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ABSTRACT

Multivariate time-series forecasting is one of the essential tasks to draw insights
from sequential data. Spatiotemporal Graph Neural Networks (STGNNs) have at-
tracted much attention in this field due to their capability to capture the underlying
spatiotemporal dependencies. However, current STGNN solutions still fall short
of providing trustworthy predictions due to insufficient modeling of the depen-
dencies and dynamics at different levels. In this paper, we propose a graph neural
network model for multivariate time-series forecasting via learning hierarchical
spatiotemporal dependencies (HSDGNN). Specifically, we organize variables as
nodes in a graph while each node serves as a subgraph consisting of the attributes
of variables. Then we design two-level convolutions on the hierarchical graph
to model the spatial dependencies with different granularities. The changes in
graph topologies are also encoded for strengthening dependency modeling across
time and spatial dimensions. We test the proposed model on real-world datasets
from different domains. The experimental results demonstrate the superiority of
HSDGNN over state-of-the-art baselines in terms of prediction accuracy.

1 INTRODUCTION

With the development of sensor technology, numerous data from real-life activities such as trans-
portation and energy generation have been collected to assist in further analysis and decision-making
processes (Li et al., 2023a; Zheng et al., 2022). The numerical data from different sensors are usu-
ally recorded chronologically, forming the branch of multivariate time-series data. The traffic flow
or the electricity generation within an area is typical data of this kind. To draw insights from such
multivariate data, multivariate time-series forecasting has become a vital task that enables planners
to act proactively. For instance, grid operators rely on accurate predictions of power generation for
power system scheduling and electricity marketing (Zheng et al., 2023).

Various methods have been proposed for multivariate time-series modeling. Classical methods such
as Vector Autoregression (VAR) (Zivot & Wang, 2006) and Gaussian process model (GP) (Cun-
ningham et al., 2012) were first proposed for univariate time-series forecasting and then extended
to multivariate cases based on the assumption of linear dependencies among variables. However,
most multivariate time series possess inherent nonlinear pairwise dependencies, and it becomes a
more cumbersome task for these statistical methods considering a large number of variables. With
the success of deep learning techniques, deep learning methods have been proven effective in dif-
ferent scientific areas (Alzubaidi et al., 2021), and have dominated the field of time-series fore-
casting (Masini et al., 2023). Till now, many deep learning methods have been investigated for this
problem, including Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and
attention-based models (Fan et al., 2023; Wang et al., 2023; Zhang & Yan, 2022).

Compared with the univariate case, the major difficulty of multivariate time-series forecasting lies
in capturing the underlying spatiotemporal dependencies in the data. Recently, Graph Neural Net-
works (GNN) have attracted much attention in the modeling of multivariate data considering their
capability in dealing with relational dependencies (Jiang & Luo, 2022). By organizing variables
each consisting of multiple attributes as nodes in a graph, GNN allows each node to be aware of oth-
ers during the information propagation process. With the advance of GNN, Spatio-temporal Graph
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Figure 1: An illustration of the proposed HSDGNN model.

Neural Networks (STGNN) are widely used for multivariate time-series forecasting, in which Graph
Convolution Networks (GCN) are applied for spatial modeling, accompanied by sequential models
such as RNN (Weng et al., 2023) and Temporal Convolutional Networks (TCN) (Liu et al., 2023)
for temporal modeling. Despite the progress that has been made, these models still fall short in
multivariate time-series modeling and forecasting due to the following two factors.

First, the dependencies among the attributes of a variable (intra-dependencies for short) are over-
looked in current STGNN models. For instance, each traffic signal (e.g., traffic flow, occupancy,
and speed) recorded by a detector on the road can be regarded as an attribute of a variable. In typi-
cal spatiotemporal forecasting tasks such as traffic flow forecasting, a common strategy to consider
the dependency among the traffic flow and other attributes is to project the raw data into a higher
dimension via an embedding layer (Liu & Zhang, 2023; Wu et al., 2020). However, following the
same transformation operation can not fully exploit the intra-dependencies, which vary with respect
to the recording time and the location of detectors. Another popular branch of work only seeks to
model the spatial dependencies among the target attributes, i.e. traffic flow of different roads, for a
joint prediction. Other related attributes such as traffic speed and road occupancy that are entangled
with the prediction target are neglected in the modeling process (Li et al., 2023c; Weng et al., 2023).
These methods can provide acceptable results depending on circumstances, but they may also intro-
duce a higher degree of uncertainty, which can impact the reliability of predictions. Second, current
STGNN models are ineffective in modeling dynamic spatial dependencies. Most recent works on
STGNN replace the traditional pre-defined graph with a series of dynamic graphs derived from data
to represent the dynamic relationships among variables (Weng et al., 2023; Li et al., 2023b). Even
so, the temporal correlations regarding the changing spatial dependencies are not well-considered,
which makes these methods ineffective in learning from dynamic graph topologies.

To bridge these gaps, we propose a graph neural network model for multivariate time-series forecast-
ing via learning hierarchical spatiotemporal dependencies (HSDGNN). As illustrated in Figure 1, a
multivariate time series with multiple attributes is first organized as a series of graphs of sub-graphs
to explicitly show the hierarchical dependencies inside the data. Herein, variables and attributes are
represented by nodes and sub-nodes respectively. The edges connecting different nodes (orange) in-
dicate the spatial dependency among variables while those connecting sub-nodes (black) correspond
to the correlations among attributes. In this work, we assume that each variable is comprised of the
same set of attributes. Targeting the first issue, we perform an attribute-level sub-graph convolution
to capture the time-varying correlations among the attributes of each variable. Then temporal- and
spatial-dependency learning processes are leveraged sequentially to facilitate spatiotemporal depen-
dency modeling among variables. Targeting the second issue, we apply an extra temporal learning
step to capture the temporal correlations from dynamic graph topologies and generate an enhanced
spatiotemporal embedding. After hierarchical dependencies learning, we can generate the predic-
tions by projecting the enhanced spatiotemporal embedding into a desired dimension.

Our contributions can be summarized as follows: 1) We propose HSDGNN, a hierarchical spa-
tiotemporal dependencies learning based graph neural network model that leverages spatial-,
temporal-, and intra-dependency learning in a unified framework. 2) The temporal correlations
among dynamic graph topologies are considered to strengthen dependency modeling across time
and spatial dimensions. 3) We prove the effectiveness of the proposed method on real-world datasets
from different domains. The performance improvement when compared to state-of-the-art methods
can be up to 15.3% regarding prediction accuracy, without compromising on model size.

2



Under review as a conference paper at ICLR 2024

2 RELATED WORKS

2.1 MULTIVARIATE TIME-SERIES FORECASTING

Multivariate time-series forecasting (MTSF) focuses on the modeling and inference of data over
time that consists of multiple interdependent attributes. Various methods have been proposed
for this problem, from traditional methods to recent deep learning methods. Vector Autoregres-
sive (VAR) (Kilian & Lütkepohl, 2017) and Vector Autoregressive Moving Average (VARMA) (Isufi
et al., 2019) are typical extensions of statistical univariate time-series forecasting models for multi-
variate cases. Gaussian Processes (GP), a non-parametric method for distribution modeling, can also
be applied to MSTF tasks (Chen & Sun, 2021). Nevertheless, neither of these traditional methods
are competent for the modeling of different forms of nonlinearity in multivariate time series. With
the development of deep learning, many deep neural network models have been proposed for MSTF
and have proven to outperform traditional methods. LSTNet (Lai et al., 2018) and TPA-LSTM (Shih
et al., 2019) are two early deep-learning models that employ CNN and RNN for capturing spatial
and temporal dependencies in multivariate time series. Other works replace RNN with convolutional
components such as temporal convolution networks (TCN) (Fan et al., 2023) and CNN (Huang et al.,
2019) to alleviate the vanishing gradients problem while capturing a sufficient amount of temporal
contexts. Empowered by the attention mechanism, many transformer-based models have also been
proposed for MSTF (Zhou et al., 2021; 2022; Nie et al., 2023). However, attention-based methods
suffer from high computational and memory costs.

2.2 GRAPH NEURAL NETWORKS FOR SPATIOTEMPORAL FORECASTING

Multivariate time series can be viewed naturally from the graph perspective considering the com-
plex interconnections among variables. Early works adopt a grid-based graph and assume spatial
dependencies can be constructed in the Euclidean space (Pan et al., 2019; Lin et al., 2019). How-
ever, the dynamic spatial correlations among variables can not be well approximated in a grid of
regular shape. Later works tend to perform message passing in an arbitrary graph to ease the re-
striction of capturing spatial interactions among different variables. For instance, DCRNN (Li et al.,
2018) regards the interactions among variables as a directed diffusion process and utilizes diffusion
convolution for message passing. STGCN (Yu et al., 2018) also applies Graph Convolution Net-
works (GCN) for spatial dependency modeling. However, these works construct the graph based on
geographic location information, which is either not provided in many MTSF tasks or insufficient
to reflect the genuine dependencies among variables. To reduce the reliance on a user-defined graph
structure, many researchers propose to derive an adaptive graph structure from data (Wu et al., 2019;
Guo et al., 2019; Bai et al., 2020). Nevertheless, both the user-defined graph and the adaptive graph
are static, without considering the potential time-varying spatial topologies. The generation of dy-
namic graphs has therefore been considered a novel direction for STGNN recently. For example,
DGCRN (Li et al., 2023a) integrates the pre-defined graph with dynamic graphs generated with re-
spect to time in the graph convolution module. SDGL (Li et al., 2023c) adopts the static graph as
an inductive bias in learning dynamic graphs from node-level inputs. DDGCRN (Weng et al., 2023)
combines a dynamic graph embedding with graph signals to derive dynamic graph topologies. De-
spite the efforts that have been made, none of these methods has considered the intra-dependencies
among the attributes of a variable, substantially increasing the risk of giving imprecise predictions.
To the best of our knowledge, DMSTGCN (Han et al., 2021) is the only work that explicitly models
the effects of additional attributes. However, it compromises model scalability by employing parallel
duplicated structures for each additional attribute with a fusion module at the end.

3 PROPOSED METHOD

3.1 PROBLEM FORMULATION

This paper focuses on the prediction of multivariate time series with multiple attributes. Formally,
the observations of N correlated multivariate time series during the past T steps are defined as
X = {X−T+1,X−T+2, ...,X0}, where Xt = {Xt,1,Xt,2, ...,Xt,N} (Xt,j ∈ RC , t ∈ [−T+1, 0])
records the values of N variables with C attributes. We also add the time information for each vari-
able as an extra attribute. Considering the spatiotemporal dependencies among different variables,
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Figure 2: Overview of the proposed HSDGNN model. Herein, the model consists of five mod-
ules: Intra-dependency Learning, Temporal-dependency Learning, Dynamic Topology Generation,
Spatio-dependency learning, and Output Module.

the variables are organized as a graph G = (Gs, E ,A), where Gs is a set of nodes corresponding to
N variables, E contain the edges, and A ∈ RN×N is the adjacency matrix indicating the intensity
of dependencies among different nodes. Inside each node, multiple attributes of a variable are or-
ganized as a sub-graph Gs = (Vf , Ef ,Af ) as they also have spatiotemporal dependencies amongst
each other. Herein, Vf , Ef , and Af are the sub-nodes corresponding to the C attributes, the sub-
edges, and the adjacency matrix among attributes, respectively. Given the observations organized
as a hierarchical graph, the target is to find a function F to jointly predict the values of the main
attribute of these variables, which can be formulated as follows:

{ŷ0, ŷ1, ..., ŷτ} = F(X|G,Gs) (1)
where ŷi (i ∈ [0, τ ]) is the prediction of N variables at timestamp i. Taking traffic flow forecasting
as an example, we organize all attributes such as traffic flow, speed, and occupancy as a sub-graph
and only focus on the prediction of the main attribute (i.e., traffic flow).

3.2 MODEL ARCHITECTURE

An overview of HSDGNN is shown in Figure 2, which consists of five components: Intra-
dependency Learning, Temporal-dependency Learning, Dynamic topology generation, Spatial-
dependency Learning, and Output module. The details of each module are illustrated as follows.

Intra-dependency Learning. As shown in previous works, multivariate time-series forecasting
considering the auxiliary attributes of a variable can benefit the prediction of the main attribute. A
sub-graph convolution is introduced in the Intra-dependency Learning Module to model the time-
varying dependencies among multiple variable attributes, which essentially performs an attribute-
level graph convolution inside each node. We first embed each attribute of all variables at timestamp
t (t ∈ [−T + 1, 0]) using a fully-connected layer:

E = θ(WIXt + bI) (2)
where E is the attribute embedding, θ, W , and b are the activation function, the embedding weight,
and the bias, respectively. The subscript I refers to the component belonging to the intra-dependency
learning module. We use the same notation hereinafter. Then we can infer the intra-dependencies
among multiple attributes by multiplying the attribute embedding E with ET :

R = ReLU(E · ET ) (3)
where R is the intra-dependency tensor. GCN is then deployed to capture the intra-dependency
inside each variable node. Following (Simonovsky & Komodakis, 2017), we adopt the graph con-
volution operation in the form of first-order Chebyshev polynomial expansion as follows:

F = (If +D− 1
2AD− 1

2 )XΘI (4)
= (If + R)XΘI (5)
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where If is the identity matrix, A and D are the conventional adjacency matrix and the degree
matrix, X and the attribute fusion F are the input and the output of GCN, Θ parameterizes the
filter. Furthermore, we use the intra-dependency tensor R as a direct approximation of D− 1

2AD− 1
2

instead of A, thus avoiding the computational cost when calculating the Laplacian matrix D.

Temporal-dependency Learning. Given the attribute fusion that encodes rich information from
auxiliary attributes, a temporal-dependency learning module is applied to capture the temporal pat-
terns of each variable. Likewise, we use a fully connected layer for embedding the attribute fusion
and a GRU for temporal modeling, formulated as follows:

ht
G1

= GRU1(θ(WT · F + bT ),h
t−1
G1

| WG1), (6)

where ht−1
G1

is initialized as zero. The temporal fusion T is then comprised of the hidden states
ht
G1

(t ∈ [−T +1, 0]), which capture the sequential patterns of different attributes. By incorporating
relevant information along the temporal dimension, this process also attends to the temporal impact
of the auxiliary attributes on the main attribute.

Dynamic topology generation. Defining the graph topology is a prerequisite for deploying GCN to
capture the spatial dependencies among variables. However, a pre-defined or static topology is ill-
suited for defining the varying spatial relationships. Following recent works, we propose to derive
dynamic spatial topology along with the model training process in an end-to-end manner. The
fundamental difference is that we also highlight the importance of the intra-dependencies among
attributes by generating hierarchical dynamic graph topologies.

Specifically, we first initialize a node-embedding matrix (Me ∈ RN×E), where each row repre-
sents the unique embedding of node j (j ∈ [1, N ]) and E is the embedding dimension. Inspired
by (Han et al., 2021; Weng et al., 2023), we initialize another time-embedding matrix Te ∈ Rfc×E

to incorporate the time information, where the number of rows fc depends on the sampling rate of
variables. We then use X as the index to retrieve time information for each timestamp from Te. In
what follows, an element-wise multiplication is performed between the retrieved information and
the node-embedding to derive the enhanced node-embedding matrix Ne = Me ⊙ Te(X). We then
perform another element-wise production to update Ne with the fusion embedding M embedded
from the dynamic graph signals. After that, we generate the dynamic spatial topology by calculating
the similarity among the updated node embeddings. These steps can be formulated as follows:

M = θ(WD · T + bD) (7)

G = ReLU(tanh(M ⊙ Ne) · tanh(M ⊙ Ne)
T) (8)

Herein, the state transition tensor G is adopted to directly approximate the state transition process (Li
et al., 2018) on the graph. The derived state transition tensor G accompanied by the intra-dependency
tensor R enables convolutions on a hierarchical graph without relying on a fixed graph topology.

Spatial-dependency Learning. Given the dynamic graph topology G, the graph signal T can be
organized and processed according to their dynamic spatial relationships. We adopt the diffusion
convolution (Li et al., 2018) for information aggregation on the graph considering computational
efficiency. This process can be mathematically realized by multiplying the transition matrices with
the graph signals and learnable parameters as follows:

Z =

K∑
k=0

Gk · T ·Θk
S (9)

where Z denotes the output, K is the maximum diffusion steps, ΘS ∈ RN×R×Dz parameterizes the
filter, R is the hidden state dimension of GRU1, Dz is the output dimension. We apply the dynamic
graph topology G as the approximation of the original transition matrix.

Furthermore, we adopt node adaptive parameter learning (Bai et al., 2020) to learn node-specific pat-
terns, where the shared parameter space ΘS is factorized into the node embedding Me and learnable
matrices. The final spatial-dependency learning process can be formulated as follows:

Z =

K∑
k=0

Gk · T ·Me ·W k
S +Me · bkS (10)
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Different from current STGNN approaches which only model spatial and temporal dependency in
separate modules, we apply an extra temporal learning component in our spatial-dependency learn-
ing module to consider the change of graph topology. This is essential for strengthening dependency
modeling across time and spatial dimensions. Specifically, the graph signal after the diffusion pro-
cess will serve as the input of a second GRU component for temporally spatial-dependency model-
ing, which can be formulated as follows

ht
G2

= GRU2(D(Z)),ht−1
G2

| WG2
), (11)

where D is the dropout operation, ht
G2

is the enhanced spatiotemporal embedding.

Output Module. The output module consists of two linear layers. The l-th output layer generates
the predictions Ŷ l

t given the enhanced spatiotemporal embedding h0
G2

at t = 0. The residual layer
resembles the structure of the output layer but is applied to reconstruct the variable signal X . The
residual part which is a portion of the variable signals that cannot be approximated well by the
current block will be modeled by the next block. Inspired by residual learning (He et al., 2016),
the residual between the original signals and the predictions is minimized by this backward branch,
which eases the training of deeper networks as we stack several blocks to enhance the model’s
learning capability. The outputs of all blocks are summed up to generate the final predictions.

Different from recent STGNN models (Li et al., 2023a; Weng et al., 2023), we decouple the gen-
eration and updating of dynamic graph topologies from the temporal-dependency learning process.
Although modeling dependencies at different levels may incur high computational demand, we will
prove in the experiment that HSDGNN can benefit from the decoupled scheme and perform effi-
ciently compared to state-of-the-art GNN methods.

4 EXPERIMENTS

In this section, we present a set of experiments to evaluate the performance of the proposed model
from both effectiveness and efficiency perspectives. The code to reproduce the experiments is avail-
able in a repository 1.

4.1 EXPERIMENT SETUP

Benchmark Datasets. For our evaluations, we require multivariate time series with multiple at-
tributes involving different spatiotemporal dependencies. Thus we have chosen two widely used
real-world traffic datasets from the literature (Guo et al., 2019), namely PEMSD4 and PEMSD8,
which consist of three kinds of traffic measurements. The raw data are collected by the Caltrans
Performance Measurement System (PeMS) 2 every 30 seconds and aggregated within consecutive
5-minute intervals. The authors (Guo et al., 2019) adopt several strategies for data preprocessing,
including removing redundant detectors, filling the missing values, and normalizing the data. Fol-
lowing the same steps, we generate two datasets from the PeMS to complement our experiment,
denoted as PEMSD5 and PEMSD11 corresponding to the data records from districts 5 and 11, re-
spectively. To encourage a comprehensive evaluation of our model on different applications, we also
conduct experiments on an open-access electricity time-series dataset (Zheng et al., 2022), which
contains minute-level load and renewable energy over 3 years across the US. The details of these
datasets can be found in Appendix A.1. All benchmark datasets are also released in the repository.

Baseline Methods. We compare the proposed model with both traditional methods and state-of-the-
art deep learning (DL) methods, including History Average Model (HA) (Hamilton, 2020), Autore-
gression (AR) (Box et al., 2015), LSTNet (Lai et al., 2018), AGCRN (Bai et al., 2020), ST-AE (Liu
et al., 2023), SDGL (Li et al., 2023c), and DDGCRN (Weng et al., 2023). Herein, HA and AR are
traditional methods that assume pre-defined structural patterns in data. LSTNet is an early deep-
learning method relying on CNN for spatial dependency learning. Among the other STGNN-based
methods, AGCRN and ST-AE both derive an adaptive static graph to reduce the reliance on a pre-
defined graph structure. SDGL and DDGCRN are more recent works that generate dynamic graph
topologies for spatial dependency modeling while DDGCRN is considered state-of-the-art.

1https://anonymous.4open.science/r/HSDGNN-A
2https://pems.dot.ca.gov
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Performance Metrics. The proposed HSDGNN method is evaluated from three perspectives. First,
we adopt commonly used metrics to quantify the prediction accuracy, including Mean Absolute
Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE).
Second, we compare the number of model parameters of different methods to prove the advantage
of HSDGNN regarding model complexity. To quantitively show the efficiency of different methods,
we include the actual model running time during the training and inference stages as the third metric.

4.2 MAIN RESULTS

Table 1 summarizes the prediction results of all baselines on the 5 benchmark datasets. For each
dataset, we train the baselines 10 times and report the average values of the three performance met-
rics with standard deviations. The implementation details can be found in Appendix A.1. As can be
seen, the proposed HSDGNN method shows state-of-the-art performance on all datasets. Compared
to DDGCRN, HSDGNN can achieve a performance improvement of up to 11.8%, 15.3%, and 9.8%
in terms of the three performance metrics. We can draw the main conclusions from Table 1 as fol-
lows: 1) DL methods outperform traditional methods in general since the nonlinearity in multiple
variables is not well-modeled by statistical approaches (others versus HA and AR); 2) GNN is more
effective than CNN in capturing spatial dependencies among variables, given higher prediction ac-
curacy (GNN-based methods versus LSTNet); 3) Adopting dynamic graph topologies other than a
fixed adjacency matrix learned from data improves the performance of GNN-based models (HS-
DGNN, DDGCRN, and SDGL versus AGCRN and ST-AE); 4) Incorporating time information con-
tributes to the identification of time-related patterns and thus eases the training of models (HSDGNN
and DDGCRN versus others); 5) HSDGNN provides more promising prediction results by explicitly
considering the intra-dependencies among the attributes of each variable (HSDGNN versus others).

Table 1: Comparions of the performance of all baselines on the 5 benchmark datasets. We report the
average performance of 10 runs with standard deviations in parentheses. The best and the second-
best results in each case are marked in bold and underlined, respectively. Note that the results on the
PSML datasets are 103 times larger than the actual values for better readability.

METHODS
DATASETS

PEMSD4 PEMSD5 PEMSD8 PEMSD11 PSML
MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%)

HA 35.173 52.346 25.453 17.818 27.446 26.541 29.189 43.540 18.448 29.861 45.819 27.769 5.104 7.004 513.017
- - - - - - - - - - - - - - -

AR 27.827 43.930 18.973 14.394 22.738 21.481 22.385 35.456 14.622 21.879 35.477 21.259 0.597 1.380 61.250
- - - - - - - - - - - - - - -

LSTNet 19.932 31.564 14.016 12.004 17.810 22.805 16.601 25.817 10.729 14.657 23.743 16.180 0.477 1.325 48.156
(±0.123) (±0.132) (±0.143) (±0.067) (±0.109) (±0.854) (±0.238) (±0.289) (±0.285) (±0.046) (±0.058) (±0.174) (±0.066) (±0.073) (±6.426)

AGCRN 19.316 31.561 12.871 11.413 17.598 20.309 15.837 25.219 10.316 14.217 23.526 14.676 0.396 1.024 41.239
(±0.054) (±0.170) (±0.070) (±0.153) (±0.297) (±0.491) (±0.165) (±0.228) (±0.135) (±0.040) (±0.137) (±0.115) (±0.025) (±0.029) (±2.564)

ST-AE 19.908 31.257 13.896 11.186 17.127 16.317 15.960 24.877 10.220 15.108 24.219 15.002 0.435 1.046 45.025
(±0.083) (±0.093) (±0.327) (±0.151) (±0.288) (±0.391) (±0.165) (±0.214) (±0.175) (±0.149) (±0.206) (±0.292) (±0.042) (±0.040) (±4.481)

SDGL 18.625 31.069 12.400 10.786 16.810 17.150 14.944 24.166 9.597 13.705 22.656 13.796 0.330 0.943 33.22
(±0.063) (±0.236) (±0.088) (±0.112) (±0.216) (±0.577) (±0.059) (±0.110) (±0.085) (±0.017) (±0.066) (±0.061) (±0.037) (±0.018) (±3.207)

DDGCRN 18.460 30.864 12.290 10.802 16.898 16.979 14.382 23.793 9.446 13.754 22.849 13.985 0.278 0.766 28.431
(±0.093) (±0.324) (±0.134) (±0.085) (±0.218) (±0.433) (±0.064) (±0.166) (±0.088) (±0.035) (±0.105) (±0.159) (±0.027) (±0.033) (±2.829)

HSDGNN 18.254 30.443 12.065 10.414 16.526 15.387 13.718 23.405 9.077 13.586 22.627 13.706 0.245 0.649 25.632
(±0.025) (±0.132) (±0.177) (±0.115) (±0.313) (±0.286) (±0.154) (±0.137) (±0.136) (±0.025) (±0.058) (±0.086) (±0.023) (±0.067) (±3.740)

To draw insights from these results, we visualize the stepwise performance of different methods in
Figure 3, where HA and AR are not considered as they generate deterministic results. Due to the
page length limit, we only show the comparison on the PEMSD4 dataset (See Appendix A.2 for the
comparisons on other datasets). We can see that HSDGNN achieves consistent improvements over
other baselines regarding different prediction horizons. The relatively small deviations in the results
given by HSDGNN also prove the stability of our model under different initialization conditions.

In Table 2, we compare the complexity and efficiency of HSDGNN against other DL baselines in
terms of the number of model parameters and actual running time during training and testing stages.
The comparisons are based on the default settings of all methods with the same batch size of 64. Re-
garding model complexity, all baselines have comparable model sizes on different datasets despite
the ST-AE on PEMSD4, which contains more variables than other datasets. Furthermore, ST-AE
and SDGL may encounter scalability issues since these models’ parameters grow with a power
larger than 1 regarding the number of variables. A quantitative analysis of such issues can be found
in Appendix A.2. Given large model sizes, these methods are ill-suited for a resource-constrained
environment. On the contrary, the model size of HSDGNN stays nearly constant in different cases,

7



Under review as a conference paper at ICLR 2024

demonstrating better model scalability. Regarding the actual running time, LSTNet can be exe-
cuted fastest with a pure CNN structure but at the expense of prediction accuracy. HSDGNN ranks
third among the other GNN-based methods, being less efficient than SDGL and AGCRN. However,
AGCRN achieves inferior performance without considering the time-varying spatial dependencies
among variables while SDGL suffers from the scalability issue. As a result, we can conclude that
HSDGNN achieves a better trade-off between model performance and computing resources.

Figure 3: The stepwise performance of different models on the PEMSD4 dataset. Here we show the
average performance of 10 runs with the standard deviation for each model.

Table 2: Comparisons of all DL baselines regarding efficiency and model size.

METHODS

DATASETS
PEMSD4 PEMSD5 PEMSD8 PEMSD11 PSML

Time (s/epoch) Params Time (s/epoch) Params Time (s/epoch) Params Time (s/epoch) Params Time (s/epoch) Params
Train Test (M) Train Test (M) Train Test (M) Train Test (M) Train Test (M)

LSTNet 0.891 0.174 0.617 0.449 0.069 0.190 0.561 0.091 0.369 0.727 0.125 0.394 4.428 1.419 0.181
AGCRN 13.907 1.732 0.749 9.390 1.156 0.746 9.940 1.331 0.747 10.348 1.425 0.748 22.455 2.878 0.746
ST-AE 57.859 14.297 3.190 49.629 13.588 0.320 54.387 14.639 1.090 60.062 16.436 1.249 141.983 36.664 0.298
SDGL 8.788 0.895 0.998 3.516 0.371 0.492 5.229 0.514 0.677 5.175 0.484 0.706 9.722 0.886 0.483
DDGCRN 43.533 4.062 0.569 20.253 1.969 0.565 24.626 2.286 0.567 24.987 2.436 0.567 48.614 4.840 0.576
HSDGNN 33.526 2.428 0.583 7.974 0.662 0.576 18.864 1.509 0.579 20.056 1.481 0.579 19.511 1.793 0.612

4.3 ABLATION STUDIES

In this section, we conduct ablation studies to validate the effectiveness of different compo-
nents in HSDGNN. We have considered HSDGNN without the following components: 1) HS-
DGNN w/o IDLM: HSDGNN without the intra-dependency learning module. We omit this module
to demonstrate the necessity of intra-dependency modeling for MTSF. 2) HSDGNN w/o MF: HS-
DGNN with the input containing only the main attribute. Through this setting, we can directly prove
the superiority of the proposed model architecture against other baselines given the same input. 3)
HSDGNN w/o GRU1: HSDGNN without the first GRU component in the temporal-dependency
learning module. 4) HSDGNN w/o GRU2: HSDGNN without the second GRU component in the
spatial-dependency learning module. Herein, we verify the indispensability of modeling the change
of graph topologies. 5) HSDGNN w/o DG: HSDGNN without dynamic graph.

The performances of different variants are summarized in Table 3, which we can conclude as fol-
lows: 1) The completed model outperforms all variants on each dataset, verifying the necessity of
different components. 2) HSDGNN w/o IDLM performs slightly better than HSDGNN w/o MF
but obviously worse than the completed model. It proves that considering multiple inter-dependent
attributes can only provide a limited improvement regarding the prediction accuracy without ef-
fectively modeling the intra-dependencies among the attributes. Besides, HSDGNN w/o MF still
outperforms DDGCRN, which shows the superiority of the proposed model architecture. 3) The
exclusion of GRU2 can negatively affect our model’s ability more than that of GRU1. This demon-
strates the different focuses of the two GRU components and the essentiality of temporally spatial-
dependency modeling. 4) HSDGNN w/o DG outperforms the GNN-based baselines relying on a
static graph, which indicates that learning hierarchical spatiotemporal dependencies from data con-
tributes to the performance of MSTF models.
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Table 3: The results of ablation studies on HSDGNN.

METHODS
DATASETS

PEMSD4 PEMSD5 PEMSD8 PEMSD11 PSML
MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%)

HSDGNN 18.254 30.443 12.065 10.414 16.526 15.387 13.718 23.405 9.077 13.586 22.627 13.706 0.245 0.649 25.632
HSDGNN w/o IDLM 18.276 30.672 12.088 10.456 16.586 15.829 13.756 23.490 9.128 13.599 22.677 13.799 0.252 0.657 26.325
HSDGNN w/o MF 18.277 30.605 12.098 10.547 16.942 16.293 14.060 23.611 9.158 13.631 22.701 13.713 0.256 0.665 26.681
HSDGNN w/o GRU1 18.304 30.493 12.258 10.477 16.823 15.427 13.737 23.469 9.110 13.627 22.656 13.843 0.254 0.655 26.251
HSDGNN w/o GRU2 18.558 30.636 12.216 10.509 16.506 15.786 14.366 23.564 9.366 13.711 22.758 13.858 0.323 0.767 33.306
HSDGNN w/o DG 18.799 31.360 12.496 10.791 16.882 17.109 14.740 24.094 9.660 13.897 22.934 14.194 0.335 1.012 34.589

4.4 EFFECT OF HYPERPARAMETERS

In this section, we prove the robustness of HSDGNN against the selection of hyperparameters.
We have considered four main hyperparameters of the model: 1) The embedding dimension E
used throughout different modules; 2) The hidden state dimension R of both GRU components;
3) The number of blocks n; 4) The number of the maximum diffusion step K. We illustrate the
performance of HSDGNN on the PEMSD8 dataset regarding different hyperparameter settings in
Figure 4, where we also include the results given by DDGCRN for comparisons. Given a generally
stable performance, we can conclude from the results that HSDGNN is not sensitive to the choice of
hyperparameters. Specifically, the prediction accuracy of HSDGNN can be slightly improved with
the increase of E, R, or n before reaching its best performance. On the other hand, increasing the
number of diffusion times cannot contribute to a better performance. We can also see that HSDGNN
with diverse hyperparameter settings can outperform DDGCRN, despite a few extreme cases.

Figure 4: The performance of HSDGNN regarding different hyperparameter settings. The parameter
configurations applied in the main experiment are represented by white boxes with slash.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a graph neural network model for multivariate time-series forecasting
via learning hierarchical spatiotemporal dependencies (HSDGNN). It organizes multivariate time
series with multiple attributes as a hierarchical graph representation and performs two levels of
graph convolutions to model the dependencies among variables and attributes. The changes in graph
topologies are encoded for strengthening dependency modeling across time and spatial dimensions.
The experimental results demonstrate the superiority of HSDGNN over state-of-the-art baselines in
terms of prediction accuracy. It has also been proven that HSDGNN is robust towards the choice
of hyperparameters. However, we note that modeling the dependencies at different levels can incur
relatively high computational demand. In future work, we plan to derive a lightweight network
architecture for hierarchical dependency learning, without compromising on model performance.
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A APPENDIX

A.1 SETUP DETAILS

Benchmark datasets. We use five datasets from different domains in our experiment. The details
of these benchmark datasets are given in Table 4. We also visualize two datasets in Figure 5, from
which we can observe obvious correlations among different attributes.

Table 4: The details of the benchmark datasets used in the experiment.

DATASETS SAMPLES NODES SAMPLE RATE ATTRIBUTES

Traffic

PEMSD4 16992 307 5 min Flow, Occupancy, Speed
PEMSD5 16992 71 5 min Flow, Occupancy, Speed
PEMSD8 17856 170 5 min Flow, Occupancy, Speed

PEMSD11 17568 184 5 min Flow, Occupancy, Speed
Electricity PSML 44640 66 1 min Load, Wind power, Solar power
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Figure 5: Visualization of the PEMSD8 and PSML datasets.

Implementation Details. In this work, we aim to achieve accurate short-term multivariate time-
series forecasting. Thus the horizons of observations and predictions are both set to 12, which is in
line with previous works. Each dataset has been divided into the training part, the validation part,
and the testing part, following the ratio of 60%, 20%, and 20%. Regarding the hyperparameters of
HSDGNN, the embedding dim E and the hidden state dimension of both GRU components are set
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to 32 and 64, respectively. The maximum diffusion step K is set to 1 for the diffusion convolution.
Finally, we stack 3 blocks together to further improve model performance. We train the model
with a batch size of 64 for 300 epochs with an early stop patience of 15. The learning rate for the
Adam optimizer is initialized to 10−3 with a decay rate of 0.99 per epoch. For all the baselines, we
adopt the default hyperparameter settings while carefully tuning the learning rate on each dataset if
required. All experiments are performed on NVIDIA A800 Tensor Core GPUs.
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Figure 6: The stepwise performance of different models on all datasets. Here we show the average
performance of 10 runs with the standard deviation for each model. We can see that HSDGNN out-
performs other baselines in all cases. The superiority is also consistent regarding different prediction
horizons with small variations.
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A.2 EXPERIMENT DETAILS

Stepwise performance. We only show in Figure 3 the stepwise performance of different methods
on the PEMSD4 datasets due to the page length limit. The results on other datasets are shown in
Figure 6. We can see that MSDGNN outperforms other baselines regarding different prediction
horizons in all five cases. The superiority is also consistent given small variations.

Long-term prediction performance. So far we have proved the effectiveness of MSDGNN on
short-range forecasting tasks, considering a forecasting horizon of fewer than 60 minutes (12 steps).
In this section, we explore the potential of MSDGNN to generate relatively long-term predictions
of up to 360 minutes (72 steps). For example, we compare the long-range stepwise prediction
performances of MSDGNN and DDGCRN on the PEMSD8 dataset in Figure 7. Owing to the
modeling of dependencies and dynamics at different levels, HSDGNN performs consistently better
than DDGCRN in providing both short-term and long-term predictions. Besides, HSDGNN is also
more stable given a smaller performance variation, especially in terms of MAPE.

Figure 7: The relatively long-range stepwise performances of HSDGNN and DDGCRN on the
PEMSD8 dataset. Here we show the average performance of 30 runs with the standard deviation for
each model. We can observe the consistent superiority of MSDGNN over DDGCRN in providing
both short-range and long-range predictions.

Model size regarding the number of nodes. In previous experiments, we have demonstrated better
model scalability of HSDGNN given a consistent model size regarding the number of nodes (vari-
ables). In this section, we further conduct a quantitative analysis detailing the advantages of HS-
DGNN from this perspective. In Figure 8, we compare the model sizes of different baselines re-
garding the input data size. Specifically, we choose the PEMSD4 dataset and manually increase the
number of nodes by duplicating the original ones several times (from 2 to 32). The model size of
each baseline is normalized by dividing the results on original PEMSD4 datasets. Due to the broadly
varied range of values, we report the sizes of each model with respect to different numbers of nodes
on a logarithmic scale.

Figure 8: The model size of all DL baselines regarding different numbers of nodes (variables).
The dotted line indicates a linear expansion of the model size. We can see that the model size of
HSDGNN stays nearly constant when increasing the size of the input data.

As illustrated in Figure 8, ST-AE and SDGL encounter scalability issues since the model size grows
with a power larger than 1 regarding the number of nodes. Therefore, they are not suitable for a

14



Under review as a conference paper at ICLR 2024

resource-constrained environment. The model size of LSTNet grows linearly with the input size,
however, the pure CNN architecture is insufficient in modeling spatial dependencies at different
levels. On the other hand, AGCRN, DDGCRN, and HSDGNN are insensitive to the size of input
data with a nearly constant model size. Nevertheless, AGCRN relies on a fixed graph which can
not reflect the dynamic dependencies among different variables. As it has been previously shown in
Table 2, HSDGNN is twice more efficient than DDGCRN in terms of training speed. Thus we can
demonstrate that HSDGNN outperforms other baselines by trading off prediction performance and
computing resources.

Visualization of hierarchical spatial dependencies. Compared to a univariate time series, the
complexity of a multivariate time series mainly consists in the spatial dependencies that existed at
different levels, i.e., among both variables and attributes. In HSDGNN, we design a hierarchical
spatiotemporal learning framework to model such spatial dependencies simultaneously. We illus-
trate the existence of hierarchical spatiotemporal dependencies by visualizing the dynamic graph
topologies derived by HSDGNN in Figure 9, where we also include a static graph topology learned
by AGCRN for comparison. We can see that the dependencies among both variables and attributes
vary with different timestamps. Either overlooking or neglecting these hierarchical spatiotemporal
dependencies can damage model performance by giving imprecise predictions.

(a) Dynamic graph topologies among attributes

(b) Dynamic graph topologies among variables

(c) A static graph topology

Figure 9: Illustration of hierarchical spatiotemporal dependencies in multivariate time series: (a)
Dynamic graph topologies among attributes and (b) Dynamic graph topologies among variables. A
static graph structure is visualized in (c).
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Visualization of prediction results. In this section, we further visualize the prediction results of
HSDGNN to provide an intuitive explanation of the superiority of HSDGNN over the state-of-the-
art baseline. In Figure 10, we compare the predictions given by HSDGNN and DDGCRN on the
PSML dataset as an illustration. We show the results from both the global (left) and local (right)
perspectives. We can see that both methods can model the general temporal patterns of the original
time series. However, DDGCRN fails to capture the trend in the time series when the underlying
behavior of the corresponding signal suddenly changes. HSDGNN achieves better results owing to
the sufficient modeling of intra-dependencies among the attributes of a variable, since we can infer
the tendency of the main signal from the related signals. Besides, we also consider the temporal
correlations among dynamic graph topologies to strengthen the dependency modeling across time
and spatial dimensions, and hence a more precise prediction.

Figure 10: Prediction results given by HSDGNN and DDGCRN on the PSML dataset.
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