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Abstract

Contrary to common belief, we show that gradient
ascent-based unconstrained optimization methods
frequently fail to perform machine unlearning,
a phenomenon we attribute to the inherent stat-
istical dependence between the forget and retain
data sets. This dependence, which can manifest
itself even as simple correlations, undermines
the misconception that these sets can be inde-
pendently manipulated during unlearning. We
provide empirical and theoretical evidence show-
ing these methods often fail precisely due to this
overlooked relationship. For random forget sets,
this dependence means that degrading forget set
metrics (which, for the oracle, should mirror test
set metrics) inevitably harms overall test perform-
ance. Going beyond random sets, we consider lo-
gistic regression as an instructive example where
a critical failure mode emerges: inter-set depend-
ence causes gradient descent-ascent iterations to
progressively diverge from the oracle. Strikingly,
these methods can converge to solutions that are
not only far from the oracle but are potentially
even further from it than the original model itself,
rendering the unlearning process actively detri-
mental. A toy example further illustrates how this
dependence can trap models in inferior local min-
ima, inescapable via finetuning. Our theoretical
insights are corroborated by experiments on com-
plex neural networks, demonstrating that these
methods do not perform as expected in practice
due to this unaddressed statistical interplay.

1. Introduction
The widespread integration of large-scale machine learn-
ing models, especially in sensitive domains (e.g., medicine,
cybersecurity), has spurred concerns over data privacy and
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model maintenance. Consequently, machine unlearning—
selectively removing the influence of a chosen training ex-
ample efficiently—has become a crucial ability (Ginart et al.,
2019). Its applications are diverse, including managing out-
dated/toxic data, resolving copyright issues in generative
models, and enhancing LLM alignment (Cao and Yang,
2015a; Pawelczyk et al., 2024; Liu, 2024; Li et al., 2024a).

The fundamental challenge in machine unlearning lies in
designing efficient unlearning algorithms that do not de-
grade model performance.

Formally, given a model hθ trained on datasetD, unlearning
aims to produce hUL

θ after forgetting F ⊂ D, such that
hUL
θ approximates a model trained solely on the retain set
R = D\F (Cao and Yang, 2015b). Retraining from scratch
on R is the ideal but often computationally prohibitive,
especially for large datasets or frequent requests.

Many practical unlearning methods (Ginart et al., 2019; Kur-
manji et al., 2024; Golatkar et al., 2020) employ fine-tuning
heuristics, attempting to reverse the forget set’s (F) influ-
ence on the original model hθ. These approaches, which
we term Descent-Ascent (DA) algorithms, typically apply
gradient ascent (Gradient Ascent) on F and gradient des-
cent (Gradient Descent) on the retain setR for a few epochs
(Kurmanji et al., 2023).

However, recent evaluations show DA approaches are of-
ten unreliable (Hayes et al., 2024; Kurmanji et al., 2024;
Pawelczyk et al., 2023). They lack theoretical guarantees,
clear stopping criteria, and are highly sensitive to fine-tuning
hyperparameters like learning rate and duration.

This work identifies a crucial, often overlooked obstacle for
DA methods: statistical dependencies between forget and
retain set samples. We demonstrate that these dependencies
can severely degrade unlearning performance, potentially
causing complete failure, even in convex settings.

While we mainly study classification under the logistic loss,
our findings on statistical dependencies should apply more
broadly. Generative models such as LLMs also employ
cross-entropy for next-token prediction, thus effectively per-
forming a sequence of classification tasks. The inter-data
dependencies we highlight would therefore pose analogous
unlearning challenges for these models.
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Figure 1: Ascent Fails to Forget. We apply Gradient As-
cent and Gradient Descent/Ascent to Pretrained models to
unlearn a selected forget set containing points of the first
Principal Component (PC) of the influence matrix from
Cifar-10. KLoM scores (x-axis, y-axis) measure the qual-
ity of unlearning on a given set by comparing the distri-
bution distance between unlearned predictions and Oracle
predictions (0 means perfect unlearning ⋆). We measure
KLoM values over each data-point in a set and report the
95th percentile in each group. Different (x/y) points in the
plot represent results for different unlearning method hyper-
parameters. The colors indicate what is the relative cost of
an unlearning method when compared to fully retraining
the model. A Pretrained model (◦) is similar to an Oracle
on the validation set but very different on the forget set.
On such set, unlearning with Gradient Ascent or Gradient
Descent/Ascent either breaks the model or does not shift
from the Pretrained starting point, consistently for most sets.
Forget set selection and KLoM score metric follow Geor-
giev et al. (2024). Further details on method and evaluation
hyper-parameters can be found in the Appendix.

Our main contributions can be summarized as follows: (i)
We start by empirically showcasing that DA-based methods
fail in practical settings under a robust evaluation and dis-
cuss limitations of previous methodologies. (ii) Supported
by our empirical findings, we first show theoretically that
unlearning random forget sets is impossible without causing
model degradation, as unlearning random sets is equivalent
in distribution to unlearning samples from the population
data distribution. (iii) We move beyond forget and retain
sets which share clear statistical dependencies to analyze
the simple setting of multi-dimensional logistic regression,
where we show inter-set correlations lead to DA failure
modes. (iv) In our logistic regression analysis, we differen-
tiate the impact of DA unlearning based on forget set size.
We specifically show that for certain forget set sizes, DA
can be harmful to the model, even when employing arbitrary
early stopping. (v) Finally, using low-dimensional examples,
we demonstrate how DA can lead the model to suboptimal
local minima, which do not align with the minima achieved
through retraining.
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Figure 2: The Ascent Forgets Illusion. The left plot shows
KLoM scores of Gradient Ascent when unlearning just 10
random samples (axis and points follow Fig. 1). Some
runs (- - -) seem to achieve unlearning without breaking
the model. On the right, we present the average KLoM
between retain, validation and forget sets (y-axis) along
time of unlearning (x-axis). We observe that in order for
Gradient Ascent to unlearn such (easy) sets in practice, one
would need to (i): select the learning rate, (ii) know when
to stop fine-tuning.

Notation: We will use the following notation. We use
uppercase bold letters for matrices X ∈ Rm×n, lowercase
bold letters for vectors x ∈ Rm and lowercase letters for
numbers x ∈ R. Accordingly, the ith row and the element
in the i, j position of a matrix X are given by xi and xij

respectively. We use the shorthand [n] = {1, · · · , n} for
any natural number n. Let 1(·,·) : R × R → {0, 1} such
that 1(x,x) = 1, otherwise for x ̸= y,1(x,y) = 0. We will
denote our model with parameters θ as hθ : Rd → R. We
define a training dataset of size |D| as a set of samples and
labels {(xi, yi)}|D|

i=1 = D, composed of a “retain” set R
and “forget” set F such that |D| = |R| + |F|. We take
“ascent” optimization on a sample to mean computing the
gradient update w.r.t. to a loss ∇θℓ and flipping its sign
when updating the model parameters.

2. Ascent Methods Fail in the Wild
To rigorously evaluate unlearning efficacy, we use KLoM
(KL Divergence of Margins (Georgiev et al., 2024)), meas-
uring the distributional difference in classifier margins
between 100 unlearned and 100 Oracle models. A KLoM
score near zero indicates optimal unlearning.

Our main experiments evaluate two common gradient-based
baselines: Gradient Ascent (GA), performing gradient as-
cent on the forget set, and Gradient Descent/Ascent (GDA),
which adds retain set descent steps. We use ResNet-9
models on Cifar-10 (Krizhevsky, 2009) with varying forget
sets. Fig. 1 illustrates that both GA and GDA often fail to
significantly shift from the pretrained model or can severely
degrade performance. These settings and results align with
Georgiev et al. (2024).

These outcomes highlight a critical limitation in evaluat-
ing GA-based unlearning: the necessity for pre-defined hy-
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Figure 3: Cross dimensional data correlations ϵ lead DA
to failure for a certain range of values. We present the
range of α as a function of the correlation ϵ, for which
we can guarantee that DA is detrimental. The (- -) lines
represent the minimum α for which the coordinates of the
original model become bigger than the coordinates of the
DA unlearning algorithm and with the (–) the maximum α
for which the coordinates of the oracle are bigger than those
of the original model.

perparameter selection criteria, independent of final target
metric performance, to avoid bias from instance-specific tun-
ing. Without this, extensive hyperparameter search on small
forget sets can create a misleading sense of successful un-
learning, even with vanilla GA (Fig. 2). This issue is rooted
in the “missing targets problem” (Hayes et al., 2024; Geor-
giev et al., 2024), i.e., the difficulty of defining a stopping
criterion for GA-based optimization. Moreover, as different
points unlearn at different rates (Georgiev et al., 2024), such
a stopping value would likely need to be point-specific.

Motivated by these results, the following sections aim to
demonstrate that the underlying statistical data dependencies
may be a central cause for the typical failure modes of DA
based unlearning methods.

3. Unlearning and Random Sets
A natural starting point for understanding how data correl-
ations influence the unlearning process is that of random
forget sets. In random forget sets, unlearning through DA
is impossible. We state this formally in Lemma 1 for the
Accuracy, but the same result holds for other metrics. The
proof of Lemma 1 can be found in App. E.

Lemma 1 (Random Sets). Given a true distribution of
samples PT and a forget set F chosen uniformly at ran-
dom from the dataset and a model with parameters θ, then
the probability that the accuracy on the test set AccT and
the forget set AccF diverge from one another by more than
ϵ is upperbounded by the following inequality:

P (|AccT − AccF | ≥ ϵ) ≤ 2 exp
(
−2|F|ϵ2

)
.

It is important to note that a “good” unlearning method
should not harm model quality under any given forget-set.

4. Models Diverge from Retraining Solutions
Under DA Unlearning

Next, we extend our result under specific data correlations,
without requiring statistical dependencies between the sets.

4.1. Logistic Regression

Here, we study binary logistic regression with a ridge para-
meter λ, and weights w. Based on the work of Soudry
et al. (2024), we use the exponential loss ℓi = eyihθ(xi) as
a more tractable proxy for the logistic loss. The pre-training
(D), retraining (R) and GDA optimization methods (DA)
minimize their respective losses

LD =
1

|D|
D∑
i=1

e−yi·⟨w,xi⟩ +
λ

2
∥w∥22,

LR =
1

|R|
R∑
i=1

e−yi·⟨w,xi⟩ +
λ

2
∥w∥22,

LDA =
1

|R|
R∑
i=1

e−yi·⟨w,xi⟩ − 1

|F|
F∑
i=1

e−yi·⟨w,xi⟩ +
λ

2
∥w∥22.

(1)

4.2. Semi-orthogonal Dataset Analysis

To analyze the detrimental effects of DA methods, we begin
with a semi-orthogonal dataset. This setup, defined by the
following two assumptions, allows us to study DA behavior
under conditions of strong data correlation.
Assumption 1. The data is separable into orthogonal sets
Sj for each coordinate j.
Assumption 2. For any coordinate j and any sample i with
xi,j ̸= 0, it holds that yi · xi,j = 1.

We discuss these assumptions and our proof techniques
in App. C.1.1. This setting enables us to prove the following:

Lemma 2 (Divergence in Logistic Regression). Let w(D)
j ,

w
(R)
j , and w

(DA)
j be the jth coordinate of the convergence

points for logistic regression on the original set D, the
retain set R, and using the Descent-Ascent (DA) method,
respectively. Then, for a specific range of α, we have:(
w

(DA)
j − w

(D)
j

)
·
(
w

(D)
j − w

(R)
j

)
≥ 0.

Here, α represents the ratio of the forget set size to the retain
set size within dimension j. The lemma holds for a specific
range of α (detailed in App. H), notably including instances
where α ≤ |F|/|R|, implying that for a one-dimensional
dataset, the lemma’s condition would always hold. We also
highlight potential instabilities of DA methods:
Corollary 1. As the ridge regularization parameter λ→ 0
and for α → |F|/|R|, we have that ∆R,D → 0 while
∆R,DA →∞.

In the corollary, ∆R,D and ∆R,DA denote the distance
between the oracle (retrained onR) solution and the original
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Figure 4: Unlearning certain forget sets leads to the wrong decision boundary under GDA. Left: We show the MSE loss
landscape for a pretrained model on the problem described in App. B. We denote as (×) the global minimum, while (◦) is the
local minimum. Right: The effective loss landscape observed in the GDA problem (top) and the retraining problem (bottom).
The combination of these results shows that retraining keeps the model in the same global optimum as the pretrained model,
while GDA chooses the local minimum. This is clearly manifest in the decision boundaries favored by the different methods,
denoted in dashed lines. Next to the contour plots we present two dimensional illustrations of possible decision boundaries
between the samples labeled as negative (−) and positive (+), while the forget set are the two positive points shaded in gray,
as described in App. B. We show the decision boundaries for both GDA (right top) and retraining (right bottom).

(D) solution, and the oracle solution and the DA solution,
respectively. This shows DA can diverge arbitrarily far from
the desired retrained model.

4.3. Two-Dimensional Correlated Data

To investigate scenarios with more nuanced dependencies
between forget and retain sets, we now consider a two-
dimensional example, discussed in depth in App. C.1.2.
We examine a case with two sample sets, Si and Sj , char-
acterized by feature vectors xk = (0, . . . , 0, 1, ϵ, 0, . . . , 0)
for samples k ∈ Si and xl = (0, . . . , 0, ϵ, 1, 0, . . . , 0) for
samples l ∈ Sj . Samples from Si are designated to the
retain set, while samples from Sj are in the forget set. In
this setup, ϵ parameterizes the correlation between forget
and retain samples, facilitating a parametric study of cor-
relation’s impact on DA performance. Analogous to the
one-dimensional analysis, we define the forget-to-retain ra-
tio within the relevant dimensions (i, j) as |Fi,j | = α|Ri,j |.
Following the one-dimensional case, we show that for a
reasonable α, it simultaneously holds that (xR − xD) ·
(xD − xDA) ≥ 0 and that (yR − yD) · (yD − yDA) ≥ 0.

Lemma 3. For α ≥ αD>DA = max
{
αD>DA
x , αD>DA

y

}
we

have that xD ≥ xDA and that yD ≥ yDA.

Lemma 4. For α ≤ αR>D = min
{
αR>D
x , αR>D

y

}
we

have that xR ≥ xD and that yR ≥ yD, with αR>D
x , αR>D

y .

We find a range for α where DA proves detrimental, as
illustrated in Fig. 3. See App. C.1.2 for the full derivation.

5. Convergence to “Bad” Minima
Beyond demonstrating DA methods’ immediate detrimental
impact, we address a further critical concern: Can sub-
sequent finetuning on the retain set remedy these harmful ef-
fects? Unfortunately, for non-convex models such as neural
networks, the answer is often no. This is illustrated in Fig. 4,
with a detailed instructive example given in App. B. The
core issue, once again, lies in the statistical dependencies
between the forget and retain sets. If forgotten samples are
significantly correlated with retained samples crucial for de-
fining optimal decision boundaries, the DA process can steer
the model into suboptimal local minima. These minima may
be inescapable through standard finetuning on the retain set,
leading to persistently degraded model performance.

6. Conclusions
While our findings highlight significant challenges for cur-
rent ascent-based unlearning, we believe that they are in-
structive for the development of more robust methods. The
weaknesses we identify primarily stem from ascent steps
neglecting the data dependencies between the forget and
retain sets. Future research into ascent-based unlearning
should therefore explicitly account for these inter-set rela-
tionships. Furthermore, our work suggests that alternative
approaches, such as rewinding techniques (Mu and Klab-
jan, 2024) or stochastic methods (Chien et al., 2024), may
offer more reliable unlearning, particularly when dataset
properties and their internal correlations are unknown.
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A. Related Work
Machine unlearning: Unlearning methods can be used to either remove particular samples (Cao and Yang, 2015b; Ginart
et al., 2019; Wu et al., 2020; Neel et al., 2021; Bourtoule et al., 2021), or to remove subsets of the data which share certain
underlying features, captured by abstract concepts (Ravfogel et al., 2022; Eldan and Russinovich, 2023; Kumari et al., 2023;
Zhong et al., 2023). In this work, we focus on the prior, though we believe some of our results may be extended to the latter
setting. Exact unlearning methods (Bourtoule et al., 2021) offer theoretical guarantees but often sacrifice accuracy, leading
to widespread adoption of approximate methods in deep learning. These approximate approaches are evaluated through
membership inference attacks (Golatkar et al., 2020; Goel et al., 2022; Hayes et al., 2024) and backdoor removal capabilities
(Pawelczyk et al., 2024). As Thudi et al. (2022) note, meaningful evaluation must focus on algorithmic behavior rather than
individual models due to deep learning’s stochastic nature. For a review of open problems in machine unlearning, see (Barez
et al., 2025) and references therein.

Unlearning approaches in deep learning. Current approaches primarily use gradient-based methods, including partial
fine-tuning (Goel et al., 2022), AD combinations (Kurmanji et al., 2024), and sparsity-regularized fine-tuning (Jia et al.,
2024). Alternative methods employ local quadratic approximations (Golatkar et al., 2020; Li et al., 2024b) or influence
functions (Warnecke et al., 2021). One of the most used unlearning methods, SCRUB (Hayes et al., 2024) fine-tunes
models using KL divergence objectives, but faces similar underlying challenges as other methods. The approach presented
in Georgiev et al. (2024) introduces a predictive data attribution approach with good unlearning quality under a robust
evaluation, although it raises some scalability concerns if we account for the full cost the method. In this work we focus on
DA based methods.

B. Low dimensions: Descent-Ascent Favors The wrong solutions
While our previous theoretical analysis demonstrates that DA methods can be harmful to the model, it fails to demonstrate a
final concern about these methods, we would like to raise. Is it possible to remedy the harmful effects of these methods
through finetuning on the retain afterwards?

The answer that we give to this question unfortunately is not always, for neural networks or in general non-convex function
classes. To demonstrate this let us consider a binary classification problem using a two dimensional kernel, with labels
yi ∈ {−1, 1}, data composed of xi = (xi, x

2
i ) and Mean Squared Error (MSE) loss with ridge regularization λ ∈ R+. The

network is taken to be a sigmoidal network with two parameters θ = (a, b), such that its output is hθ(xi) = σ(axi + bx2
i ),

where σ(z) = 1/(1 + e−(1+z)/2).

We choose 4 samples in the configuration: D = {x1,x2,x3,x4} = {(−1, 1), (1, 1), (3, 9), (4, 16)}, with labels
{y1, y2, y3, y4} = {−1, 1,−1, 1}, respectively. In order to model the effect of multiple points clustered together, we
give each point a different weight in the loss function, such that

L =
1

|D|

|D|∑
i=1

αiℓi +
λ

2
∥θ∥22, (1)

where ℓi are the single sample loss functions, and {α1, α2, α3, α4} = {5, 4, 1, 4} represent the number of points clustered
together, as illustrated in Fig. 4, where λ = 0.1. This means that the effective number of points that the classifier sees is∑

i αi. The data configuration is chosen to illustrate the failure mode of DA, while the dataset selection is arbitrary the key
mode of failure is the high correlation between the forget set and a subset of the retain.

Suppose we would like to unlearn two of the positive samples positioned at x4. Retraining would correspond to simply
setting α4 = 2, and applying gradient descent. Notice that this provides little to no change for the minima location and the
contour lines between the original dataset D and the retraining setR. In contrast, Performing GDA would amount to setting
α4 = 0, since two points will contribute the exact opposite gradient as the other two at the same position, effectively erasing
them.

We find that this example can be simply understood by counting arguments: since the original dataset contains effectively 6
negative samples and 8 positive samples, the optimal decision boundary is given by the separating plane which correctly
classifies the largest number of samples.

The pretrained model is optimal when x1,x2 and x4 are correctly classified, while mislabeling x3 (13 correct, 1 incorrect).
Retraining simply reduces the weight of x4, and keeping the same plane is still preferential (11 correct, 1 incorrect).
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However, performing GDA sets the gradients of half of the points at x4 to cancel the other half, so it optimal to re-orient the
decision boundary so that all samples are correctly classified (10 correct, 0 incorrect), while in reality, the algorithm has
been tricked into finding a suboptimal solution (10 correct, 2 incorrect).

The qualitative analysis of this two-dimensional example shows that certain choices of forget sets that are highly correlated
to the retain can lead to irreversible model degradation when using DA.

C. Derivation DA for high dimensional logistic regression
C.1. High Dimensions: Correlated Data Causes Diverging Solutions in Logistic Regression

C.1.1. DATA CORRELATIONS ON A SINGLE DIMENSION

We start from the case of a semi orthogonal dataset. Using the following assumptions: These assumptions correspond to a
dataset in d dimensions where there are sets of samples on orthogonal axes to one another. As a result, data points that lie in
different sets Sj , are perfectly orthogonal and uncorrelated; however, data points that lie in the same set are fully correlated
with one another.

Recall our hypothesis that data dependencies can cause DA methods to degrade model metrics, instead of converging to an
oracle model, we will pick a subset of a set Sj as our forget set. This will allow for a simplistic analysis while testing the
hypothesis for a highly correlated forget set.

Let |Rj | the size of the retain set for samples with xi,j ̸= 0, then in order to model the behavior of the minimizers of Eq. (1),
for forget sets of different sizes, we define the jth forget set fraction size as |Fj | = α · |Rj |. A simple example of this setting
can be a set of retain points of xj = 1, yj = 1 and a set of forget points of xj = −1, yj = −1, where we are practically
requested to remove all (or some) of the negative samples. The effect of unlearning a forget set on a particular coordinate
axis j, can then be shown to obtain closed form solutions as given by Lemma 5, proven in App. F.2.

Lemma 5 (Closed Form). Let wD
j , wR

j and wDA
j be the jth coordinate of any local minima/maxima for the logistic regression

problems defined in Eq. (1), then they admit the form:

wD
j = W

(
(1 + α)|Rj |

λ|D|

)
, wR

j = W

( |Rj |
λ|R|

)
, wDA

j = W

(
(1− α|R|/|F|)|Rj |

λ|R|

)
,

where W (z) corresponds to the Lambert-W function, the solution to z = W (z)eW (z).

It follows directly from Lemma 5, that by changing the value of α, which determines the ratio of the size of the forget set to
that of the retain in this coordinate, the solutions will be ordered by their magnitude. Concretely, Lemma 2 shows that the
DA solution is always farthest away from the oracle solution, while the oracle and pre-trained solutions remain close and
more importantly the DA solution and the oracle solution lie in opposite directions with respect to the initial solution of
pre-training wD

j . This observation implies that performing DA in this setup always converges away from the oracle solution,
thus doing nothing at all is a better strategy than DA. The aforementioned observation can be formally decomposed in the
following lemmas. We prove Lemma 2 in App. H, which gives a formal statement regarding the fact that the minima of DA
and the oracle are in opposite directions with respect to the minimum of the intial dataset D.

Lemma 2 (Divergence in Logistic Regression). Let w(D)
j , w(R)

j , and w
(DA)
j be the jth coordinate of the convergence points

for logistic regression on the original set D, the retain setR, and using the Descent-Ascent (DA) method, respectively. Then,
for a specific range of α, we have:

(
w

(DA)
j − w

(D)
j

)
·
(
w

(D)
j − w

(R)
j

)
≥ 0.

We defer the reader to App. H for the exact range of α, for which Lemma 2 holds, let us point out that the lemma holds
for α ≤ |F|/|R|, this means that if we were working on a purely 1 dimensional dataset, this lemma would always hold.
Lemma 2 answers our original question of whether data correlations cause DA methods to harm the model in the positive.
Before proceeding to the study of higher dimensions, we would like to comment on the stability of the process of unlearning
under DA methods.

Stability of DA methods: We begin by characterizing the distance between the different stationary points for the three
problems.

Lemma 6 provides an upperbound on the distance between the oracle solution and the initial solution for D. Its counterpart,

8
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Lemma 7 provides a lower bound on the distance between the oracle solution and the DA solution. The proof for Lemma 6
can be found in App. I, while the proof for Lemma 7 lies in App. J

Lemma 6 (Distance Growth). Let wD
j , wR

j the jth coordinate of the convergence point for the logistic regression problem

for the original set D and the retain setR respectively. It holds that the distance ∆R,D = |wD
j −wR

j | ≤
∣∣∣ln((1 + α) |R|

|D|

)∣∣∣,
for any value of λ > 0.

Lemma 7 (Distance Unlearning). Let wR
j , wDA

j the jth coordinate of the convergence point for the logistic regression
problem for the retain set R and the Descent Ascent method respectively. It holds that for for α ≥ |F|/|R| the distance
∆R,DA = |wR

j − wDA
j | ≥W0 (|Rj |/(λ|R|))

Employing Lemma 6 and Lemma 7, one can derive the following Corollary.

Corollary 2. As the ridge λ→ 0 for α→ |F|/|R|, we have that ∆R,D → 0 and ∆R,DA →∞.

Cor. 1 demonstrates how unlearning using DA is very volatile and even a few steps of the method can cause the model to
diverge.

A possible stabilization effect of iterative DA: So far, we have focused on the behavior of minimizers of Eq. (1), which
describes a simultaneous descent-ascent algorithm. In practice, however, iterative methods are typically used, where one
first performs a step of ascent on the forget set, followed descent on the retain set. In App. F.3, we show that for small
learning rates η → 0, the iterative method is nearly identical to the simultaneous update. Namely the derivative used for the
update rule is

wt+1
j ← wt

j − η

(
−|Rj |
|R| e

−wt
j +

α · |Rj |
|F| e−wt

j + 2λwt
j

)
,

where the only difference is a factor of 2 in front of the regularization that differs from the normal DA loss. We have omitted
a term which is of the order ofO

(
η2
)
, since the solution, should it exist has wt

j small and a term with η2 → 0 has negligable
contribution.

The leading correction term O
(
η2
)

which was omitted in the update rule above stops the algorithms solution wDA
j from

diverging, since the term is of the form

η2α
|Rj |2
|F||R|e

−2wt
j − η2λwt

jα
|Rj |
|F| e

−wt
j ,

which increases for larger wt
j . This addresses stability concerns; however, it does nothing to remedy our main concern raised

in Lemma 2 regarding the harmful effect of these methods on the model.

C.1.2. CROSS DIMENSIONAL DATA CORRELATIONS

In the previous section we studied the case where our samples are fully correlated, since they existed in a single dimension.
In this section we will consider the two dimensional case where we have two sets of samples Si and Sj , which have values
xi = (0, . . . , 0, 1, ϵ, 0, . . . , 0) and xj = (0, . . . , 0, ϵ, 1, 0, . . . , 0) respectively. We will consider the case where the samples
of Si are all in the retain set, while the samples of Sj are all in the forget. In this case the correlation between the samples in
the forget and the retain set depends on ϵ and therefore this allows us to do a parametric study of the effect of correlation
between the forget and the retain on the performance of DA based methods. In similar fashion to the 1 dimensional case
we will consider that the forget set |Fi,j | = α|Ri,j |, where Fi,j , Ri,j the forget and the retain over the i, j dimensions,
respectively. In order to facilitate the analysis we will change the coordinate system only for the i and the j coordinate to
x = wi + ϵwj and y = wiϵ+ wj . Let xR, yR the coordinates for the oracle model stationary point, xD, yD for the pretrain
model and xDA, yDA for the DA unlearning scheme, we can give the following characterizations:

Lemma 8. The closed form solution for the stationary points for the retrain set is given as:

xR = W

(
(1 + ϵ2)|Ri,j |

λ|R|

)
, yR =

2ϵ

1 + ϵ2
W

(
(1 + ϵ2)|Ri,j |

λ|R|

)
.
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Figure 5: Different Unlearning Difficulties. We present the KLoM scores of Gradient Ascent and Gradient Descent/Ascent
when unlearning over different forget sets (axes and points follow Fig. 1). In general, the majority of runs either do nothing
or break the model. Empirically, we find highly important points (left) to be the hardest to unlearn with zero realizations
showing any unlearning signs at all. Random samples (center) show some Gradient Ascent runs improving the forget KLoM
but with significant degradation in the models. Finally, for a set with second PC points (right) we observe some Gradient
Descent/Ascent runs improve the forget KLoM without breaking the model but at a high cost, around 25% of retraining an
Oracle for unlearning 0.2% of the data.

Lemma 9. For the stationary points of the original set, one can derive the following ranges.

W

( |Ri,j |
λ|D| ((1 + ϵ2) + 2αϵ)

)
≤ xD ≤ 2ϵ

1 + ϵ2
W

(
α(1 + ϵ2)|Ri,j |

λ|D|

)
+W

(
(1 + ϵ2)|Ri,j |

λ|D|

)
,

W

(
α(1 + ϵ2)|Ri,j |

λ|D|

)
≤ yD ≤ W

( |Ri,j |
λ|D| (2ϵ+ α(1 + ϵ2))

)
.

Lemma 10. For the stationary points of the model trained by DA methods we can derive the following ranges.

xDA ≤W

( |Ri,j |
λ|R| (1 + ϵ2)− |Ri,j |

λ|F| α2ϵ
)
, yDA ≤W

( |Ri,j |
λ|R| 2ϵ−

|Ri,j |
λ|F| α(1 + ϵ2)

)
.

While the problem becomes more complex in this case and to our knowledge it is not possible to compute an exact solution,
the above Lemmas provide enough information for our purpose. The proofs for all of these Lemmas can be found in
App. K.1. In similar fashion to the 1 dimensional case we would like to show that there exists a reasonable α, for which we
have that (xR − xD) · (xD − xDA) ≥ 0 and at the same time (yR − yD) · (yD − yDA) ≥ 0.

Lemma 11. For α ≥ αD>DA = max
{

1+ϵ2

2ϵ
|F|2

|R|(|D|+|F|) ,
2ϵ

1+ϵ2
|F||D|

|R|(|D|+|F|)

}
we have that xD ≥ xDA and that yD ≥ yDA.

Lemma 4. For α ≤ αR>D = min
{
αR>D
x , αR>D

y

}
we have that xR ≥ xD and that yR ≥ yD, with αR>D

x , αR>D
y .

We omit the exact values of αR>D
x and αR>D

y , which can be found in App. K.2 along with the proofs for Lemma 11 and
Lemma 4. Since the range of ϵ for which (xR, yR) ≥ (xD, yD) ≥ (xDA, yDA) cannot be resolved analytically, we show
numerically in Fig. 3 that this range is typically large, and broadens as the fraction of samples to be forgotten increases,
while the relevant window of correlation strength ϵ is wider for smaller correlation.

D. Additional discussion on Experimental results
We also observe that the difficulty of unlearning varies greatly depending on the specific forget set selected, as shown
in Fig. 5. In general, we find GA and GDA methods to be fragile. The extreme sensitivity to hyperparameters, unclear
stopping criteria for Gradient Ascent, and substantial computational costs in using Gradient Descent on the retain set to fix
models, severely restrict their practicality. Fundamentally, performing gradient ascent on individual points is not aligned
with the core definition of unlearning, making these approaches unsuitable for reliable and consistent machine unlearning in
real-world scenarios. In the Appendix, we include the methodology details for forget sets, KLoM, hyperparameters along
with additional results on more forget sets, models (ResNet-18 (He et al., 2015)) and datasets (ImageNetLiving-17 (Deng
et al., 2009; Santurkar et al., 2021)).
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E. Proof of Lemma for Random Sets
In this section we provide proof that for a forget set, selected uniformly at random from the dataset it is with high probability
impossible to differentiate the accuracy, loss, or any other metric between the test and the forget set, given that both of them
are large enough. In this section we provide the proof for the accuracy metric, but for other metrics the proof follows in like
manner. Intuitively this stems from the fact that for a model which has "unlearned" a forget set, that set is a random set for it.

We will use the following notation. Let 1(·,·) : R× R→ {0, 1} such that 1(x,x) = 1, otherwise for x ̸= y,1(x,y) = 0. We
will denote our model with parameters θ as hθ : Rd → R.

Lemma 1 (Random Sets). Given a true distribution of samples PT and a forget set F chosen uniformly at random from the
dataset and a model with parameters θ, then the probability that the accuracy on the test set AccT and the forget set AccF
diverge from one another by more than ϵ is upperbounded by the following inequality:

P (|AccT − AccF | ≥ ϵ) ≤ 2 exp
(
−2|F|ϵ2

)
.

Proof. For each sample (xi, yi), we calculate the correct response on that sample, as 1(hθ(xi),yi), consequently the response
of the model for any sample is an independent rendom variable. So we get the following random variables, which correspond
to the accuracy of the model on the forget set F and the test set T respectively.

AccT = E(xi,yi)∼PT

[
1(hθ(xi),yi)

]
AccF =

1

|F|
∑

(xi,yi)∈F

1(hθ(xi),yi)

In order to proceed we will utilize Hoeffding’s Inequality, which we state below for completeness:

Lemma 12. Let Z1, Z2, . . . , Zn be independent random variables such that Zi ∈ [ai, bi]. Define their sum as:

Sn =

n∑
i=1

Zi

and let E[Sn] be the expected value of Sn. Then, for any t > 0, the following bound holds:

P (|Sn − E[Sn]| ≥ nt) ≤ 2 exp

( −2n2t2∑n
i=1(bi − ai)2

)

In our case we have that 1
nSn = AccF . Since the Forget set F is selected uniformly at random, we have that:

E [AccF ] = E

 1

|F|
∑

(xi,yi)∈F

1(hθ(xi),yi)


=

1

|F|
∑

(xi,yi)∈F

E(xi,yi)∼PT

[
1(hθ(xi),yi)

]
= E(xi,yi)∼PT

[
1(hθ(xi),yi)

]
= AccT

Since the random variables 1(hθ(xi),yi) ∈ [0, 1], we have that:

P (|AccT − AccF | ≥ ϵ) ≤ 2exp
(
−2|F|ϵ2

)
which gives the lemma statement.

The above lemma gives a formal statement, as to why maximizing the error on random forget sets does not correspond to
true unlearning, since the metrics in the forget set should match those in the test set.
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F. Logistic Regression
F.1. Problem Statement

The logistic regression problem for the full dataset D, retain setR and for the Descent-Ascent algorithm can be restated as:

minimization D :
1

|D|
D∑
i=1

e−yi·⟨w,xi⟩ +
λ

2
∥w∥22

minimizationR :
1

|R|
R∑
i=1

e−yi·⟨w,xi⟩ +
λ

2
∥w∥22

DescentR− Ascent F :
1

|R|
R∑
i=1

e−yi·⟨w,xi⟩ − 1

|F|
F∑
i=1

e−yi·⟨w,xi⟩ +
λ

2
∥w∥22

(2)

F.2. Single Dimension

In this section, we compare the solutions of training a logistic regression model on a full dataset D, purely on the retain set
R and doing GDA on the forget set F . We will also include a regularization term. The corresponding objective functions
would be:

We can derivate the above to get the following equations for their solutions respectively.

(minimization D) 1
|D|
∑D

i=1−yi · xie
−yi·⟨w,xi⟩ + λw = 0

(minimizationR) 1
|R|
∑R

i=1−yi · xie
−yi·⟨w,xi⟩ + λw = 0

(DescentR− Ascent F) 1
|R|
∑R

i=1−yi · xie
−yi·⟨w,xi⟩ − 1

|F|
∑F

i=1−yi · xie
−yi·⟨w,xi⟩ + λw = 0

So we can express each coordinate j of the minimizer for the three cases, as:

(minimization D) wj =
1

λ|D| (
∑D

i=1 yi · xi,je
−yi·⟨w,xi⟩)

(minimizationR) wj =
1

λ|R| (
∑R

i=1 yi · xi,je
−yi·⟨w,xi⟩)

(DescentR− Ascent F) wj =
1

λ|R| (
∑R

i=1 yi · xi,je
−yi·⟨w,xi⟩)− 1

λ|F| (
∑F

i=1 yi · xi,je
−yi·⟨w,xi⟩)

F.3. Iterating Gradient Descent and Ascent

Here, we consider the iterative gradient descent-ascent algorithm, where we first perform a gradient descent step on the
retain set, followed by a gradient ascent step on the forget set. We show that to leading order in the small learning rate
expansion, the solution found by iterative GA is identical to the one given by GA in Eq. (2). For iterative GA, the dynamics
are given by

wt+1
j = wt

j + η

( |Rj |
|R| e

−wt
j − λwt

j

)
, (3)

wt+2
j = wt+1

j − η

(
ϵ · |Rj |
|F| e−wt+1

j + λwt+1
j

)
,
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where η is the learning rate for both steps. Plugging in the result of wt+1
j into the expression for wt+2

j and expanding for
small η ≪ 1, we obtain the following update rule

wt+2
j = wt

j + η

( |Rj |
|R| e

−wt
j − λwt

j

)
(4)

− η

(
ϵ · |Rj |
|F| e

−
(
wt

j+η

(
|Rj |
|R| e

−wt
j−λwt

j

))
+ λ

(
wt

j + η

( |Rj |
|R| e

−wt
j − λwt

j

)))

≃ wt
j + η

( |Rj |
|R| e

−wt
j − 2λwt

j

)
− η

(
ϵ · |Rj |
|F| e

−
(
wt

j+η

(
|Rj |
|R| e

−wt
j−λwt

j

)))

≃ wt
j + η

( |Rj |
|R| e

−wt
j − 2λwt

j

)
− η

(
ϵ · |Rj |
|F| e−wt

j

(
1− η

( |Rj |
|R| e

−wt
j − λwt

j

)))
= wt

j − η

(
−|Rj |
|R| e

−wt
j +

ϵ · |Rj |
|F| e−wt

j + 2λwt
j

)
+O(η2).

Eq. (4) shows that up to order O(η2), the dynamics, as well as the convergent solution of the iterative descent-ascent
algorithm are identical to the ones obtained from Eq. (2), up to a rescaling of the regularization parameter by a factor of 2,
as in λDA = 2λIter−DA.

G. Proof of Lemma 5
In this section we prove Lemma 5 under Assumption 1 and Assumption 2.

Lemma 5 (Closed Form). Let wD
j , wR

j and wDA
j be the jth coordinate of any local minima/maxima for the logistic regression

problems defined in Eq. (1), then they admit the form:

wD
j = W

(
(1 + α)|Rj |

λ|D|

)
, wR

j = W

( |Rj |
λ|R|

)
, wDA

j = W

(
(1− α|R|/|F|)|Rj |

λ|R|

)
,

where W (z) corresponds to the Lambert-W function, the solution to z = W (z)eW (z).

Proof. Let us start by restating the original problem as given in Eq. (2). For the sake of completeness.

minimization D :
1

|D|
D∑
i=1

e−yi·⟨w,xi⟩ +
λ

2
∥w∥22

minimizationR :
1

|R|
R∑
i=1

e−yi·⟨w,xi⟩ +
λ

2
∥w∥22

DescentR− Ascent F :
1

|R|
R∑
i=1

e−yi·⟨w,xi⟩ − 1

|F|
F∑
i=1

e−yi·⟨w,xi⟩ +
λ

2
∥w∥22

We can get the local minima of these functions by using Fermat’s theorem, therefore we have:

minimization D :
1

|D|
D∑
i=1

−yi · xie
−yi·⟨w,xi⟩ + λw = 0

minimizationR :
1

|R|
R∑
i=1

−yi · xie
−yi·⟨w,xi⟩ + λw = 0

DescentR− Ascent F :
1

|R|
R∑
i=1

−yi · xie
−yi·⟨w,xi⟩ − 1

|F|
F∑
i=1

−yi · xie
−yi·⟨w,xi⟩ + λw = 0
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Solving the equations for coordinate j and using Assumption 1, we get:

minimization D : wj =
1

λ|D| (
Sj∑
i=1

yi · xi,je
−yi·wj ·xi,j )

minimizationR : wj =
1

λ|R| (
Rj∑
i=1

yi · xi,je
−yi·wj ·xi,j )

DescentR− Ascent F : wj =
1

λ|R| (
Rj∑
i=1

yi · xi,je
−yi·wj ·xi,j )− 1

λ|F| (
Fj∑
i=1

yi · xi,je
−yi·wj ·xi,j )

Now we can utilize Assumption 2 and the fact that: |Fj | = α · |Rj | to restate the previous equations in the form:

minimization D : wj =
(1 + α)|Rj |

λ|D| e−wj

minimizationR : wj =
|Rj |
λ|R|e

−wj

DescentR− Ascent F : wj =
|Rj |
λ|R|e

−wj − α · |Rj |
λ|F| e−wj

As explained in App. G.1 the Lambert function W provides the solution for equations of the previous form. Using this fact
we get:

minimization D : wD
j = W

(
(1 + α)|Rj |

λ|D|

)
minimizationR : wR

j = W

( |Rj |
λ|R|

)
DescentR− Ascent F : wDA

j = W

(
(1− α|R|/|F|)|Rj |

λ|R|

)
This concludes the proof.

G.1. The Lambert function W

In this section for the sake of exposition we briefly discuss the Lambert function W. Introduced by Johann Heinrich Lambert
in 1758. In this work we are primarily interested in the property of the function that for any α, the solution of the equation:

x− α · e−x = 0

is x = W(−a). As well as the monotonicity of the principal branch of the Lambert function.

H. Proof of Lemma 2
In this section of the appendix we provide the proof for Lemma 2, under Assumptions 1 and 2, we start by restating the
Lemma below for the sake of exposition.

Lemma 2 (Divergence in Logistic Regression). Let w(D)
j , w(R)

j , and w
(DA)
j be the jth coordinate of the convergence points

for logistic regression on the original set D, the retain setR, and using the Descent-Ascent (DA) method, respectively. Then,
for a specific range of α, we have:

(
w

(DA)
j − w

(D)
j

)
·
(
w

(D)
j − w

(R)
j

)
≥ 0.

Proof. To begin the proof let us restate the three minimization problems for logistic regression for the three cases, whose
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respective solutions are wD
j , wR

j , wDA
j

minimization D :
1

|D|
D∑
i=1

e−yi·⟨w,xi⟩ +
λ

2
∥w∥22

minimizationR :
1

|R|
R∑
i=1

e−yi·⟨w,xi⟩ +
λ

2
∥w∥22

DescentR− Ascent F :
1

|R|
R∑
i=1

e−yi·⟨w,xi⟩ − 1

|F|
F∑
i=1

e−yi·⟨w,xi⟩ +
λ

2
∥w∥22

So the local minima and maxima of these equations can be characterized with the help of Lemma 5, the proof of which can
be found in App. G, for the sake of completeness, let us restate the lemma here

Lemma 5 (Closed Form). Let wD
j , wR

j and wDA
j be the jth coordinate of any local minima/maxima for the logistic regression

problems defined in Eq. (1), then they admit the form:

wD
j = W

(
(1 + α)|Rj |

λ|D|

)
, wR

j = W

( |Rj |
λ|R|

)
, wDA

j = W

(
(1− α|R|/|F|)|Rj |

λ|R|

)
,

where W (z) corresponds to the Lambert-W function, the solution to z = W (z)eW (z).

Since α ≥ 0, we have that:
(1 + α)|Rj |

λ|D| > 0 and
|Rj |
λ|R| > 0

The minimization for logistic regression over the original dataset D and the retrain datasetR both have a global minimum
that is unique and corresponds to the solution of the principal branch of the Lambert function W0, for that value.
For the Descent Ascent solution, since the input of the Lambert function is not necessarily positive, we have to separate our
analysis to three cases:

1. The first case, where there is only one global minimum, meaning that the input x of the Lambert function is x ≥ 0.
Equivalently, we have (1−α|R|/|F|)|Rj |

λ|R| ≥ 0 which implies that α ≤ |F|
|R|

2. The second case, where we have a solution both for the primary and the secondary branch of the Lambert function,
corresponding to a local maximum and minimum respectively meaning that you have that the input x of the Lambert
function is −1/e ≤ x ≤ 0, equivalently solving for ϵ gives |F|/|R| < α ≤ |F|/|R|+ (λ|F|)/(e|Rj |)

3. The third case, where there are no local minima, meaning that the input of the Lambert function x is x < −1/e, which
implies that α > |F|/|R|+ (λ|F|)/(e|Rj |)

Case 1: In case 1 we have that α ≤ |F|
|R| , which implies that:

(1 + α)|Rj |
λ|D| ≤ (|R|+ |F|)|Rj |

λ|R||D| ≤ |D||Rj |
λ|R||D| ≤

|Rj |
λ|R|

so since the principal branch W0 of the Lambert function is increasing, we have that:

wD
j = W0

(
(1 + α)|Rj |

λ|D|

)
≤W0

( |Rj |
λ|R|

)
= wR

j

For this case, let us now assume that α ≥ |F|2/ (|R|(|F|+ |D|)), it is easy to verify that for such an α it holds that:
(1+α)|Rj |

λ|D| ≥ (1−α|R|/|F|)|Rj |
λ|R| , so we have that:

wDA
j = W0

(
(1− α|R|/|F|)|Rj |

λ|R|

)
≤W0

(
(1 + α)|Rj |

λ|D|

)
= wD

j

So for Case 1 we have that wDA
j ≤ wD

j ≤ wR
j , which implies that (wDA

j − wD
j ) · (wD

j − wR
j ) ≥ 0

This concludes the proof.
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I. Proof of Lemma 6
In this section we provide the proof for Lemma 6 under Assumptions 1 and 2.

Lemma 6 (Distance Growth). Let wD
j , wR

j the jth coordinate of the convergence point for the logistic regression problem

for the original set D and the retain setR respectively. It holds that the distance ∆R,D = |wD
j −wR

j | ≤
∣∣∣ln((1 + α) |R|

|D|

)∣∣∣,
for any value of λ > 0.

Proof. We start from Lemma 5, which we restate below for the sake of exposition.

Lemma 5 (Closed Form). Let wD
j , wR

j and wDA
j be the jth coordinate of any local minima/maxima for the logistic regression

problems defined in Eq. (1), then they admit the form:

wD
j = W

(
(1 + α)|Rj |

λ|D|

)
, wR

j = W

( |Rj |
λ|R|

)
, wDA

j = W

(
(1− α|R|/|F|)|Rj |

λ|R|

)
,

where W (z) corresponds to the Lambert-W function, the solution to z = W (z)eW (z).

Since the input of the Lambert function for wD
j , wR

j is always positive these solutions correspond to the only minimum of
the function for the minimization problem and additionally they are calculated from them principal branch of the Lambert
function W0. We start from the logarithmic connection of the Lambert function, which is that for any value of x it holds
that:

W(x) = ln(x)− ln(W(x))

So for α ≥ |F|
|R| ,since W0 is increasing we have that wD

j ≥ wR
j we have the following:

∆R,D = wD
j − wR

j

= W0

(
(1 + α)|Rj |

λ|D|

)
−W0

( |Rj |
λ|R|

)
= W0

(
α
|Rj |
λ|R|

)
−W0

( |Rj |
λ|R|

)
,where α = (1 + α)

|R|
|D|

= ln

(
α
|Rj |
λ|R|

)
− ln

(
W0

(
α
|Rj |
λ|R|

))
− ln

( |Rj |
λ|R|

)
+ ln

(
W0

( |Rj |
λ|R|

))
= ln

(
α
|Rj |
λ|R|

)
− ln

(
W0

(
α
|Rj |
λ|R|

))
− ln

( |Rj |
λ|R|

)
+ ln

(
W0

( |Rj |
λ|R|

))

= ln (α)− ln

W0

(
α

|Rj |
λ|R|

)
W0

(
|Rj |
λ|R|

)


≤ ln (α) , since the principal branch W0 is increasing

We can repeat the same proof procedure for α ≤ |F|
|R| , but instead we get ∆R,D ≤ − ln(α). This concludes the proof

J. Proof of Lemma 7
Lemma 7 (Distance Unlearning). Let wR

j , wDA
j the jth coordinate of the convergence point for the logistic regression

problem for the retain set R and the Descent Ascent method respectively. It holds that for for α ≥ |F|/|R| the distance
∆R,DA = |wR

j − wDA
j | ≥W0 (|Rj |/(λ|R|))

Proof. We start from Lemma 5 which we restate below for the sake of exposition.

Lemma 5 (Closed Form). Let wD
j , wR

j and wDA
j be the jth coordinate of any local minima/maxima for the logistic regression

problems defined in Eq. (1), then they admit the form:

wD
j = W

(
(1 + α)|Rj |

λ|D|

)
, wR

j = W

( |Rj |
λ|R|

)
, wDA

j = W

(
(1− α|R|/|F|)|Rj |

λ|R|

)
,

16
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where W (z) corresponds to the Lambert-W function, the solution to z = W (z)eW (z).

It is easy to notice that in the case where we have α = |F|/|R| wDA
j = 0 which concludes this case. For the case where

α > |F|/|R| we refer the reader to the proof of Lemma 2, where we show that wDA
j → −∞ for any value of λ > 0 so the

distance is infinite in this case.

K. Logistic Regression 2 dimensions
In this section we will study the natural extension of the previous example, where we were studying the 1 dimensional case.
In this case we assume that our samples are of the form:

s1 = (1, ϵ), s2 = (ϵ, 1)

This gives the following equations for the optimality conditions for training on the full data set D:

w1 =
|Ri,j |
λ|D| (e

−(w1+w2ϵ) + αϵe−(w1ϵ+w2))

w2 =
|Ri,j |
λ|D| (ϵe

−(w1+w2ϵ) + αe−(w1ϵ+w2))

For the retrain setR we have that:

w1 =
|Ri,j |
λ|R| e

−(w1+w2ϵ)

w2 =
|Ri,j |
λ|R| ϵe

−(w1+w2ϵ)

For the Descent Ascent unlearning we have that:

w1 =
|Ri,j |
λ|R| e

−(w1+w2ϵ) − |Ri,j |
λ|F| αϵe

−(w1ϵ+w2)

w2 =
|Ri,j |
λ|R| ϵe

−(w1+w2ϵ) − |Ri,j |
λ|F| αe

−(w1ϵ+w2)

We will now rewrite the above equations by setting x = w1 + w2ϵ and y = w1ϵ+ w2, this simplifies the equations and still
allows us to make our claim that DA can only harm the model if there is a total ordering over the values of the solutions of
the rewritten equations.

For the dataset D we have:

xD =
|Ri,j |
λ|D| ((1 + ϵ2)e−xD

+ 2αϵe−yD
)

yD =
|Ri,j |
λ|D| (2ϵe

−xD
+ α(1 + ϵ2)e−yD

)

For the retrain setR, we have that:

17
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xR =
|Ri,j |
λ|R| (1 + ϵ2)e−xR

yR =
|Ri,j |
λ|R| 2ϵe

−xR

For the DA method we get the following equations:

xDA =
|Ri,j |
λ|R| (1 + ϵ2)e−xDA − |Ri,j |

λ|F| α2ϵe
−yDA

yDA =
|Ri,j |
λ|R| 2ϵe

−xDA − |Ri,j |
λ|F| α(1 + ϵ2)e−yDA

Before proceeding, let us point out that yDA ≤ xDA, since 1 + ϵ2 ≥ 2ϵ, for the same reason, we get that yR ≤ xR and
finally without loss of generality we will use that yD ≤ xD. In Lemma 13 we give a short proof regarding the existence of
such solutions.

Lemma 13. For any α ≤ 1, we have that there exists a solution for the original dataset, such that yD ≤ xD

Proof. For α = 1 we get that there exists a solution of the system such that yD ≤ xD by the symmetry of the system. For
α ≤ 1. In order to demonstrate that there exists a solution for the system such that yD ≤ xD we will employ the nonlinear
Gauss-Sidel method, which converges to a stationary point (minimum) for logistic regression. The proof goes as follows, we
will initialize our algorithm in the solution for α = 1 let it be x0, y0 and we know it holds that x0 ≥ y0. We will follow the
following update: (nonlinear Gauss-Sidel method starting from y)

yk+1 ← 2bϵe−xk +W
(
bα(1 + ϵ2)e−2bϵe−xk

)
xk+1 ← 2bαϵe−yk +W

(
b(1 + ϵ2)e−2bαϵe−yk

)
For y1 we have that:

y1 = 2bϵe−x0 +W
(
bα(1 + ϵ2)e−2bϵe−x0

)
= 2bϵe−x0 +W

(
bα(1 + ϵ2)e−2bϵe−x0

)
−W

(
b(1 + ϵ2)e−2bϵe−x0

)
+W

(
b(1 + ϵ2)e−2bϵe−x0

)
= y0 +W

(
bα(1 + ϵ2)e−2bϵe−x0

)
−W

(
b(1 + ϵ2)e−2bϵe−x0

)
and since W is increasing we have that W

(
bα(1 + ϵ2)e−2bϵe−x0

)
−W

(
b(1 + ϵ2)e−2bϵe−x0

)
< 0 implying that y1 < y0.

Now let us define the function f(x) = x+W (ce−x) the function is increasing on x therefore since y1 < y0 we get that:
x1 = f(2bαϵe−y1) > f(2bαϵe−y0) = x0. Let us proceed with an induction step, we assume that we have xk > xk−1 and
yk < yk−1 for k ≥ 1. We will show that yk+1 < yk which directly implies that xk+1 = f(2bαϵe−yk+1) > f(2bαϵe−yk) =
xk completing the inductive step.

yk+1 = 2bϵe−xk +W
(
bα(1 + ϵ2)e−2bϵe−xk

)
= f(2bϵe−xk) < f(2bϵe−xk−1)

= yk

This concludes the inductive step and we therefore have that for all k yk ≤ xk for any α, as a result, since the method
converges to the solution of the system there exists a solution which satisfies yD ≤ xD. In the proof above we have that
b = ||Ri,j |/λ|D|

18



Ascent Fails to Forget

K.1. Characterization of the solutions of the 2d Logistic regression

We start this section by giving an exact solution for the coordinates of the retrain problem.

Lemma 8. The closed form solution for the stationary points for the retrain set is given as:

xR = W

(
(1 + ϵ2)|Ri,j |

λ|R|

)
, yR =

2ϵ

1 + ϵ2
W

(
(1 + ϵ2)|Ri,j |

λ|R|

)
.

Proof. We have that:

xR =
|Ri,j |
λ|R| (1 + ϵ2)e−xR → xR = W

(
(1 + ϵ2)|Ri,j |

λ|R|

)
So:

yR =
|Ri,j |
λ|R| 2ϵe

−xR

=
2ϵ

1 + ϵ2
(1 + ϵ2)|Ri,j |

λ|R| e
−W

(
(1+ϵ2)|Ri,j |

λ|R|

)

=
2ϵ

1 + ϵ2
W

(
(1 + ϵ2)|Ri,j |

λ|R|

)
This concludes the proof. In the last equality we used the property of the Lambert function.

For the other two problems it is not possible to provide exact solutions, as we did in the retrain one unfortunately, so we will
provide upper and lower bounds for their values.

Lemma 9. For the stationary points of the original set, one can derive the following ranges.

W

( |Ri,j |
λ|D| ((1 + ϵ2) + 2αϵ)

)
≤ xD ≤ 2ϵ

1 + ϵ2
W

(
α(1 + ϵ2)|Ri,j |

λ|D|

)
+W

(
(1 + ϵ2)|Ri,j |

λ|D|

)
,

W

(
α(1 + ϵ2)|Ri,j |

λ|D|

)
≤ yD ≤ W

( |Ri,j |
λ|D| (2ϵ+ α(1 + ϵ2))

)
.

Proof. We have that

xD =
1

λ|D| ((1 + ϵ2)e−xD
+ 2αϵe−yD

)

yD =
1

λ|D| (2ϵe
−xD

+ α(1 + ϵ2)e−yD
)

As we discuss above we have that yD ≤ xD ⇒ e−yD ≥ e−xD
, which implies that:

xD ≥ |Ri,j |
λ|D| ((1 + ϵ2)e−xD

+ 2αϵe−xD
) =
|Ri,j |
λ|D| ((1 + ϵ2) + 2αϵ)e−xD

yD ≤ |Ri,j |
λ|D| (2ϵe

−yD
+ α(1 + ϵ2)e−yD

) =
|Ri,j |
λ|D| (2ϵ+ α(1 + ϵ)2)e−yD

So from the inequalities above, we get that:

xD ≥ W

( |Ri,j |
λ|D| ((1 + ϵ2) + 2αϵ)

)
yD ≤ W

( |Ri,j |
λ|D| (2ϵ+ α(1 + ϵ2))

)
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Now we have an upper bound for yD and a lower bound for xD. In order to provide a lower bound for yD and an upper
bound for xD. We should notice that 2ϵe−xD ≥ 0, which gives:

yD ≥ |Ri,j |
λ|D| α(1 + ϵ2)e−yD ⇒

yD ≥ W

(
α(1 + ϵ2)|Ri,j |

λ|D|

)
This completes the bounds for yD, now in order to compute the upper bound for xD, we have that:

e−yD ≤ e−W(α(1+ϵ2)|Ri,j |/(λ|D|)) ⇒

e−yD ≤ λ|D|
α(1 + ϵ2)|Ri,j |

α(1 + ϵ2)|Ri,j |
λ|D| e−W(α(1+ϵ2)|Ri,j |/(λ|D|)) ⇒

e−yD ≤ λ|D|
α(1 + ϵ2)|Ri,j |

W

(
α(1 + ϵ2)|Ri,j |

λ|D|

)
So we have that:

xD ≤ |Ri,j |
λ|D| ((1 + ϵ2)e−xD

+ 2αϵ
λ|D|

α(1 + ϵ2)|Ri,j |
W

(
α(1 + ϵ2)

λ|D|

)
)⇒

xD ≤ (1 + ϵ2)|Ri,j |
λ|D| e−xD

+
2ϵ

1 + ϵ2
W

(
α(1 + ϵ2)|Ri,j |

λ|D|

)
)⇒

xD ≤ 2ϵ

1 + ϵ2
W

(
α(1 + ϵ2)|Ri,j |

λ|D|

)
+W

(
(1 + ϵ2)|Ri,j |

λ|D| e
− 2ϵ

1+ϵ2
W

(
α(1+ϵ2)|Ri,j |

λ|D|

))
⇒

xD ≤ 2ϵ

1 + ϵ2
W

(
α(1 + ϵ2)|Ri,j |

λ|D|

)
+W

(
(1 + ϵ2)|Ri,j |

λ|D|

)
where the third inequality comes from the solution of the Lambert equation for the RHS of the inequality and the last one
comes from the fact that the exponenent is non positive. This completes the proof.

Lemma 10. For the stationary points of the model trained by DA methods we can derive the following ranges.

xDA ≤W

( |Ri,j |
λ|R| (1 + ϵ2)− |Ri,j |

λ|F| α2ϵ
)
, yDA ≤W

( |Ri,j |
λ|R| 2ϵ−

|Ri,j |
λ|F| α(1 + ϵ2)

)
.

Proof. As stated earlier we have that yDA ≤ xDA ⇒ e−yDA ≥ e−xDA
and

xDA =
|Ri,j |
λ|R| (1 + ϵ2)e−xDA − |Ri,j |

λ|F| α2ϵe
−yDA

yDA =
|Ri,j |
λ|R| 2ϵe

−xDA − |Ri,j |
λ|F| α(1 + ϵ2)e−yDA

So:

xDA ≤
( |Ri,j |

λ|R| (1 + ϵ2)− |Ri,j |
λ|F| α2ϵ

)
e−xDA

yDA ≤
( |Ri,j |

λ|R| 2ϵ−
|Ri,j |
λ|F| α(1 + ϵ2)

)
e−yDA

So we get that:

xDA ≤ W

( |Ri,j |
λ|R| (1 + ϵ2)− |Ri,j |

λ|F| α2ϵ
)

yDA ≤ W

( |Ri,j |
λ|R| 2ϵ−

|Ri,j |
λ|F| α(1 + ϵ2)

)
which concludes the proof.
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K.2. Derivation of the relevant size of the forget set

Lemma 11. For α ≥ αD>DA = max
{

1+ϵ2

2ϵ
|F|2

|R|(|D|+|F|) ,
2ϵ

1+ϵ2
|F||D|

|R|(|D|+|F|)

}
we have that xD ≥ xDA and that yD ≥ yDA.

Proof. We will start from Lemma 9 and Lemma 10, which we restate both below for the sake of exposition.

Lemma 9. For the stationary points of the original set, one can derive the following ranges.

W

( |Ri,j |
λ|D| ((1 + ϵ2) + 2αϵ)

)
≤ xD ≤ 2ϵ

1 + ϵ2
W

(
α(1 + ϵ2)|Ri,j |

λ|D|

)
+W

(
(1 + ϵ2)|Ri,j |

λ|D|

)
,

W

(
α(1 + ϵ2)|Ri,j |

λ|D|

)
≤ yD ≤ W

( |Ri,j |
λ|D| (2ϵ+ α(1 + ϵ2))

)
.

Lemma 10. For the stationary points of the model trained by DA methods we can derive the following ranges.

xDA ≤W

( |Ri,j |
λ|R| (1 + ϵ2)− |Ri,j |

λ|F| α2ϵ
)
, yDA ≤W

( |Ri,j |
λ|R| 2ϵ−

|Ri,j |
λ|F| α(1 + ϵ2)

)
.

We will require that the lower bounds provided for xD, yD are bigger than the upper bounds provided for xDA, yDA, since the
Lambert function W is monotone, we can just solve both inequalities for α, xD ≥ xDA and yD ≥ yDA and this concludes
the proof.

Finally we need to find the range of α for which it holds that xR ≥ xD and yR ≥ yD, which is given in Lemma 4, which
we restate next for the sake of exposition.
Lemma 4. For α ≤ αR>D = min

{
αR>D
x , αR>D

y

}
we have that xR ≥ xD and that yR ≥ yD, with αR>D

x , αR>D
y .

Proof. We will use Lemma 9 and Lemma 8. Again similar to Lemma 11 we can solve for α and we get the expressions
that solve the xR > xD, yR > yD equations. Solving xR = xD

αR>D
x =

Dλ
(
W
(

ϵ2+1
λR

)
−W

(
ϵ2+1
Dλ

))
exp

(
(ϵ2+1)

(
W

(
ϵ2+1
λR

)
−W

(
ϵ2+1
Dλ

))
2ϵ

)
2ϵ

, (5)

where for any α < αR>D
x there is a range of ϵ for which xR > xD.

Similarly, solving yR = yD

αR>D
y =

2ϵ

Dλe
2ϵW

(
ϵ2+1
λR

)
ϵ2+1 W

(
ϵ2+1
λR

)
− ϵ2 − 1


(ϵ2 + 1)

2 , (6)

where for any α < αR>D
y there is a range of ϵ for which yR > yD.

The solution is therefore α ≤ min
[
αR>D
x , αR>D

y

]
.

L. Logistic Regression in 2D intuition
Let us consider nearly orthogonal data, such that all coordinates apart from two are orthogonal to each other. Namely, we
choose the first two samples to be x1 = (1, ϵ, 0, . . . , 0) and x2 = (ϵ, 1, 0, . . . , 0), while the remaining d − 2 points are
orthogonal such that xa = ea for a = 3, . . . , d, where ea are the unit vectors. We further assume that the two correlated
samples x1, x2 share the same label y1 = y2 = 1. In this case, the unlearning problem decouples the first 2 dimensions from
the rest, leaving a coupled set of equations for the weights along the first two directions w1, w2 for the original classification
problem

w1 =
1

λ|D| (e
−(w1+w2ϵ) + ϵe−(w1ϵ+w2)), w2 =

1

λ|D| (ϵe
−(w1+w2ϵ) + e−(w1ϵ+w2)), (7)
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which can be solved in the limit of ϵ→ 1−, as

w1 = w2 =
1

2
W

(
2(ϵ+ 1)

λ|D|

)
. (8)

The retrain problem has the minimum at

w1 =
1

λ|R|e
−(w1+w2ϵ), w2 =

1

λ|R|ϵe
−(w1+w2ϵ), (9)

and the DA is given by

w1 =
1

λ|R| (e
−(w1+w2ϵ) − ϵe−(w1ϵ+w2)), w2 =

1

λ|R| (ϵe
−(w1+w2ϵ) − e−(w1ϵ+w2)). (10)

Our goal is to study how far is the solution given by GDA from the one given by retraining. The retrained solution can be
found analytically to be

w1 =
W
(

ϵ2+1
|R|λ

)
ϵ2 + 1

, w2 =
ϵW

(
ϵ2+1
|R|λ

)
ϵ2 + 1

. (11)

The GDA equations do not obtain a closed form solution, but they can be solved when assuming ϵ→ 1−, such that

w1 =
e−w1−w2 (w1 − w2 − 1) (ϵ− 1)

λ|R| , w2 =
e−w1−w2 (w1 − w2 + 1) (ϵ− 1)

λ|R| (12)

which are solved as

w1 =
1

4

(
W

(
−8(ϵ− 1)2

|R|2λ2

)
− i
√
2

√
W

(
−8(ϵ− 1)2

|R|2λ2

))
, (13)

w2 =
1

4

(
W

(
−8(ϵ− 1)2

|R|2λ2

)
+ i
√
2

√
W

(
−8(ϵ− 1)2

|R|2λ2

))
.

It is sufficiently interesting to consider the sum of w1 + w2 compared to the retrained solution, and define the difference

∆ = wDA
1 + wDA

2 − (wRe
1 + wRe

2 ) =
1

2
W

(
−8(ϵ− 1)2

|R|2λ2

)
−

(1 + ϵ)W
(

ϵ2+1
|R|λ

)
ϵ2 + 1

(14)

=
ϵ→1−

−W
(

2

|R|λ

)

M. Experimental details
Hyperparameters Following Georgiev et al. (2024) we pretrain ResNet-9 for 24 epochs using stochastic gradient descent
(SGD) with an initial learning rate of 0.4, following a cyclic schedule that peaks at epoch 5. We employ a batch size of 512,
momentum of 0.9, and a weight-decay coefficient of 5× 10−4.

We also adopt nine forget sets directly from Georgiev et al. (2024), which comprise both random subsets and semantically
coherent subpopulations identified via principal-component analysis of the datamodel influence matrix. To construct them,
an n× n datamodel matrix is formed by concatenating “train×train” datamodels (with n = 50 000) by computing its top
principal components (PCs) then we can define:

1. Forget set 1: 10 random samples.

2. Forget set 2: 100 random samples.

3. Forget set 3: 500 random samples.
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4. Forget set 4: 10 samples with the highest projection onto the 1st PC.

5. Forget set 5: 100 samples with the highest projection onto the 1st PC.

6. Forget set 6: 250 samples with the highest and 250 samples with the lowest projection onto the 1st PC.

7. Forget set 7: 10 samples with the highest projection onto the 2nd PC.

8. Forget set 8: 100 samples with the highest projection onto the 2nd PC.

9. Forget set 9: 250 samples with the highest and 250 samples with the lowest projection onto the 2nd PC.

Most unlearning algorithms are highly sensitive to the choice of forget set and hyperparameters. Therefore we perform an
extensive hyperparameter exploration, evaluating each baseline unlearning algorithm on each forget set. Our setting is again
similar to Georgiev et al. (2024) but we consider a slightly larger hyperparameter grid for the employed methods and report
results for all configurations rather than only the best-performing runs. More specifically, we evaluate over the Cartesian
product of the following hyperparameter grids:

• Gradient Ascent: Optimized with SGD. Learning rates: {1× 10−5, 5× 10−5, 1× 10−4, 5× 10−4, 1× 10−3, 1×
10−2, 5× 10−2}; epochs: {1, 3, 5, 7, 10}.

• Gradient Descent/Ascent: Optimized with SGD. Learning rates: {5× 10−5, 5× 10−4, 1× 10−3, 5× 10−3}; total
epochs: {5, 7, 10}; ascent epochs: {3, 5}; forget batch size: {32, 64}.

• SCRUB: Optimized with SGD. Learning rates: {5× 10−5, 5× 10−4, 1× 10−3, 5× 10−3}; total epochs: {5, 7, 10};
ascent epochs: {3, 5}; forget batch size: {32, 64}.

We use a fixed batch size of 64 and train 100 models per configuration. For each run, we measure performance using the
95-th percentile of KLoM scores.

Statistical Significance Using N = 100 models to compute KLoM is computationally expensive although such expense
comes at the gain of having low variance and results closely reproducing Georgiev et al. (2024). We find using lower values
such as N = 20, N = 50 to produce large differences between margin distributions of pretrained and oracle models on
the retain and validation sets (where KLoM should be low). More specifically, margin distributions become stable for all
sets after N = 80. Reporting the 95-th percentile of KLoM scores follows the methodology established on Georgiev et al.
(2024). Furthermore, reporting all runs instead of just the best one for each compute cost is more statistically transparent.

Compute resources All experiments were conducted on a server equipped with eight NVIDIA A100-SXM4 GPUs,
each with 80 GB of GPU memory. A single unlearning configuration run was never split across different GPUs, many
configurations were executed in parallel.

N. Additional Experiments
We provide additional analysis of the KLoM scores across various unlearning methods and forget sets. Fig. 6 presents the
KLoM scores of Gradient Ascent, Gradient Descent/Ascent, and SCRUB. We observe that increasing the size of the forget
set or including high-influence points significantly reduces the likelihood of achieving successful unlearning. Fig. 7 shows
analogous results, but with KLoM scores computed over the retain set instead of the validation set. The patterns are nearly
identical to those in Fig. 6. A pretrained model typically exhibits low KLoM scores on both validation and retain sets, with
very similar magnitudes.
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Figure 6: We present the KLoM scores of Gradient Ascent, Gradient Descent/Ascent and SCRUB when unlearning over
each one of the forget sets (axes and points follow Fig. 1). We find an increase in forget set size and containing high
influence points to strongly decrease the likelihood of any run achieving successful unlearning. For SCRUB we observe that
runs remain close to the pretrained model in terms of KLoM scores under our experimental setup.
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Figure 7: We present the KLoM scores of Gradient Ascent, Gradient Descent/Ascent and SCRUB when unlearning over each
forget set. x-axis and points follow Fig. 1 and y-axis now displays the KLoM score in the retain set instead of the validation
set. We observe very little difference when comparing with the results in Fig. 6. A pretrained model has low KLoM scores
on both the validation and retain sets with very similar magnitudes. These findings are consistent with Georgiev et al. (2024).

25


