
Tool Unlearning for Tool-Augmented LLMs

Jiali Cheng 1 Hadi Amiri 1

Abstract
Tool-augmented large language models (LLMs)
are often trained on datasets of query-response
pairs, which embed the ability to use tools or APIs
directly into the parametric knowledge of LLMs.
As these models are increasingly deployed in
real-world applications, there is a need for them
to forget specific tools–for example, due to
security vulnerabilities, privacy regulations, or
tool deprecation. This work presents “tool un-
learning” as a novel machine unlearning task that
presents distinct challenges beyond traditional
sample-level unlearning: it requires removing
functional knowledge rather than individual data
points, managing the high cost of LLM opti-
mization, and developing principled evaluation
metrics. To address these challenges, we propose
TOOLDELETE, the first unlearning framework
designed specifically for tool-augmented LLMs.
It implements three key properties for effective
tool unlearning and introduces a new membership
inference attack (MIA) model for effective
evaluation. Extensive experiments on multiple
tool learning datasets and tool-augmented LLMs
show that TOOLDELETE effectively unlearns
both randomly selected and class-specific tools,
while preserving knowledge on remaining tools
and maintaining performance on general tasks.

1. Introduction
Tool-augmented Large Language Models (LLMs) can use
external tools such as calculators (Schick et al., 2023),
Python interpretors (Gao et al., 2023), APIs (Tang et al.,
2023), or AI models (Patil et al., 2023) to complement the
parametric knowledge of vanilla LLMs and enable them
to solve more complex tasks (Schick et al., 2023; Patil
et al., 2023). They are often trained on query-response

1University of Massachusetts Lowell, USA. Correspon-
dence to: Jiali Cheng <jiali cheng@uml.edu>, Hadi Amiri
<hadi amiri@uml.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

pairs, which embed the ability to use tools directly into
model parameters.

Despite the growing adoption of tool-augmented LLMs, the
ability to selectively unlearn tools has not been investigated.
In real-world applications, tool unlearning is essential for
addressing critical concerns such as security, privacy, and
model reliability. For example, consider a tool-augmented
LLM deployed in a healthcare system and trained to use
APIs for handling patient data. If one of the APIs is later
flagged as insecure due to a vulnerability that could expose
sensitive information and violate regulations like HIPAA,
tool unlearning is necessary to ensure that the LLM can
no longer invoke the insecure API. Similarly, when tools
undergo major updates, such as the Python transformers
package moving from version 3 to version 4, tool unlearn-
ing becomes essential to prevent the LLM from generating
outdated or erroneous code. The goal of this work is to ad-
dress this gap by investigating tool unlearning and providing
a solution for this crucial task.

We introduce and formalize the new task of Tool Unlearn-
ing, which aims to remove the ability of using specific tools
from a tool-augmented LLM while preserving its ability to
use other tools and perform general tasks of LLMs such as
coherent text generation. Ideally, an effective tool unlearn-
ing model should behave as if it had never learned the tools
marked for unlearning. Tool unlearning fundamentally dif-
fers from traditional sample-level unlearning as it focuses on
removing “skills” or the ability to use specific tools, rather
than removing individual data samples from a model. In ad-
dition, success in tool unlearning should be measured by the
model’s ability to forget or retain tool-related skills, which
differs from traditional metrics such as measuring likelihood
of extracting training data in sample-level unlearning. These
differences are discussed in detail in §2.

Removing skills requires modifying the parameters of
LLMs, a process that is computationally expensive and can
lead to unforeseen behaviors (Cohen et al., 2024; Gu et al.,
2024). In addition, existing membership inference attack
(MIA) techniques, a common evaluation method in machine
unlearning to determine whether specific data samples were
part of training data, are inadequate for evaluating tool un-
learning because they focus on sample-level data rather than
tool-based knowledge.

1

Tool Unlearning for Tool-Augmented LLMs

To address these challenges, we propose TOOLDELETE, the
first tool unlearning algorithm for tool-augmented LLMs,
which satisfies three key properties for effective tool un-
learning: tool knowledge removal, which focuses on remov-
ing any knowledge gained on tools marked for unlearning;
tool knowledge retention, which focuses on preserving the
knowledge gained on other remaining tools; and general
capability retention, which maintains LLM’s general ca-
pability on a range of general tasks such as text and code
generation using ideas from task arithmetic (Ilharco et al.,
2023; Bărbulescu & Triantafillou, 2024). In addition, we
develop LiRA-Tool, an adaptation of the Likelihood Ratio
Attack (LiRA) (Carlini et al., 2022; Pawelczyk et al., 2024)
to tool unlearning, to assess whether tool-related knowledge
has been successfully unlearned. Our contributions are:

• introducing and conceptualizing tool unlearning for
tool-augmented LLMs,

• TOOLDELETE, which implements three key properties
for effective tool unlearning;

• LiRA-Tool, which is the first membership inference
attack (MIA) for tool unlearning.

Extensive experiments on multiple datasets and tool-
augmented LLMs show that TOOLDELETE outperforms
existing general and LLM-specific unlearning algorithms
by 12.5 and 9.1 in accuracy on forget tools and retain tools
respectively. In addition, it can save 74.8% of training time
compared to retraining, handle sequential unlearning re-
quests, and retain 95% performance in low resource setting.

2. Tool Unlearning: Preliminaries
To understand tool unlearning, we first introduce the concept
of “tool learning,” see Figure 1(a). Let D = {T ,Q,Y} be
a dataset with N tools T , and (Q,Y) denotes query-output
examples that demonstrate how to use the tools in T . Each
tool ti ∈ T may have one or more demonstrations {Qi,Yi},
|Qi| = |Yi| ≥ 1. Starting with an instruction-tuned LLM
f0, a tool learning algorithm explicitly trains f0 on D and
results in a tool-augmented model f capable of using the
N tools in T . We note that prior to explicit tool learning,
the LLM f0 may already have some tool-using capabilities
such as performing basic arithmetic operations.

Problem Definition: Tool unlearning aims to remove
specific tools from tool-augmented LLMs. Let Df =
{Tf ,Qf ,Yf} denotes k < N tools and their corresponding
demonstrations to be unlearned from the tool-augmented
model f , and Dr = D\Df = {Tr,Qr,Yr} denotes the re-
maining tools and their demonstrations to retain. The goal is
to obtain an unlearned model f ′ that has limited knowledge
on using Tf tools–can no longer perform tasks involving Tf
tools–while preserving f ’s ability to use Tr tools as before.

Use Cases of Tool Unlearning The ability to forget
learned tools is essential in real-world applications. For
example, addressing the insecure tools from untrustworthy
developers that could be exploited by adversarial attackers;
removing tools restricted by their providers due to copy-
right or privacy concerns, such as APIs that start allowing
unauthorized downloads of book chapters or releasing pub-
lications that users did not author; unlearning broken or
deprecated tool that lead to failed operations or corrupted
outputs; unlearning tools that may no longer be needed; and
managing limited model capacity, where new versions of
tools necessitate replacing outdated ones. More examples of
parameter-level tool unlearning are provided in Appendix A.

Difference to Standard Unlearning Tasks Tool unlearn-
ing is different from sample-level unlearning as it focuses
on removing “skills” rather than individual training samples.
Objective: sample-level unlearning aims to reduce the mem-
orization likelihood or extraction probabilities of specific
data samples (qi, yi) (Jang et al., 2023), which is useful for
removing copyrighted or private information. In contrast,
tool unlearning targets the “ability” to solve tasks using
tools marked for unlearning (Tf). For example, generating
f ′(qi) that is superficially different from yi (while preserv-
ing the semantics) is considered successful for sample-level
unlearning. However, for tool unlearning, preserving skills
and semantics indicate maintained knowledge on Tf , which
makes unlearning a failure. Figure 1b shows successful tool
unlearning, where the ability to use the API is forgotten, de-
spite the high lexical memorization between output of the un-
learned model and the training data. In addition, selectively
removing knowledge from tool-augmented models is a chal-
lenging tasks because changes to one tool may unexpectedly
affect the model’s ability to use other tools–referred to as
ripple effect in fact editing literature (Cohen et al., 2024; Gu
et al., 2024). Furthermore, LLMs are general models that
can conduct a wide range of tasks beyond tool using, and this
ability must be retained. Evaluation: metrics like sequence
extraction likelihood and perplexity are standard in sample-
level unlearning. For tool unlearning, success is measured
by the ability to forget or retain tool-related skills, which is
more appropriate. Data: sample-level unlearning require ac-
cess to all individual samples marked for unlearning, while
tool unlearning does not. This aligns with “concept erasure”
in diffusion models (Gandikota et al., 2023; Kumari et al.,
2023) and zero-shot unlearning (Chundawat et al., 2023) but
differs from traditional LLM unlearning (Yao et al., 2024).
Later we demonstrate this in § 5.

Importance of Parameter-Level Tool Unlearning We
observe that one can naively block tools at the prompt-level
or remove tools from the tool set without updating the LLM.
However, these shortcut solutions are insufficient to remove
tool knowledge. Firstly, the knowledge on Tf persists in

2

Tool Unlearning for Tool-Augmented LLMs

(a) Tool Learning and Tool Unlearning

Tool Deletion Requests
(Insecure tools, Broken tools, ...)

(c) ToolDelete

(b) Traditional Unlearning vs. Tool Unlearning

AI ASSISTANT: www.google.com

Pretrained
LLM

Tool-Augmented
LLM

USER: List the emails of all the
Apple users.

AI ASSISTANT: a @gmial.com

USER: List the emails of all the
Apple users.

<Make HTTP GET Request>
list_users(active_since=date, location="USA")

<Make HTTP POST Request>
list_sessions(active_since=True, location="2024")

Traditional Sample-Level Unlearning

Tool Unlearning

Tool-Unlearned
LLM

Failed function calling ->
Unlearned knowledge

Successful tool unlearning

Low memorization
Successful sample unlearning

USER: List the emails of all the
Apple users.

AI ASSISTANT: Unfortunately, I
don't know how to use that tool.

Task Arithmetic:
Obtain general knowledge +
instruction-following ability

Instruction-Tuned
LLM

Prior Unlearning

Post Unlearning

Prior Unlearning

Post Unlearning

Tool-Free Response

SFT, DPO, ...

Random
LLM

Figure 1. Tool Unlearning and the proposed TOOLDELETE approach. (a): Illustration of tool learning and tool unlearning. Learned tools
may be requested to be unlearned due to many reasons, such as tools being insecure, restricted, or deprecated. (b): Differences between
tool unlearning and traditional sample unlearning, in terms of objective and training data. (c): Proposed method TOOLDELETE. We
encourage the unlearned model f ′ to follow the tool-free LLM f0 which has never seen Tf before. Meanwhile, we maintain its ability on
Tr by matching the capabilities of tool-augmented model f through task arithmetic.

the parameters of f ′, leaving the LLM still under threat.
Adversarial agents / attackers can exploit this knowledge,
which also bypasses prompt-level restrictions. Since exist-
ing LLMs do not guarantee 100% adherence to instructions
or contextual information (Zhou et al., 2023; Zeng et al.,
2024), they may ignore the tool set provided in the prompt
and answer queries with their parametric knowledge (Goyal
et al., 2023). In addition, tool unlearning at prompt level can
create conflicts between the model’s parametric knowledge
and contextual information. This may lead to misinforma-
tion, hallucination, and other unpredictable behavior (Xu
et al., 2024). Finally, we show in the experiments that
prompt-level tool unlearning is indeed insufficient, see Ta-
ble 1 (ICLU model), which aligns with existing works on
LLM unlearning, where parameter update is required (Jia
et al., 2024; Zhang et al., 2024b).

3. TOOLDELETE

We develop TOOLDELETE–an effective tool unlearning
approach that removes the capability of using tools marked
for unlearning (Tf) or solving tasks that depend on them,
while preserving the ability of using the remaining tools
(Tr) and performing general tasks such as text and code
generation. TOOLDELETE implements three key properties
for effective tool unlearning:

3.1. Tool Knowledge Deletion

Unlearning requires completely removing the knowledge
of Tf that f gained during tool learning, ideally as if
Tf had never been part of the training set. In other
words, knowledge about Tf is successfully removed if

the unlearned model f ′ has no more knowledge than the
tool-free model f0 about Tf .
Definition 3.1 (Tool Knowledge Deletion (TKD)). Let ti ∈
Tf denote a tool to be unlearned and g be a function that
quantifies the amount of knowledge a model has about a tool.
The unlearned model f ′ satisfies tool knowledge deletion if:

E
ti∈Tf

[g(f0, ti)− g(f ′, ti)] ≥ 0. (1)

This formulation allows users to control the extent of knowl-
edge removal from f ′. For instance, when we unlearn a “ma-
licious” tool that calls a malignant program, we may require
f ′ retains no knowledge of this tool, i.e. g(f ′, ti) = 0. In
less critical cases, users can choose to reset f ′’s knowledge
to pre-tool augmentation level, i.e. g(f ′, ti) = g(f0, ti)

To measure tool knowledge in LLMs, we follow previ-
ous works that used prompting to probe LLMs’ knowl-
edge (Brown et al., 2020; Singhal et al., 2023), i.e. adopting
the output of LLMs as their knowledge on a given tool. For
each ti ∈ Tf and its associated demonstrations {Qi,Yi}, we
query the tool-free LLM f0 withQi and collect its responses
Y ′
i = f0(Qi). Since f0 has never seen ti or {Qi,Yi}, Y ′

i

represents the tool-free response. We then constrain the
unlearned model f ′ to generate responses similar to Y ′

i to
prevent it from retaining knowledge of ti.

3.2. Tool Knowledge Retention

The unlearning process should preserve model’s knowledge
of tools in Tr. Ideally, all knowledge gained on Tr during
tool learning should be retained after unlearning.
Definition 3.2 (Tool Knowledge Retention (TKR)). Let
tm ∈ Tr denote a retained tool, and let g be a function that

3

Tool Unlearning for Tool-Augmented LLMs

quantifies the amount of knowledge a model has about a tool.
The unlearned model f ′ satisfies tool knowledge retention if:

E
tm∈Tr

[g(f, tm)− g(f ′, tm)] = ϵ, (2)

where ϵ is an infinitesimal constant, so that f ′ retains the
same knowledge of tools in Tr as the original model f .

For effective tool knowledge retention, f ′ is further fine-
tuned using demonstrations associated with Tr, or, more
practically, a subset of Tr proportional to Tf for efficiency.

3.3. General Capability Retention via Task Arithmetic

Optimizing the above objectives can lead to effective un-
learning, but it may not be sufficient to maintain the general
capabilities of the unlearned model f ′. As a foundation
model, f ′ is expected to retain abilities such as text and
code generation, question answering, instruction-following,
and basic mathematical reasoning. These capabilities either
existed in f0 prior to tool augmentation or do not depend on
specific tools. Therefore, preserving the general capabilities
of f ′ is essential to guarantee that tool unlearning does not
compromise the overall functionality of the model.

Definition 3.3 (General Capability Retention (GCR)). Let
TG denote the general tasks used to evaluate LLMs. The
unlearned model f ′ satisfies general capability retention if
it preserves the knowledge on TG that it originally obtained
prior to tool learning:

E
tg∈TG

[g(f0, tg)− g(f ′, tg)] = ϵ, (3)

where ϵ is an infinitesimal constant.

We propose to use task arithmetic (Ilharco et al., 2023;
Bărbulescu & Triantafillou, 2024) as an efficient and effec-
tive approach to preserving the general capabilities of the
unlearned model. Our objective is that f ′ retains as much
general knowledge as f0, the instruction tuned LLM trained
from a randomly initialized model fR. Let θ0 and θR denote
the parameters of f0 and fR respectively. The difference
vector θ0 − θR captures the direction of general knowledge
acquisition. We apply this adjustment to θ′ (the parameters
of f ′) to preserve its general knowledge:

θ′∗ ← θ′ + (θ0 − θR). (4)

Why Task Arithmetic? Task arithmetic is efficient, prac-
tical, effective for preserving general capabilities (Ilharco
et al., 2023; Bărbulescu & Triantafillou, 2024): Efficiency:
the vector operation does not scale with dataset size, mak-
ing it significantly more efficient than retraining on large
datasets. Practicality: general capabilities obtained from
pre-training and instruction tuning (Zhou et al., 2024) are

often impractical to replicate due to the size and limited
availability of data–even in some open-source LLMs (Tou-
vron et al., 2023b), the actual pre-training data is not fully
open-source. In addition, reintroducing general knowledge
from alternative datasets can lead to data imbalances and dis-
tributional biases. Effectiveness: applying θ0 − θR largely
restores the foundational abilities of f ′, such as text genera-
tion and instruction-following, without requiring expensive
and time-consuming retraining on large datasets.

3.4. Training Details

To obtain the unlearned model f ′, we solve:

θ′∗ = argmin
θ′

Eti∈Tf
[g(f0, ti)− g(f ′, ti)]︸ ︷︷ ︸

knowledge deletion of Tf

+

Etm∈Tr [g(f, tm)− g(f ′, tm)]︸ ︷︷ ︸
knowledge retention of Tr

, (5)

and once the optimized model parameters θ′∗ are obtained,
we apply task arithmetic to reinforce general capabilities:

θ′∗ = θ′∗︸︷︷︸
post-optimization weights

+ α(θ0 − θR)︸ ︷︷ ︸
knowledge retention of TG

, (6)

where α is a hyperparameter to control the magnitude
of task arithmetic. The above formulation provides flex-
ibility in training TOOLDELETE using various existing
paradigms, including supervised fine-tuning (SFT) (Taori
et al., 2023), direct preference optimization (DPO) (Rafailov
et al., 2023), reinforcement learning from human feedback
(RLHF) (Ouyang et al., 2022), parameter-efficient fine-
tuning (PEFT) (He et al., 2022; Su et al., 2023), or quanti-
zation (Dettmers et al., 2022; Ma et al., 2024) techniques.
Below we describe two variants of TOOLDELETE:

• TOOLDELETE-SFT fine-tunes f using language mod-
eling loss. On forget tools Tf , we replace the original
responses Yf with tool-free responses Y ′

f . The sam-
ples for Tr are not modified.

• TOOLDELETE-DPO uses direct preference optimiza-
tion (DPO) to prioritize wining responses over losing
responses. For (ti,Qi,Yi) ∈ Tf to be unlearned, we
prioritize the corresponding tool-free response Y ′

i over
the original response Yi. For (tj ,Qj ,Yj) ∈ Tr, the
original response Yj is prioritized over the tool-free
response Y ′

i .

3.5. LiRA-Tool for Tool Unlearning Evaluation

Challenge A key challenge in evaluating tool unlearning
is the lack of membership inference attack (MIA) models to
determine whether a tool has been truly unlearned. Existing
MIA models typically evaluate individual training samples

4

Tool Unlearning for Tool-Augmented LLMs

by analyzing model loss, which is insufficient for tool
unlearning. Unlike sample-level unlearning, tool unlearning
focuses on removing abstract parametric knowledge of
tools in Tf , not just forgetting specific training samples.
The key limitation of sample-based MIA is that the
prompt-response pairs (Qf ,Yf) in the training set may
not fully represent all aspects of a tool’s functionality.
As a result, sample-level MIA may “overfit” to a limited
subset of tool related prompts and fail to holistically assess
whether the tool-usage capability have been fully removed
from the model’s parametric knowledge (Lynch et al., 2024;
Łucki et al., 2025; Hu et al., 2025).

Solution To address the above limitation, we introduce
“shadow samples”, a diverse set of prompt-response pairs to
probe various aspects of tool knowledge. We prompt GPT4
with different combinations of in-context examples to obtain
a comprehensive set of prompt-response pairs with various
prompt format, intention, and difficulty requirements. These
samples will be used to stress-test the unlearned LLM f ′

beyond the specific training prompts. This approach pre-
vents overfitting to the original training data and provides a
more reliable evaluation of whether the tool has truly been
forgotten. To implement this, we extend Likelihood Ratio
Attack (LiRA) (Carlini et al., 2022), the state-of-the-art MIA
approach, to tool unlearning.

Sample-level LiRA LiRA infers the membership of a
sample (x, y) by constructing two distributions of model
losses: Q̃in and Q̃out with (x, y) in and out of the model
training set respectively. These distributions are approxi-
mated as Gaussians, with their parameters estimated based
on “shadow models” trained on different subsets of the train-
ing data. The Likelihood-Ratio Test (Vuong, 1989; Carlini
et al., 2022) is then used to determine whether (x, y) is more
likely to belong to Q̃in or Q̃out. For LLMs, the test statistic
is given by (Pawelczyk et al., 2024) as:

Λ =
P
(
l
(
f(x), y

)
|Q̃in

)
P
(
l
(
f(x), y

)
|Q̃out

) =
Π(xi,yi)∈Df

PU

(
l
(
f ′(xi), yi

))
Π(xi,yi)∈Df

PTr

(
l
(
f(xi), yi

)) .
(7)

This approach, however, is insufficient for tool unlearning
because it only assesses membership of specific training
samples rather than measuring whether the model still re-
tains the capability to use a tool.

LiRA-Tool: Knowledge-level LiRA A major limitation
of sample-level LiRA is in its reliance on training-set obser-
vations, which may not fully capture the knowledge distribu-
tion of an entire tool. Therefore, applying LiRA to tool un-
learning can lead to overfitting to a specific subset of training
prompts and failing to comprehensively assess whether the
tool knowledge has been removed. We address this issue by

introducing LiRA-Tool. Instead of relying on observed train-
ing samples, we construct a “shadow distribution” P that
generates tool-related query-response pairs. This allows us
to sample diverse tool-specific prompts that test the model’s
ability to use the tool. The new likelihood-ratio test is:

Λ =
Πti∈Tf

Π(x,y)∈Pti
PU

(
l
(
f ′(x), y

))
Πtj∈Tr

Π(x,y)∈Ptj
PTr

(
l
(
f(x), y

)) , (8)

where Pti represents the shadow distribution for generating
tool-learning samples for tool ti. PU (·) indicates the dis-
tribution of unlearned tools Tf under the unlearned model
f ′, while PTr

(·) denotes the distribution of the retain tools
Tr under the retained model f . In practice, we use GPT-4
to generate diverse shadow samples by prompting it with
various distinct instructions to ensure that the evaluation
set captures more comprehensive aspects of tool knowledge
than the training set. Appendix E provides more details.

Novelty of LiRA-Tool The key novelty in LiRA-Tool
in the sue of “shadow samples,” which introduce diversity
across multiple dimensions. By moving beyond limited
training prompts, LiRA-Tool ensures that the model loss
reflect overall tool-using ability, rather than just sample-
level memorization. Our loss-ratio formulation shares
similarities to previous MIAs for sample-level unlearning,
such as probability distribution comparison prior- and post-
unlearning (Cheng et al., 2023; Cheng & Amiri, 2024a) and
other adaptations of LiRA using shadow models (Kurmanji
et al., 2023; Pawelczyk et al., 2024). However, to the best
of our knowledge, this work is the first adaptation of LiRA
for detecting tool presence in tool-augmented LLMs.

Limitations of LiRA-Tool Shadow samples obtained
from GPT-4 may not fully represent the complexity of the
original tool-learning data and can potentially lead to in-
complete approximations of the true knowledge distribution.
However, despite this limitation, shadow samples provide a
more comprehensive and consistent evaluation of a model’s
tool-using abilities compared to relying merely on observed
training samples, which are often limited and incomplete.
Expanding the diversity and robustness of shadow sample
generation is indeed an important direction for future work.

4. Experimental Setup
Datasets & Tool-Augmented LLMs We experiment with
the following datasets and their corresponding LLMs:

• ToolAlpaca (Tang et al., 2023) is an agent-generated
tool learning dataset consisting of 495 tools and 3975
training examples. ToolAlpaca 7B is fine-tuned on
ToolAlpaca using Vicuna-v1.3 (Zheng et al., 2023).

5

Tool Unlearning for Tool-Augmented LLMs

Table 1. Tool unlearning performances when deleting 20% of tools on ToolAlpaca. Best and second-best performances are bold and
underlined respectively. Original is provided for reference only. Results on other LLMs are shown in Appendix Table 5-6.

METHOD Tt(↑) Tr(↑) Tf (↓) GENERAL CAPABILITY TG(↑)
STEM REASON INS-FOLLOW FACT AVG.

ORIGINAL (REF ONLY) 60.0 73.1 75.7 31.7 17.1 22.6 25.0 24.1

G
E

N
E

R
A

L RETRAIN 52.1 71.8 38.5 30.5 16.1 14.2 24.7 21.3
GRADASCENT 33.3 51.4 34.6 21.4 10.4 12.9 13.1 14.5
RANDLABEL 50.3 70.3 37.5 26.3 16.4 13.6 25.1 20.3
SALUN 46.2 54.3 38.2 27.1 17.0 17.4 19.5 20.2

L
L

M
-S

P
E

C
IF

IC ICUL 49.1 74.8 58.3 12.4 8.7 1.6 6.2 7.3
SGA 43.5 63.0 42.1 21.5 11.6 17.0 14.7 16.2
TAU 43.8 61.7 42.5 22.0 17.6 22.3 21.7 20.9
CUT 44.7 61.5 40.2 21.6 14.8 20.8 16.4 18.4
NPO 50.8 66.9 30.1 20.7 15.3 21.9 18.9 19.2
SOUL-GRADDIFF 50.4 68.3 33.8 31.6 17.2 21.4 20.8 22.7

O
U

R
S TOOLDELETE-SFT 52.7 72.1 30.5 31.3 17.5 21.7 24.1 23.6

TOOLDELETE-DPO 53.4 75.1 28.7 31.6 16.8 20.4 23.5 23.1

• ToolBench (Qin et al., 2024) consists of more than
16k real world APIs from 49 categories, where each
training demonstration involves complex task solving
traces. ToolLLaMA is fine-tuned on ToolBench using
LLaMA-2 7B (Touvron et al., 2023b).

• API-Bench (Patil et al., 2023) focus on APIs that load
machine learning models. Gorilla is fine-tuned on
API-Bench from LLaMA 7B (Touvron et al., 2023a).

Setup & Evaluation We use the public checkpoints of
the above tool-augmented LLMs as original models–the
starting point for unlearning. Then we conduct unlearning
experiments with 2–20% tools randomly selected as Tf . We
evaluate tool unlearning effectiveness, general capability of
tool-unlearned LLMs, and robustness to membership infer-
ence attack (MIA). For unlearning effectiveness, we mea-
sure performance on test sets (TT , ↑), forget set (Tf , ↓), and
remaining set (Tr, ↑), where “performance” reflects the abil-
ity to solve tasks that depend on specific tools, depending
on the unique metrics in the original tool-augmented mod-
els f . For general capabilities, we evaluate the unlearned
LLMs on a wide range of tasks: college STEM knowledge
with MMLU (Hendrycks et al., 2021), reasoning ability
with BBH-Hard (Suzgun et al., 2023), instruction-following
with IFEval (Zhou et al., 2023), and factual knowledge
with MMLU (Hendrycks et al., 2021). For MIA, we use the
proposed LiRA-Tool; following prior work on LiRA (Pawel-
czyk et al., 2024), we train the shadow models with forget
set size of {1, 5, 10, 20} and primarily evaluate the True
Positive Rate (TPR) at low False Positive Rate (FPR) (TPR
@ FPR = 0.01), where TPR means the attacker successfully
detects a tool is present. Therefore, a lower TPR indicates
better performance (privacy).

Baselines As there are no prior works on tool unlearn-
ing, we adapt the following unlearning methods to tool
unlearning setting (see Appendix B for descriptions of
the baselines): general unlearning approaches, including
GRADASCENT (Golatkar et al., 2020; Yao et al., 2024),
RANDLABEL (Graves et al., 2021), and SALUN (Fan et al.,
2024); and LLM-specific unlearning approaches, including
ICUL (Pawelczyk et al., 2024), SGA (Jang et al., 2023;
Bărbulescu & Triantafillou, 2024), TAU (Bărbulescu & Tri-
antafillou, 2024), CUT (Li et al., 2024b), NPO (Zhang
et al., 2024b), and SOUL-GRADDIFF (Jia et al., 2024).
For ICUL (Pawelczyk et al., 2024), we randomly select
one example (qi, yi) from Tf and corrupt the output yi
with randomly selected tokens. Then we concatenate this
corrupted sequence with other intact sequences as the in-
context demonstrations. For all other baselines, we treat all
data related to Tf as unlearning examples and all data re-
lated to Tr as remaining examples. Everything else remains
the same for each baseline.

5. Results
Comparison to general unlearning methods Our main
results in Table 1 show that TOOLDELETE outperforms gen-
eral unlearning baselines. Compared to RETRAIN, the best-
performing baseline, TOOLDELETE-SFT achieves gains of
0.6, 0.3, 8.0, 2.3 absolute points on TT , Tr, Tf , TG respec-
tively. TOOLDELETE-DPO shows even stronger results,
outperforming RETRAIN by 1.3, 3.3, 9.8, 1.8 points on
the same metrics. We note that GRADASCENT can effec-
tively unlearn Tf , but it negatively impacts its TT and Tr
performance. Although RANDLABEL and SALUN outper-
forms GRADASCENT, they still fall short on TG compared
to TOOLDELETE.

6

Tool Unlearning for Tool-Augmented LLMs

Retrain GradAscent ICUL ToolDelete
SFT

ToolDelete
DPO

0.00

0.05

0.10

0.15

0.20

T
P
R
@

F
P
R
 =

 0
.0

1

Figure 2. Measuring tool unlearning with LiRA-Tool.

Comparison to LLM-specific unlearning methods Ex-
isting LLM unlearning methods, despite effective in sample-
level unlearning, are prone to under-performing in tool
unlearning. Both TOOLDELETE-SFT and TOOLDELETE-
DPO outperforms ICUL, SGA, and TAU on TT , Tr, Tf
and TG. The only exception is ICUL, which outperforms
TOOLDELETE-SFT on Tr by 2.7 absolute points, but is out-
performed by TOOLDELETE-DPO on Tr by 0.3 points. The
good performance of ICUL on Tr is at the cost of failing
to unlearn tools in Tf , which is not desired in tool unlearn-
ing. In addition, ICUL has limited ability of preserving
test set performance, it is outperformed by TOOLDELETE-
SFT and TOOLDELETE-DPO by 3.6 and 4.3 respectively.
Furthremore, it is particularly limited in deletion capacity,
i.e. number of unlearning samples that a method can handle.
As |Df | exceeds 10, the performance of ICUL on TT signif-
icantly degrades. This is while TOOLDELETE can process
much larger deletion requests efficiently.

SFT vs. DPO DPO outperforms SFT by 0.7, 3.0, and
1.8 on TT , Tr, Tf respectively. On TG, SFT is slightly
better than DPO by 0.5 points. However, DPO takes slightly
longer time to train, see Figure 4 in Appendix D. Both
optimization methods achieve superior performance over
existing approaches.

Measuring tool unlearning with MIA Following prior
practices (Carlini et al., 2022; Pawelczyk et al., 2024), a
lower TPR indicates an unlearned model with better pri-
vacy when FPR=0.01. TOOLDELETE-DPO achieves 0.14
TPR, outperforming RETRAIN by 0.01. This advantage is
obtained by explicitly prioritizing tool-free responses f0(Q)
over original responses. In addition, TOOLDELETE-SFT
achieves comparable performance with RETRAIN, which in-
dicates its effectiveness to protect privacy. Both variants of
our method outperforms GRADASCENT and ICUL, the best
performing baselines, achieving 0.21 and 0.18 TPR. This
indicates that existing sample-level unlearning approaches
are not sufficient for unlearning tools, see Figure 2.

Sequential unlearning Tool unlearning requests may ar-
rive in sequential mini-batches. We experiment with sequen-

Table 2. Ablation study of proposed properties on ToolAlpaca.
Highlighted are metrics that degrade after removing specific

parts of the model.

TOOLDELETE-SFT TOOLDELETE-DPO
TT(↑) Tr(↑) Tf (↓) TG(↑) TT(↑) Tr(↑) Tf (↓) TG(↑)

FULL 57.7 72.1 30.5 23.6 58.4 73.3 28.7 23.1

- TKD 58.1 72.4 65.3 23.3 58.6 73.2 65.9 22.7
- TKR 32.7 40.2 23.1 20.1 40.3 41.8 39.3 22.1
- GCR 58.0 72.5 31.1 17.5 55.7 72.7 33.1 14.3

tial unlearning requests by incrementally unlearning 2%,
5%, 10%, and 20% of tools. RETRAIN, ICUL by design
cannot process sequential deletion requests. TOOLDELETE
can continue training according to the current deletion re-
quest, without having to retrain a new model. When 20%
of unlearning requests arrive in batches, TOOLDELETE can
sequentially unlearn each of them. As Figure 3 and Table 1
show, compared to unlearning 20% at once, the performance
does not degrade significantly.

All properties contribute to effective tool unlearning
Ablation studies in Table 2 show that without Tool Knowl-
edge Removal, performance of TOOLDELETE-SFT and
TOOLDELETE-DPO on Tf degrade by -34.8 and -37.2 ab-
solute points respectively. Such significant performance
drop is observed for other model properties as well. There-
fore, we conclude all proposed properties are necessary for
successful at tool unlearning on TT , Tr, Tf , and TG.

TOOLDELETE functions effectively without access to
training data In certain unlearning settings, access to the
original training data might be restricted, e.g., in healthcare
settings or in cases where training data is no longer available
due to compliance. In these cases, TOOLDELETE can gen-
erate pseudo-samples for tools using the “shadow samples”
technique developed for LiRA-Tool, see §3.5. Table 4 in
Appendix D shows that TOOLDELETE can perform tool
unlearning effectively, achieving comparable performances
to when full access to the exact training data is available.

TOOLDELETE is efficient Efficiency is a critical aspect
for unlearning. As Figure 4 illustrates, TOOLDELETE is sub-
stantially more efficient than retraining a new model from
scratch–saving about 74.8% of training time on average. In
addition, this efficiency gain is relatively consistent as the
size of Tf increases. TOOLDELETE-SFT is slightly faster
than TOOLDELETE-DPO, as the latter requires a negative
sample for each of its prompts.

TOOLDELETE-LoRA is ultra-efficient with good un-
learning performance We experiment if TOOLDELETE
can achieve effective tool unlearning through LoRA (Hu
et al., 2022), when computing resource is limited. Experi-

7

Tool Unlearning for Tool-Augmented LLMs

2 5 10 20
50

55

60

S
u
cc

.
R
at

e
T

2 5 10 20
72

74

76
r

2 5 10 20

28

30

32
f

2 5 10 20
22

23

24

25
G

| f| %

Figure 3. Performance of sequential unlearning on ToolAlpaca. We unlearn 2%, 5%, 10%, 20% of tools in a sequential manner.

ments on ToolAlpaca show that TOOLDELETE-LoRA can
achieve 97.7%, 99.6%, 84.5%, and 84.3% of the perfor-
mance of TOOLDELETE with full parameter on TT , Tr, Tf ,
TG on average across SFT and DPO, see Table 3 in Ap-
pendix D. In addition, it reduces save computational cost by
81.1% and decreases the training time by 71.3%.

TOOLDELETE is flexible in choice of tool-free responses
In (1), we obtain tool knowledge-free responses from the
tool-free LLM f0. However, in cases where f0 is unavail-
able, TOOLDELETE can still function using any knowledge-
free LLM to generate tool knowledge-free responses, such
as a randomly initialized LLM fR. Table 7 compares the
performances between these two implementations. While
θ0 consistently outperforms θR, using θR is still effective in
achieving tool unlearning.

Why is TOOLDELETE effective? We attribute the per-
formance of TOOLDELETE to its three key properties: (a):
Tool Knowledge Removal enables targeted tool unlearn-
ing without over-forgetting, unlike GRADASCENT and RE-
TRAIN. This is achieved by prioritizing tool knowledge-
free responses over tool knowledge-intense responses so
that the model forgets tool functionality without excessive
degradation. This formulation imposes the right strength of
forgetting over specific tools, while existing methods may
over- or under-unlearn. (b): Tool Knowledge Retention
reinforces the knowledge about remaining tools. In fact, re-
exposing the model to the original training data can further
strengthen their representation. (c): General Capability Re-
tention, which maintains or even improves model’s general
capabilities through an efficient and effective task arithmetic
operation. Therefore, precise unlearning, retention of rel-
evant knowledge, and overall model stability are the key
factors that contribute to the performance of TOOLDELETE.

6. Related work
Unlearning for non-LLM models: These methods include
methods that focus on pruning before unlearning (Jia et al.,
2023) or finding salient parameters (Fan et al., 2024) and ma-
nipulating gradients (Ullah et al., 2021; Hoang et al., 2024),

adversarial methods (Liu et al., 2023; Setlur et al., 2022; Wei
et al., 2023), approximation of inverse Hessian (Zhang et al.,
2024a), and data augmentation (Choi et al., 2024). Other
works study unlearning under multimodal setting (Cheng
& Amiri, 2024a), image-to-image models (Li et al., 2024a),
and finding the most challenging unlearning subset within a
dataset (Fan et al., 2025b). Recently, a few works started to
benchmark MU performances on unlearning fictitious user
profiles (Maini et al., 2024), world knowledge (Jin et al.,
2024) and a variety of tasks (Cheng & Amiri, 2024b).

Unlearning for LLMs: Recently, more attention has been
given to LLM unlearning, where gradient ascent is a com-
mon technique (Eldan & Russinovich, 2023; Jang et al.,
2023). (Yao et al., 2024) evaluate several traditional un-
learning methods on LLMs. KGA (Wang et al., 2023) for-
mulates unlearning as achieving knowledge gap between
training data and test data similar to that of training data
and deleted data. Yao et al. (2023) proposed to predict if the
LLM output is grammatically correct on deleted samples,
such that the knowledge is not over unlearned. Other meth-
ods include second-order-optimization (Jia et al., 2024),
performing DPO with no positive examples (Zhang et al.,
2024b), and reinforcement learning with a negative reward
model (Kassem et al., 2023). Unlearning from logits dif-
ference (Ji et al., 2024) first builds an assisted LLM which
memorizes data to be deleted and forgets the retained data,
which is later used to derive the unlearned LLM by deviating
from the assisted LLM in logits.

Tool-Augmented LLMs: Tool augmented language models
(TAML) (Parisi et al., 2022) used self-play to boost LLMs’
performance on math and reasoning tasks. In addition, Tool-
former (Schick et al., 2023) showed that LLMs can teach
themselves how to use APIs. More recent efforts have been
devoted to building benchmarks to train and evaluate the
tool-using ability of LLMs. These include agent-based data
generation (Tang et al., 2023; Li et al., 2023), bootstrapping
training data with various seed examples (Patil et al., 2023),
modifying existing datasets (Basu et al., 2024), and dataset
development with powerfull LLMs such as GPT-4 (Qin
et al., 2024).

8

Tool Unlearning for Tool-Augmented LLMs

7. Conclusion
We introduce Tool Unlearning–a novel machine unlearning
task with the goal of unlearning previously learned tools
from tool-augmented LLMs. We develop the first tool un-
learning approach, TOOLDELETE, that implements three
key properties: tool knowledge deletion, tool knowledge
retention, general capability retention. In addition, we in-
troduce LiRA-Tool, the first membership inference attack
(MIA) method for evaluating tool unlearning. LiRA-Tool
largely addresses the limitations of sample-based MIAs for
tool unlearning. Extensive experiments on several diverse
datasets and LLMs show that TOOLDELETE is an efficient,
flexible, and effective tool unlearning method that supports
sequential unlearning, maintains strong performance across
all key properties, and operates without requiring full access
to training data. It outperforms existing methods by remov-
ing tool knowledge without over-forgetting (as shown in
ablation studies), achieving 74.8% faster training times com-
pared to retraining, and delivering highly effective tool un-
learning even in resource-constrained settings with TOOLD-
ELETE-LoRA (which reduces compute costs by 81.1% and
training time by 71.3%). In future, we will investigate tool
unlearning in continually updated LLMs to address contin-
uous unlearning challenges. In addition, we will develop
adversarial training techniques and robustness evaluation
frameworks to prevent unintended tool re-learning or model
exploitation (Fan et al., 2025a), and conduct loss landscape
analysis of tool unlearning (Cheng & Amiri, 2025)

Limitations We did not conduct experiments using closed-
source LLMs or API-based LLMs. In addition, this work
did not investigate the impact of varying model scales due to
the limited publicly-available tool-augmented LLMs. Our
experiments were conducted on the 7B scale and the scalabil-
ity of the proposed tool unlearning approach across models
of different sizes and scales is an open question for future
investigation. Moreover, evaluation of the efficacy of tool
unlearning can be extended to broader conditions, such as
under adversarial conditions (Łucki et al., 2025).

Impact Statement
Our work investigates machine unlearning in the context
of tool-augmented Large Language Models (LLMs), where
we focus on the risks that arise from integrating external
tools and the crucial need for unlearning tool-usage capa-
bilities for specific tools to ensure compliance with privacy
regulations such as the Right to be Forgotten (RTBF). This
necessitates the ability to delete sensitive, regulated, or out-
dated knowledge related to specific tools. Tool unlearning
will enable us to identify potential threats to model security,
e.g. unauthorized tool usage, adversarial exploitation, and
privacy violations. Our research highlights the importance
of addressing these challenges.

References
Basu, K., Abdelaziz, I., Chaudhury, S., Dan, S., Crouse,

M., Munawar, A., Austel, V., Kumaravel, S., Muthusamy,
V., Kapanipathi, P., and Lastras, L. API-BLEND: A
comprehensive corpora for training and benchmarking
API LLMs. In Ku, L.-W., Martins, A., and Srikumar,
V. (eds.), Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pp. 12859–12870, Bangkok, Thailand,
August 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.acl-long.694.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances
in Neural Information Processing Systems, volume 33,
pp. 1877–1901. Curran Associates, Inc., 2020.

Bărbulescu, G.-O. and Triantafillou, P. To each (Textual se-
quence) its own: Improving memorized-data unlearning
in large language models. In Salakhutdinov, R., Kolter,
Z., Heller, K., Weller, A., Oliver, N., Scarlett, J., and
Berkenkamp, F. (eds.), Proceedings of the 41st Interna-
tional Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 3003–
3023. PMLR, 21–27 Jul 2024.

Carlini, N., Chien, S., Nasr, M., Song, S., Terzis, A., and
Tramèr, F. Membership inference attacks from first prin-
ciples. In 2022 IEEE Symposium on Security and Privacy
(SP), pp. 1897–1914, 2022. doi: 10.1109/SP46214.2022.
9833649.

Cheng, J. and Amiri, H. MultiDelete for multimodal ma-
chine unlearning. In European Conference on Computer
Vision (ECCV), pp. 165–184. Springer, 2024a.

Cheng, J. and Amiri, H. Mu-bench: A multitask multi-
modal benchmark for machine unlearning. arXiv preprint
arXiv:2406.14796, 2024b.

Cheng, J. and Amiri, H. Understanding machine unlearning
through the lens of mode connectivity. arXiv preprint
arXiv:2504.06407, 2025.

Cheng, J., Dasoulas, G., He, H., Agarwal, C., and Zitnik,
M. GNNDelete: A general strategy for unlearning in
graph neural networks. In The Eleventh International
Conference on Learning Representations, 2023.

9

Tool Unlearning for Tool-Augmented LLMs

Choi, D., Choi, S., Lee, E., Seo, J., and Na, D. Towards
efficient machine unlearning with data augmentation:
Guided loss-increasing (gli) to prevent the catastrophic
model utility drop. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, pp. 93–102, June 2024.

Chundawat, V. S., Tarun, A. K., Mandal, M., and Kankan-
halli, M. Zero-shot machine unlearning. IEEE Trans-
actions on Information Forensics and Security, 18:2345–
2354, 2023. doi: 10.1109/TIFS.2023.3265506.

Cohen, R., Biran, E., Yoran, O., Globerson, A., and Geva,
M. Evaluating the Ripple Effects of Knowledge Editing
in Language Models. Transactions of the Association for
Computational Linguistics, 12:283–298, 04 2024. ISSN
2307-387X. doi: 10.1162/tacl a 00644.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
Gpt3.int8(): 8-bit matrix multiplication for transform-
ers at scale. In Koyejo, S., Mohamed, S., Agarwal, A.,
Belgrave, D., Cho, K., and Oh, A. (eds.), Advances in
Neural Information Processing Systems, volume 35, pp.
30318–30332. Curran Associates, Inc., 2022.

Eldan, R. and Russinovich, M. Who’s harry potter? approx-
imate unlearning in llms, 2023.

Fan, C., Liu, J., Zhang, Y., Wong, E., Wei, D., and Liu,
S. Salun: Empowering machine unlearning via gradient-
based weight saliency in both image classification and
generation. In The Twelfth International Conference on
Learning Representations, 2024.

Fan, C., Jia, J., Zhang, Y., Ramakrishna, A., Hong, M., and
Liu, S. Towards llm unlearning resilient to relearning
attacks: A sharpness-aware minimization perspective and
beyond. arXiv preprint arXiv:2502.05374, 2025a.

Fan, C., Liu, J., Hero, A., and Liu, S. Challenging forgets:
Unveiling the worst-case forget sets in machine unlearn-
ing. In Leonardis, A., Ricci, E., Roth, S., Russakovsky,
O., Sattler, T., and Varol, G. (eds.), Computer Vision –
ECCV 2024, pp. 278–297, Cham, 2025b. Springer Nature
Switzerland. ISBN 978-3-031-72664-4.

Gandikota, R., Materzyńska, J., Fiotto-Kaufman, J., and
Bau, D. Erasing concepts from diffusion models. In
Proceedings of the 2023 IEEE International Conference
on Computer Vision, 2023.

Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P., Yang,
Y., Callan, J., and Neubig, G. Pal: program-aided lan-
guage models. In Proceedings of the 40th International
Conference on Machine Learning, ICML’23. JMLR.org,
2023.

Golatkar, A., Achille, A., and Soatto, S. Eternal sunshine of
the spotless net: Selective forgetting in deep networks. In
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020.

Goyal, N., Nenkova, A., and Daumé III, H. Factual or
contextual? disentangling error types in entity description
generation. In Rogers, A., Boyd-Graber, J., and Okazaki,
N. (eds.), Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pp. 8322–8340, Toronto, Canada, July
2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.acl-long.463.

Graves, L., Nagisetty, V., and Ganesh, V. Amnesiac ma-
chine learning. Proceedings of the AAAI Conference on
Artificial Intelligence, 35(13):11516–11524, May 2021.
doi: 10.1609/aaai.v35i13.17371.

Gu, J.-C., Xu, H.-X., Ma, J.-Y., Lu, P., Ling, Z.-H., Chang,
K.-W., and Peng, N. Model editing can hurt gen-
eral abilities of large language models. arXiv preprint
arXiv:2401.04700, 2024.

He, J., Zhou, C., Ma, X., Berg-Kirkpatrick, T., and Neubig,
G. Towards a unified view of parameter-efficient trans-
fer learning. In International Conference on Learning
Representations, 2022.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multitask
language understanding. In International Conference on
Learning Representations, 2021.

Hoang, T., Rana, S., Gupta, S., and Venkatesh, S. Learn to
unlearn for deep neural networks: Minimizing unlearning
interference with gradient projection. In Proceedings
of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), pp. 4819–4828, January 2024.

Hu, E. J., yelong shen, Wallis, P., Allen-Zhu, Z., Li, Y.,
Wang, S., Wang, L., and Chen, W. LoRA: Low-rank
adaptation of large language models. In International
Conference on Learning Representations, 2022.

Hu, S., Fu, Y., Wu, S., and Smith, V. Unlearning or obfuscat-
ing? jogging the memory of unlearned LLMs via benign
relearning. In The Thirteenth International Conference
on Learning Representations, 2025.

Ilharco, G., Ribeiro, M. T., Wortsman, M., Schmidt, L.,
Hajishirzi, H., and Farhadi, A. Editing models with task
arithmetic. In The Eleventh International Conference on
Learning Representations, 2023.

Jang, J., Yoon, D., Yang, S., Cha, S., Lee, M., Logeswaran,
L., and Seo, M. Knowledge unlearning for mitigating

10

Tool Unlearning for Tool-Augmented LLMs

privacy risks in language models. In Rogers, A., Boyd-
Graber, J., and Okazaki, N. (eds.), Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 14389–14408,
Toronto, Canada, July 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.acl-long.805.

Ji, J., Liu, Y., Zhang, Y., Liu, G., Kompella, R. R., Liu, S.,
and Chang, S. Reversing the forget-retain objectives: An
efficient llm unlearning framework from logit difference.
arXiv preprint arXiv:2406.08607, 2024.

Jia, J., Liu, J., Ram, P., Yao, Y., Liu, G., Liu, Y., Sharma, P.,
and Liu, S. Model sparsity can simplify machine unlearn-
ing. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

Jia, J., Zhang, Y., Zhang, Y., Liu, J., Runwal, B., Diff-
enderfer, J., Kailkhura, B., and Liu, S. SOUL: Un-
locking the power of second-order optimization for
LLM unlearning. In Al-Onaizan, Y., Bansal, M., and
Chen, Y.-N. (eds.), Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Process-
ing, pp. 4276–4292, Miami, Florida, USA, November
2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.emnlp-main.245.

Jin, Z., Cao, P., Wang, C., He, Z., Yuan, H., Li, J., Chen, Y.,
Liu, K., and Zhao, J. Rwku: Benchmarking real-world
knowledge unlearning for large language models. arXiv
preprint arXiv:2406.10890, 2024.

Kassem, A., Mahmoud, O., and Saad, S. Preserving privacy
through dememorization: An unlearning technique for
mitigating memorization risks in language models. In
Bouamor, H., Pino, J., and Bali, K. (eds.), Proceedings
of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 4360–4379, Singapore, De-
cember 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.emnlp-main.265.

Kumari, N., Zhang, B., Wang, S.-Y., Shechtman, E., Zhang,
R., and Zhu, J.-Y. Ablating concepts in text-to-image
diffusion models. In Proceedings of the 2023 IEEE Inter-
national Conference on Computer Vision, 2023.

Kurmanji, M., Triantafillou, P., Hayes, J., and Triantafil-
lou, E. Towards unbounded machine unlearning. In Oh,
A., Neumann, T., Globerson, A., Saenko, K., Hardt, M.,
and Levine, S. (eds.), Advances in Neural Information
Processing Systems, volume 36, pp. 1957–1987. Curran
Associates, Inc., 2023.

Li, G., Hsu, H., Chen, C.-F., and Marculescu, R. Machine
unlearning for image-to-image generative models. In The
Twelfth International Conference on Learning Represen-
tations, 2024a.

Li, M., Zhao, Y., Yu, B., Song, F., Li, H., Yu, H., Li,
Z., Huang, F., and Li, Y. API-bank: A comprehen-
sive benchmark for tool-augmented LLMs. In Bouamor,
H., Pino, J., and Bali, K. (eds.), Proceedings of the
2023 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 3102–3116, Singapore, December
2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.emnlp-main.187.

Li, N., Pan, A., Gopal, A., Yue, S., Berrios, D., Gatti, A., Li,
J. D., Dombrowski, A.-K., Goel, S., Phan, L., et al. The
wmdp benchmark: Measuring and reducing malicious
use with unlearning. arXiv preprint arXiv:2403.03218,
2024b.

Liu, H., Li, Z., Hall, D. L. W., Liang, P., and Ma, T. Sophia:
A scalable stochastic second-order optimizer for language
model pre-training. In The Twelfth International Confer-
ence on Learning Representations, 2024.

Liu, J., Xue, M., Lou, J., Zhang, X., Xiong, L., and Qin,
Z. Muter: Machine unlearning on adversarially trained
models. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 4892–4902,
October 2023.

Łucki, J., Wei, B., Huang, Y., Henderson, P., Tramèr, F., and
Rando, J. An adversarial perspective on machine unlearn-
ing for AI safety. Transactions on Machine Learning
Research, 2025. ISSN 2835-8856.

Lynch, A., Guo, P., Ewart, A., Casper, S., and Hadfield-
Menell, D. Eight methods to evaluate robust unlearning
in llms. arXiv preprint arXiv:2402.16835, 2024.

Ma, S., Wang, H., Ma, L., Wang, L., Wang, W., Huang, S.,
Dong, L., Wang, R., Xue, J., and Wei, F. The era of 1-bit
llms: All large language models are in 1.58 bits. arXiv
preprint arXiv:2402.17764, 2024.

Maini, P., Feng, Z., Schwarzschild, A., Lipton, Z. C., and
Kolter, J. Z. TOFU: A task of fictitious unlearning for
LLMs. In First Conference on Language Modeling, 2024.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in neural information
processing systems, 35:27730–27744, 2022.

Parisi, A., Zhao, Y., and Fiedel, N. Talm: Tool augmented
language models. arXiv preprint arXiv:2205.12255,
2022.

Patil, S. G., Zhang, T., Wang, X., and Gonzalez, J. E. Gorilla:
Large language model connected with massive apis. arXiv
preprint arXiv:2305.15334, 2023.

11

Tool Unlearning for Tool-Augmented LLMs

Pawelczyk, M., Neel, S., and Lakkaraju, H. In-context
unlearning: Language models as few-shot unlearners.
In Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A.,
Oliver, N., Scarlett, J., and Berkenkamp, F. (eds.), Pro-
ceedings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine Learn-
ing Research, pp. 40034–40050. PMLR, 21–27 Jul 2024.

Qin, Y., Liang, S., Ye, Y., Zhu, K., Yan, L., Lu, Y., Lin,
Y., Cong, X., Tang, X., Qian, B., Zhao, S., Hong, L.,
Tian, R., Xie, R., Zhou, J., Gerstein, M., dahai li, Liu,
Z., and Sun, M. ToolLLM: Facilitating large language
models to master 16000+ real-world APIs. In The Twelfth
International Conference on Learning Representations,
2024.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D.,
Ermon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023.

Schick, T., Dwivedi-Yu, J., Dessi, R., Raileanu, R., Lomeli,
M., Hambro, E., Zettlemoyer, L., Cancedda, N., and
Scialom, T. Toolformer: Language models can teach
themselves to use tools. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

Setlur, A., Eysenbach, B., Smith, V., and Levine, S. Adver-
sarial unlearning: Reducing confidence along adversarial
directions. In Oh, A. H., Agarwal, A., Belgrave, D., and
Cho, K. (eds.), Advances in Neural Information Process-
ing Systems, 2022.

Singhal, K., Azizi, S., Tu, T., Mahdavi, S. S., Wei, J., Chung,
H. W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S.,
et al. Large language models encode clinical knowledge.
Nature, 620(7972):172–180, 2023.

Su, Y., Chan, C.-M., Cheng, J., Qin, Y., Lin, Y., Hu, S., Yang,
Z., Ding, N., Sun, X., Xie, G., Liu, Z., and Sun, M. Ex-
ploring the impact of model scaling on parameter-efficient
tuning. In Bouamor, H., Pino, J., and Bali, K. (eds.), Pro-
ceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pp. 15062–15078, Sin-
gapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-main.931.

Suzgun, M., Scales, N., Schärli, N., Gehrmann, S., Tay, Y.,
Chung, H. W., Chowdhery, A., Le, Q., Chi, E., Zhou, D.,
and Wei, J. Challenging BIG-bench tasks and whether
chain-of-thought can solve them. In Rogers, A., Boyd-
Graber, J., and Okazaki, N. (eds.), Findings of the As-
sociation for Computational Linguistics: ACL 2023, pp.
13003–13051, Toronto, Canada, July 2023. Association
for Computational Linguistics. doi: 10.18653/v1/2023.
findings-acl.824.

Tang, Q., Deng, Z., Lin, H., Han, X., Liang, Q., Cao, B.,
and Sun, L. Toolalpaca: Generalized tool learning for lan-
guage models with 3000 simulated cases. arXiv preprint
arXiv:2306.05301, 2023.

Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li,
X., Guestrin, C., Liang, P., and Hashimoto, T. B.
Stanford alpaca: An instruction-following llama
model. https://github.com/tatsu-lab/
stanford_alpaca, 2023.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023a.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023b.

Ullah, E., Mai, T., Rao, A., Rossi, R. A., and Arora, R. Ma-
chine unlearning via algorithmic stability. In Belkin, M.
and Kpotufe, S. (eds.), Proceedings of Thirty Fourth Con-
ference on Learning Theory, volume 134 of Proceedings
of Machine Learning Research, pp. 4126–4142. PMLR,
15–19 Aug 2021.

Vuong, Q. H. Likelihood ratio tests for model selection and
non-nested hypotheses. Econometrica, 57(2):307–333,
1989. ISSN 00129682, 14680262.

Wang, L., Chen, T., Yuan, W., Zeng, X., Wong, K.-F., and
Yin, H. KGA: A general machine unlearning framework
based on knowledge gap alignment. In Rogers, A., Boyd-
Graber, J., and Okazaki, N. (eds.), Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 13264–13276,
Toronto, Canada, July 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.acl-long.740.

Wei, S., Zhang, M., Zha, H., and Wu, B. Shared adversarial
unlearning: Backdoor mitigation by unlearning shared
adversarial examples. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

Xu, R., Qi, Z., Guo, Z., Wang, C., Wang, H., Zhang, Y., and
Xu, W. Knowledge conflicts for llms: A survey. arXiv
preprint arXiv:2403.08319, 2024.

Yao, J., Chien, E., Du, M., Niu, X., Wang, T., Cheng, Z.,
and Yue, X. Machine unlearning of pre-trained large lan-
guage models. In Ku, L.-W., Martins, A., and Srikumar,
V. (eds.), Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pp. 8403–8419, Bangkok, Thailand,

12

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Tool Unlearning for Tool-Augmented LLMs

August 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.acl-long.457.

Yao, Y., Xu, X., and Liu, Y. Large language model unlearn-
ing. arXiv preprint arXiv:2310.10683, 2023.

Zeng, Z., Yu, J., Gao, T., Meng, Y., Goyal, T., and Chen, D.
Evaluating large language models at evaluating instruc-
tion following. In The Twelfth International Conference
on Learning Representations, 2024.

Zhang, B., Dong, Y., Wang, T., and Li, J. Towards certi-
fied unlearning for deep neural networks. In Forty-first
International Conference on Machine Learning, 2024a.

Zhang, R., Lin, L., Bai, Y., and Mei, S. Negative preference
optimization: From catastrophic collapse to effective un-
learning. In First Conference on Language Modeling,
2024b.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., Zhang, H.,
Gonzalez, J. E., and Stoica, I. Judging llm-as-a-judge
with mt-bench and chatbot arena. In Oh, A., Naumann,
T., Globerson, A., Saenko, K., Hardt, M., and Levine, S.
(eds.), Advances in Neural Information Processing Sys-
tems, volume 36, pp. 46595–46623. Curran Associates,
Inc., 2023.

Zhou, C., Liu, P., Xu, P., Iyer, S., Sun, J., Mao, Y., Ma, X.,
Efrat, A., Yu, P., Yu, L., et al. Lima: Less is more for
alignment. Advances in Neural Information Processing
Systems, 36, 2024.

Zhou, J., Lu, T., Mishra, S., Brahma, S., Basu, S.,
Luan, Y., Zhou, D., and Hou, L. Instruction-following
evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

13

Tool Unlearning for Tool-Augmented LLMs

A. Practical Use Cases of Tool Unlearning
We provide several examples in which tool unlearning is essential:

Case 1: De-memorize Privacy-Concerned Tools Imagine a tool-augmented LLM that is deployed in a healthcare
system and trained to use APIs for handling and processing patient data, such as accessing medical records or generating
anonymized reports. Suppose one of the APIs that was initially compliant is later flagged as insecure due to a vulnerability
that could expose patient data. This violates regulations like HIPAA or GDPR. In this case, ToolDelete is essential as it
can update the tool-augmented LLM’s parameters to unlearn how to invoke the insecure API. This removes any capability
embedded in the LLM’s parametric knowledge and prevents adversarial or accidental usage of the vulnerable API.

Case 2: Forget Harmful / Biased Tools Consider a tool-augmented LLM that can use a Safe For Work diffusion model
as a tool to generate images based on user instructions. If the user prompts can fool the model to generate Not Safe For
Work (NSFW), harmful, or biased images, this tool should be unlearned from the LLM. Note that even if we augment the
LLM with a new and safe version of the diffusion model without unlearning the previous version, the LLM would still be
able to call the previous version, which can lead to generating Not Safe For Work, harmful, or biased images. Therefore, we
should explicitly erase the ability of using the previous version of the diffusion model from the LLM.

Case 3: Unlearn Deprecated Tools Tool unlearning is also essential when a tool has a major update, where the function
names and input parameters have changed, e.g. the major update of the Python transformers package from v2 to v4. Without
unlearning v2, the tool-augmented LLM may generate erroneous code and bring difficulty for debugging, since many
functions have been renamed and removed. Therefore, as the underlying tools evolve, the tool-augmented LLM should be
updated through unlearning of the previous versions and augmenting the new ones.

B. Baselines
As there are no prior works on tool unlearning, we adapt the following unlearning methods to tool unlearning setting. Four
general unlearning approaches.

• GRADASCENT (Golatkar et al., 2020; Yao et al., 2024) runs gradient ascent on Tf with the associated query-reponse
samples (Qf ,Yf).

• RANDLABEL (Graves et al., 2021) fine-tunes on Tr and Tf with corrupted labels.

• SALUN (Fan et al., 2024) performs RANDLABEL on unlearning-related parameters discovered by saliency map.

• ICUL (Pawelczyk et al., 2024) uses Tf with corrupted label as in-context demonstrations.

• SGA (Jang et al., 2023; Bărbulescu & Triantafillou, 2024), which performs gradient ascent on Tf whose memorization
probability exceeds a pre-defined threshold.

• TAU (Bărbulescu & Triantafillou, 2024), which performs task arithmetic on SGA.

• CUT (Li et al., 2024b), which controls model activations to be similar to the absence of knowledge on forget set.

• NPO (Zhang et al., 2024b) uses DPO with only a losing response (i.e. no winning response).

• SOUL-GradDiff (Jia et al., 2024) uses second-order information in optimization. It adapts the Sophia optimizer (Liu
et al., 2024) for LLM unlearning. We adopt the SOUL + GradDiff (Maini et al., 2024) implementation in the original
paper.

C. Implementation details
We use a learning rate of 10−5 across all experiments. All experiments are conducted on 8 NVIDIA A100 GPUs.

For the original models in tool unlearning, we use the TangQiaoYu/ToolAlpaca-7B,
ToolBench/ToolLLaMA-2-7b-v2, gorilla-llm/gorilla-openfunctions-v0 checkpoints that are
publically available on Huggingface.

14

Tool Unlearning for Tool-Augmented LLMs

Table 3. Full parameters vs. LoRA in tool unlearning performances when deleting 20% of tools on ToolAlpaca. Original denotes the
tool-augmented LLM prior unlearning and is provided for reference only.

TT (↑) Tr(↓) Tf (↑) TG(↑)
ORIGINAL (PRIOR UN.) 60.0 73.1 75.7 24.1

FULL PARAM 52.7 72.1 30.5 23.6

LORA 51.5 71.8 36.1 19.9

Table 4. Performance comparison between with and without having access to the exact training samples.

METHOD Tt(↑) Tr(↑) Tf (↓) TG(↑)
W/ access to training samples

TOOLDELETE-SFT 52.7 72.1 30.5 23.6
TOOLDELETE-DPO 53.4 75.1 28.7 23.1

W/o access to training samples

TOOLDELETE-SFT 52.0 72.5 30.1 22.8
TOOLDELETE-DPO 52.9 76.0 28.0 22.5

D. Additional results
We present the results of LoRA tool unlearning, sequential tool unlearning, time comparison and results on ToolLLaMA and
Gorilla in Table 3–6.

2 5 10 20

| f| %

2

4

6

T
im

e
 (

h
rs

)

Retrain ToolDelete-SFT ToolDelete-DPO

Figure 4. Training time of TOOLDELETE, which saves 74.8% of time on average.

15

Tool Unlearning for Tool-Augmented LLMs

Table 5. Tool unlearning performances when deleting 20% of tools on ToolLLaMA. Best and second best performances are bold and
underlined respectively. Original denotes the tool-augmented LLM prior unlearning and is provided for reference only .

Method TT (↑) Tr(↑) Tf (↓) General Capability TG(↑)
STEM Reason Ins-Follow Fact Avg.

Original (Prior Un.) 64.0 75.6 76.0 25.3 36.8 17.3 15.0 23.6

General Unlearning Methods

RETRAIN 62.2 72.1 42.3 25.1 33.7 14.6 13.8 21.8
GRADASCENT 42.5 56.3 51.8 14.9 26.4 11.2 8.6 15.3
RANDLABEL 59.3 73.5 40.7 23.4 30.6 13.3 12.7 20.0
SALUN 58.7 73.6 39.9 22.7 30.8 13.6 12.0 19.8

LLM-Specific Unlearning Methods

ICUL 46.2 68.2 57.2 15.1 18.8 7.1 9.4 12.6
SGA 44.7 59.6 49.4 16.3 20.4 12.8 9.7 14.8
TAU 44.5 56.3 50.2 21.6 28.0 15.3 13.5 19.6
CUT 52.4 59.5 44.2 20.7 24.1 13.7 12.8 17.8
NPO 58.3 66.3 40.2 23.0 31.7 15.4 11.9 20.5
SOUL-GradDiff 62.2 70.4 40.7 24.2 28.6 14.7 12.2 19.9

TOOLDELETE-SFT 62.8 72.8 39.5 24.6 33.4 15.8 13.7 21.9
TOOLDELETE-DPO 63.2 73.6 38.7 24.3 32.9 16.0 13.8 21.8

Table 6. Tool unlearning performances when deleting 20% of tools on ToolLLaMA. Best and second best performances are bold and
underlined respectively. Original denotes the tool-augmented LLM prior unlearning and is provided for reference only .

Method TT (↑) Tr(↑) Tf (↓) General Capability TG(↑)
STEM Reason Ins-Follow Fact Avg.

Original (Prior Un.) 64.0 75.6 76.0 25.3 36.8 17.3 15.0 23.6

General Unlearning Methods

RETRAIN 62.2 72.1 42.3 25.1 33.7 14.6 13.8 21.8
GRADASCENT 42.5 56.3 51.8 14.9 26.4 11.2 8.6 15.3
RANDLABEL 59.3 73.5 40.7 23.4 30.6 13.3 12.7 20.0
SALUN 58.7 73.6 39.9 22.7 30.8 13.6 12.0 19.8

LLM-Specific Unlearning Methods

ICUL 46.2 68.2 57.2 15.1 18.8 7.1 9.4 12.6
SGA 44.7 59.6 49.4 16.3 20.4 12.8 9.7 14.8
TAU 44.5 56.3 50.2 21.6 28.0 15.3 13.5 19.6
CUT 52.4 59.5 44.2 20.7 24.1 13.7 12.8 17.8
NPO 58.3 66.3 40.2 23.0 31.7 15.4 11.9 20.5
SOUL-GradDiff 62.2 70.4 40.7 24.2 28.6 14.7 12.2 19.9

TOOLDELETE-SFT 62.8 72.8 39.5 24.6 33.4 15.8 13.7 21.9
TOOLDELETE-DPO 63.2 73.6 38.7 24.3 32.9 16.0 13.8 21.8

16

Tool Unlearning for Tool-Augmented LLMs

Table 7. Performance comparison between using pre-trained LLM f0 and randomly initialized LLM fR.

METHOD Tt(↑) Tr(↑) Tf (↓) TG(↑)
Pre-trained LLM weights f0

TOOLDELETE-SFT 52.7 72.1 30.5 23.6
TOOLDELETE-DPO 53.4 75.1 28.7 23.1

Randomly initialized LLM fR

TOOLDELETE-SFT 50.9 71.3 29.8 22.7
TOOLDELETE-DPO 52.6 73.4 27.5 22.4

E. Sampling of Shadow Samples for LiRA-Tool
We use the following prompt to prompt GPT-4 to synthesize diverse shadow samples for evaluation with LiRA-Tool.

You are now a synthetic data generator. Generate query-response pairs to evaluate an LLM’s ability of using an API.
How to generate ”query”: Based on the API and documentation shown below, think of a user query that needs to be
answered by calling the API.
How to generate ”response”: Write down the correct API call with correct arguments.
The in-context examples below demonstrate what you need to generate. Please be as diverse and creative as possible
in phrasing and style. But do not hallucinate.
In-context Examples #### Tool and Documentation Name: StableDiffusionPipeline.from pretrained()
Query I want to see some cats dancing in celebration!
Response API call: StableDiffusionPipelin e.from pretrained(”stabilityai/stable-diffusion-2-1”)
Now, for the following API, generate a query-response pair.
Tool and Documentation api name()
Query
Response

17

