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ABSTRACT

Molecular optimization, a critical research area in drug discovery, aims to en-
hance the properties or performance of molecules through systematic modifica-
tions of their chemical structures. Recently, existing Multi-Objective Molecu-
lar Optimization (MOMO) methods are extended from Single-Objective Molec-
ular Optimization (SOMO) approaches by employing techniques such as Linear
Scalarization, Evolutionary Algorithms, and Multi-Objective Bayesian Optimiza-
tion. In Multi-Objective Optimization, the ideal goal is to find Pareto optimal
solutions over different preferences, which indicate the importance of different
objectives. However, these straightforward extensions often struggle with trading
off multiple properties due to the conflicting or correlated nature of certain prop-
erties. More specifically, current MOMO methods derived from SOMO are still
challenged in finding preference-conditioned Pareto solutions and exhibit low ef-
ficiency in Pareto search. To address the aforementioned problems, we propose
the Preference-Conditioned Inversion (PCI) framework, efficiently “inverting” a
pre-trained surrogate oracle under the guidance of a non-dominated gradient, to
generate candidate Pareto optimal molecules over preference-conditioned distri-
butions. Additionally, we provide theoretical guarantees for PCI’s capability in
converging to preference-conditioned solutions. This unique characteristic en-
ables PCI to search the full Pareto front approximately, thereby assisting in the
discovery of diverse molecules with varying ratios of properties. Comprehensive
experimental evaluations show that our model significantly outperforms state-of-
the-art baselines in multi-objective molecular optimization settings.

1 INTRODUCTION

Molecular optimization in drug design usually involves reasoning about multiple, often conflicting
or correlated, objectives (Fromer & Coley, 2023). For example, for a new drug to be successful,
it must simultaneously be potent, bioavailable, safe, and synthesizable (Dara et al., 2022). More
specifically, a realistic drug customization scenario requires maximizing the combined stability and
solubility (Gupta et al., 2004), in which two properties may inherently conflict. Generally, these
objectives exhibit implicit relationships, which can be either conflicting or correlated, rather than
being independent. Consequently, it is infeasible to find a single molecule that maximizes all objec-
tives simultaneously. Therefore, in Multi-Objective Optimization, the ideal goal is to identify Pareto
solution set that cover all the possible trade-offs among objectives (Miettinen, 1999; Ehrgott, 2005).

Recently, significant progress has been made in Single-Objective Molecular Optimization
(SOMO). This naturally prompts the question: Can classical SOMO methods be readily extended
to Multi-Objective Molecular Optimization (MOMO) scenarios? Most of the existing works, in-
cluding Constrained Generative Models (CGM) (Gómez-Bombarelli et al., 2018; Jin et al., 2018;
Griffiths & Hernández-Lobato, 2020; Wang et al., 2023; De Cao & Kipf, 2018; Shi et al., 2020; Liu
et al., 2021; Shi et al., 2020) and Combinatorial Optimization (CO) algorithms (Fu et al., 2022; You
et al., 2018; Ståhl et al., 2019; Zhou et al., 2019; Jin et al., 2020; Gottipati et al., 2020; Jain et al.,
2023; Jensen, 2019; Nigam et al., 2020; Chen et al., 2021; Xie et al., 2021; Fu et al., 2021; Korov-
ina et al., 2020), employ the Linear Scalarization technique to adapt their methods to MOMO. It
assigns a set of weights (preferences) wi to the objectives Li, thereby reducing the problem to a sin-
gle unified objective: L =

∑m
i=1 wiLi. In addition, Multi-Objective Evolutionary Algorithms have

been introduced to tackle MOMO (Abbasi et al., 2022). Most of classic multi-objective evolutionary
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Figure 1: Pareto front (black solid curve) for two loss functions l1,l2 and solutions (circles) and
Oracle calls (computational cost) for different preferences α = λ1

λ2
(dashed rays) obtained by (a) PCI:

can find solutions at any given preference vector; (b) Linear Scalarization: often results in baised
solutions; (c) Multi-Objective Evolutionary Algorithms: using reference vectors to find solutions
but fail to capture the preference condition and with high computational cost; (d) Multi-Objective
Bayesian Optimization: using expected hypervolume improvement as acquisition function, with no
preference guidance and high computational cost. More details can be found in Section. 5.1.

algorithms (Deb et al., 2002; Deb & Jain, 2013; Coello & Lechuga, 2002) employ strategies such as
crowding distance sorting or reference points to make solutions spread out along the Pareto front.
Furthermore, several methods based on Multi-Objective Bayesian Optimization (Shah & Ghahra-
mani, 2016) have been introduced to MOMO (Jain et al., 2023; Fromer & Coley, 2023), leveraging
the expected or probability of hypervolume improvement as an acquisition function to generate a
diverse range of Pareto optimal solutions.

Despite existing SOMO methods can be extended to MOMO scenarios, they exhibit several limi-
tations in identifying the Pareto optimal solution set: (1) Fail to capture preference-conditioned
Pareto optimal solutions, which is the intersection point between the Pareto front and prefer-
ence ray. This limitation may leave certain regions of the Pareto front unexplored, and fail
to search the full Pareto front. The Linear Scalarization often fails to capture specific trade-offs
and results in biased solutions, which has been mathematically analyzed by Boyd et al. (2004), see
Figure. 1(b). When varying preference vectors, the solutions tend to cluster at the ends of the Pareto
front and leave certain regions unexplored. Although Multi-Objective Evolutionary Algorithms and
Multi-Objective Bayesian Optimization are guaranteed to obtain Pareto optimal set as the number of
iterations approaching infinity, they are often suboptimal within finite optimization steps (Schwefel,
1993; Lam et al., 2016), see Figure. 1(c) and 1(d). Without preference guidance, they also strug-
gle to identify preference-conditioned solutions and fail to cater to chemists’ specific drug design
needs. (2) Low efficiency in identifying diverse Pareto optimal solutions. To capture different
trade-offs, CO algorithms with Linear Scalarization often require retraining from scratch for differ-
ent preferences, thereby amplifying the already high computational cost of CO by a multiple of the
number of preferences, which is unacceptable. In addition, Evolutionary Algorithms and Bayesian
Optimization also require massive numbers of oracle calls (Bäck et al., 1997; Shahriari et al., 2015).

To address the aforementioned limitations, we propose the Preference-Conditioned Inversion (PCI)
framework to identify preference-conditioned Pareto optimal solutions in discrete space, see Figure.
1(a). By adopting the inversion framework, PCI can be precisely guided by the non-dominated
gradient w.r.t the chemical structure and adjust the chemical structure towards better uniformity and
dominating properties. This unique specific characteristic of the PCI allows for an approximate
search of the full Pareto front when the preference vectors cover the space, thereby assisting in the
discovery of diverse molecules with varying property ratios. To address the low-efficiency issue, the
inversion framework significantly decreases the demand of oracle calls introduced by Pareto search.
To better understand our PCI approach, we offer theoretical analysis to demonstrate why PCI is
guaranteed to identify preference-conditioned Pareto-optimal solutions in discrete chemical space.
The main contributions of our work are:

• We propose the Preference-Conditioned Inversion (PCI) framework to find preference-
conditioned Pareto optimal molecules and enable a more efficient full Pareto front search.

• We provide theoretical analysis to demonstrate why PCI can identify preference-
conditioned Pareto-optimal solutions in discrete chemical space.

• We evaluate PCI in preference-conditioned and Pareto search MOMO. Comprehensive ex-
perimental results demonstrate that PCI significantly outperforms all baseline methods.
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2 RELATED WORK

Molecular Optimization. In recent years, machine learning has shown to be promising for SOMO
tasks. Existing methods can be categorized as CGM and CO approaches. CGMs model the molec-
ular distribution with deep generative networks such as VAE (Gómez-Bombarelli et al., 2018; Liu
et al., 2018; Jin et al., 2018; 2019; Skalic et al., 2019; Fu et al., 2020; Griffiths & Hernández-Lobato,
2020; Wang et al., 2023), GAN (Guimaraes et al., 2017; De Cao & Kipf, 2018; Abbasi et al., 2022),
Flow (Shi et al., 2020), Energy (Liu et al., 2021) and Diffusion-based model (Lee et al., 2023),
projecting input molecules into a latent space. CGMs conduct optimization in latent space and
reconstruct it to obtain the optimized molecules. However, obtaining the ideal smooth and discrim-
inative latent space, typically required by CGMs, has proven to be a challenge in practice (Brown
et al., 2019; Huang et al., 2021). Another research line based on CO directly searches for desired
molecules in the explicit discrete space, e.g., Reinforcement Learning (You et al., 2018; Ståhl et al.,
2019; Zhou et al., 2019; Jin et al., 2020; Gottipati et al., 2020; Jain et al., 2023), Evolutionary Algo-
rithms (Jensen, 2019; Nigam et al., 2020; Chen et al., 2021), Markov Chain Monte Carlo (Xie et al.,
2021; Fu et al., 2021), Tree Search (Fu et al., 2022) and Bayesian Optimization (Korovina et al.,
2020; Moss et al., 2020). CO algorithms require massive numbers of oracle calls, which is com-
putationally inefficient during the inference time. Current MOMO methods derived from SOMO,
including both CGM and CO approaches, are still challenged in finding preference-conditioned
Pareto solutions and exhibit low efficiency in Pareto search.

Multiple Objective Optimization (MOO) Techniques. The Pareto optimal solution is highly
valuable for MOO since identifying that satisfies all objectives is often impractical. Two primary
categories have been extensively studied: Black-Box and White-Box MOO. White-Box MOO meth-
ods assume complete knowledge of the inference model and are often based on gradient optimiza-
tion. MGDA (Désidéri, 2012) is proposed to identify Pareto optimal solutions for low-dimensional
data and is extended to high-dimensional scenarios by Sener & Koltun (2018). Subsequently, several
efficient methods (Lin et al., 2019; Zhang & Golovin, 2020; Ma et al., 2020) have been proposed
to alleviate the negative effects introduced by Linear Scalarization in MGDA. Also, the EPO (Ma-
hapatra & Rajan, 2020) has been developed to find the exact Pareto optimal solution under speci-
fied objective preferences. In Black-Box MOO, we assume limited knowledge about the inference
model. Therefore, most of the Black-Box MOO approaches are based on Evolutionary Algorithm
and Multi-Objective Bayesian Optimization. Multi-Objective Evolutionary Algorithm like NSGA-
II (Deb et al., 2002), NSGA-III (Deb & Jain, 2013) and MOPSO (Coello & Lechuga, 2002) employ
strategies such as crowding distance sorting or reference points to make solutions spread out along
the Pareto front. Also, Multi-Objective Bayesian Optimization has been developed (Shah & Ghahra-
mani, 2016), leveraging the expected or probability of hypervolume improvement as an acquisition
function to generate a diverse range of Pareto optimal solutions. However, in gradient-based White-
Box MOO, most efforts are concentrated on continuous optimization, ignoring the discrete spaces,
especially the complex discrete chemical space. As for Black-Box MOO, these methods are com-
putationally expensive and often suboptimal within finite optimization steps, generally less effective
than White-Box MOO methods.

3 PRELIMINARIES

3.1 PARETO OPTIMAL

In this work, we consider m tasks described by f(x) := [fi(x)] : Rn → Rm for any point x in
Solution Space Rn, where each fi(x) : Rn → R, i ∈ [m] represents the performance of the i-th
task to be maximized. Given an desired target y ∈ Rm, we set a non-negative objective function
L(f(x),y) = [l1, . . . , lm]T : Rm → Om to be a non-negative objective function mapping the Value
Space Rm to the Objective Space Om, where li for i ∈ [m] is the objective function of the i-th
task. Hence, maximizing the performance f(x) is equivalent to minimizing the objective function.
Consequently, we have lx

′

i − lxi ≥ 0 if fi(x′) ≤ fi(x) for two points x,x′ ∈ Rn.

For any two points x,x′ ∈ Rn, x dominates x′, denoted by Lx′
⪰ Lx, if and only if Lx′

−
Lx ∈ Rm

+ , where Rm
+ := {L ∈ Om|li ≥ 0,∀i ∈ [m]}. The partial ordering Lx′

⪰ Lx implies
lx

′

i − lxi ≥ 0,∀i ∈ [m]. When x strictly dominates x′, denoted by Lx′
≻ Lx, it means there is at

least one i for which lx
′

i − lxi > 0. Geometrically, Lx′
≻ Lx means that Lx′

lies in the positive cone
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pivoted at Lx, i.e. Lx′
∈ {Lx} + Rm

+ :=
{
Lx + L | L ∈ Rm

+

}
. A point x∗ is said to be Pareto

optimal if x∗ is not dominated by any other points in Rn. Similarly, x∗ is locally Pareto optimal if
x∗ is not dominated by any other points in the neighborhood of x∗, i.e. N (x∗). The set of all Pareto
optimal solutions is defined as:

P :=
{
x∗ ∈ Rn | ∀x ∈ Rn − {x∗} ,Lx∗

⪰̸ Lx
}
, (1)

where Lx∗
⪰̸ Lx represents x∗ is not dominated by other point x. The set of multi-objective values

of the Pareto optimal solutions is called Pareto front:

F :=
{
Lx∗

| x∗ ∈ P
}
. (2)

3.2 NON-UNIFORMITY

The function termed as Non-Uniformity (Mahapatra & Rajan, 2020) quantitatively evaluates the
degree of misalignment between the objective value L and the preference vector λ ∈ Rm:
Definition 3.1 (Non-Uniformity). For any point x ∈ Rn, the Non-Uniformity of its objective values
L in relation to a given preference vector λ ∈ Rm as:

µλ(L) =
m∑
i=1

l̂i log

(
l̂i

1/m

)
= KL

(
L̂ | 1

m

)
, (3)

where L̂ = [l̂1, . . . , l̂m]T and l̂i is the weighted normalization l̂i =
λili∑m

i′=1
λi′ li′

.

The Kullback-Leibler (KL) divergence of L̂ from the uniform distribution
1

m
characterizes non-

uniformity. When the objective value fulfills the preference condition, we have µλ(L) = 0; other-
wise, µλ(L) > 0. Consequently, we prefer a lower µλ(L).

4 METHOD

In this study, we explore a Preference-Conditioned Inversion (PCI) framework catering to given
drug design requirements, which allows for generating diverse molecules at any property ratio. We
illustrate the pipeline in Figure. 2, then describe the key steps following the order:

• Differentiable Surrogate Oracle. We construct differentiable surrogate property functions (also
known as oracle) to be maximized in molecular optimization (Section 4.2). Surrogate oracle is
pre-trained once and freezed in the following steps.

• Preference Guided Pareto Molecular Opimization. We formulate the discrete molecule opti-
mization into a locally differentiable problem. Then we can be optimize the molecules with the
non-dominating gradients (Section 4.3).

4.1 PROBLEM FORMULATION

Definition 4.1 (MOMO). Given the Chemical Space X , oracle function f(x), objective function
L, the target property score y ∈ Rm, multi-objective molecule optimization is to find candidate
molecules x∗ ∈ X that simultaneously minimize all objective functions:

x∗ = argminx∈XL(f(x),y). (4)

In other words, MOMO’s goal is to find the set P of all Pareto optimal molecules, which is challeng-
ing in practice (Miettinen, 1999; Ehrgott, 2005). Therefore, we focus on a subproblem of MOMO,
defined as Preference-Conditioned MOMO to find Pareto optimal molecules satisfying the given
preference condition.
Definition 4.2 (Preference-Conditioned MOMO). Given the Chemical Space X , oracle function
f(x), objective function L, the target property score y ∈ Rm, preference vector λ ∈ Rm, the
preference-conditioned multi-objective molecular optimization is to find molecules that satisfying:

x∗ ∈ Pλ =
{
x∗ ∈ P | λ1l

∗
1 = · · · = λj l

∗
j = · · · = λml∗m

}
. (5)
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Figure 2: (1) Preference-Conditioned Inversion (PCI). Initially, a differentiable surrogate oracle
model is trained and then fixed for Inversion. In each iteration, PCI is able to find local preference-
conditioned Pareto-optimal solutions Pt

λ under the guidance of non-dominated gradient. (2) Pareto
Front Search. Exploring the Pareto front approximately with different preferences, thereby assist-
ing in the discovery of diverse molecules with varying property ratios.

Preference-Conditioned MOMO’s goal is to find the set Pλ of all Pareto optimal molecules that
satisfying additional preference condition. Naturally, it follows that Pλ ⊆ P . Therefore, we can
approximately obtain the whole Pareto optimal set by P =

⋃
λ Pλ.

4.2 DIFFERENTIABLE SURROGATE ORACLE

In this section, we aims to develop a differentiable Surrogate Oracle model to capture knowledge
from the ground truth oracle O. We imitate the oracle function O using a multi-head architecture to
independently predict m property scores ŷ ∈ Rm:

ŷ = f(x; θ) ≈ [O1(x),O2(x), · · · ,Om(x)]T = y, (6)
where θ is the learnable parameters. We train the model by minimizing the discrepancy between the
prediction ŷ and the ground truth y:

θ∗ = argmin
θ

L
(
y = [O1(x),O2(x), · · · ,Om(x)]T, ŷ = f(x; θ)

)
, (7)

where L is loss function, e.g. binary cross entropy. The parameters of the pretrained surrogate
oracle model are freezed in the following molecular optimization stage. In MOMO task, we adopt
differential scaffolding tree T̃x (Fu et al., 2022) as molecular x’s representation, which contains
learnable parameters in the tree structure. It allows us to search the neighborhood set N (x) via
node shrinking, replacement, or expansion.

4.3 PREFERENCE GUIDED PARETO MOLECULAR OPTIMIZATION

In this section, we introduce an approach to find Pareto optimal molecules over preference require-
ment. Inspired by Fu et al. (2022), we formulate the discrete molecule optimization into a locally
differentiable problem. At the t-th iteration, given one molecular xt, PCI aims to find local Pareto
optimal molecules set Pt

λ over preference condition λ from neighborhood set N (xt).

x∗ ∈ Pλ ≈ x(t+1) ∈ Pt
λ ⊆ N (xt) (8)

Identifying Pt
λ with Non-Dominating Descent Direction. Let gi = ∇li represent the gradient

of the i-th property objective function. Consequently, we obtain G = ∇L = [g1, . . . , gm]. To
approach the Pareto front, Désidéri et al. Désidéri (2012) demonstrated that the descent direction
d can be found within the convex hull of the gradients, i.e., d ∈ CHθ := {Gβ}, where β ∈ Sm

belongs to the m-dimensional simplex. In order to identify a non-dominating descent direction,
dnd = Gβ∗, which aligns with the preference vector while continuing to move towards the Pareto
front, we follow Mahapatra & Rajan (2020) and solve the following Linear Programming (LP)
problem at the k-th Inversion steps:

β∗ = arg max
β∈Sm

βTC
(
a
(
1− Ikµ

)
+ 1Ikµ

)
s.t. βT cj ⩾ aT cjIJ , j ∈ J̄ − J∗,

βT cj ⩾ 0, j ∈ J∗,

(9)
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Algorithm 1: Preference-Conditioned Inversion (PCI)
Input: Input molecule x0 ∈ X , preference vector λ ∈ Rm, and step size η > 0.
Output: Generated Molecule x∗.

1 Initialization.
2 Train surrogate oracle according to Eq. 7.
3 for t = 0, . . . , T do
4 Convert molecule xt to differentiable scaffolding tree T̃ 0

xt ;
5 for k = 0, . . . ,K do
6 Compute gradients of each property objective w.r.t. T̃ k

xt : G = ∇L = [g1, . . . , gm];
7 Determine β∗ by solving the Linear Programming (LP) problem as Eq. 9;
8 Calculate the non-dominating direction of descent dnd = Gβ∗;
9 Update the differentiable scaffolding tree using T̃ k+1

xt = T̃ k
xt − ηdnd.

10 end
11 Sample discrete Txt+1 from continuous T̃ K

xt and assemble it to molecule xt+1.
12 end

where Ikµ is an indicator for non-zero Non-Uniformity, µk
λ; C = G⊤G ∈ Rm×m is a symmet-

ric matrix with cj as its columns; J∗ =
{
j | λj l

k
j = maxj′

{
λj′ l

k
j′

}}
represents the index of the

maximum relative objective values; J̄ is the index set for the gradients that ascends during the op-
timization step; IJ is an indicator for not all objectives ascending simultaneously, i.e. J̄ ̸= [m];
and a is the adjustment, and aj = λj

(
log
(

l̂i
1/m

)
− µk

λ

)
. Finally, the non-dominating direction

dnd = Gβ∗ is acquired, and we update the differentiable scaffolding tree by T̃x = T̃x − ηdnd.

Preference-Conditioned Inversion. At the t-th iteration, we begin with a molecule xt and convert
it to its corresponding differentiable scaffolding tree T̃xt . Subsequently, we identify the preference-
conditioned local Pareto optimal solution T̃ ∗

xt within the neighborhood set N (Txt) by performing K

rounds of gradient descent against the non-dominating direction dnd. From T̃ ∗
xt , we can sample the

discrete scaffolding tree T ∗
xt and assemble it to molecules, denoted as xt+1 in the following iteration.

Our proposed Preference-Conditioned Inversion (PCI) framework is summarized in Algorithm 1.
The time complexity is summarized in Appendix Sec. B.

Convergence of PCI towards Preference-Conditioned Solutions in Discrete Chemical Space.
We present the theoretical analysis of the Preference-Conditioned Inversion (PCI) Algorithm, dis-
cussing its convergence properties. The PCI algorithm guarantees convergence towards preference-
conditioned solutions in discrete chemical space, providing optimal uniformity and non-dominating
properties. The proof and detailed explanation can be found in Appendix Sec. A.

Theorem 4.3 (Approximation Guarantee). Under the assumptions stated in Sec. A, when the PCI
algorithm is applied with an initial molecule x0 and preference vector λ, it guarantees the following
approximation when performing T optimization rounds:

LT ∈ A :=
{
L ∈ O | L ⪯ (Γλ̌∗ + (1− Γ)λ̌0) · λ−1

}
, (10)

where Γ = 1−αT

(1−α)N , λ−1 := (1/λi, . . . , 1/λm), λ̌∗ and λ̌0 is the maximum relative objective value

λ̌t := max
{
Lt
jλj | j ∈ [m]

}
of x∗ and x0.

Theorem 4.3 demonstrates the convergence of PCI towards the preference-conditioned Pareto op-
timal solution x∗, which exhibits optimal uniformity and non-dominating properties. The maxi-
mum relative objective value λ̌t is associated with the upper bound of the admissible set. There-
fore, a lower λ̌t indicates that we are closer to the preference-conditioned Pareto optimal solu-
tion, resulting in improved uniformity and higher properties. At the T -th step, the maximum
distance between the molecule xT we obtained and the optimal solution x∗ is bounded, i.e.
∥λ̌0 − λ̌T ∥ ≥ 1−αT

(1−α)N ∥λ̌0 − λ̌∗∥.
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5 EXPERIMENTS

5.1 SYNTHETIC TASK

This section demonstrates the performance of our proposed algorithm, utilizing a synthetic objective
from Lin et al. (2019). We aim to minimize two non-convex objective functions, denoted as:

l1(x) = 1− e
−
∥∥∥x− 1√

n

∥∥∥2

2 , l2(x) = 1− e
−
∥∥∥x+ 1√

n

∥∥∥2

2 , (11)

where x represents a point in discrete space, with its dimension set to n = 20. Since we have access
to the details of objective functions, we can obtain the ground truth of the Pareto front.
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Figure 3: Ground truth Pareto front (black solid curve) and
solutions (red circles) obtained by (a) PCI: can explore al-
most the entire Pareto front; (b) Linear Scalarization: tends
to cluster at the ends.

Implementation Details. All
methods used the same 5 uniformly
distributed preference vectors.
PCI and Linear Scalarization were
optimized from scratch for each
preference. NSGA-III was used in
the Evolutionary Algorithms, with
preference vectors serving as the ref-
erence point. The process involved
300 iterations, a population size of
40, and 10 offspring. The Multi-
Objective Bayesian Optimization
utilized the expected hypervolume
improvement as an acquisition func-
tion, initializing 1000 points and
executing 100 optimization loops.

Experimental Results. Figure. 1 illustrates that our PCI framework not only captures specific so-
lutions based on given preferences but also but also achieves the highest efficiency. For evolutionay
algorithm, we only show the non-dominated solutions in the n-th generation. For PCI and Linear
Scalarization, which incorporate preference information, we also utilized preferences to scan the
entire Pareto front, as shown in Figure. 3. Our proposed PCI can explore almost the entire Pareto
front. In contrast, the solutions of Linear Scalarization tend to cluster at the ends of the Pareto front,
leaving certain regions unexplored.

5.2 MULTI-OBJECTIVE MOLECULAR OPTIMIZATION.

In this section, we first demonstrate that PCI’s capacity for generating molecules over given pref-
erence vectors. Subsequently, we use different preferences to evaluate the effectiveness of PCI in
synthesizing diverse molecules. More details please refer to Appendix Sec. C.

Dataset. We train the surrogate model on the ZINC 250K dataset (Sterling & Irwin, 2015), which
consists of approximately 250K drug-like molecules extracted from the ZINC database. In accor-
dance with DST (Fu et al., 2022), we select the substructures that appear more than 1000 times as
the vocabulary set S, which consists of 82 frequent substructures. We remove molecules containing
out-of-vocabulary substructures, resulting in a remaining dataset of 195K molecules.

Properties and Oracles. (1) QED ranging in [0, 1] that provides a quantitative assessment of a
molecule’s drug-likeness. (2) SA evaluates the ease of synthesizing a molecule, and is normalized
to [0, 1] (Gao & Coley, 2020). (3) JNK3 is a member of the mitogen-activated protein kinase family,
with scores ranging in [0, 1]. (4) GSK3β is an enzyme encoded by the GSK3β gene in humans, and
also has a range of [0, 1]. For all aforementioned properties, higher values indicate better perfor-
mance. To evaluate QED and SA, we utilize the RDKit package. Furthermore, we employ random
forest to evaluate GSK3β and JNK3, as described by Li et al. (2018) and Jin et al. (2020).

Metric. (1)Novelty (Nov) represents the proportion of generated molecules not in the training set.
(2) Top-K Diversity (Div) (Bengio et al., 2021; Fu et al., 2022) of generated molecules is defined
as the average pairwise Tanimoto distance between the Morgan fingerprints. (3) Top-K Average
Property Score (APS) (Bengio et al., 2021; Fu et al., 2022) refers to the average score of the top-
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100 molecules. (5) Non-Uniformity evaluates the extent of misalignment between properties and
preferences vector.

Table 1: Preference Guided Molecular Optimization.

Method Nov↑ Div↑ APS↑ Non-Uniformity(µ)↓
MOEA/D 100% n/a 0.287 0.083
NSGA-III 100% n/a 0.342 0.112

I-LS 100% 0.53 0.543 0.051
PCI 100% 0.42 0.659 0.026

Preference Guided Molecu-
lar Optimization. In this task,
our goal is to evaluate that if
PCI can generate molecules over
given preference. Here we se-
lect two properties, GSK3β and
JNK3 and the same 5 uniformly
distributed preference vectors to
serve as independent trials. I-LS
is a baseline that using the same
Inversion framework with PCI but adopting Linear Scalarization. For MOEA/D and NSGA-III, we
report the performance of the molecule with lowest Non-Uniformity. For I-LS and PCI ,we calcu-
late the performance of the top-20 molecules in terms of Non-Uniformity per preference. For each
preference, we compute the results separately and report the average results across all five trials.
The results are shown in Table. 1. PCI outperforms all most baselines by a significant margin. Our
proposed PCI achieves better uniformity and higher APS. We find that the diversity of PCI is lower
than that of I-LS. A reasonable explanation is that the molecules produced by PCI concentrate more
around preference with a lower diversity. This superior performance is attributed to our method’s
ability to identify solutions that are more specifically related to the preference vector.

Multi-Objective de novo Design. In this task, we use different preferences to evaluate the effec-
tiveness of PCI in synthesizing diverse molecules. For I-LS and PCI, we collected all the solutions
generated by varying preferences to report the final results. The results are detailed in Table 2.
Here oracle named “A + B” means we allocate A oracle call budget for surrogate oracle pretrain-
ing, and B for Inversion. PCI exhibits superior performance compared to the majority of baselines.
Diversity and APS is a common trade-off. Some methods encounter difficulties in simultaneously
achieving high diversity scores and APS, due to their limited capacity to explore the chemical space.
Nevertheless, our approach manifests robust performance on both metrics.

Table 2: Multi-Objective de novo Design.

Method GSK3β + JNK3 GSK3β+JNK3+QED+SA
Nov↑ Div↑ APS↑ oracle↓ Nov↑ Div↑ APS↑ oracle↓

LigGPT 100% 0.845 0.271 100K+0 100% 0.902 0.378 100K+0
GCPN 100% 0.578 0.293 0+200K 100% 0.596 0.450 0+200K
MolDQN 100% 0.605 0.348 0+200K 100% 0.597 0.365 0+200K
GA+D 100% 0.657 0.608 0+50K 97% 0.681 0.632 0+50K
RationaleRL 100% 0.700 0.795 25K+67K 99% 0.720 0.675 25K+67K
MARS 100% 0.711 0.789 0+50K 100% 0.714 0.662 0+50K
ChemBO 98% 0.702 0.747 0+50K 99% 0.701 0.648 0+50K
BOSS 99% 0.564 0.504 0+50K 98% 0.561 0.504 0+50K
LSTM 100% 0.712 0.680 0+50K 100% 0.706 0.672 0+50K
Graph-GA 100% 0.634 0.825 0+25K 100% 0.723 0.714 0+25K
DST 100% 0.750 0.827 10K+5K 100% 0.755 0.752 20K+5K
MOGFN-PC 100% 0.673 0.742 50K+20K 100% 0.711 0.621 50K+20K
RetMol 100% 0.688 0.769 50K+5K 100% 0.691 0.642 50K+5K
I-LS 100% 0.693 0.823 10K+5K 100% 0.704 0.734 20K+5K
PCI 100% 0.768 0.841 10K+5K 100% 0.769 0.773 20K+5K

5.3 ABLATION STUDY

Case Study. We select an initial molecule x0 and a preference vector [0.25, 0.75]. To facilitate
understanding, we focus on two properties, JNK3 and GSK3β. In each step, we greedily add one
substructure for PCI and I-LS. We demonstrate the optimization process in Figure. 4(a). Also, we
display the corresponding molecular graphs, property scores, and calculate the loss ratio: ratio =
lJNK3

lGSK3β
in Figure. 4(b). It demonstrates that PCI is capable of finding preference-specific Pareto

optimal solutions.
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(a) Objective Space. (b) Molecules and Property Scores of PCI.

Figure 4: Optimization process of PCI and I-LS. (a) Loss trend and corresponding preference ray.
(b) Generated molecules by PCI, property scores and loss ratio.
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(b) Correlated Objectives.

Figure 5: Optimization process of PCI and I-LS. (a) Loss trend and corresponding preference ray.
(b) Generated molecules by PCI, property scores and loss ratio.
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Figure 6: Search Efficiency. The number
of preferences represents the scope that we
search the Pareto front. The number of oracle
calls grows with the number of preferences.

Search Efficiency. To understand the search effi-
ciency of PCI, we search the Pareto front for MOMO
under a limited budget for the number of prefer-
ence vectors (2, 5, 10, 15, 20). For GNK3β+JNK3,
we allocate a 10K oracle call budget for sur-
rogate oracle pretraining, and Npreference ∗ 1K
for Inversion. For the optimization involving
GNK3β+JNK3+QED+SA, the pretraining budget is
fixed at 20K. Figure. 6 clearly illustrates that APS
increases rapidly with number of preference.

Conflicting and Correlated Objectives. For fair
comparison, we follow Jain et al. (2023) and use the
synthetic sequence design task from Stanton et al.
(2022). The task consists of generating strings with
the objectives given by occurrences of a set of d n-
grams. PCI adequately models the trade-off between
conflicting objectives in the 3 Unigrams task as illustrated by the Pareto front of generated candidates
in Figure.5(a). For the 3 Bigrams task with correlated objectives, Figure. 5(b) demonstrates PCI
generates candidates which can simultaneously maximize multiple objectives.

6 CONCLUSION

In this work, we present a novel approach, preference-conditioned Inversion (PCI) framework, to ex-
plore potential trade-offs between multiple properties for molecular optimization. PCI combines the
strengths of Inversion models and Pareto optimization to generate high-quality, diverse molecules
that satisfy preference constraints. Comprehensive experimental evaluations reveal that our model is
able to select molecules across various preferences and significantly outperform existing baselines.
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A THEORETICAL ANALYSIS

In this section, we discuss the theoretical properties of Preference-Conditioned Inversion (PCI) Al-
gorithm.

A.1 ASSUMPTIONS AND KEY LEMMAS

Assumption A.1 (Molecule Size Bound). The sizes (i.e., number of substructures) of all the scaf-
folding trees generated are upper bounded by N .

We focus on small molecule optimization; the target molecular properties would decrease signifi-
cantly when the molecule size is too large (Bickerton et al., 2012), e.g., QED. To perform a con-
vergence analysis, we initially establish several assumptions to characterize the geometry of the
objective landscape.
Assumption A.2 (Submodularity and Smoothness). Suppose xt−1,xt,xt+1 are generated succes-
sively by PCI via growing a substructure on the scaffolding tree. We assume that the corresponding
objective gain (i.e., △λ̌t) satisfies the diminishing returns property:

λ̌t−1 − λ̌t ≥ λ̌t − λ̌t+1, (submodularity) (12)
Submodularity plays the role of concavity/convexity in the discrete regime. On the other hand, we
specify the curvature ratio of the objective function L by assuming

λ̌t − λ̌t+1 ≥ α(λ̌t−1 − λ̌t), 0 < α < 1. (curvature) (13)

The choice of submodularity as an assumption for our analysis was motivated by experimental ob-
servations. For instance, in the optimization process, we noticed that the objective values, such as
QED, can rapidly increase to a high point with just a few iterations. However, as we added more
atoms, the growth rate began to decrease, i.e. the return is diminishing when the property scores are
reaching the upper bound. This trend is observed in many properties and provides insight into our
assumption.
Definition A.3 (Dominant Set). Given xt in chemical space X at the t-th iteration, we define a
Dominant Set V⪯Lt ⊂ Rm that contains all attainable multi-objective values that dominate the Lt

as:
V⪯Lt =

{
L ∈ O | L ⪯ Lt

}
. (14)

Definition A.4 (Uniform Set). Given a molecule xt in the chemical space X at the t-th iteration
and a specified preference vector λ ∈ Rm, we define a Uniform Set Mλ

Lt ⊂ Rm that contains all
attainable multi-objective values demonstrating enhanced uniformity compared to Lt as:

Mλ
Lt =

{
µλ(L) ≤ µλ(Lt)

}
. (15)

Definition A.5 (Admissible Set). Given a molecule xt in the chemical space X at the t-th iteration
and a specified preference vector λ ∈ Rm, we define a bounded Admissible Set Aλ

Lt ⊂ Rm as:

Aλ
Lt =

{
L ∈ O | L ⪯ Ľt

}
, (16)

where Ľt = λ̌t (1/λ1, · · · , 1/λm), and λ̌t = max
{
Lt
jλj | j ∈ [m]

}
.

Clearly, the admissible set contains all the points in O that dominate the Lt, i.e. V⪯Lt ⊂ Aλ
Lt .

Moreover, when µλ(L) > 0, it also contains points exhibiting superior uniformity compared to Lt,
i.e. Aλ

Lt ∩ Mλ
Lt ̸= ∅. Consequently, the admissible set encompasses the desired solution for the

subsequent iteration, fulfilling both uniformity and dominating properties.

As illustrated in Mahapatra & Rajan (2020), a descent direction dnd will be oriented towards the
preference-specific Pareto front and within a confined admissible set. Since we perform K descents
in each iteration, we restructure properties for PCI in the molecular optimization problem as follows:
Lemma A.6 (Bounded Objective Space for the Next Iteration). There exists a step size η0 > 0,
such that for every η ∈ [0, η0], PCI employs T̃xt = T̃xt − ηdnd to update differentiable scaffolding
tree until convergence. Subsequently, we greedily sample a molecule as xt+1 from T̃ K

xt by adding a
substructure, if the solution is nonempty. The multi-objective value Lt+1 of the new solution point
xt+1 lies in the t-th admissible set:

Lt+1 ∈ Aλ
Lt . (17)

14
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Following Theorem 2 in Mahapatra & Rajan (2020), the empirical loss LT̃ of scaffolding tree T̃ K
xt

lies in the t-th admissible set Aλ
Lt . Since we greedily sample a molecule as xt+1 from T̃ K

xt , thus
we have Lt+1 ⪯ LT̃ . Therefore, it follows that Lt+1 ∈ Aλ

Lt . It demonstrates that for a molecule
xt at the t-th iteration, PCI selects a molecule as xt+1 from xt’s neighborhood set N (xt), moving
towards improved uniformity and dominating properties. It provides a theoretical guarantee for the
quality of the solution.

Corollary A.7 (Convergence of Admissible Set). The sequence of relative maximum values λ̌t

obtained by descending against the adjusted gradient dnd is monotonic with λ̌t+1 ≤ λ̌t, which
means

Aλ
Lt ⊂ Aλ

Lt+1 , (18)

and the sequence of bounded sets {Aλ
Lt+1} converges.

Since Lt+1 ∈ Aλ
Lt , we naturally get λ̌t+1 ≤ λ̌t, thus we have Aλ

Lt ⊂ Aλ
Lt+1 . It demonstrates the

monotonicity of λ̌t. Suppose PCI selects a molecule as xt+1 from xt’s neighborhood set N (xt),
where the lowest λ̌t+1 is precisely determined, i.e., finding a solution that maximizes

∣∣λ̌t+1 − λ̌t
∣∣.

A.2 THEOREM

Theorem A.8 (Approximation Guarantee). Let the maximum preference-conditioned objective at
the t-th iteration λ̌t := max

{
Lt
jλj | j ∈ [m]

}
gain (i.e., △λ̌t) satisfy submodularity with a curva-

ture ratio α ∈ [0, 1]. Suppose the sizes (i.e., number of substructures) of all the scaffolding trees
generated are bounded by N . Given an initial molecule x0 and preference vector λ, PCI algorithm
enjoys the following approximation guarantee when performing T optimization rounds:

LT ∈ A :=
{
L ∈ O | L ⪯ (Γλ̌∗ + (1− Γ)λ̌0) · λ−1

}
, (19)

where Γ = 1−αT

(1−α)N , λ̌∗ = max
{
L∗
jλj | j ∈ [m]

}
, and λ̌0 = max

{
L0
jλj | j ∈ [m]

}
, and λ−1 :=

(1/λi, . . . , 1/λm).

Proof. In the following steps of the proof, to simplify mathematical notation, we substitute λt for
λ̌t. Starting from x0, suppose the path to optimum x∗ with the preference λ is

x0 → x1 → x2 → · · · → xk = x∗, (20)

where each step, one substructure is added.

For PCI, we run T ∈ [k,N ] iterations, and the path produced by PCI is

x̂0(x0) → x̂1 → x̂2 → · · · → x̂T , where T ≥ k. (21)

For the optimum x∗, based on the submodularity in Assumption A.2 we have

k
(
λ0 − λ1

)
≥

k∑
j=1

(λj−1 − λj) = λ0 − λk = λ0 − λ∗. (22)

From assumption A.1, it follows that

λ0 − λ1 ≥ 1

k
(λ0 − λ∗) ≥ 1

N
(λ0 − λ∗). (23)

For the molecular zT found by PCI, based on curvature ratio in Assumption A.2 we have

λ̂T−1 − λ̂T ≥ α
(
λ̂T−2 − λ̂T−1

)
≥ · · · ≥ αT−1

(
λ̂0 − λ̂1

)
. (24)

Then we have

λ̂0 − λ̂T =

T∑
j=1

(λj−1 − λj) ≥
T∑

j=1

αj−1(λ̂0 − λ̂1) =
1− αT

1− α

(
(λ̂0 − λ̂1)

)
. (25)
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Since PCI pick up a molecule as xt+1 from xt’s neighborhood set N (xt) with lowest λ̌t+1 is exactly
solved, i.e. λ̂1 ≤ λ1, and λ̂0 = λ0. Thus we have

λ̂0 − λ̂1 ≥ λ0 − λ1. (26)

From Eq. 23, Eq. 25 and Eq. 26, it follows that

λ0 − λ̂T ≥ 1− αT

(1− α)N
(λ0 − λ∗). (27)

Thus we have:

λ̂T ≤ 1− αT

(1− α)N
λ∗ + (1− 1− αT

(1− α)N
)λ0. (28)

Finally, it follows that

LT ∈ A :=
{
L ∈ O | L ⪯ (Γλ∗ + (1− Γ)λ0) · λ−1

}
, (29)

B TIME COMPLEXITY

We did computational analysis in terms of oracle calls and computational complexity.(1) Oracle
Calls. PCI has the comparable oracle calls to that of DST, it requires O(TM) oracle calls, where T
is the number of iterations (Alg 1). M is the number of generated molecules, we have M ≤ KJ , K
is the number of nodes in the scaffolding tree, for small molecule, K is very small. J is the number of
enumerated candidates in each node. (2) Computational Complexity. The computation of C = GTG
has runtime O(m2n), where n is the dimension of the gradients. With the current best LP solver
[1], our LP (10), that has m variables and at most 2m+ 1 constraints, has a runtime of O∗(m2.38).
Since in deep networks, usually n ≫ m, PCI does not significantly increase the computational cost
of backpropagation gradient calculation. The complexity and runtime are acceptable for molecule
optimization. Furthermore, we present the change in wall clock time when Pareto optimization is
incorporated to add one substructure to a initial molecule: 28s → 63s. The introduction of Pareto
optimization doesn’t increase oracle calls. As the length of molecules becomes longer and longer,
the time occupied by oracle calls will dominate.

C IMPLEMENTATIONS DETAILS

C.1 MOLECULAR REPRESENTATION

A molecular graph is a representation of a molecule, consisting of atoms as nodes and chemical
bonds as edges. Nonetheless, challenges such as chemical validity constraints, ring integrity, and
extensive calculations hinder the explicit reconstruction of potential connectivity. To tackle this, Jin
et al. (2018) introduced a scaffolding tree, a spanning tree that employs nodes as substructures to
model a higher-level representation of a molecule.

A scaffolding tree, denoted by Tx = {N,A,w}, serves as a high-level representation of a molecule
x ∈ X . Each node is a member of the substructure set S (also referred to as the vocabulary set).
Tx consists of three components: (i) the node indicator matrix defined as N ∈ {0, 1}K×|S|, where
each row of N is a one-hot vector indicating the substructure to which the node belongs; (ii) the
adjacency matrix denoted by A ∈ {0, 1}K×K , where Aij = 1 when the i-th and the j-th nodes are
connected, and 0 when they are unconnected; (iii) w = [1, . . . , 1]T ∈ RK , signifies that the K nodes
are equally weighted. We convert molecules to scaffolding tree for training the surrogate oracle.

To modify the scaffolding tree Tx, we employ its differentiable version, T̃x, as proposed by Fu
et al. Fu et al. (2022). The basic scaffolding tree, Tx, can be transformed into a tree containing
K + Kexpand nodes, denoted by T̃x = {Ñ, Ã, w̃}, through the addition of an expansion node set

16



Under review as a conference paper at ICLR 2024

Vexpand = {uv | v ∈ VTx}, where |Vexpand| = Kexpand = K. It is crucial to note that T̃x con-
tains learnable parameters, which can be interpreted as conditional probability. This conditional
probability can be utilized to sample a new tree through processes such as node shrinking, replace-
ment, or expansion. Each scaffolding tree corresponds to multiple molecules, as substructures can
be combined in various ways. We assemble all possible molecules according to Jin et al. (2018).

C.2 FRAMEWORK DETAILS

We construct a differentiable surrogate model with a Graph Convolutional Network (GCN) (Kipf &
Welling, 2016) to capture knowledge from any oracle function. In contrast to DST, which calculates
the mean value of multiple properties on the observed dataset D to derive a single unified property
ŷ for training, we individually predict each property score of the molecule. We initialize the repre-
sentation by H(0) = NE ∈ RK×d, where E ∈ R|S|×d is the embedding matrix of substructures,
and is randomly initialized. The updating rule of GCN for the l-th layer is:

H(l) = RELU
(
B(l) +A

(
H(l−1)U(l)

))
, l = 1, · · · , L, (30)

where L is GCN’s depth, and B(l) ∈ RK×d/U(l) ∈ Rd×d are bias/weight parameters. We leverage
the weighted average as the readout function of the last layer’s node embeddings, followed by multi-
head MLP to yield the prediction of m properties:

ŷ = MLP

(
1∑K

k=1 wk

K∑
k=1

wkH
(L)
k

)
. (31)

C.3 DETAILS OF I-LS

The baseline method Inversion with Linear Scalarization (I-LS) is summaried in Algorithm 2. I-LS
dose not compute the non-dominated gradient dnd but instead linearly weights the gradient using
preferences, i.e., d = G ∗ λ. We keep the remaining parts consistent with PCI.

Algorithm 2: Inversion with Linear Scalarization (I-LS)
Input: Input molecule x0 ∈ X , preference vector λ ∈ Rm, and step size η > 0.
Output: Generated Molecule x∗.

1 Initialization.
2 Train surrogate oracle according to Eq. 7.
3 for t = 0, . . . , T do
4 Convert molecule xt to differentiable scaffolding tree T̃ 0

xt ;
5 for k = 0, . . . ,K do
6 Compute gradients of each property objective w.r.t. T̃ k

xt : G = ∇L = [g1, . . . , gm];
7 Calculate the direction of descent dls = Gλ;
8 Update the differentiable scaffolding tree using T̃ k+1

xt = T̃ k
xt − ηdls.

9 end
10 Sample discrete Txt+1 from continuous T̃ K

xt and assemble it to molecule xt+1.
11 end

C.4 PREFERENCE VECTOR

To generate a preference vector uniformly distributed in the objective space, we describe the detailed
process. If we want to uniformly sample a point on the arc of unit circle or unit sphere surface, we
can follow the steps below:
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Algorithm 3: Generate Preference for Two Objective
1 Generate a uniformly distributed variable, u, ranging from 0 to 1.
2 Compute coordinates’ angle: θ = π

2u.
3 Compute Cartesian coordinates: λ1 = cos θ, λ2 = sin θ.

Algorithm 4: Generate Preference for Three Objective
1 Generate two uniformly distributed variables, u and v, ranging from 0 to 1.
2 Compute spherical coordinates’ inclination angle and azimuth angle: θ = π

2u, ϕ = arccos v.
3 Compute Cartesian coordinates: λ1 = sinϕ cos θ, λ2 = sinϕ sin θ, λ3 = cosϕ.

C.5 PCI SETUP

Most of the settings follow the DST (Fu et al., 2022). We implemented PCI using Pytorch 1.7.1,
Python 3.7.9 on an Intel Xeon Platinum 8255C @ 2.50GHz CPU. Both the size of substructure
embedding and hidden size of GCN (GNN) are d = 100. The depth of GNN L is 3. In each
generation, we keep C = 10 molecules for the next iteration. The learning rate is 1e-3 in training
and inference procedure. we set the iteration T to a large enough number and tracked the result.
When oracle calls budget is used up, we stop it. All results in the tables are from experiments up to
T = 50 iterations. For ILS, We only replace the objective function in PCI with Linear Scalarization,
and other settings are consistent with PCI.

C.6 ASSEMBLE THE SCAFFOLDING TREE INTO MOLECULE

(a) Ring-atom connection. When connecting atom and ring in a molecule, an atom can be connected
to any possible atoms in the ring. Ring-ring connection. (b) When connecting ring and ring, there
are two general ways, (1) one is to use a bond (single, double, or triple) to connect the atoms in the
two rings. (2) another is two rings share two atoms and one bond.

C.7 BASELINES

In this section, we describe the experimental setting for baseline methods. Most of the settings
follow the original papers.

• LigGPT is a string-based distribution learning model with a Transformer as decoder (Bagal et al.,
2021), we trained it for 10 epochs using the Adam optimizer with a learning rate of 6e− 4.

• GCPN (Graph Convolutional Policy Network) (You et al., 2018) leveraged graph convolutional
network and policy gradient to optimize the reward function that incorporates target molecular
properties and adversarial loss. we trained it using Adam optimizer with 1e-3 initial learning rate,
and batch size is 32.

• MolDQN (Molecule Deep Q-Networks) (Zhou et al., 2019) formulate the molecule generation
procedure as a Markov Decision Process (MDP) and use Deep Q-Network to solve it. Adam is
trained Adam optimizer with 1e-4 as the initial learning rate, ϵ is annealed from 1 to 0.01 in a
piecewise linear way.

• GA+D (Genetic Algorithm with Discriminator network) (Nigam et al., 2020) uses a deep neural
network as a discriminator to enhance exploration in a genetic algorithm and is trained using the
Adam optimizer with a learning rate of 1e− 3, β is set it to 10.

• MARS (Xie et al., 2021) leverage Markov chain Monte Carlo sampling (MCMC) on molecules
with an annealing scheme and an adaptive proposal. It is trained using Adam optimizer with 3e-4
initial learning rate.

• RationaleRL (Jin et al., 2020) is a deep generative model that grows a molecule atom-byatom
from an initial rationale (subgraph). It is trained using Adam optimizer on both pre-training and
fine-tuning with initial learning rates of 1e-3, 5e-4, respectively. The annealing rate is 0.9.
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• ChemBO (chemical Bayesian optimization) (Korovina et al., 2020) leverage Bayesian optimiza-
tion. It also explores the synthesis graph in a sample-efficient way and produces synthesizable
candidates. Following the default setting in the original paper, the number of steps of acquisition
optimization is set to 20. The initial pool size is set to 20, while the maximal pool size is 1000.

• BOSS (Bayesian Optimization over String Space) (Moss et al., 2020) builds a Gaussian process
surrogate model based on Sub-sequence String Kernel, which naturally supports SMILES strings
with variable length, and maximizing acquisition function efficiently for spaces with syntactical
constraints. The population size is set to 100, the generation (evolution) number is set to 100.

• DST (Differentiable Scaffolding Tree) (Fu et al., 2022) utilizes a learned knowledge network to
convert discrete chemical structures to locally differentiable ones. DST enables a gradient-based
optimization on a chemical graph structure by back-propagating.

• MOGFN-PC (Preference-conditional GFlowNets) (Jain et al., 2023) is a Reward-conditional
GFlowNets based on Linear Scalarization. They introduce the Weighted-log-sum that can help
in scenarios where all objectives are to be optimized simultaneously, and the scalar reward from
Weighted-Sum can be dominated by a single reward.

• RetMol (Retrieval-Based Molecular Generation) (Wang et al., 2023) retrieves and fuses the ex-
emplar molecules with the input molecule, which is trained by a new selfsupervised objective that
predicts the nearest neighbor of the input molecule.

C.8 N-GRAMS

The task is to generate sequences of some maximum length L, which we set to 36 for the experi-
ments. We consider a vocabulary (actions) of size 21, with 20 characters [”A”, ”R”, ”N”, ”D”, ”C”,
”E”, ”Q”, ”G”, ”H”, ”I”, ”L”, ”K”, ”M”, ”F”, ”P”, ”S”, ”T”, ”W”, ”Y”, ”V”] and a special token
to indicate the end of sequence. The rewards {Ri}di=1 are defined by the number of occurrences of
a given set of n-grams in a sequence x. For instance, consider [”AB”, ”BA”] as the n-grams. The
rewards for a sequence x = ABABC would be [2, 1]. In our experiments, we use 3 Unigrams [”A”,
”C”, ”V”] and 3 Bigrams [”AC”, ”CV”, ”VA”].

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 MOLECULES GENERATED BY PCI

We provide several molecules synthesized via the PCI approach.

(1) Molecules with JNK3 and GSK3β scores. Each score independently represents the respective
values for JNK3 and GSK3β, see Figure. 7.

(2) Molecules with highest average QED, normalized-SA, JNK3 and GSK3β scores. These four
scores symbolize the values for QED, normalized SA, JNK3, and GSK3β, respectively, see Figure.
8.

D.2 MOLECULES GENERATED BY LINEAR SCALARIZATION

We exhibit the molecular graphs produced through Linear Scalarization. Alongside these visual rep-
resentations, their corresponding property scores are included, and the loss ratio is calculated using
the formula ratio = lJNK3

lGSK3β
. This supplementary information further elaborates on the experimental

results outlined in Section 6.3 of the paper, as illustrated in Figure. 9.
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Figure 7: Generated molecules by PCI. These four scores symbolize the values for JNK3 and
GSK3β, respectively.
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