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ABSTRACT

Deep neural networks can obtain impressive performance on various tasks under
the assumption that their training domain is identical to their target domain. Perfor-
mance can drop dramatically when this assumption does not hold. One explanation
for this discrepancy is the presence of spurious domain-specific correlations in the
training data that the network exploits. Causal mechanisms, in the other hand, can
be made invariant under distribution changes as they allow disentangling the factors
of distribution underlying the data generation. Yet, learning causal mechanisms
to improve out-of-distribution generalisation remains an under-explored area. We
propose a Bayesian neural architecture that disentangles the learning of the the
data distribution from the inference process mechanisms. We show theoretically
and experimentally that our model approximates reasoning under causal inter-
ventions. We demonstrate the performance of our method, outperforming point
estimate-counterparts, on out-of-distribution image recognition tasks where the
data distribution acts as strong adversarial confounders.

1 INTRODUCTION

The training of deep neural networks commonly relies on the assumption that the distribution of
the training data is representative of the distribution at inference. Despite being widely adopted,
this assumption has been heavily criticised as it is often challenged in practice (Langford, 2005;
Ben-David et al., 2006; Albuquerque et al., 2019; Arjovsky et al., 2019; Jalaldoust & Bareinboim,
2024). Indeed, despite tremendous progress on many vision tasks over recent years, deep neural
networks face limitations and reduced performance on tasks requiring the model to shift from its
training distribution at test time (Mao et al., 2022).

Causality theory under the do-calculus framework (Huang & Valtorta, 2006; Pearl, 2009) provides
tools to explain these limitations. Neural networks extract correlation patterns but do not possess
knowledge on the cause-effect relationships from the data; causal links and potentially spurious
correlations are learned alike. However, the two relationships fundamentally differ as correlations can
be non-causal: e.g. a correlation between X and Y can be explained by a causal link X ← Z → Y .
This type of correlation can be specific to the distribution if Y depends on the domain, e.g. has tusks
and a prehensile trunk← African bush elephant→ is in a savannah environment. A system only
learning the correlation between X and Y may fail to recognise an elephant in a different environment.
However, direct causal links make these relationships explicit and are therefore more robust to changes
in the distribution (Schölkopf et al., 2021). In particular, the Independent Causal Mechanisms
principle states that causal relationships are only sparsely connected and altering one should not
modify the others (Peters et al., 2017; Schölkopf et al., 2021), allowing some learned mechanisms to be
transported to new environments. Indeed, changes in the distribution can be modelled via the notion
of transportability of causal mechanisms (Bareinboim & Pearl, 2013; Jalaldoust & Bareinboim, 2024).
As such, transportable causal effects are equivalent to domain-invariant features. These principles
motivate the search for factorised neural models composed of independent modules representing
either domain-specific or domain-invariant conditional distributions.

Bayesian neural networks (BNNs) (MacKay, 1992; Blundell et al., 2015b; Magris & Iosifidis, 2023)
are another line of work attempting to model robust representations of mechanisms by learning the
distribution W of a parametric function y = fw(x), w ∼ W instead of a single point estimate w.
BNNs are particular suited to express uncertainty in their response and reduce overconfidence. By
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(a) Target causal mechanism. R is a latent
representation of X estimating ZR. This rep-
resentation allows computing interventional
queries transportable across domains using
R. However, it is not directly accessible via
supervised learning.
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(b) Causal graph during training. The inference mechanism de-
termining Y is estimated using a function fw(r) parametrised
by the weights w ∼ W and with an input representation
r ∼ R. W is learned from the training data D (training target
DY and representation DR learned from DX ) and stochastic
processes represented by the random variable UW .

Figure 1: Target causal representation and actual causal graph during training. X is the input image
and Y is the output class. Z is the variable representing the factors of distribution generating the
input X , it is composed of domain-specific factors ZS and robust domain-invariant factors ZR. UXY

represents the shared factors of variations between X and Y . The variables in red are unobserved. S
is a selection variable determining the current domain. The target causal graph is different from the
one used in supervised deep learning as it omits the influence of the datasets D = {DX ,DY }. The
datasets depend on the same factors as X and Y and add spurious correlations that are not captured
when using the target representation.

differentiating the modelling of uncertainty in the data distribution (aleatoric uncertainty) from the
uncertainty in the process distribution (epistemic uncertainty), BNNs can better capture the latter
(Kendall & Gal, 2017). However, BNNs are not fundamentally more robust against distribution shifts
than their point-estimate counterparts (Izmailov et al., 2021). This problem can be explained by the
intractability in the optimisation of the posterior (Magris & Iosifidis, 2023). Motivated by the use of
partially stochastic networks (Sharma et al., 2023), we argue that BNNs should also be integrated in
a wider framework estimating causal mechanisms.

We propose a Causal-Invariant Bayesian (CIB) neural network taking advantage of the causal
structure of the supervised learning process to differentiate domain-specific and domain-invariant
mechanisms. Compared to previous work, we integrate a more realistic causal graph that takes into
account the Bayesian model update during learning. We use variational inference and partially-
stochastic Bayesian neural networks to model the causal paths in an interventional setting. We verify
theoretically and experimentally the applicability of our method. In particular, we perform tests on
standard out-of-distribution (o.o.d) image recognition tasks. Our contributions are as follows:

• We reformulate the Bayesian inference problem to include causal interventions and the
supervised learning mechanism and propose a factorised model explicitly modelling domain-
invariant mechanisms in an unsupervised fashion,

• We propose an architecture wrapped around a neural network inspired by this factorised
model and test it on challenging tasks requiring domain shifts,

• We show that adding our model can increase the i.i.d and o.o.d performance of the underlying
neural network and reduce overfitting,

• Additionally, we find with our model that adding unsupervised contextual information with
a Bayesian classifier to a standard ResNet improves its robustness and training stability,
even with a small number of context and Bayesian weight samples.

Our code is available at this anonymous repository: https://anonymous.4open.science/
r/cibnn-1B0B.
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2 BACKGROUND AND RELATED WORK

Causal Inference and Transportability Causal inference methods aim to estimate the result of
causal queries. Answering these queries require an inference model to have a partial knowledge of
the causal mechanisms underlying the studied system. The causal knowledge is typically divided into
three layers: observational (l1), interventional (l2) and counterfactual (l3) (Pearl, 2009). Bareinboim
et al. (2022) showed that these layers form a non-collapsing hierarchy, i.e. information at level i
is needed to answer a question at level i. Richens & Everitt (2024) further showed that an agent
must learn a causal model of the world (at level l2) to robustly solve a task, e.g. subject to changes
of domain. The problem of formally representing causal quantities is addressed by the do-calculus
framework, which introduces the do(·) operator corresponding to an intervention on a causal variable
(Pearl, 2009). For example, given a treatment T and background covariates X , the probability
of getting cured given by C can be expressed with the query P (C|do(T ), X). The do-operation
implies that the treatment is received in an unbiased manner (i.e. as in a double-blind study). An
interventional query as described in the example can be reduced to observations using the rules of do-
calculus. We describe them in Appendix A.1. Transportability theory furthermore allows representing
causal mechanisms across multiple domains (Bareinboim & Pearl, 2013) by differentiating domain-
specific and domain-invariant variables in a causal graph. Assuming the domains can be represented
with a unified causal graph, domain-specific mechanisms can be modelled by a selection variable
whose value depends on the current domain. The S-admissibility criterion (Jalaldoust & Bareinboim,
2024) states that the value of a causal variable A is invariant when shifting from a domainMi to
a domainMj if it can be d-separated from all selection variables Sij (given observations Z), i.e.
A ⊥⊥ Sij |Z =⇒ P i(A|Z) = P j(A|Z). Mao et al. (2022) also integrate causal transportability for
vision tasks but do not include the Bayesian learning process. They combine input and contextual
information differently and only select context with the same label during training. Conversely, we
make the assumption that the context should be diverse and representative of the label distribution.
We use label mixup to this end. We also include new regularisation techniques.

Disentanglement A large body of work attempting to disentangle domain-specific and domain-
invariant information rely on an autoencoding paradigm and reconstruct the input image as part of
their training process (Gabbay et al., 2021; Yang et al., 2021; Zhang et al., 2022). For instance, Zhang
et al. (2022) build a latent space regularised to divide domain-invariant semantic features from a
domain-specific variation space. Similarly to our work, the authors add contextual information by
feeding different samples to a variation space encoder to improve domain generalisation. However,
they mainly rely on a reconstruction loss whereas we argue that this component is not needed
for building robust representations. van Steenkiste et al. (2019) argued that having disentangled
representations improved systematic generalisation in abstract visual reasoning tasks. The authors
also found that a low reconstruction error was not necessary for performance on downstream tasks.
Our work differs from the disentanglement literature by detaching from the autoencoding paradigm
and adopting a causal Bayesian approach.

Bayesian Neural Networks and Variational Inference Bayesian deep learning methods teach
neural networks to simulate Bayesian reasoning when learning new information. This approach
allows dealing with uncertainty and has been argued to help mitigate overconfidence and improve
robustness in neural networks (Magris & Iosifidis, 2023). Bayesian Neural Networks (BNNs) model
the distribution of parametric functions solving a task: the parameters w of a BNN are not directly
optimised but sampled from a learned posterior distribution P (w|D). This distribution can be
obtained via the Bayes objective: P (w|D) = P (D|w)P (w)

P (D) . However, training BNNs is challenging
because the computation of the denominator (called the evidence) is often intractable (Izmailov
et al., 2021). A standard way to circumvent this issue is to approximate the posterior P (w|D) with a
variational distribution q(w). This distribution can be estimated by maximising the Evidence Lower
Bound (ELBO) (Blundell et al., 2015b). This quantity can have many expressions, the one most
suitable for our work is shown in Equation 1. It simultaneously maximises the likelihood of the data
D = {Dx,Dy} given the model w while maintaining the distribution q(w) close to the prior P (w).

ELBO(q) = Eq(w)[logP (Dy|Dx, w)]− KL(q(w)||P (w)) (1)
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Izmailov et al. (2021) showed that the posterior distribution of BNNs have a high functional diversity
and can outperform their point-estimate counterparts on downstream tasks. However, they do not
necessarily show a high diversity in the parameters space and strictly following Bayesian posteriors
can lead to reduced robustness against distribution shifts. Sharma et al. (2023) further showed that
partially-stochastic BNNs outperform networks containing only Bayesian layers. Roy et al. (2024)
recently showed that inducing BNNs to assign similar posterior densities to reparametrisations of the
same functions (i.e. different weights realising the same function) could improve their ability to fit
the data. These findings motivate our work on integrating BNNs as a part of a larger causal neural
network.

Mixup Input Mixup (Zhang et al., 2018) and Manifold Mixup (Verma et al., 2019) are regularisation
techniques for improving robustness in image classification tasks by interpolating inputs, respectively
latent representations. The main principle of mixup consists of combining two inputs (xi, xj) and
labels (yi, yj) together to form a new virtual training example x with label y: x = α ·xi+(1−α) ·xj

and y = α · yi+(1−α) · yj (with α ∈ [0, 1] constant). Manifold Mixup performs a similar operation
but interpolates latent representations instead of the inputs. Gendron et al. (2023) argued that mixing
could be used to include interventional information into the network’s training. Following these
observations, we integrate mixup strategies as part of our training scheme.

3 INTERVENTIONAL BAYESIAN INFERENCE

We propose to learn deep domain-invariant representations that can be leveraged to solve o.o.d tasks.
In this section, we show the necessary assumptions needed to learn this representation in a supervised
fashion and identify an interventional query that can solve the task. We show that this query can
be answered using Bayesian Neural Networks (MacKay, 1992; Blundell et al., 2015b; Magris &
Iosifidis, 2023). Section 4 describes our proposed architecture.

Interventional queries The causal graph in Figure 1b shows the causal dependencies between
the variables involved in the learning process. The standard inference query P (Y |x) is affected by
spurious correlations as they do not distinguish the causal links X

...−→ Y (i.e. X → · · · → Y )
and their common causes Z

...←− UXY
...−→Y . In causality theory, the do(·) operator removes the

incoming dependencies of the target variable (Pearl, 2009). Therefore, the interventional query
P (Y |do(x)) solves the confounding issue (Mao et al., 2022). However, it does not take into account
the conditioning on the training dataD. We specify an interventional query that makes the dependency
on the data explicit. Note that we simplify the formalism by considering the label Ytrue and predicted
value Ypred with a single variable Y . This is equivalent to having a prediction loss L(Ypred, Ytrue) = 0.

Conditional distributions independent from the domain selection variable S are transportable
across domains (Jalaldoust & Bareinboim, 2024). This independence can be obtained using
the do(·) operation by removing the outgoing dependencies of S. The conditional distribution
P (y|do(x), do(DX),DY ) is transportable across domains but is not tractable as it requires marginal-
ising over all possible input distributions (via the frontdoor criterion). We give more details in
Appendix A.3. Instead, we use a partially transportable query P (y|do(x),DX ,DY ). Equation 2
formulates this query using observations only (proof in Appendix A.2):

P (y|do(x),DX ,DY )

=

∫
w

P (w|DX ,DY )︸ ︷︷ ︸
marginalisation over W

∫
r

P (r|x,w,DX ,DY )︸ ︷︷ ︸
marginalisation over R

∫
x′
P (x′|DX ,DY )︸ ︷︷ ︸

marginalisation over X

inference︷ ︸︸ ︷
P (y|x′, r, w,DX ,DY ) dx

′ dr dw

(2)

The interventional query must be decomposed into four components to be represented using obser-
vations only. The marginalisation over W is equivalent to an application of the backdoor criterion
and ensures that no backdoor paths exist between Y and W . The marginalisations over X and R
are applications of the frontdoor criterion. The combination of these mechanisms ensure that no
backdoor paths exist between the input X and the output Y that could bias the training.
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Transportability We have identified an unbiased interventional query from observational in-
formation only. We now study the transportability of each component across domains using the
S-admissibility criterion (Jalaldoust & Bareinboim, 2024): conditional probabilities independent
from the domain selection variable S are transportable. We assume a training source domainMs and
a target test domainMt, it follows graphically that:

(W ⊥⊥ S|DX ,DY )G∆st (3)
(R ⊥⊥ S|X,W,DX ,DY )G∆st (4)

(X ̸⊥⊥ S|DX ,DY )G∆st (5)
(Y ̸⊥⊥ S|X,R,W,DX ,DY )G∆st (6)

The first two quantities are S-admissible and can be written as P s(w|DXs ,DYs) =
P t(w|DXt

,DYt
) = P ∗(w|DX ,DY ) and P s(r|x,w,DXs

,DYs
) = P t(r|x,w,DXt

,DYt
) =

P ∗(r|x,w,DX ,DY ). The last two quantities are not S-admissible and require to have access
to information DXt

,DYt
on the target domain. This is an expected result for P (x′|DX ,DY ). Indeed,

the input X directly depends on the distribution of its factors of variations. We must learn a suitable
representation of X to use it for inference. Note that this probability is independent of Y and does not
require access to labelled data. Under the current SCM problem formulation, P (y|x′, r, w,DX ,DY )
is not S-admissible because of the backdoor path between the training data D and the inference
target Y . However, in out-of-distribution settings, the training and target domains can differ and the
backdoor path may not exist. This is a reasonable expectation as the converse of the S-admissibility
criterion does not hold: non S-admissibility does not implies non-transportability. We discuss the
limitations of the current formalism in Section 6.

Tractable Approximation The quantities above are not directly tractable and must be estimated.
The marginalisation over W is a standard technique from Bayesian inference (Magris & Iosifidis,
2023). The integral can be approximated using Markov Chain Monte Carlo (MCMC) or Variational
Inference (Blundell et al., 2015b; Magris & Iosifidis, 2023). Specifically:

P (y|do(x),DX ,DY )

=

∫
w

P (w|DX ,DY )

∫
r

P (r|x,w,DX ,DY )

∫
x′
P (x′|DX ,DY )P (y|x′, r, w,DX ,DY ) dx

′ dr dw

≈ 1

M

M∑
j=1

∫
r

P (r|x,wj ,DX ,DY )

∫
x′
P (x′|DX ,DY )P (y|x′, r, wj ,DX ,DY ) dx

′ dr

where wj ∼ P (w|DX ,DY ) and M is the amount of weight samples. The distribution of the weights
W can be learned by a Bayesian Neural Network (BNN) (MacKay, 1992; Blundell et al., 2015b;
Magris & Iosifidis, 2023). The network does not directly learn the weights w but instead estimate
the parameters of the distribution in which the weights belong and sample the weights from this
distribution at inference. The learning objective cannot be directly optimised because of the high-
dimensional and non-convex posterior distribution P (w|D). Instead, MCMC (Izmailov et al., 2021)
and Variational Inference (Blundell et al., 2015b) algorithms are preferred. The marginalisation over
R is approximated similarly:

∫
r

P (r|x,wj ,DX ,DY )

∫
x′
P (x′|DX ,DY )P (y|x′, r, wj ,DX ,DY ) dx

′ dr

≈ 1

L

L∑
k=1

∫
x′
P (x′|DX ,DY )P (y|x′, rk, wj ,DX ,DY ) dx

′

where rk ∼ P (r|x,wj ,DX ,DY ) and L is the amount of latent representation samples. Variational
Autoencoders (VAEs) (Kingma & Welling, 2014) are commonly used to estimate this distribution. In

5
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Figure 2: Architecture of the Causal-Invariant Bayesian (CIB) neural network. At the top (in blue),
a variational encoder generates the respective parameters of the distributions of the intermediate
representations R and {R′

i}Ni=1 of the input X and the contextual information {X ′
i}Ni=1. R and

{R′
i}Ni=1 are then provided to the inference module (in orange) that retrieves Y . This procedure aims

to disentangle the learning of the representation R from the learning of the inference mechanisms
and force the inference module to only learn the latter. The weights W of the inference module are
sampled from a distribution learned using variational inference (in green). The weight sampling and
the variational encoding are regularised using an ELBO loss.

practice, we consider a single representation R per input and context image, i.e. L = 1. Finally, the
last marginalisation can be obtained by sampling input images from the current data distribution:∫

x′
P (x′|DX ,DY )P (y|x′, r, wj ,DX ,DY ) dx

′ ≈ 1

N

N∑
k=1

P (xi|DX ,DY )P (y|xi, rk, wj ,DX ,DY )

where N is the amount of input image samples.

4 CAUSAL-INVARIANT BAYESIAN NEURAL NETWORK

We now propose our Causal-Invariant Bayesian (CIB) architecture estimating the posterior probability
defined above. The architecture is summarised in Figure 2. It can be decomposed into three
components:

• A variational encoder (in blue) learning domain-invariant information R by jointly optimis-
ing the inference loss with an ELBO loss,

• An inference module (in orange) combining domain-specific and domain-invariant informa-
tion to solve the task,

• A weight distribution W (in green) learned by optimising the inference objective with an
ELBO loss and from which are sampled the parameters of the inference module.

Variational Encoder The variational encoder is used to learn the intermediate domain-invariant
representations R and {R′

i}Ni=1 . The network weights are learned by optimising an estimate lower
bound (ELBO) loss. Existing work attempting to disentangle domain-specific and domain-invariant
features typically use a Variational Autoencoder (VAE) and add a reconstruction loss (Gabbay et al.,
2021; Yang et al., 2021; Zhang et al., 2022). The input and the contextual information are fed
to two different encoders, learning to specialise to invariant features and domain-specific features,
respectively. However, we find that a single encoder can yield better performance. By jointly giving

6
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the input and the context to the encoder, we teach it to discard irrelevant domain-specific features
at once. We use a pre-trained ResNet-18 (He et al., 2016) without the final classification layer as
the encoder. For comparison, we perform additional experiments with the Causal Transportability
architecture that integrates a VAE and a reconstruction loss (Mao et al., 2022). Following the
methodology of partially-stochastic neural networks (Sharma et al., 2023), we use a point-estimate
network for the encoder and only use a Bayesian network for the inference network. This choice
allows to maintain the expressivity on the level of uncertainty inherent to Bayesian neural networks
while having a limited impact on the optimisation efficiency.

Bayesian Inference Network For the inference model, we use a dense network with stochastic
layers for the input and output and a single point-estimate hidden layer. The inference module takes
batches of N inputs. Each input is a sum of the input representation R and one context representation
R′

i. We select the mean of the results with respect to N to estimate the marginalisation over the
context. We use a reparametrisation trick (Blundell et al., 2015a) to maintain the full differentiability
of the network. Following Elfwing et al. (2018), we change the activation layers from ReLU to SiLU.

Context Regularisation We add label-mixing regularisation to complement the contextual infor-
mation during training, following the procedure used in Mixup (Zhang et al., 2018) and Manifold
Mixup (Verma et al., 2019). We mix the true label yt with the labels Yxi

of the N context images xi:

y = α · yt + (1− α) · 1
N

N∑
i=1

yxi
(7)

Weight Function Regularisation We further regularise the weights sampling of the inference
module to enhance the diversity of the weights while aligning it with functional diversity. Following
the work of Roy et al. (2024), we add a regularisation loss inducing the network to assign the same
posterior distribution to weights realising an identical function. For a batch of inputs x and a set
of weight samplesW = {wi}Mi=1, we define our weight function regularisation loss in Equation 8.
Comb(W, 2) denotes the set of 2-combinations fromW .

Lweight_func =
∑

(wi,wj)∈Comb(W,2)

||fwi(x)− fwj (x)||2 (8)

Loss function The final loss function comprises the mixed labels loss, the weight function regulari-
sation and the regularisation terms of the ELBO losses. The mixed label loss is a cross entropy loss
between the predicted distribution and the true mixed distribution as described above. We add the
weight function regularisation loss described in the previous paragraph, weighted by a hyperparame-
ter β. Then, KL divergence losses are added for regularising the variational parameters for the input
representation (νR, σR), the context representation (νR′ , σR′) and the Bayesian weights (νW , σW ).
These additional losses are weighted by their respective hyperparameters γ, µ and ϵ. The complete
loss is shown in Equation 9.

L = CrossEntropy(ypred,y) + β · Lweight_func + γ · KL(N (νR, σR)||N (0, 1))

+ µ · KL(N (νR′ , σR′)||N (0, 1)) + ϵ · KL(N (νW , σW )||N (0, 1))
(9)

5 EXPERIMENTS

5.1 DATASETS

We perform experiments on image recognition tasks. All datasets contain train, validation and test
splits in-distribution (i.i.d) and out-of-distribution (o.o.d). We first conduct image recognition on the
image recognition CIFAR10 dataset (Krizhevsky et al., 2009). We build the o.o.d sets by performing
random translations of the input images. We also use the OFFICEHOME dataset (Venkateswara et al.,
2017) which contains four subsets of images containing objects in various configurations (real world,
product sheet, art, clipart). We train on one configuration and evaluate o.o.d in another configuration.
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Table 1: Accuracy on CIFAR-10. The CIFAR-10 column shows the results on the i.i.d test set while
the columns on the right show the results with an increasing level of perturbation of the test set. The
mean and standard deviation across three runs are shown. Our model outperforms the baselines and
the ablated models. Particularly, mixup information has a significant impact on the final accuracy.

CIFAR-10 CIFAR-10-o.o.d-perturb.
0.1 0.2 0.4

ResNet-18 0.739 ± 0.005 0.599 ± 0.017 0.471 ± 0.022 0.284 ± 0.010
ResNet-18-CT 0.682 ± 0.004 0.507 ± 0.010 0.397 ± 0.006 0.244 ± 0.010
-w/-pretrainedVAE 0.641 ± 0.004 0.464 ± 0.017 0.358 ± 0.015 0.229 ± 0.010

CIBResNet-18 (ours) 0.763 ± 0.004 0.646 ± 0.006 0.510 ± 0.012 0.301 ± 0.006
-w/o-mixup 0.761 ± 0.004 0.625 ± 0.013 0.494 ± 0.009 0.297 ± 0.004
-w/o-weight-func 0.762 ± 0.009 0.635 ± 0.010 0.505 ± 0.009 0.305 ± 0.007

5.2 EXPERIMENTAL SETUP

We compare our CIBResNet-18 against ResNet-18 and ResNet-18-CT in i.i.d and o.o.d settings. The
second baseline is the causal-Transportability (CT) algorithm of Mao et al. (2022). Following their
methodology, we use a VAE for the P (R|X) encoder. Their proposed inference network is a three-
layers convolution network followed by a two-layers dense classifier. For a fair comparison, we use a
modified ResNet-18 (the same size as our model) that takes input and contextual information. More
details are given in Appendix B. We conduct our experiments on a single GPU Nvidia A100 with the
AdamW optimiser (Loshchilov & Hutter, 2019). We initialise the Bayesian classifier parameters from
the Normal distribution N (0, 1). On CIFAR-10, we train our model and the baselines for 20 epochs.
We find that all models usually do not show improvements after 10 epochs. On OFFICEHOME,
we train the models for 80 epochs. The training sets contain less samples than CIFAR-10 and more
epochs are required for convergence. ResNet-18 stops improving after 40 epochs while CIBResNet-
18 keep improving until around 60 epochs. We use hyperparameter grid search on the validation set
of CIFAR-10 to set the hyperparameters. We use the default learning rate of 0.005 for the baselines
and 0.01 for CIBResNet-18. We use a batch size of 64. By default, we use N = 16, M = 16,
α = 0.4, β = 0.01, γ = 10−6, ν = 10−6 and ϵ = 10−6. The remaining hyperparameters are set to
their default values. When evaluating the models in o.o.d settings, we use the batch statistics to build
the mean and variance in the batch normalisation layers instead of the values learned on the training
set that follow a different distribution.

5.3 VISUAL RECOGNITION

We compare our model against ResNet-18 and ResNet-18-CT on CIFAR10. The results are shown in
Table 1. Curiously, the base ResNet-18 outperforms the ResNet-18-CT models. This result reinforces
our hypothesis that a reconstruction loss is not necessary and can even be adversarial in some
situations. We further study how our model behaves on a more challenging dataset and compare it
with ResNet-18. Figure 3 shows the results on OFFICEHOME. Our model systematically outperforms
the baselines. Ablation studies in Table 1 demonstrate the importance of adding contextual mixup
information to the label during training to help the model incorporate the context images during
learning. We further compare the training of our model with the baseline on CIFAR-10 and the first
domain of OFFICEHOME in Figure 4. We observe that the validation accuracy of the baselines first
decreases to reach a plateau but then increases again, highlighting an overfitting to the training data.
However, this behaviour is not observed with CIBResNet-18, which steadily decreases across the
entire training, demonstrating higher stability. We can also note that our proposed model yields a
lower standard deviation in the accuracy.

5.4 IMPACT OF SAMPLING ON POSTERIOR

We perform additional experiments to investigate the impact of the number of samples. We vary
the amounts N and M of context images and inference weights, respectively. Figure 5 shows the
evolution of the accuracy of our model when varying N and M . The main contributing factor for
performance is the number of context samples: using four context samples instead of one significantly
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RealWorld Product Art Clipart

Clipart

Art

Product

RealWorld 0.253 0.124 0.091 0.084

0.034 0.509 0.023 0.023

0.06 0.019 0.125 0.035

0.064 0.03 0.038 0.462

(±0.019) (±0.01) (±0.016) (±0.006)

(±0.013) (±0.061) (±0.005) (±0.009)

(±0.001) (±0.003) (±0.017) (±0.001)

(±0.01) (±0.007) (±0.006) (±0.025)

(a) ResNet-18.

RealWorld Product Art Clipart

Clipart

Art

Product

RealWorld 0.303 0.191 0.121 0.123

0.052 0.574 0.036 0.042

0.076 0.033 0.159 0.034

0.083 0.055 0.046 0.517

(±0.009) (±0.016) (±0.009) (±0.004)

(±0.003) (±0.015) (±0.002) (±0.007)

(±0.019) (±0.015) (±0.023) (±0.009)

(±0.009) (±0.01) (±0.012) (±0.009)

(b) CIBResNet-18.

Figure 3: Domain transfer results on the OFFICEHOME dataset. Each row represents the category
of the training subset and each column represents the category of the test subset. Accuracy with a
random guess is 0.015. In the right figure, a cell is shown in green if its value is higher than the
baseline on the left. The mean and standard deviation across three runs are shown. Our proposed
model (on the right) systematically outperforms the baseline (on the left). Only the model trained on
the Art domain shows little to no improvement. As this domain demonstrates the lowest i.i.d and
o.o.d accuracy, we explain it by the lack of exploitable training data.
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(a) CIFAR-10 dataset.
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(b) OFFICEHOME-RealWorld dataset.

Figure 4: Evolution of the validation loss during training. The mean and standard deviation across
three runs are shown. After a period of improvement, the ResNet-18 and ResNet-18-CT baselines
overfit as the training progresses. This behaviour is not observed with CIBResNet-18, which also
demonstrates a lower standard deviation.

improves accuracy. We hypothesize that a lower number is not sufficient to be representative of the
distribution and has an adversarial effect instead. Figure 6 shows the evolution of the accuracy during
training for several values of N and M . We observe that increasing the number of weight samples M
improves sample efficiency and reduces the amount of training steps required to converge.

6 LIMITATIONS

This study focuses on developing a theory of interventional queries for o.o.d tasks and implementing
an architecture suitable for answering such queries. We do not focus on the optimisation and the
efficiency of such a system. Bayesian neural networks are notoriously difficult to optimise (Magris &
Iosifidis, 2023). As discussed in the experimental section, the sampling step can hurt the efficiency of
the model. As argued by Hooker (2021), the available hardware has a great impact on the success of
a machine learning method. The current hardware landscape is well suited for point estimate neural
networks but not for Bayesian and variational methods requiring many sampling steps. We argue that
developing better and usable Bayesian causal models will require, not only improving the theory, but
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Figure 5: Accuracy heatmap of CIBResNet-18
on the CIFAR-10 test set as a function of the
number of weight and context samples. The
amount of weight samples has a negligible effect
on performance. Only increasing the context size
improves accuracy.
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Figure 6: Evolution of the validation accuracy
of CIBResNet-18 on CIFAR-10 during training
with varying context images N and weight sam-
ples M . Increasing the weight samples reduces
the amount of training steps required for learn-
ing.

more importantly developing new optimisation strategies that can bridge the efficiency gap with their
point estimate counterparts.

We perform our analysis under the SCM framework (Pearl, 2009). The underlying causal model
is represented by a DAG that does not allow feedback loops. As the training of a neural network
is an iterative process, a representation that allows cycles could better represent the inner causal
mechanisms behind the learning process and help improve generalisation. This is a challenging task
(Bongers et al., 2021) that we will tackle in our future work.

7 CONCLUSION

We propose a Causal-Invariant Bayesian neural network architecture to improve domain generalisation
on visual recognition tasks. We build a theoretical analysis for domain generalisation with deep
learning based on causality theory and taking into account the parameter learning process. We show
experimentally that following causal principles can improve robustness to distribution shifts and
reduce overfitting. These problems are particularly prominent on strong reasoning tasks that require
neural systems to use abstract domain-invariant mechanisms and ignore spurious domain-specific
information (Chollet, 2019; Zhang et al., 2021). In our future work, we will extend our framework
to solve these challenging reasoning tasks. This investigation also provides elements to motivate
the development of a causality-based theory of deep learning following the Independent Causal
Mechanisms principle (Peters et al., 2017; Schölkopf et al., 2021). Such theory could improve
robustness and generalisation in neural networks and provide additional benefits such as improved
interpretability and modularity.
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A PROOFS FOR THE INTERVENTIONAL BAYESIAN INFERENCE

A.1 RULES OF DO-CALCULUS

We first describe the three rules of do-calculus (Pearl, 2009) as they are required for the proofs in
Sections A.2 and A.3. The first rule states that an observation z can be ignored if it does not affect
the outcome y of the query given the current causal graph. The second rule states that an intervention
on a variable do(z) can be considered an observation z if there are no backdoor paths linking it to
the outcome y, i.e. if the variables Z and Y do not share any common ancestors not captured by the
observation z. The third rule states that an intervention do(z) can be ignored if there are no direct
paths between Z and Y or backdoor paths between Y and observed descendants W of Z.

The three rules are formally defined as follows. For each rule, the equality holds if the independence
test between the variable of interest Z and the outcome Y is verified in the given causal graph. The
graph GX corresponds to the initial graph with the incoming links to X removed, corresponding to
an intervention on X . The graph GX furthermore removes the outgoing links of Z. The term Z(W )
removes the incmoing links of Z if Z is not an ancestor of the observed variable W .

• Rule 1 Deletion of observation

P (y|do(x), z, w) = P (y|do(x), w) if (Y ⊥⊥ Z|X,W )GX
(10)

• Rule 2 Reduction of intervention to observation

P (y|do(x), do(z), w) = P (y|do(x), z, w) if (Y ⊥⊥ Z|X,W )GXZ
(11)

• Rule 3 Deletion of intervention

P (y|do(x), do(z), w) = P (y|do(x), w) if (Y ⊥⊥ Z|X,W )G
X,Z(W )

(12)

A.2 IDENTIFIABILITY OF P (y|do(x),DX ,DY )

Proof. Proof of Equation 2. We start by marginalising on W to block the backdoor path between
R and Y (R← UR → DR → W → Y ) and use the rules of do-calculus to simplify the quantities.
This step ensures that we can later apply the frontdoor criterion with R and block the backdoor paths
between X and Y.

P (y|do(x),DX ,DY )

=

∫
w

P (y|do(x),DX ,DY , w)P (w|do(x),DX ,DY ) dw Marginalisation over W

=

∫
w

P (y|do(x),DX ,DY , w)P (w|DX ,DY ) dw Rule 3: (W ⊥⊥ X|DX ,DY )GX

We now focus on the quantity in the red box. We must use the frontdoor criterion to block all backdoor
paths between X and Y: X ← UXY → Y , X ← Z → DX ← UXY → Y . We marginalise on R.

P (y|do(x),DX ,DY , w)

=

∫
r

P (y|do(x),DX ,DY , w, r)P (r|do(x),DX ,DY , w) dr Marginalisation over R

=

∫
r

P (y|do(x),DX ,DY , w, r)P (r|x,DXDY , w) dr Rule 2: (R ⊥⊥ X|DX ,DY ,W )GX

14
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Again, we focus on the quantity in the blue box. We continue to apply the frontdoor criterion and
marginalise on X after switching the intervened variable using do-calculus rules.

P (y|do(x),DX ,DY , w, r)

=P (y|do(x), do(r),DX ,DY , w) Rule 2: (Y ⊥⊥ R|X,DX ,DY ,W )GXR

=P (y|do(r),DX ,DY , w) Rule 3: (Y ⊥⊥ X|R,DX ,DY ,W )GXR

=

∫
x′
P (y|do(r),DX ,DY , w, x

′)P (x′|do(r),DX ,DY , w) dx
′ Marginalisation over X

=

∫
x′
P (y|r,DX ,DY , w, x

′)P (x′|do(r),DX ,DY , w) dx
′ Rule 2: (Y ⊥⊥ R|X,DX ,DY ,W )GR

=

∫
x′
P (y|r,DX ,DY , w, x

′)P (x′|DX ,DY , w) dx
′ Rule 3: (X ⊥⊥ R|DX ,DY ,W )GR

=

∫
x′
P (y|r,DX ,DY , w, x

′)P (x′|DX ,DY ) dx
′ Rule 1: (X ⊥⊥W |DX ,DY )G

We put together all the quantities and obtain Equation 2:

P (y|do(x),DX ,DY )

=

∫
w

P (w|DX ,DY )

∫
r

P (r|x,w,DX ,DY )

∫
x′
P (x′|DX ,DY )P (y|x′, r, w,DX ,DY ) dx

′ dr dw

A.3 INTRACTABILITY OF P (y|do(x), do(DX),DY )

Proof. Proof of the intractability of P (y|do(x), do(Dx),Dy). We show that estimating this query
from observational data requires to marginalise on DX . We take as a postulate that this is an
intractable operation because it implies to access all possible input domains. We also note that
estimating this operation via sampling can be achieved but goes against the purpose of domain
generalisation as we aim to adapt to new domains from limited information.

From the causal graph in Figure 1b, we observe two causal paths linking DX to Y :

1. A direct path: DX → DR →W → Y

2. A backdoor path: DX ← Z → X → R→ Y

3. A backdoor path: DX ← UXY → Y

The third path is blocked by the do operation on X but the first two paths realise the frontdoor criterion
as shown in the simplified causal graph in Figure 7. The expression can therefore be simplified as
follows:

P (y|do(x), do(DX),DY )

=

∫
a

P (a|DX , do(x),DY )

∫
D′

X

P (y|do(x),D′
X ,DY )P (D′

X |do(x),DY ) dD′
X frontdoor criterion

Answering this query from observations requires marginalising on DX , as highlighted in blue.

We can see graphically that this path cannot be blocked by any other variable than DX because the
variable UXY is not observed, therefore marginalising on DX is necessary.
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DX A Y

UXY

Figure 7: Simplified causal graph linking the input domain DX to the output label Y . The paths can
be simplified as a backdoor path via UXY and a direct path through an an abstract variable A.
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Figure 8: Illustration of the Causal Transportability baseline model.

B DETAILS ON THE CAUSAL TRANSPORTABILITY MODEL

We implement the Causal Transportability algorithm defined by Mao et al. (2022) as a baseline. The
model is illustrated in Figure 8. The algorithm realises the following quantity:

P (y|do(x)) = P (r|x)
N∑

k=1

P (y|r, xi)P (xi) (13)

The sampling strategy is the same as the one used in our work. The authors use a small network
composed of three convolution layers followed by two fully connected layers to realise the quantity
P (y|r, xi). For a fair comparison with our model, we replace it with a modified ResNet-18. We alter
the first layer is modified to take a concatenation of an input image x with the representation r. The
rest of the network is left untouched. The quantity P (r|x) can be obtained via several methods. We
use a VAE in our implementation, as the main method described in the original paper. We use the
model in two settings. First, we jointly train the VAE and the inference network. Second, we compare
this baseline against a second model where we train the VAE separately on a reconstruction task and
then include the weights to the full model. We allow the training of the VAE weights at the second
stage as we observed that freezing the weights leads to decreased performance.
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