intermediate hidden states of the LLM. Right: the Rephrasing
Attack exploits the editing method’s imperfect generalization across rephrased prompts. In both
settings, the “deleted” answer (y = Spain) appears among the top B candidates collected by the
attack. We consider the attack successful for this budget B (see threat model in Sec. 3).

(compared to the unedited model). We do not optimize (or report) this objective directly, since it re-
quires a domain-specific tradeoff (λ) in Attack-Success and model damage. Instead, we report Attack-
Success metrics alongside common metrics for damage to model knowledge after model editing:

1. Random ∆-Acc (Zhu et al., 2020; De Cao et al., 2021): We measure the change in model
accuracy for random datapoints selected from the broader dataset, before and after editing the
model for point x. In our experiments, when an LLM is prompted with input x′, its generated
output is considered correct if it includes the true answer y′ from the fact (x′, y′).

2. Neighborhood ∆-Acc (Meng et al., 2022): This measures whether edits change outputs for
prompts x∗ involving the same relations and the same (true) answers as the fact being deleted. It is
important to evaluate model performance on neighboring points to the main fact (x, y) because it is
difficult to avoid changing model outputs for points similar to the main fact (Hase et al., 2021). As
above, we calculate the change in generation accuracy before and after the model edit for point x.

Additionally, we report the Rewrite Score from Hase et al. (2023) as a traditional measure of edit suc-
cess. A value of 100 means that edits perfectly maximize (or minimize) the target probability, while a
value of 0 means that the new target probability does not change at all. See Appendix D for full details.

4 ATTACK METHODS

4.1 WHITEBOX LOGIT LENS ATTACKS

The logit lens (nostalgebraist, 2020; Geva et al., 2021) is an interpretability technique inspired by the
concept of iterative refinement of features in Transformers. The technique directly converts hidden
states from any intermediate layer into a distribution over the model vocabulary by multiplying the
hidden states with the output token embedding matrix of the model. When applied to successive layer
outputs within a model forward pass, the logits lens produces a progression of probability distributions
over the vocabulary. This trajectory gradually converges towards the ultimate output distribution, with
each subsequent layer achieving lower perplexity against ground truth text (Belrose et al., 2023a).

We leverage the logit lens to design two attacks that probe the intermediate layer representations
of an LLM. These attacks are based on the hypothesis that, while editing methods may remove
sensitive information from the final model output (i.e. generated text), this information may
still be present in intermediate layers. Indeed, we often observe a “deleted” answer appearing
among highly-probable tokens during intermediate layers before disappearing completely at the final
layer (as shown in Fig. 2). Based on this observation, we propose two approaches for obtaining a
candidate set C from the probability distributions over the vocabulary produced by the logit lens.

Head Projection Attack: Using the logit lens distribution at each layer in a set of layers L, we
construct a candidate set C consisting of the top-k highest probability tokens from each layer:
CHead-Projection =

⋃
ℓ∈L top-k(D(ℓ)), where D(ℓ) ∈ R|V | is the logit lens probability distribution

5

Published as a conference paper at ICLR 2024

over vocabulary V from layer ℓ and top-k(·) returns the highest-probability k elements from each
distribution. Note we limit our experiments to datapoints with single-token answers for simplicity.
We select the top-k tokens for the basic reason that the deleted answer may appear among the top
tokens in the logit lens distributions before it disappears from the distributions at later layers (as in Fig.
2). The budget of this attack is B = k|L|. For experiments in Sec. 7, we select k and L to optimize
attack performance while remaining under a maximum budget B (see tuning details in Appendix A.)

Probability Delta Attack: Our second whitebox attack leverages the observation that a “deleted”
answer may quickly rise and fall within the progression of logit lens vocab distributions. We
conjecture that by rank-ordering the differences in token probabilities between two consecutive layers,
the target answer may be identifiable in the top or bottom k tokens. Consider Fig. 2 again: the
deleted answer Spain must first rise and later fall significantly across layers as it enters and exits
the head of the logit lens distribution. We therefore construct a candidate set as: CProbability-Delta =⋃

ℓ∈L top-k(D(ℓ+1) − D(ℓ)) ∪ bottom-k(D(ℓ+1) − D(ℓ)), where D(ℓ) is the logit lens probability
distribution from layer ℓ. This approach constructs a set from the elements that rise and fall the most in
the logit lens distributions between layers. For experiments in Sec. 7, we optimize attack performance
by tuning L and selecting the top-k elements, bottom-k elements, or union of the two sets (while
remaining within a fixed budget of |C| = 20). Further tuning details are present in Appendix A.

4.2 BLACKBOX ATTACK

Input Rephrasing: LLMs are known to be vulnerable to adversarial prompts even after finetuning for
chat safety (Zou et al., 2023). For our blackbox attack, we employ a simple but effective technique:
prompting with model-generated rephrases of the original input that was used for model editing. Since
model editing techniques exhibit good but imperfect generalization across paraphrases (De Cao et al.,
2021; Meng et al., 2022), we can extract specific information from a model by rephrasing the input
and sampling model outputs across these rephrases (shown in Fig. 2). So, we obtain a candidate set
as CRephrase =

⋃R
r=1{ŷs ∼ P (y|xr;M∗)}Ss=1, where R is the number of rephrases, S is the number

of model samples per rephrased input, xr is the r-th rephrasing of x generated by a paraphrasing
model, and P (y|x;M∗) is the output distribution of the edited model given input x. We generate
xr using the paraphrasing model from Krishna et al. (2023). The budget of this attack is |C| = RS.

5 DEFENSE METHODS

Next Token
Distribution

Whitebox Defense

Hidden State

Vocab Projection

Figure 3: We defend against whitebox attacks
by deleting information from intermediate hidden
states as well as the final model output distribution
(Max-Entropy and Head Projection Defenses).

The Empty Response Defense (Ouyang et al.,
2022). This defense employs the basic strat-
egy of optimizing a model to output something
not containing the sensitive information, which
is the strategy behind using RLHF for prevent-
ing models from generating sensitive informa-
tion. We simply optimize the probability of
an “empty” target string d with the objective
argmaxM p(d|x;M), using one of two target
strings: “I don’t know” and “dummy”. The re-
sult is that, instead of generating the original
knowledge, the model will instead indicate that
it does not know the answer (“I don’t know” tar-
get) or give some meaningless response (“dummy” target). In our main experiments, we use the
“dummy” target, which performs better than using “I don’t know” (see Appendix B).

Fact Erasure (Hase et al., 2023). Another simple approach to deleting a sensitive answer is to
minimize its probability under the model, i.e. minimize p(y|x;M) for the original fact (x, y).

Error Injection (De Cao et al., 2021). A common test of model editing methods involves inducing
counterfactual knowledge in the model. Here, we use the objective argmaxM p(y∗|x;M) where y∗

is the alternative, false target provided by Meng et al. (2022). This method would not be applicable
in practice, since we do not actually want LLMs to give wrong answers to sensitive questions, but
we consider it here to show the efficacy of injecting new false information into the model.

6

Published as a conference paper at ICLR 2024

Head Projection Defense. We introduce a objective that is directly designed to protect against the
Head Projection attack. The goal is to prevent the deleted answer from appearing in the top-k elements
of the logit lens distributions across a set of layers L, as well as the predicted distribution at the final
layer (see Fig. 3). To do so, we introduce a max-margin loss in each relevant distribution. With D(ℓ) as
the logit lens distribution at layer ℓ, D(ℓ)

answer as the original answer’s logit lens probability, and D
(ℓ)
k as

the k-th top probability in D(ℓ), the objective becomes: 1
|L|

∑
ℓ∈L max(0, D

(ℓ)
answer−D

(ℓ)
k +m), where

m is the margin term. Since we do not face any constraint over the set of layers L to remove the answer
from, we tune over possible layer sets to improve the defense performance (details in Appendix A).

Max-Entropy Defense. This defense is similar to the Head Projection Defense, but it varies in terms
of the objective for each layer. Here, we maximize the entropy of the model’s logit lens distributions
over the next token at each layer: argmaxM∗ − 1

|L|
∑

ℓ∈L

∑
y∈|V | D

(ℓ)
y logD

(ℓ)
y , where D

(ℓ)
y is the

probability of token y in the logit lens distribution of model M∗ given the input prompt x.

Input Rephrasing Defense. This defense strategy aims to counter the Input Rephrasing blackbox
attack described in Sec. 4. In addition to using the input x for optimization, this approach adds
model-generated paraphrases of x to the model editing objective. The rephrased inputs are created
using the same off-the-shelf generation model as in the Input Rephrasing attack (Krishna et al.,
2023). In other words, for the i-th datapoint, we concurrently delete the information for all prompts
x ∈ xi ∪ Xp

i , where Xp
i represents the set of rephrases of xi used for defense. We specifically

optimize the Fact Erasure objective in parallel for each input x ∈ xi ∪Xp
i .

6 EXPERIMENT SETUP

Models. We conduct experiments with GPT-J (Wang & Komatsuzaki, 2021), Llama-2 (Touvron et al.,
2023), and GPT2-XL (Radford et al., 2019). These models were chosen due to their (1) widespread
usage, (2) public availability, and (3) capacity for memorizing their pretraining data (Carlini et al.,
2023). Results for Llama-2 and GPT2-XL are in Appendix B.

Datasets. We use two datasets, CounterFact (Meng et al., 2022) and zsRE (Levy et al., 2017).
CounterFact consists of prompts with factual completions, as well as neighboring datapoints that
we use for computing Neighborhood ∆-Acc. The zsRE dataset contains short question-answer pairs
derived from Wikipedia. Both datasets include alternative, false targets for each input for model
editing. To obtain data for computing Random ∆-Acc, after each individual model edit we randomly
sample 100 other data points from the respective dataset. We filter the data to facts that are known
by the model we attack, because it only makes sense to delete facts that are already known by the
model. We consider a fact known by the model when the answer string is in the model generation given
the prompt; GPT-J gets 34% accuracy on CounterFact data with single-token answers and 25% on
zsRE (we also filter to points with single-token answers). Drawing from these eligible facts, our final
sample sizes are 587 and 454 datapoints for CounterFact and zsRE respectively when using GPT-J.

Model Editing Methods. We employ two popular model editing techniques in our experiments,
ROME (Meng et al., 2022) and MEMIT (Meng et al., 2023). We refer the reader to these works
for full details of the methods. Both methods work by updating a specific weight matrix in the MLP
layer(s) of a Transformer model. When applied to change a single fact in the model, the difference
between them is that ROME updates a single layer’s MLP (layer 6 for GPT-J by default), while
MEMIT updates multiple layers’ MLPs (we use layers 5-7). See Appendix A for other method
hyperparameters. In Appendix B, we conduct experiments with an additional editing method,
constrained finetuning (Zhu et al., 2020), but this method does not perform as well as ROME and
MEMIT. Each of our defense methods in Sec. 5 is characterized by its objective function and can
be combined with different model editing (optimization) approaches.

7 EXPERIMENT RESULTS

7.1 CAN WE EXTRACT A “DELETED” ANSWER FROM A LANGUAGE MODEL?

We first ask whether we can attack a model edited with the conventional Empty Response method.

Design. We measure Attack-Success@B as a function of the budget B for our three attack methods:
the (1) Head Projection, (2) Probability Delta, and (3) Input Rephrasing attacks. We perform these

7

Published as a conference paper at ICLR 2024

experiments with GPT-J and CounterFact data, applying the ROME editing method using the Empty
Response objective. We confirm that the edit methods work as designed: the Rewrite Score is high
for all methods (90%+), with low Random ∆-Acc scores (<1%). In general, we increase the budget
for whitebox attacks by increasing |L| and k, and for our blackbox attack we increase the number of
attack paraphrases and the number of samples. See Appendix A for exact hyperparameters.

ATTACK BUDGET (B)

A
TT

A
C

K
 S

U
C

C
E

S
S

0.0

0.1

0.2

0.3

0.4

0.5

0 10 20 30

Input Rephrasing Head Projection Probability Delta

Figure 4: Attack Success vs. the budget B for
our three attack methods. We “delete” facts from
GPT-J with ROME using the conventional Empty
Response objective.

Results. From the results in Fig. 4, we see that
attack success reaches values as high as 38% with
a budget of B = 20. This extremely high attack
success rate means that, under our threat model
in Sec. 3, the edited model is highly vulnerable
to extraction attacks for the “deleted” fact.

Besides the highest attack success rate obtained
with whitebox attacks and a budget of B = 20,
we note that the blackbox attack also achieves
a high success rate of up to 29%. Additionally,
even with a budget of B = 1, an attacker would
succeed 18% of the time using the Probability
Delta attack. Interestingly, all methods appear to
saturate in performance after B = 20 candidates.

7.2 HOW TO DEFEND AGAINST INFORMATION EXTRACTION ATTACKS

Next, we show how the proposed defense methods (Sec. 5) fare against our extraction attacks (Sec. 4).

Design. We evaluate the three baseline methods (Fact Erasure, Empty Resp, and Error Inj) and our
three proposed methods (HP Def, Max-Ent Def, and IR Def). We report Attack-Success@B with
B = 20 using each of our three attack methods, as well as Random ∆-Acc and Neighborhood ∆-Acc
metrics to show how much damage is being done to the model’s overall knowledge by the deletion of
individual facts. We show results for GPT-J on CounterFact and zsRE with ROME and MEMIT.

Results. We show the results in Table 1. We summarize the main conclusions as follows:

1. Overall, our whitebox and blackbox attacks are all frequently successful at extracting “deleted”
facts. We emphasize that MEMIT with the Empty Response defense is successfully attacked
by our Head Projection attack 89% of the time on zsRE with B = 20. MEMIT is a popular
editing method, and the Empty Response objective is the standard approach to preventing models
from generating sensitive information, yet this setting totally fails to delete facts from GPT-J.

2. Our Head Projection and Max-Entropy defenses are the strongest defenses against whitebox
attacks. Relative to the strongest baseline, Fact Erasure, the Max-Entropy defense lowers the Head
Projection attack success by 20.5 points on CounterFact (22.2%→1.7% with ROME) and 39.5
points on zsRE (41.4%→2.9% with ROME). The Head Projection defense, though helpful, is
surprisingly not as effective as the Max-Entropy defense, except for when used with MEMIT on
CounterFact. Note we discuss results for the Probability Delta attack below in Sec. 7.3.

3. The Input Rephrasing defense does not reduce the blackbox attack success. Across datasets and
editing methods, the IR Def never outperforms baselines and is sometimes the worst objective
against the Input Rephrasing attack. We confirm that the defense does work when the attack uses
the exact same paraphrased inputs supplied to the defense’s editing objective; the defense fails
when attacking paraphrases differ at all. Additionally, we can lower the Input Rephrasing attack
success by making the model edits more aggressive, but this has the consequence of skyrocketing
∆-Acc numbers (4.7 for Random data and 27.8 for Neighborhood data; see Appendix B).

7.3 CAN WE DEFEND AGAINST UNFORESEEN EXTRACTION ATTACKS?

Lastly, we examine the efficacy of extraction attacks that the defense methods are not directly designed
to prevent, an important “unforeseen” scenario for our defense methods (Carlini et al., 2019).

Design. We highlight results from our previous experiment, specifically the performance of the Prob-
ability Delta Attack applied against our two whitebox defenses, Max-Entropy and Head Projection.

8

Published as a conference paper at ICLR 2024

Attack-Success@20 ∆-Acc

placeholder
Defense

Head
Projection

Probability
Delta

Input
Rephrasing

placeholder
Random

placeholder
Neighbors

Rewrite
Score

CounterFact
ROME
+ Fact Erasure 22.15 25.38 22.83 0.72 8.74 99.69
+ Empty Resp 36.84 37.65 29.02 0.54 3.76 99.58
+ Error Inj 99.20 99.83 20.10 1.00 9.60 99.30
+ HP Def 4.43 20.27 27.77 0.69 6.35 99.73
+ Max-Ent Def 1.70 2.39 27.94 0.69 6.27 99.73
+ IR Def 56.39 60.65 29.30 0.69 6.17 98.88
MEMIT
+ Fact Erasure 39.18 46.17 34.07 0.26 3.29 98.68
+ Empty Resp 67.09 72.60 49.31 0.22 1.03 87.54
+ Error Inj 98.60 98.80 36.38 0.15 2.05 97.68
+ HP Def 19.42 38.33 42.76 0.20 3.37 97.09
+ Max-Ent Def 34.24 39.01 50.77 0.19 3.32 96.41
+ IR Def 56.03 61.50 41.91 0.20 3.49 91.56

zsRE
ROME
+ Fact Erasure 41.41 43.83 15.64 0.10 - 94.80
+ Empty Resp 36.83 59.13 13.00 0.08 - 99.78
+ Error Inj 20.68 45.07 10.35 0.13 - 99.40
+ HP Def 31.28 56.83 18.50 0.12 - 90.53
+ Max-Ent Def 2.86 2.42 18.50 0.12 - 90.71
+ IR Def 84.80 84.80 29.07 0.07 - 80.64
MEMIT
+ Fact Erasure 42.51 42.07 22.18 0.05 - 91.34
+ Empty Resp 88.55 88.11 29.30 0.05 - 91.34
+ Error Inj 89.65 80.64 32.60 0.11 - 85.86
+ HP Def 53.52 72.47 28.19 0.05 - 89.46
+ Max-Ent Def 39.92 38.11 29.74 0.07 - 91.24
+ IR Def 46.04 57.93 27.75 0.07 - 84.16

Table 1: Attack success rates of the the three proposed attacks (Sec. 4) across defense methods (Sec.
5), for facts from CounterFact and zsRE that are known by GPT-J.

In this setting, we use defenses that were designed to protect against the Head Projection attack but
were not designed to defend against our second whitebox attack, the Probability Delta attack.

Results. We draw a few conclusions from Table 1: (1) The “unforeseen” Probability Delta attack
is very effective against the Head Projection defense, which was not prepared for it. (2) Our Max-
Entropy defense often helps against the Probability Delta attack despite not being specially designed
for it. Compared to the Head Projection defense on zsRE, Max-Entropy defense substantially lowers
attack success rates (56.8%→2.4% with ROME and 72.5%→38.1% with MEMIT). However, while
the Max-Entropy defense can lower whitebox attack success to 2.4%, (3) blackbox attack success
remains quite high at 28% for CounterFact and 19% for zsRE, suggesting that the defense is still
inadequate against blackbox attacks. In total, we see that there is no single defense method that is
prepared against all attacks it could face, even if it is effective against some unforeseen attacks.

8 CONCLUSION

We first argue that model editing methods are the most promising approach to deleting sensitive
information from LLMs, rather than interventions focusing on pretraining and finetuning data. Even
for this promising class of methods, however, we show that “deleted” information can be extracted
a surprisingly high percentage of the time (as high as 89% in some experiments) when the attacker
operates with a small budget of verification attempts B. We motivate this budget via a threat model
based on three plausible adversarial settings. Our findings suggest that truly deleting sensitive inorma-
tion is a tractable but difficult problem, with potentially severe implications for deployment of LLMs
in a world where individuals enjoy a robust right to privacy and safety from harmful model outputs.

9

Published as a conference paper at ICLR 2024

ETHICS STATEMENT

This paper addresses problems involving sensitive information in large language models. This is an
important topic with serious ethical implications, as language models currently possess knowledge
that could be dangerous to humans and output directly harmful text. We hope that the technical
methods in this paper can help mitigate these important ethical problems, but at the same time,
we want to demonstrate that it may be fundamentally difficult to solve the problem of sensitive
information in pretrained language models. These results could imply that there are negative moral
and legal consequences to deploying LLMs in situations where they may influence humans. We
leave it for future work in AI, ethics, and law to fully explore the implications of work on sensitive
information deletion and LLMs.

ACKNOWLEDGEMENTS

We thank Neel Nanda for helpful experiment suggestions. This work was supported by NSF-CAREER
Award 1846185, NSF-AI Engage Institute DRL-2112635, DARPA MCS Grant N66001-19-2-4031,
and Google PhD fellowship. The views contained in this article are those of the authors and not of
the funding agency.

REPRODUCIBILITY STATEMENT

We have provided the code for all experimental results in the supplementary materials to facilitate
reproducibility. Additionally, comprehensive hyperparameters and other essential details required for
replication can be found in Appendices A and D.

REFERENCES

Jacob Andreas. Language models as agent models. arXiv preprint arXiv:2212.01681, 2022. URL
https://arxiv.org/pdf/2212.01681.pdf.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness
from ai feedback. arXiv preprint arXiv:2212.08073, 2022. URL https://arxiv.org/pdf/
2212.08073.pdf.

Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and advances. Computational
Linguistics, 48(1):207–219, 2022. URL https://arxiv.org/pdf/2102.12452.pdf.

Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney, Stella
Biderman, and Jacob Steinhardt. Eliciting latent predictions from transformers with the tuned lens.
arXiv preprint arXiv:2303.08112, 2023a. URL https://arxiv.org/pdf/2303.08112.
pdf.

Nora Belrose, David Schneider-Joseph, Shauli Ravfogel, Ryan Cotterell, Edward Raff, and Stella
Biderman. Leace: Perfect linear concept erasure in closed form. arXiv preprint arXiv:2306.03819,
2023b. URL https://arxiv.org/pdf/2306.03819.pdf.

Hannah Brown, Katherine Lee, Fatemehsadat Mireshghallah, Reza Shokri, and Florian Tramèr. What
does it mean for a language model to preserve privacy?, 2022. URL https://arxiv.org/
pdf/2202.05520.pdf.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In 2015
IEEE symposium on security and privacy, pp. 463–480. IEEE, 2015. URL https://www.
ieee-security.org/TC/SP2015/papers-archived/6949a463.pdf.

Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dimitris Tsipras,
Ian Goodfellow, Aleksander Madry, and Alexey Kurakin. On evaluating adversarial robustness.
arXiv preprint arXiv:1902.06705, 2019. URL https://arxiv.org/pdf/1902.06705.
pdf.

10

https://arxiv.org/pdf/2212.01681.pdf
https://arxiv.org/pdf/2212.08073.pdf
https://arxiv.org/pdf/2212.08073.pdf
https://arxiv.org/pdf/2102.12452.pdf
https://arxiv.org/pdf/2303.08112.pdf
https://arxiv.org/pdf/2303.08112.pdf
https://arxiv.org/pdf/2306.03819.pdf
https://arxiv.org/pdf/2202.05520.pdf
https://arxiv.org/pdf/2202.05520.pdf
https://www.ieee-security.org/TC/SP2015/papers-archived/6949a463.pdf
https://www.ieee-security.org/TC/SP2015/papers-archived/6949a463.pdf
https://arxiv.org/pdf/1902.06705.pdf
https://arxiv.org/pdf/1902.06705.pdf

Published as a conference paper at ICLR 2024

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom B Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training
data from large language models. In USENIX Security Symposium, volume 6, 2021. URL
https://arxiv.org/pdf/2012.07805.pdf.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and Chiyuan
Zhang. Quantifying memorization across neural language models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=TatRHT_1cK.

Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémy Scheurer, Javier
Rando, Rachel Freedman, Tomasz Korbak, David Lindner, Pedro Freire, et al. Open problems
and fundamental limitations of reinforcement learning from human feedback. arXiv preprint
arXiv:2307.15217, 2023. URL https://arxiv.org/pdf/2307.15217.pdf.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, and Furu Wei. Knowledge neurons in pretrained
transformers. In ACL, 2022. URL https://arxiv.org/pdf/2104.08696.pdf.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. In
EMNLP, pp. 6491–6506. Association for Computational Linguistics, November 2021. URL
https://aclanthology.org/2021.emnlp-main.522.

Edoardo Debenedetti, Giorgio Severi, Nicholas Carlini, Christopher A. Choquette-Choo, Matthew
Jagielski, Milad Nasr, Eric Wallace, and Florian Tramèr. Privacy side channels in machine learning
systems, 2023. URL https://arxiv.org/pdf/2309.05610.pdf.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in
private data analysis. In Theory of cryptography conference, pp. 265–284. Springer, 2006.

Rohit Gandikota, Joanna Materzynska, Jaden Fiotto-Kaufman, and David Bau. Erasing concepts
from diffusion models. arXiv preprint arXiv:2303.07345, 2023. URL https://arxiv.org/
pdf/2303.07345.pdf.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are key-
value memories. In EMNLP, 2021. URL https://arxiv.org/pdf/2012.14913.pdf.

Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. Certified data removal
from machine learning models. arXiv preprint arXiv:1911.03030, 2019. URL https://arxiv.
org/pdf/1911.03030.pdf.

Peter Hase, Mona Diab, Asli Celikyilmaz, Xian Li, Zornitsa Kozareva, Veselin Stoyanov, Mohit
Bansal, and Srinivasan Iyer. Do language models have beliefs? methods for detecting, updating,
and visualizing model beliefs. arXiv preprint arXiv:2111.13654, 2021. URL https://arxiv.
org/pdf/2111.13654.pdf.

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghandeharioun. Does localization inform editing?
surprising differences in causality-based localization vs. knowledge editing in language models.
arXiv preprint arXiv:2301.04213, 2023. URL https://arxiv.org/pdf/2301.04213.
pdf.

Peter Henderson, Koustuv Sinha, Nicolas Angelard-Gontier, Nan Rosemary Ke, Genevieve Fried,
Ryan Lowe, and Joelle Pineau. Ethical challenges in data-driven dialogue systems. In Proceedings
of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, pp. 123–129, 2018. URL https:
//arxiv.org/pdf/1711.09050.pdf.

Peter Henderson, Xuechen Li, Dan Jurafsky, Tatsunori Hashimoto, Mark A. Lemley, and Percy Liang.
Foundation models and fair use, 2023. URL https://arxiv.org/pdf/2303.15715.
pdf.

Alvin Heng and Harold Soh. Selective amnesia: A continual learning approach to forgetting in
deep generative models. arXiv preprint arXiv:2305.10120, 2023. URL https://arxiv.org/
pdf/2305.10120.pdf.

11

https://arxiv.org/pdf/2012.07805.pdf
https://openreview.net/forum?id=TatRHT_1cK
https://openreview.net/forum?id=TatRHT_1cK
https://arxiv.org/pdf/2307.15217.pdf
https://arxiv.org/pdf/2104.08696.pdf
https://aclanthology.org/2021.emnlp-main.522
https://arxiv.org/pdf/2309.05610.pdf
https://arxiv.org/pdf/2303.07345.pdf
https://arxiv.org/pdf/2303.07345.pdf
https://arxiv.org/pdf/2012.14913.pdf
https://arxiv.org/pdf/1911.03030.pdf
https://arxiv.org/pdf/1911.03030.pdf
https://arxiv.org/pdf/2111.13654.pdf
https://arxiv.org/pdf/2111.13654.pdf
https://arxiv.org/pdf/2301.04213.pdf
https://arxiv.org/pdf/2301.04213.pdf
https://arxiv.org/pdf/1711.09050.pdf
https://arxiv.org/pdf/1711.09050.pdf
https://arxiv.org/pdf/2303.15715.pdf
https://arxiv.org/pdf/2303.15715.pdf
https://arxiv.org/pdf/2305.10120.pdf
https://arxiv.org/pdf/2305.10120.pdf

Published as a conference paper at ICLR 2024

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic, 2023. URL https:
//arxiv.org/pdf/2212.04089.pdf.

Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham Neubig. How can we know what language
models know? Transactions of the Association for Computational Linguistics, 8:423–438, 2020.
URL https://arxiv.org/pdf/2212.14315.pdf.

Kalpesh Krishna, Yixiao Song, Marzena Karpinska, John Wieting, and Mohit Iyyer. Paraphras-
ing evades detectors of ai-generated text, but retrieval is an effective defense. arXiv preprint
arXiv:2303.13408, 2023. URL https://arxiv.org/pdf/2303.13408.pdf.

Nupur Kumari, Bingliang Zhang, Sheng-Yu Wang, Eli Shechtman, Richard Zhang, and Jun-Yan
Zhu. Ablating concepts in text-to-image diffusion models. arXiv preprint arXiv:2303.13516, 2023.
URL https://arxiv.org/pdf/2303.13516.pdf.

Angeliki Lazaridou, Adhi Kuncoro, Elena Gribovskaya, Devang Agrawal, Adam Liska, Tayfun Terzi,
Mai Gimenez, Cyprien de Masson d’Autume, Tomas Kocisky, Sebastian Ruder, et al. Mind the gap:
Assessing temporal generalization in neural language models. Advances in Neural Information
Processing Systems, 34:29348–29363, 2021. URL https://proceedings.neurips.cc/
paper/2021/file/f5bf0ba0a17ef18f9607774722f5698c-Paper.pdf.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction
via reading comprehension. In Proceedings of the 21st Conference on Computational Natural
Language Learning (CoNLL 2017), pp. 333–342, 2017. URL https://aclanthology.
org/K17-1034.

Nils Lukas, Ahmed Salem, Robert Sim, Shruti Tople, Lukas Wutschitz, and Santiago Zanella-
Béguelin. Analyzing leakage of personally identifiable information in language models. In 2023
IEEE Symposium on Security and Privacy (SP), pp. 346–363, 2023. URL https://arxiv.
org/pdf/2302.00539.pdf.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
knowledge in gpt. arXiv preprint arXiv:2202.05262, 2022. URL https://arxiv.org/pdf/
2202.05262.pdf.

Kevin Meng, Arnab Sen Sharma, Alex J Andonian, Yonatan Belinkov, and David Bau. Mass-editing
memory in a transformer. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=MkbcAHIYgyS.

Jayashree Mohan, Melissa Wasserman, and Vijay Chidambaram. Analyzing gdpr compliance through
the lens of privacy policy. In Heterogeneous Data Management, Polystores, and Analytics for
Healthcare: VLDB 2019 Workshops, Poly and DMAH, Los Angeles, CA, USA, August 30, 2019,
Revised Selected Papers 5, pp. 82–95. Springer, 2019. URL https://arxiv.org/pdf/
1906.12038.pdf.

nostalgebraist. interpreting gpt: the logit lens, 2020. URL https://www.lesswrong.com/
posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:27730–
27744, 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu,
and Alexander Miller. Language models as knowledge bases? In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 2463–2473, Hong Kong,
China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1250.
URL https://aclanthology.org/D19-1250.

12

https://arxiv.org/pdf/2212.04089.pdf
https://arxiv.org/pdf/2212.04089.pdf
https://arxiv.org/pdf/2212.14315.pdf
https://arxiv.org/pdf/2303.13408.pdf
https://arxiv.org/pdf/2303.13516.pdf
https://proceedings.neurips.cc/paper/2021/file/f5bf0ba0a17ef18f9607774722f5698c-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/f5bf0ba0a17ef18f9607774722f5698c-Paper.pdf
https://aclanthology.org/K17-1034
https://aclanthology.org/K17-1034
https://arxiv.org/pdf/2302.00539.pdf
https://arxiv.org/pdf/2302.00539.pdf
https://arxiv.org/pdf/2202.05262.pdf
https://arxiv.org/pdf/2202.05262.pdf
https://openreview.net/forum?id=MkbcAHIYgyS
https://arxiv.org/pdf/1906.12038.pdf
https://arxiv.org/pdf/1906.12038.pdf
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://aclanthology.org/D19-1250

Published as a conference paper at ICLR 2024

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.
URL https://d4mucfpksywv.cloudfront.net/better-language-models/
language_models_are_unsupervised_multitask_learners.pdf.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
against machine learning models. In 2017 IEEE Symposium on Security and Privacy (SP), pp.
3–18. IEEE, 2017.

Ryutaro Tanno, Melanie F Pradier, Aditya Nori, and Yingzhen Li. Repairing neural networks by
leaving the right past behind. Advances in Neural Information Processing Systems, 35:13132–
13145, 2022. URL https://arxiv.org/pdf/2207.04806.pdf.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023. URL https://arxiv.
org/pdf/2307.09288.pdf.

Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model.
https://github.com/kingoflolz/mesh-transformer-jax, May 2021.

Laura Weidinger, John Mellor, Maribeth Rauh, Conor Griffin, Jonathan Uesato, Po-Sen Huang, Myra
Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh, et al. Ethical and social risks of harm from
language models. arXiv preprint arXiv:2112.04359, 2021. URL https://arxiv.org/pdf/
2112.04359.pdf.

Dawen Zhang, Pamela Finckenberg-Broman, Thong Hoang, Shidong Pan, Zhenchang Xing, Mark
Staples, and Xiwei Xu. Right to be forgotten in the era of large language models: Implications,
challenges, and solutions, 2023a. URL https://arxiv.org/pdf/2307.03941.pdf.

Eric Zhang, Kai Wang, Xingqian Xu, Zhangyang Wang, and Humphrey Shi. Forget-me-not: Learning
to forget in text-to-image diffusion models. arXiv preprint arXiv:2303.17591, 2023b. URL
https://arxiv.org/pdf/2303.17591.pdf.

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh Bhojanapalli, Daliang Li, Felix Yu, and
Sanjiv Kumar. Modifying memories in transformer models. arXiv preprint arXiv:2012.00363,
2020. URL https://arxiv.org/pdf/2012.00363.pdf.

Albert Ziegler. GitHub Copilot: Parrot or crow? https://docs.github.com/en/github/copilot/research-
recitation, 2021.

Andy Zou, Zifan Wang, J Zico Kolter, and Matt Fredrikson. Universal and transferable adversarial
attacks on aligned language models. arXiv preprint arXiv:2307.15043, 2023. URL https:
//arxiv.org/pdf/2307.15043.pdf.

A TUNING DETAILS

For a fixed budget of B = 20, we tune over the hyperparameters that control the budget on a separate
development set of 100 samples.

Whitebox Attacks: Given a fixed candidate set size represented by B, we seek to optimize
the allocation of resources by tuning two parameters: k and L. These parameters determine the
distribution of the available budget across L layers, while retaining the k candidate tokens from each
layer in the set C such that kL = B.

We try different combinations of k and ℓ in the following set [(1, 20), (2, 10), (4, 5), (5, 4), (2,
10), (1, 20)] for each of the options when choosing k candidates (top-k, bottom-k and (top-k/2 ∪
bottom-k/2)). For each k, we choose the set L such that |L| = ℓ and Attack-Success@B(k, L) is
maximum when evaluated on the development set.

For the Head-Projection Attack, we find that choosing top-4 (k = 4) highest probability candidates
from each layer’s intermediate distribution while keeping 5 optimal layers (17, 18, 19 20, 21)

13

https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/pdf/2207.04806.pdf
https://arxiv.org/pdf/2307.09288.pdf
https://arxiv.org/pdf/2307.09288.pdf
https://github.com/kingoflolz/mesh-transformer-jax
https://arxiv.org/pdf/2112.04359.pdf
https://arxiv.org/pdf/2112.04359.pdf
https://arxiv.org/pdf/2307.03941.pdf
https://arxiv.org/pdf/2303.17591.pdf
https://arxiv.org/pdf/2012.00363.pdf
https://arxiv.org/pdf/2307.15043.pdf
https://arxiv.org/pdf/2307.15043.pdf

Published as a conference paper at ICLR 2024

(|L| = 5) tuned on a separate development set of 100 sample points attains the highest attack success
rate for GPT-J.

For the Probability Delta attack, we find that choosing top-2 highest probability candidates (rather
than both top-k and bottom-k) from each layer’s intermediate distribution while keeping 10 (|L| = 10)
layers 8-9, 16-23 is optimal for the attack success for GPT-J, 36-45 for GPT2-XL.

Model Attack-layers-HP Attack-layers-PD Defense-layers
GPT-J-6B 17-21 8-9, 16-23 8-9, 16-28
GPT2-XL-1.5B 41-45 36-45 36-48
Llama2-7B 23-27 21-30 23-32

Table 2: Hyperparameters following tuning of attack and defense methods.

Blackbox Attacks: Given a fixed candidate set size represented by B, we seek to optimize the
allocation of resources by tuning two parameters: R and S. These parameters determine the
distribution of the available budget R model-generated paraphrases, while randomly sampling the s
candidate tokens from each paraphrase in the set C such that RS = B. We try different combinations
of n and s in the following set [(1, 20), (2, 10), (4, 5), (5, 4), (2, 10), (1, 20)]. For the Input Rephrasing
attack, we find that using 4 (R = 4) paraphrases with 5 (S = 5) samples from each paraphrase in the
candidate set leads to highest attack success rate on the development set.

Whitebox Defense: For the HP and PD defenses, we choose a set of layers L consisting of the attack
layers as well as all the subsequent layers starting from the last attack layer to the final layer so as to
propagate the defense to the final layers. See the final selected layers in Table 2.

Blackbox Defense: We choose 5 paraphrases for this defense which are obtained using the model
(See Appendix D for the model details and hyperparameters).

B ADDITIONAL EXPERIMENTS

B.1 LLAMA2-7B

We show results for Llama2-7b in Table 3. We modify some of the default edit parameters for of
ROME so as to make the edits suitable for Llama-2-7b (Touvron et al., 2023) i.e. a reasonable rewrite
score and delta accuracy. These are the hyperparameters used in ROME that we modify and their
values for reproducibility: Learning rate (v_lr): 5e-1, Loss layer (v_loss_layer): 31, Weight decay
factor (v_weight_decay): 5e-5, The threshold at which the norm of the change vector (the norm of
difference between original and new vector v is clamped at) (clamp_norm_factor): 2.

Attack-Success@20 ∆-Acc
Method Defense Head Projection Probabaility Delta Input Rephrasing Random Neighborhood Rewrite Score

CounterFact

ROME

Fact-erasure 15.93 25.95 51.43 3.30 16.20 98.53
Empty Resp 62.14 62.86 56.14 3.09 15.23 74.59
Error Inj 64.86 63.14 56.29 2.86 15.50 75.11
HP Def 3.43 4.71 55.14 3.38 16.77 96.22
Max Ent def 3.14 4.57 52.86 3.38 17.06 99.27
IR def 65.57 65.43 70.14 0.69 4.70 68.24

Table 3: Attack success rates of the the three proposed attacks (Sec. 4) on the CounterFact dataset
when information is deleted from the Llama2-7B model using ROME augmented with the defense
strategies (Sec. 5)

B.2 GPT2-XL

We report GPT2-XL-1.5B numbers in Table 4, and we show attack success as a function of attack
budget in Fig. 5.

14

Published as a conference paper at ICLR 2024

Attack-Success@20 ∆-Acc

placeholder
Defense

Head
Projection

Probability
Delta

Input
Rephrasing

placeholder
Random

placeholder
Neighbors

Rewrite
Score

CounterFact
GPT2-XL, ROME
Fact-erasure 35.57 40.86 6.14 1.14 3.09 97.32
HT-def 6.29 41.43 5.57 1.17 3.09 97.34
Max-Ent Def 6.29 41.43 4.71 1.18 3.09 97.34
Empty resp 28.14 34.29 5.57 1.31 1.46 99.73
IR def 34.57 72.14 27.43 0.98 1.59 98.78
Err Inj 99.72 99.99 3.4 1.5 3.1 98.03
GPT2-XL, MEMIT
Fact-erasure 55.57 41.71 17.71 0.57 1.53 98.16
Empty resp 87.00 89.71 50.43 0.38 0.54 99.95
Err Inj 89.32 89.72 31.72 0.53 1.39 99.54
HP-def 21.00 41.29 18.00 0.68 3.17 97.50
Max-Ent Def 21.86 61.29 18.14 0.67 3.13 97.55
IR def 61.43 64.86 32.29 0.91 2.90 97.59
GPT2-XL, FT
Fact-erasure 93.43 96.14 50.43 2.49 3.26 96.46
Err Inj 98.70 24.30 60.08 1.60 0.8 99.99
Empty resp 99.57 99.86 59.14 2.49 1.51 99.73
IR def 94.00 96.29 52.71 2.47 2.63 97.02

Table 4: Attack success rates of the the three proposed attacks (Sec. 4) on the CounterFact dataset
when information is deleted from the GPT2-XL model using the three editing methods augmented
with the defense strategies (Sec. 5)

Budget

A
tta

ck
 s

uc
ce

ss

0.0

0.2

0.4

0.6

0 10 20 30 40

BB HT PD

Attack success vs Budget

Figure 5: As the attack budget increases, the attack success increases and saturates after a budget
of 10. Here budget for HP and PD attacks is 20 and that for BB (IR) attack is 10. Here the editing
method is Fact erasure and model is GPT2-XL.

B.3 CONSTRAINED FINETUNING

Constrained Finetuning (Zhu et al., 2020). Here, we employ a simple optimization approach based
on the Adam optimizer, incorporating an ℓ∞-norm constraint, as outlined by (Zhu et al., 2020). We
finetune the same singular MLP weight matrix that we perform edits to in ROME.

Attack-Success@20 ∆-Acc
Method Defense Head Projection Probabaility Delta Input Rephrasing Random Neighborhood Rewrite Score

CounterFact

FT

Fact-erasure 47.53 93.02 29.09 4.27 27.02 95.89
Empty resp 78.94 80.70 61.69 0.70 5.57 97.51
Error Inj 54.43 60.94 56.29 2.86 15.50 75.11
HP-def 99.15 96.76 75.81 0.02 0.05 0.17
Max-Ent-def 99.32 96.93 75.81 0.00 0.00 0.00
IR def 46.85 58.77 13.12 4.25 26.95 95.90

Table 5: Attack success rates of the the three proposed attacks (Sec. 4) on the CounterFact dataset
when information is deleted from the GPT-J model using Constrained Finetuning (FT) augmented
with the defense strategies (Sec. 5)

15

Published as a conference paper at ICLR 2024

Attack-Success@20 ∆-Acc

placeholder
Defense

Head
Projection

Probability
Delta

Input
Rephrasing

placeholder
Random

placeholder
Neighbors

Rewrite
Score

CounterFact
ROME
+ Fact Erasure 22.15 25.38 22.83 0.72 8.74 99.69
+ Empty Resp (dummy) 36.84 37.65 29.02 0.54 3.76 99.58
+ Empty Resp (I don’t know) 54.89 55.92 32.80 0.50 3.20 98.74

Table 6: Attack success rates of the the three proposed attacks (Sec. 4) across defense methods (Sec.
5), for facts from CounterFact and zsRE that are known by GPT-J.

C EDITING METHODS AND ADVERSARY MODEL ACCESS

C.1 MODEL EDITING METHODS

ROME (Meng et al., 2022). Rank-One Model Editing (ROME) is a state-of-the-art method that
changes model outputs by updating a specific MLP layer in the model (layer 6 for GPT-J by default).
The update is applied to the second matrix within this MLP layer, and the update itself is constrained
to be a rank-one matrix that is obtained analytically when treating the MLP weight as a linear
associative memory (Meng et al., 2022). The default objective that is maximized by this update is the
model probability p(y∗|x) for a desired output y∗, with data augmentation for the input x and some
regularization. Recall that we can apply this editing method to optimize any of the defense objectives
from Sec. 5.

MEMIT (Meng et al., 2023). MEMIT is a method designed for updating an arbitrary number of
facts in a model, as opposed to a single fact. When applied to update only one fact, however, its
only difference from ROME is that it “spreads out” its update over multiple MLP layers rather than a
single MLP layer as in ROME (Meng et al., 2023). When applying MEMIT to GPT-J, we update
layers 5-7.

C.2 MODEL ACCESS

Our blackbox attack relies on simple random sampling that can be carried out through the OpenAI API
as of September 28, 2023: https://platform.openai.com/docs/guides/gpt. Though
we perform experiments with publicly available models, this is important since many models of
interest are gated behind APIs.

Parameters for OpenAI API:

Input Prompts or Instructions: Users send input prompts or instructions to the OpenAI API. These
prompts provide context or guidance to the model regarding the task or the type of response expected.

Sampling Parameters: To customize the behavior of the model and the characteristics of the generated
text, users can specify various sampling parameters:

• Sampling Temperature (temperature): This parameter controls the randomness of the gener-
ated text. Higher values (e.g., 0.8) make the output more random, while lower values (e.g.,
0.2) make it more deterministic.

• Maximum Tokens (max_tokens): Users can limit the length of the generated text by setting
a maximum number of tokens. This helps in controlling the response length.

• Top-p Probability (top_p): This parameter allows users to set a probability threshold for the
next token. Tokens with probabilities above this threshold are considered, which helps in
influencing the diversity of generated responses.

• Frequency Penalty (frequency_penalty): Users can penalize the repetition of words in the
generated text by adjusting this parameter. Higher values discourage word repetition.

• Presence Penalty (presence_penalty): This parameter allows users to penalize the presence
of certain words or phrases in the generated text. It can be useful for controlling the content
or style of the output.

16

https://platform.openai.com/docs/guides/gpt

Published as a conference paper at ICLR 2024

• Stop Sequences (stop_sequences): Users can specify strings that the model should avoid
generating in the output. This is helpful for preventing specific content from appearing in
the generated text.

• Temperature Schedule (temperature_schedule): Users can provide a list of temperature
values to change the temperature dynamically during the text generation process. This can
result in text that starts more deterministic and becomes more random over time, or vice
versa.

• Top-k Tokens (top_k): This parameter limits the number of tokens considered at each step
of generation to the top-k most likely tokens. It can help in controlling the model’s creativity
and focus.

API Response: After sending the input prompt and specifying the desired sampling parameters, users
receive the model-generated text or response from the OpenAI API. The output text is influenced by
the provided context and the parameter settings.

D REPRODUCIBILITY DETAILS

Here, we give additional details to our experiments that would be necessary for reproducing the
results.

Paraphrase Model. We use the dipper-paraphraser-xxl (Krishna et al., 2023) model available on
huggingface. We first generate paraphrases of the entire prompt, including the target answer by
varying the following parameters in the model: lexical diversity in [20, 40, 60, 80], order diversity in
[20, 40, 60, 80], top_p in [0.25, 0.5, 0.75]. We then retain only the paraphrases which have the target
answer as the last word and obtain the paraphrased prompt by truncating the paraphrased sentence to
remove the last word which is the target answer.

∆-Acc Metrics. The length of generated output that we use for measuring ∆-Acc is 36.

Rewrite Score. We consider the Rewrite Score from Hase et al. (2023) as a traditional measure
of edit success, to be reported alongside Attack-Success metrics. The Rewrite Score measures how
much the edit changes the new target probability as a fraction of the possible desired change:

p(y|x;M∗)− p(y|x;M)

1− p(y|x;M)

A value of 1 means that the edit perfectly maximizes the new target probability, while a value of 0
means that the new target probability did not change at all. When the probability of a target is being
minimized rather than maximized (which occurs in some defense objectives), this metric simply
becomes 1 − p(y|x;M∗)/p(y|x;M), reflecting that we desire the target probability to approach
0. Specifically, we use the original formulation for a maximizing objective with Empty Response
and Error Injection, and we use the simplified version (1− p(y|x;M∗)/p(y|x;M)) when reporting
Rewrite Score for Fact Erasure, Head Projection, Probability Delta, and Input Rephrasing defenses,
since these methods involve lowering the probability of the target answer.

Head Projection defense. We backpropagate though both D
(ℓ)
answer and D

(ℓ)
k without the use of any

stop-gradient. (See Sec 5).

Data Filtering. On top of the single-token filtering, we also require the original model probability
p(y|x;M) of the correct target answer which is being deleted to be at least 0.02, in order for it be
meaningful to measure a decrease in the next-token probability.

E RESULTS DISCUSSION

Attack success against MEMIT is generally higher than against ROME, and our best defense methods
(like Max-Ent) achieve smaller improvements over baselines with MEMIT than with ROME. This
could suggest that distributing editing updates across multiple layers rather than a single layer, as

17

Published as a conference paper at ICLR 2024

MEMIT does, increases vulnerability to attacks and makes defense more challenging. However,
MEMIT performs more favorably than ROME on the Rewrite Score and ∆-Acc metrics, meaning
this difference in the methods could be due to a difference in how strongly the edits applied to the
model.

18

	Introduction
	Related Work
	Problem Statement
	Threat Model
	Metrics for Information Deletion

	Attack Methods
	Whitebox Logit Lens Attacks
	Blackbox Attack

	Defense Methods
	Experiment Setup
	Experiment Results
	Can We Extract a ``Deleted'' Answer From a Language Model?
	How to Defend Against Information Extraction Attacks
	Can We Defend Against Unforeseen Extraction Attacks?

	Conclusion
	Tuning Details
	Additional Experiments
	Llama2-7b
	GPT2-XL
	Constrained Finetuning

	Editing Methods and Adversary Model Access
	Model Editing Methods
	Model Access

	Reproducibility details
	Results discussion

