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Abstract

As trained intelligent systems become increasingly pervasive, multi-agent learning
has emerged as a popular framework for studying complex interactions between
autonomous agents. Yet, a formal understanding of how and when learners in
heterogeneous environments benefit from sharing their respective experiences is
still in its infancy. In this paper, we seek answers to these questions in the context of
linear contextual bandits. We present a novel distributed learning algorithm based
on the upper confidence bound (UCB) algorithm, which we refer to as H-LINUCB,
wherein agents cooperatively minimize the group regret under the coordination of a
central server. In the setting where the level of heterogeneity or dissimilarity across
the environments is known to the agents, we show that H-LINUCB is provably
optimal in regimes where the tasks are highly similar or highly dissimilar.

1 Introduction

Heterogeneous multi-agent systems enable agents to work together and coordinate their actions
to solve complex problems. These systems are inherently scalable, as they can distribute the
computational load across multiple agents. This scalability allows the system to handle large and
sophisticated tasks beyond the capabilities of a single agent. Despite the potential of multi-agent
systems, it poses the following fundamental challenges.

• Statistical challenge. Each agent’s reward distribution may vary, meaning that differ-
ent agents receive different rewards for the same action. This heterogeneity in reward
distributions introduces complexity and makes coordination among agents more difficult.
Furthermore, Wang et al. [2021] point out that an ineffective use of shared data could lead to
a significant negative impact on the overall performance. In particular, sharing experiences
amongst agents may hinder the system’s performance if the tasks are too dissimilar [Rosen-
stein, 2005, Brunskill and Li, 2013].

• Computational complexity. Coordinating the decisions of numerous agents and performing
complex computations pose challenges in terms of computational resources, time constraints,
and algorithmic scalability.

• Communication cost. Efficient communication is also a fundamental challenge for a large-
scale multi-agent system. As the number of agents in a system increases, the complexity of
interactions between agents grows exponentially. Managing the interaction of numerous
agents and making decisions in a timely manner becomes increasingly difficult.

Several works address these challenges for heterogeneous multi-agent systems, including federated
linear bandits [Huang et al., 2021, Li and Wang, 2022], clustering bandits [Gentile et al., 2014, Ghosh
et al., 2023], multi-task linear bandits [Hu et al., 2021, Yang et al., 2021]. However, these works either
rely on some special structure of the parameter [Li and Wang, 2022], e.g., a low-rank structure [Hu
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et al., 2021] or make different assumptions, e.g., stochastic contexts, finite decision set [Huang et al.,
2021, Ghosh et al., 2023], etc.

In this work, we provide a general notion of heterogeneous multi-agent linear contextual bandits
(ε-MALCB) and give analytical results under different regimes of heterogeneity. Specifically, we
study a model that consists of M agents. Each agent i ∈ [M ] plays a d-dimensional linear contextual
bandit, parametrized by θi (see Section 3 for more details), for T rounds. We capture the heterogeneity
by a dissimilarity parameter ε > 0 such that ∥θi − θj∥2 ≤ ε, for all i, j ∈ [M ]. Notably, we do not
assume any special structure on the linear parameter; and we allow the decision set to be infinite and
possibly chosen adversarially.

Motivating application. Consider a personalized recommendation system for online advertise-
ments [Li et al., 2010, Bouneffouf et al., 2020, Ghosh et al., 2023]. Here, the platform needs to be
adaptive to user preferences and maximize total user clicks based on user-click feedback. Each ad
can be represented as a context vector, encoding information such as publisher, topic, ad content,
etc. The inner product of the ad’s context vector and user preference represents the alignment. A
higher inner product value indicates greater relevance of the ad. Furthermore, the recommended
ads must be personalized to accommodate user preference differences. One naive approach would
involve solving a separate linear contextual bandit problem for each user. However, we can pose the
following question: Can we enhance the system’s performance by pooling data from other users? If
so, to what extent of user heterogeneity can we achieve that?

Contributions. We make the following contributions in this paper.

• First, we formulate the heterogeneous multi-agent linear contextual bandits as ε-MALCB
problem, building on the classic notion of heterogeneity in multiarmed bandits (MABs) Wang
et al. [2021]. Our notion of heterogeneity is natural and captures many settings in real-world
applications.

• Second, when the level of dissimilarity is known, we propose a distributed algorithm,
namely H-LINUCB which achieves a regret of Õ(d

√
MT +min{εdMT, dM

√
T}) under

the coordination of a central server. We discuss in detail how to handle the dissimilarity and
introduce a criterion for stopping collaboration when the level of dissimilarity is high. We
show that under the regime of low dissimilarity, we can still achieve a regret of Õ(d

√
MT ),

which is the same regret rate as if M agents collaborate to solve the same task. In this
regime, H-LINUCB outperforms independent learners improving by a factor of

√
M , from

Õ(dM
√
T ) to Õ(d

√
MT ). This is significant when we have a large number of agents.

• Third, we complement the upper bound with a lower bound of Ω(d
√
MT +

min{εMT, dM
√
T}). This suggests that our theoretical guarantees are tight in settings

where tasks are highly similar or highly dissimilar.
• Finally, we validate our theoretical results with numerical simulations on synthetic data.

When the level of dissimilarity is small, H-LINUCB outperforms independent learning.
When the level of dissimilarity is high, our simulation shows that blindly using shared data
can lead to linear regret, emphasizing the importance of the criterion we propose for when
to stop the collaboration.

2 Related work

The classic linear bandits have a rich literature in both theory and application; see, for exam-
ple, [Abbasi-Yadkori et al., 2011, Li et al., 2010, Chu et al., 2011, Chatterji et al., 2020, Rus-
mevichientong and Tsitsiklis, 2010, Bouneffouf et al., 2020, Mahadik et al., 2020], to name a few.
With a surge in distributed computing, multi-agent systems have shown their potential and gained
more attention in recent years. A large body of works dedicated to studying the homogeneous setting
of multiple collaborating agents solve a global linear bandits problem [Wang et al., 2020, Dubey and
Pentland, 2020, Moradipari et al., 2022, Mitra et al., 2022, Martínez-Rubio et al., 2019, Chawla et al.,
2022].

The problem of multi-agent linear bandits in heterogeneous environments, on the other hand, has
received limited attention. Soare et al. [2014] were amongst the first to study heterogeneous linear
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bandits; however, the focus in that work is not on group regret, and the authors only consider the
setting where tasks are similar. More recently, Huang et al. [2021] proposed an algorithm with a
novel multi-agent G-Optimal design. They assume that the heterogeneity comes from the contexts
associated with each agent, but agents can still collaborate since they share the same arm parameters.
Li and Wang [2022] consider an extension where they assume that each agent’s parameter has two
components – a shared global component and an individual local component. This formalization
requires agents to work on their respective tasks (the local component) but still allows agents to
collaborate on the common task (the global component). Wang et al. [2021] study heterogeneity of
the Bernoulli MABs problem and provide guarantees for both cases when the level of heterogeneity
is known and unknown.

A related line of work studies heterogeneous linear bandits through clustering [Gentile et al., 2014,
Li et al., 2016, 2019, Korda et al., 2016, Ghosh et al., 2023]. These works give a guarantee based
on the clustering structure of the different linear bandit problems – agents belonging to the same
cluster will likely achieve the highest collaboration gain. We do not make any assumption about
the “clusterability” of different bandit problems we may encounter. A yet another approach focuses
on multi-task linear bandits, wherein we solve multiple different but closely related linear bandits
tasks [Yang et al., 2021, 2022, Hu et al., 2021, Cella et al., 2023, Du et al., 2023]. In particular,
these works rely on the assumption that all tasks share a common k-dimensional representation,
where k ≪ d. Then, pooling data from different bandits helps learn a good representation and
reduces the statistical burden of learning by reducing the linear bandit problem in d dimensions to a
k-dimensional setting. We do not consider multi-task learning here.

Our formulation of heterogeneous contextual linear bandits is similar to that of misspecified and
corrupted bandits setting (Remark 3.1 for more details) [Ghosh et al., 2017, Lattimore and Csaba,
2020, Takemura et al., 2021, Foster et al., 2020, He et al., 2022]. It is then natural to ask if we can
apply the techniques from that part of the literature to deal with the dissimilarity between different
bandits in a heterogeneous setting. However, there is a fundamental difference in how the two
problems manifest themselves. While misspecification may be typically unavoidable in many settings,
in a heterogeneous bandit setting, an agent can always choose to rely solely on its own data if it finds
that the data from other agents are too dissimilar.

3 Preliminaries

Multi-Agent Linear Contextual Bandits. We consider a multi-agent learning setting with M
agents. At each round t ∈ [T ], each agent m ∈ [M ] picks an action (context)1 xm,t ∈ Dm,t, where
Dm,t ⊆ Rd is a given decision set. The agent m receives reward ym,t = x⊤

m,tθm + ηm,t, where
θm ∈ Rd is an unknown but fixed parameter and ηm,t is sub-Gaussian noise. Let Ft denote the
filtration, i.e., the σ-algebra, induced by σ({xm,k}m∈[M ],k≤t+1, {ηm,k}m∈[M ],k≤t).

Regret. Our goal is to design algorithms for multi-agent linear contextual bandits that achieve a
small group regret defined as

R(M,T ) =

T∑
t=1

M∑
m=1

(
max

x∈Dm,t

⟨x, θm⟩ − ⟨xm,t, θm⟩
)
.

Assumption 3.1. Without loss of generality, we assume that,

1. Bounded parameters: ∥θm∥2 ≤ 1, ∥x∥2 ≤ 1,∀x ∈ Dm,t,m ∈ [M ], t ∈ [T ].

2. Sub-Gaussian noise: ηm,t is conditionally zero-mean 1-sub-Gaussian random variable with
respect to Ft−1.

We note that the assumptions above are standard in linear bandits literature [Abbasi-Yadkori et al.,
2011, Hu et al., 2021, Huang et al., 2021]. Further, it is straightforward to let ∥θm∥ ≤ B, for some
constant B, by appropriately scaling the rewards. We make no additional assumptions on the context.
The decision set could be infinite, and given to each agent possibly adversarially.

1Throughout the paper, we use the terms action and context interchangeably.
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Definition 3.1. (ε-MALCB Problem) A multi-agent linear contextual bandits problem is said to be
an ε-MALCB problem instance, if for any two agents i, j ∈ [M ], ∥θi − θj∥2 ≤ ε, for an ε ≥ 0. We
call ε the dissimilarity parameter.

Definition 3.2. (Homogeneous setting) A multi-agent linear contextual bandits problem is homoge-
neous, if it is an ε-MALCB with ε = 0, i.e., θi = θj , for all i, j ∈ [M ].

Given the bound on the parameters, we have that ∥θi − θj∥2 ≤ 2 for any i, j ∈ [M ]. Therefore, it
suffices to only consider the case where ε ∈ [0, 2].

Remark 3.1. (Misspecified structure) Under the Assumption 3.1, for any two agents i, j we have
that θ⊤i x− ε ≤ θ⊤j x ≤ θ⊤i x+ ε. Then, E[yj,x] = θ⊤i x+∆(x), for ∆(x) ∈ [−ε, ε]. This represents
a misspecified structure wherein agent i receives the reward yj,x from agent j ̸= i.

Remark 3.2. (Recover the ε-MPMAB of Wang et al. [2021]). We note that the ε-MPMAB is a
special case of ε-MALCB. Define the mean reward of K arms for agent m as θm = [µm

1 , . . . , µm
K ].

Then, the reward for arm k at round t is ymt,k = θ⊤i ek + ηt. The decision set D = {e1, . . . , eK}
are the standard basis vectors. This is a fixed set of arms, given to all agents at each round. The
dissimilarity parameter ε is defined as: ∥θi − θj∥∞ ≤ ε for all i, j ∈ [M ].

Nonetheless, the results in Wang et al. [2021] are not directly comparable to ours since the dissimilarity
parameter ε hides inside the size of the set of subpar arms |Iε|.2 Furthermore, Wang et al. [2021]
give guarantees in a full-communication setting, in which each agent has full access to the past data
of all other agents at every round.

Remark 3.3. There are other formulations that also capture the heterogeneity in multi-agent linear
bandits. Huang et al. [2021] consider a multi-agent linear bandits setting with a fixed size decision
set, containing K actions, {θa}Ka=1, which is unknown to the agents. Each agent i is associated with
K different contexts {xi,a}Ka=1. At reach round, each agent i picks an action a ∈ [K], and receives
reward ri,a = x⊤

i,aθa + ηi,a. Since xi,a can vary for different agents, this captures the heterogeneity
across agents. It also allows for collaboration across agents since they share the same decision set.

Li and Wang [2022] assume that each agent parameter θ has a special structure that consists of a
shared global component and a unique local component. The reward of agent i can be given as,

ri,x =

[
θ(g)

θ(i)

]⊤ [
x(g)

x(l)

]
. We do not assume such special structure of the linear parameter.

The notion of ε-MALCB is in the worst-case sense. One can imagine an ε-MALCB instance of M
agents, such that M − 1 agents have identical linear parameter, i.e. θi = θj ,∀i, j ∈ [M − 1], and the
parameter of the last agent ∥θM − θM−1∥2 = ε. With this type of instance, for a large M , we can
simply use DISLINUCB of Wang et al. [2021] and achieve nearly optimal regret. Clustering bandits
framework could also be used for this ε-MALCB instance since it presents a strong cluster structure.
Even though our formulation takes a pessimistic approach but it can handle the case that bandits are
largely unclustered.

Our goal is to design a system such that its performance is no worse than running M independent
bandit algorithms for each user (zero collaboration). The system should also be adaptive to the
heterogeneity in the problem instance, i.e., it should automatically leverage any structure in the
problem parameters {θm}Mm=1 to collaboratively solve all bandit problems at a “faster” rate. To
benchmark the performance of such a system, we consider the following baseline.

Independent Learners (IND-OFUL). We establish a baseline algorithm in which each agent
independently runs an optimal linear contextual bandits algorithm (OFUL, [Abbasi-Yadkori et al.,
2011]) without any communication. Each agent incurs Õ(d

√
T ) regret, and Õ(dM

√
T ) group regret.

Notation. We denote the weighted norm of vector x w.r.t. matrix A (Mahalanobis norm) as
∥x∥A =

√
x⊤Ax. We write A ≽ B iff A − B is a positive semi-definite matrix. We use Õ (·) to

hide the polylogarithmic factors in standard Big O notation.

2ROBUSTAGG(ε) algorithm achieves Õ(
√
IεMT +M

√
(|Iε| − 1)T +M |Iε|) regret when ε is known.

The subpar arms Iε is defined in Wang et al. [2021, Section 3.2].
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4 Main Results

In this section, we present H-LINUCB, a UCB-style algorithm for ε-MALCB problem, and give
guarantees for the case when the dissimilarity ε is known to the agents. In Section 4.2, we present a
lower bound and discuss the implication of our results in different regimes of dissimilarity. We defer
the detailed proof to the Appendix.

Algorithm 1 H-LINUCB

Input: Dissimilarity parameter ε, number of agents M , number of rounds T , regularization parameter
λ, dimension d, confidence parameters βt,∀t ∈ [T ], weight threshold parameter α, collaboration
budget τ , synchronization threshold D

1: tsyn ← 1 ▷ tsyn is the index of the last synchronized round
2: Vsyn ← 0, bsyn ← 0 ▷ Vsyn, bsyn store the relevant statistics of all agents after synchronization
3: Vepoch,m ← 0, bepoch,m ← 0,∀m ∈ [M ] ▷ Vepoch,m, bepoch,m store the relevant statistics of

agent m in the current epoch
4: for t = 1, · · · , T do
5: for Agent m = 1, · · · ,M do
6: if t = τ then
7: Vsyn ← 0, bsyn ← 0
8: Vepoch,m ← 0, bepoch,m ← 0
9: end if

10: Vm,t ← λI + Vsyn + Vepoch,m

11: θ̂m,t ← V −1
m,t (bsyn + bepoch,m)

12: Construct the confidence ellipsoid Cm,t =

{
θ ∈ Rd :

∥∥∥θ̂m,t − θ
∥∥∥
Vm,t

≤ βt

}
13: (xm,t, θ̃m,t) = argmax(x,θ)∈Dm,t×Cm,t

⟨θ, x⟩
14: Play xm,t and get reward ym,t

15: wm,t ← 1 [t < τ ] min
(
1, α/∥xm,t∥V −1

m,t

)
+ 1[t ≥ τ ]

16: Vepoch,m ← Vepoch,m + wm,txm,tx
⊤
m,t

17: bepoch,m ← bepoch,m + wm,txm,tym,t

18: if log
[
det(Vm,t + wm,txm,tx

⊤
m,t)/det(λI + Vsyn)

]
· (t− tsyn) ≥ D and t < τ then

19: Send a synchronization signal to the server to start a communication round
20: end if
21: if A communication round is started then
22: Agent i sends Vepoch,i, bepoch,i to the server, ∀i ∈ [M ]
23: Server computes Vsyn ← Vsyn + Vepoch,i, bsyn ← bsyn + bepoch,i,∀i ∈ [M ]
24: Server sends Vsyn, bsyn back to all agents
25: Vepoch,i ← 0; bepoch,i ← 0;∀i ∈ [M ] ▷ Reset Vepoch,i, bepoch,i for the new epoch
26: tsyn ← t
27: end if
28: end for
29: end for

4.1 H-LINUCB Algorithm

H-LINUCB is a distributed UCB-style algorithm (see Algorithm 1 for pseudocode), in which agents
work cooperatively under the coordination of a central server.

H-LINUCB has two learning phases: the collaboration phase (for rounds t ∈ {1, . . . , τ − 1}) and
the independent learning phase (for rounds t ∈ {τ, . . . , T}), where τ ≤ T is the collaboration
budget. Intuitively, our two-phase learning framework ensures that the agents stop collaboration after
τ rounds lest they incur a linear regret in bandit environments with large dissimilarity. Naturally,
then, the parameter τ should depend on the dissimilarity parameter, ε. We give an optimal choice of
τ in Theorem 4.1.

At each round t < τ (the collaboration phase), each agent’s data is weighted to adapt to the
dissimilarity across different agents (Line 15). Then, each agent uses the weighted data to construct
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its Confidence Ellipsoid (Line 12) and makes a decision following the optimism principle (Line 13).
When a certain condition is met (Line 18), data is pooled and synchronized across the agents. Starting
from round τ , all collaboration ceases and each agent enters the independent learning mode and
runs an independent copy of the OFUL algorithm [Abbasi-Yadkori et al., 2011] locally for the last
T − τ + 1 rounds.

We note that H-LINUCB builds upon DISLINUCB of Wang et al. [2020, Protocol 8] with the
following modifications:

• We scale each agent’s data using the weight min(1, α/∥xm,t∥V −1
m,t

), which we adopt from
He et al. [2022], to handle the dissimilarity across different agents (Line 15).

• We only allow collaboration until round τ (Line 18). The value of τ depends on the
dissimilarity parameter, which we assume is given.

• We reset the variables Vsyn, bsyn, Vepoch,m, bepoch,m at round τ (Lines 6-9), where each
agent switches to the independent learning mode. Here, epoch refers to the time period
between two consecutive synchronization rounds.

Each agent uses all of the data available to them at each round to construct the Confidence Ellipsoid
Cm,t using the result in Lemma 4.1. Given the confidence ellipsoid, the agent chooses the action
optimistically: (xm,t, θ̃m,t) = argmax(x,θ)∈Dm,t×Cm,t

⟨θ, x⟩. During the collaboration phase, if
the variation in the volume of the ellipsoid exceeds a certain synchronization threshold, D, it
triggers a synchronization condition (Lines 18-20). Subsequently, the central server commences the
synchronization procedure to update Vsyn, bsyn across all participating agents (Lines 21-27. The
optimal value of D depends on the number of agents M , dimension d, and the collaboration budget
τ .

The weight min(1, α/∥xm,t∥V −1
m,t

) is a truncation of the inverse bonus, where α > 0 is a threshold
parameter that shall be optimized later. When xm,t is not explored much, we have a large exploration
bonus ∥xm,t∥V −1

m,t
(low confidence). Hence, the algorithm will put a small weight on it to avoid a

large regret due to stochastic noise and misspecification. When ∥xm,t∥V −1
m,t

is small (high confidence),

H-LINUCB puts a large weight on it, and it can be as large as one [He et al., 2022].3 We note that
using this weighting could have a significant negative impact on the performance if we are not careful.
Several recent studies show that we can incur a regret of Õ(d

√
T + ε

√
dT ) and Õ(d

√
T + εdT ) for

misspecified and corrupted linear bandits, respectively [Lattimore and Csaba, 2020, Takemura et al.,
2021, Foster et al., 2020, He et al., 2022].4 However, a direct application of an algorithm designed
for misspecified/corrupted linear bandits to our setting can lead to linear regret when ε = Θ(1). This
is significantly worse as compared to naive independent learning, which always achieves sub-linear
Õ(dM

√
T ) regret.

We emphasize that the condition (t < τ) in Line 18 is crucial to avoid linear regret for H-LINUCB
in the regime of large ε. For example, for ε = Θ(1), τ = T , Algorithm 1 incurs Õ(dMT ) regret,
which is linear in term of MT . Furthermore, Theorem 4.3 indicates that there exists an instance
of ε-MALCB such that any algorithm incurs at least Ω(dM

√
T ) regret. Then, each agent playing

OFUL independently would be enough to achieve an optimal Õ(dM
√
T ) regret. This suggests that

we get a tighter upper bound if we cease collaboration; we discuss the stopping criterion and the
choice of τ in Theorem 4.2.

Communication protocol. We use a star-shaped communication network where M agents can in-
teract with a central server [Wang et al., 2020, Dubey and Pentland, 2020]. Each agent communicates
with the server by uploading and downloading its data but does not communicate directly with each
other. The communication will be triggered only if any agent has enough new data since the last
synchronization round. Finally, we assume no latency, or error in the communication between the
central server and agents.

3The technique of using the exploration bonus to control misspecification is also used in Zhang et al. [2023].
4Takemura et al. [2021], Foster et al. [2020] give guarantees for when the misspecification level is unknown.

The CW-OFUL algorithm of He et al. [2022] has Õ(d
√
T + dC) regret, where C is the total amount of

corruption. Setting C = εT , where ε is the level of misspecification at each round, gives us Õ(d
√
T + εdT )

regret.
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Remark 4.1. Wang et al. [2020] show that DISLINUCB can rely on old data and produce nearly
optimal policy without much communication, only incurring logarithmic factors in the final regret.
H-LINUCB has the same communication cost of O(M1.5d3), as DISLINUCB, which does not
depend on the horizon T .

When an agent uses data from other agents, due to the dissimilarity, we need to adjust our confidence
bound to make sure the true linear parameter θm lies in the defined ellipsoid with high probability.
The next result shows how to construct such a Confidence Ellipsoid.
Lemma 4.1. (Confidence Ellipsoid). With probability at least 1 −Mδ1 −Mδ2, for each agent
m ∈ [M ], θm lies in the confidence set,

Cm,t =

{
θ ∈ Rd :

∥∥∥θ̂m,t − θ
∥∥∥
Vm,t

≤ βt

}
,

where

βt =


√
λ+ αεMt+

√
d log

(
1+Mt/(λd)

δ1

)
, for t < τ,

√
λ+

√
d log

(
1+t/(λd)

δ2

)
, for t ≥ τ.

Note that the result above provides two separate confidence bounds for θm, one for the period before
round τ and the other one for after round τ . Before round τ , agent m will use all the data from other
agents to construct Cm,t. The proof follows by first bounding

∥∥∥θ̂m,t − θm

∥∥∥
Vm,t(λ)

as

∥∥∥θ̂m,t − θm

∥∥∥
Vm,t(λ)

≤ I1︸︷︷︸
Regularization term

+

∥∥∥∥∥∥
∑
i ̸=m

ts∑
k=1

wi,kxi,kx
⊤
i,k(θi − θm)

∥∥∥∥∥∥
V −1
m,t(λ)︸ ︷︷ ︸

I2:Dissimilarity term

+ I3︸︷︷︸
Noise term

.

Here, I1 is a bounded regularization term, I3 is a noise term that can be bounded by self-normalization
lemma (Lemma C.4). Finally, the dissimilarity term I2 is bounded from above by αεMt using the
definition of dissimilarity ∥θi− θm∥ ≤ ε, and applying a similar argument as He et al. [2022] and the
choice of the weight wm,t = min(1, α/∥xm,t∥V −1

m,t
). For the phase after round τ , we use the same

argument as Abbasi-Yadkori et al. [2011] to construct the confidence bound.

Next, we present the group regret upper bound of Algorithm 1 up to round τ .

Theorem 4.1. Given Assumption 3.1, T ≥ 1, any τ ≤ T , and δ1 > 0, setting λ = 1 and α =
√
d

εMτ
in the upper bound of βt on the confidence interval according to Lemma 4.1 ∀t ∈ [T ], and setting the
synchronization threshold D = τ log(Mτ)/(dM), we have that with probability at least 1−Mδ1,
the group regret of Algorithm 1 up to round τ , is bounded as

R(M, τ) ≤ 20
√
2
(
d
√
Mτξ2τ + εdMτξ1.5τ

)
,

where ξt = log
(

1+Mt/(λd)
δ1

)
.

Theorem 4.1 shows that Algorithm 1 incurs Õ(d
√
Mτ) regret in the first term (which is the same

order as a single agent playing for Mτ rounds) plus a penalty of using the data from other agents
in the order of Õ(εdMτ). The regret of Õ(d

√
Mτ) is unavoidable for any regime of ε, and this

rate is known to be optimal in the case of homogeneous multi-agent. Since we use the technique
from He et al. [2022] to handle the dissimilarity, the corruption amount of each round is ε, and a
total corruption of εdMτ when the central server allows to collaborate up to round τ . To the best
of our knowledge, we are not aware of any UCB-based algorithm for misspecified linear bandits in
the setting of infinite arms. We expect that employing a misspecified linear bandits algorithm would
achieve a regret of Õ(d

√
MT + ε

√
dMT ), which is tighter by a factor of

√
d. It is worth noting

that the CW-OFUL algorithm in He et al. [2022] is designed for handling corruption, whether it can
achieve Õ(d

√
T + ε

√
dT ) in a misspecified setting remains an open question.

We now present our main result giving an upper bound on the group regret of H-LINUCB.

7



Theorem 4.2. Given Assumption 3.1, T ≥ 1, let λ = 1, α =
√
d

εMτ , δ1 = δ2 = 1
M2T in the upper

bound of βt on the confidence interval (see Lemma 4.1) ∀t ∈ [T ]. Let τ = min(⌊ 1
2ε2 ⌋, T ), and let the

synchronization threshold D = τ log(Mτ)/(dM). Then, the expected group regret of Algorithm 1 is
bounded as

E [R(M,T )] ≤ 320
√
2
(
d
√
MT + 2min

{
εdMT, dM

√
T
})

log2(MT ).

Here, τ is the maximum round that the central server allows communication. After that, all agents
switch to independent learning. By choosing τ = min(⌊ 1

2ε2 ⌋, T ), agents fully cooperate in the
regime ε ∈ [0, 1√

2T
] if T ≤ 1

2ε2 , and gradually reduce τ as ε increases from 1√
2T

to +∞. This is
important for avoiding a linear regret since when ε is large, most of the regret comes from the εdMT
term and dominates the d

√
MT term. The condition on Line 6 also discards all of the synchronized

data. In the extreme case, when ε > 1, there is no collaboration happening due to the condition in
Line 18 failing at every round. In other words, H-LINUCB behaves like IND-OFUL.

In the other extreme case, when ε = 0, all agents solve identical linear bandits. The weight in Line 15
always evaluates to its minimum value of 1 for all t ∈ [T ] since α =

√
d

εMT → +∞. We have t < ε2

for all rounds. Therefore, the reset condition in Line 6 is never triggered and H-LINUCB behaves
exactly like DISLINUCB, achieving a regret of Õ(d

√
MT ), which is optimal up to some logarithmic

factors.

Theorem 4.2 suggests that the upper bound of H-LINUCB is tighter than IND-OFUL for all ε.
Remark 4.2. Ghosh et al. [2023] also propose a personalized algorithm (PMLB) for the heteroge-
neous multi-agent linear bandits; however, our problem setting is fundamentally different than that of
Ghosh et al. [2023]. They consider a finite action set and impose a strong distributional assumption
on how contexts are generated, i.e., the stochastic context xi,t for each action i and at each round
t is zero-mean and forms a positive-definite covariance matrix. In stark contrast, we consider the
adversarial setting where the context set is adversarially generated at each round (and thus, the
associated action set can be infinite and arbitrary). This renders the algorithm and guarantees of
Ghosh et al. [2023] inapplicable in our setting and, thus, requires a completely different treatment.
Those assumptions of Ghosh et al. [2023] are crucial for them to obtain the Õ(T 1/4) bound (for
ε = 0). We note that this bound is not information-theoretically possible in our adversarial setting;
the minimax lower bound in such settings is Ω(

√
T ) (Theorem 4.3).

4.2 Lower bound

In this section, we present a lower bound result for the ε-MALCB problem. We denoteRA,I(M,T )
as a regret of algorithm A on a problem instance I of M agents run for T rounds.
Theorem 4.3. Let I(ε) denote the class of ε-MALCB problem instances that satisfy the Assump-
tion 3.1. Then for any d,M, T ∈ Z+ with d

2 ≤ T, d2

48 ≤ T , ∀ε ≥ 0, we have the following,

inf
A

sup
I∈I(ε)

RA,I(M,T ) = Ω
(
d
√
MT +min

{
εMT, dM

√
T
})

.

The first term is a straightforward observation that solving an ε-MALCB is at least as hard as solving a
single linear bandits for MT rounds, or M agents solving identical bandits for T rounds. The second
term suggests that we pay an additional regret of εMT for a small ε ∈ [0, d√

T
], and Ω(dM

√
T )

for a large ε ≥ d√
T

. We note that Ω(dM
√
T ) is also the lower bound of IND-OFUL when each

agent incurs a regret of at least Ω(d
√
T ). We believe that the analysis of the lower bound could be

tightened by using the arguments from misspecified bandits literature, achieving a lower bound of
Ω(d
√
MT +min{ε

√
dMT, dM

√
T}).

The lower bound suggests that our upper bound is tight up to logarithmic factors in the following
extreme regimes, (i) ε ∈ [0, 1√

MT
], where R(M,T ) = Θ(d

√
MT ); (ii) ε ∈ [ d√

T
,+∞], where

R(M,T ) = Θ(dM
√
T ). In regime (i), all agents solve tasks that are similar to one another, yielding

the highest collaborative gain. In regime (ii), tasks are highly dissimilar, H-LINUCB turns off the
collaboration and lets agents solve their own tasks individually.
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Figure 1: Simulation on synthetic data with M = 60, d = 30, T = 10000.

Finally, in the regime that ε ∈ ( 1√
MT

, d√
T
), our results illustrate the interpolation between two

extremes. In this regime, our upper bound presents a gap of d in the dissimilarity term εdMT
compared to εMT in the lower bound.

The key idea in the proof of Theorem 4.3 is based on an information-theoretic lower bound of
Lemma C.1, wherein we extend the result from (single-agent) linear bandits to heterogeneous
multi-agent linear bandits. Here, we give the lower bound result without any constraints on the
communication, hence, this is also the lower bound of the H-LINUCB algorithm.

5 Numerical Simulations

In this section, we provide some numerical simulations to support our theory. Our goal is to address
the following question: how does H-LINUCB perform in three different regimes of dissimilarity: (i)
ε ∈ [0, 1√

MT
], (ii) ε ∈ ( 1√

MT
, d√

T
), (iii) ε ∈ [ d√

T
,+∞]?

We compare the performance of H-LINUCB with that of the following two algorithms: (a) In-
dependent Learners (IND-OFUL), wherein each agent independently runs OFUL algorithm of
Abbasi-Yadkori et al. [2011], and there is no communication between agents (zero collaboration),
and (b) DISLINUCB, for which we use the implementation of Wang et al. [2020] without any
modification.

Simulation setup. We generate the ε-MALCB problem for M = 60, d = 30, T = 10000 via the
following procedure. We first choose a value of ε in each of the three dissimilarity regimes. Then we
create the linear parameters {θm}Mm=1 as follows. Let u, {vm}Mm=1 be random vectors with unit norm.
We set θm = c · u+ ε

2vm, where c is a constant in the range [0, 1− ε]. This guarantees ∥θm∥ ≤ 1
and ∥θi − θj∥ ≤ ε for any two agents i, j. At each round, for each agent, we create a new decision
set with a size of 50, each action is random and normalized to 1. The random noise is sampled from
the standard normal distribution, η ∼ N (0, 1). We run each experiment 10 times, then report the
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group regret averaged over the runs and the confidence intervals in Figure 1. Our code is available
here: https://github.com/anhddo/hlinUCB.

Results and discussions. In regime (i), where the level of dissimilarity is small, plots (a) and (b)
show that H-LINUCB retains a regret comparable with DISLINUCB.

In regime (ii), plots (c) and (d) illustrate the interpolation between the two extreme regimes.

In regime (iii), plots (e) and (f), DISLINUCB incurs linear regret, H-LINUCB has the same rate with
IND-OFUL. This illustrates that collaboration brings no benefit when the dissimilarity is high.

6 Conclusions

In this paper, we studied the heterogeneous multi-agent linear contextual bandit problem. We
formulated the problem under the notion of ε-MALCB, and provided the upper and lower bounds
when ε is known. We showed that our results are provably optimal in the regime where tasks are
highly similar or highly dissimilar. Finally, we validated our theoretical results with numerical
simulations on synthetic data.

A natural avenue for future work would be to close the gap in the regime ε ∈ ( 1√
MT

, d√
T
). Another

research direction pertains to designing an adaptive algorithm when ε is unknown. Such an algorithm
would be practical and flexible enough to apply to a wide range of heterogeneous multi-agent bandit
problems. We are also interested in extending this work to a more challenging setting such as
Reinforcement Learning.
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A Proof of Upper Bound

A.1 Proof of Lemma 4.1

Proof. We prove that the true parameter of each agent lies in the Confidence Ellipsoid with high
probability. In particular, we prove such results for two periods, for round t < τ and t ≥ τ . We
denote δ1, δ2 as the probabilities such that true linear parameters lie outside the confidence ellipsoid
for the period of t < τ , and t ≥ τ , respectively.

For the round t < τ , let ts be the last round that synchronization occurs, where ts < t. Then each
agent’s statistics can be divided into two parts, its own data and the pooled data from other agents
since round ts. Specifically, for an agent m, at round t, we have the following for Vm,t, bm,t,

Vm,t = λI +

t−1∑
k=1

wm,kxm,kx
⊤
m,k +

∑
i ̸=m

ts∑
k=1

wi,kxi,kx
⊤
i,k,

bm,t =

t−1∑
k=1

wm,kxm,kym,k +
∑
i̸=m

ts∑
k=1

wi,kxi,kyi,k.

We then have the following for θ̂m,t,

θ̂m,t = V −1
m,tbm,t

= V −1
m,t

t−1∑
k=1

wm,kxm,kym,k +
∑
i ̸=m

ts∑
k=1

wi,kxi,kyi,k


= V −1

m,t

t−1∑
k=1

wm,kxm,k

(
x⊤
m,kθm + ηm,k

)
+
∑
i̸=m

ts∑
k=1

wi,kxi,k

(
x⊤
i,kθi + ηi,k

)
= V −1

m,t

t−1∑
k=1

wm,kxm,kx
⊤
m,k +

∑
i̸=m

ts∑
k=1

wi,kxi,kx
⊤
i,k

 θm


+ V −1

m,t

∑
i ̸=m

ts∑
k=1

wi,kxi,kx
⊤
i,k (θi − θm)


+ V −1

m,t

t−1∑
k=1

wm,kxm,kηm,k +
∑
i ̸=m

ts∑
k=1

wi,kxi,kηi,k

 .

Notice that the summation in the first term is the covariance matrix Vm,t but missing the regularization
term λI; thus, the first term can be simplified as θm − λV −1

m,tθm. Applying triangle inequality, we

have the following for
∥∥∥θ̂m,t − θm

∥∥∥
Vm,t

,

∥∥∥θ̂m,t − θm

∥∥∥
Vm,t

≤ λ ∥θm∥V −1
m,t︸ ︷︷ ︸

I1:Regularization term

+

∥∥∥∥∥∥
∑
i ̸=m

ts∑
k=1

wi,kxi,kx
⊤
i,k(θi − θm)

∥∥∥∥∥∥
V −1
m,t︸ ︷︷ ︸

I2:Dissimilarity term

+

∥∥∥∥∥∥
t−1∑
k=1

wm,kxm,kηm,k +
∑
i ̸=m

ts∑
k=1

wi,kxi,kηi,k

∥∥∥∥∥∥
V −1
m,t︸ ︷︷ ︸

I3:Noise term

.

For the regularization term I1, it is upper bounded by,

I1 = λ ∥θm∥V −1
m,t
≤ λ

λmin

(
V

1/2
m,t

) ∥θm∥2 ≤ √λ ∥θm∥2 ≤ √λ.
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For the dissimilarity term I2, we have,

I2 =

∥∥∥∥∥∥
∑
i ̸=m

ts∑
k=1

wi,kxi,kx
⊤
i,k(θi − θm)

∥∥∥∥∥∥
V −1
m,t

≤
M∑
i=1

ts∑
k=1

∥∥wi,kxi,kx
⊤
i,k(θi − θm)

∥∥
V −1
m,t

=

M∑
i=1

ts∑
k=1

wi,k

∣∣x⊤
i,k(θi − θm)

∣∣ ∥xi,k∥V −1
m,t

≤
M∑
i=1

ts∑
k=1

∥xi,k∥∥θi − θm∥α

≤ αεMts,

where we use triangle inequality in the first inequality, the second inequality holds since wm,t ≤
α/∥xm,t∥V −1

m,t
by the definition of wm,t, the last inequality holds due to the bounded parameters

assumption and the ε-MALCB definition (see Assumption 3.1 and Definition 3.1).

To bound term I3, we denote vector x̄m,t =
√
wm,txm,t, and the random noise η̄m,t =

√
wm,tηm,t.

We have wm,t ≤ 1, therefore, η̄m,t is 1-subGaussian. Furthermore, we rewrite the covariance matrix
as Vm,t = λI +

∑t
s=1 x̄m,sx̄

⊤
m,s +

∑
i ̸=m

∑ts
k=1 x̄i,kx̄

⊤
i,k. We then have the following for the noise

term I3,

I3 =

∥∥∥∥∥∥
t−1∑
k=1

x̄m,kη̄m,k +
∑
i ̸=m

ts∑
k=1

x̄i,kη̄i,k

∥∥∥∥∥∥
V −1
m,t

≤

√√√√2 log

(
det (Vm,t)

1/2
det(V0)−1/2

δ1

)

≤

√
d log

(
1 +Mt/(λd)

δ1

)
,

where we apply Lemma C.4 in the first inequality. Now, putting these three terms together, we have
the following Confidence Ellipsoid bound for round t < τ ,

∥∥∥θ̂m,t − θm

∥∥∥
Vm,t

≤

(
√
λ+ αεMt+

√
d log

(
1 +Mt/(λd)

δ1

))
.

We now turn our attention to the round t ≥ τ . Since agents switch to independent learning, we follow
the same argument for confidence ellipsoid as in Theorem 2 of Abbasi-Yadkori et al. [2011], and get

βt =
√
λ+

√
d log

(
1 + t/(λd)

δ2

)
.

Finally, we complete the proof by taking a union bound over all agents.

A.2 Proof of Theorem 4.1

Before proving Theorem 4.1, we give an upper bound on the pseudo-regret, rm,t, in the next
proposition. The proof follows standard arguments for linear bandits; most of the arguments can be
extracted from Wang et al. [2020], Dubey and Pentland [2020].
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Proposition A.1. The pseudo-regret rt obtained by any agent m at round t, is upper bounded as

rm,t ≤ 2βt min
(
1, ∥xm,t∥V −1

m,t

)
.

Proof. Recall that an agent makes decisions optimistically: (xm,t, θ̃m,t) = argmax
(x,θ)∈Dm,t×Cm,t

x⊤θ.

Let x⋆
m,t denote the optimal action at round t of agent m, i.e., x⋆

m,t = argmax
x∈Dm,t

x⊤θm.

We then have the following for the pseudo-regret

rm,t = x⋆
m,t

⊤θm − xm,t
⊤θm

≤ xm,t
⊤θ̃m,t − xm,t

⊤θm (Since (xm,t, θ̃m,t) is optimistic)

= xm,t
⊤(θ̃m,t − θm)

= ⟨V −1/2
m,t xm,t, V

1/2
m,t (θ̃m,t − θm)⟩ (Vm,t ≽ 0)

≤ ∥xm,t∥V −1
m,t

∥∥∥θ̃m,t − θm

∥∥∥
Vm,t

(Cauchy-Schwarz’s inequality)

≤ ∥xm,t∥V −1
m,t

(
∥θ̂m,t − θ̃m,t∥Vm,t

+ ∥θ̂m,t − θm∥Vm,t

)
(Triangle inequality)

≤ 2βt∥xm,t∥V −1
m,t

(Since θm, θ̃m,t ∈ Ct)

≤ 2βt ·min
(
1, ∥xm,t∥V −1

m,t

)
,

where the last inequality is due to the fact that βt ≥ 1 and that suboptimality is no more than 2.

We now proceed to prove Theorem 4.1. The proof technique follows the analysis of group regret in
Wang et al. [2020] and applies the arguments from Theorem 4.2 of He et al. [2022] to handle the
dissimilarity.

Theorem A.1 (Theorem 4.1 restated). For a given T , and τ ≤ T , if we set D = τ log(Mτ)/(dM),
and βt,∀t ∈ [τ ] according to Lemma 4.1, then, given Assumption 3.1, with probability at least
1−Mδ1, the group regret of Algorithm 1 up to round τ , is upper bounded as

R(M, τ) ≤ 4
√
2
(√

λdMτ(ξτ )
1.5 + αε

√
d(Mτ)1.5

√
ξτ + d

√
Mτξτ +

√
λdξτ
α

+ εdMτξτ

+
(dξτ )

1.5

α
+ αε

√
d(Mτξτ )

1.5 + d
√
Mτξ2τ

)
,

where ξt = log
(

1+Mt/(λd)
δ1

)
. Furthermore, if we choose λ = 1, α =

√
d

εMτ , then the group regret is
upper bounded as

R(M, τ) ≤ 20
√
2
(
d
√
Mτξ2τ + εdMτξ1.5τ

)
.

We refer to this group regret as the “collaboration” regret, and denote it asRcollab(M,T ).

Proof. Let P be the total number of synchronization rounds, then, we can index the synchronization
matrix Vsyn for P epoch as {Vsyn,p}Pp=1, and define Vp = λI + Vsyn,p. Observe that det(V0) =

det(λI) = λd and det(VP ) ≤ (trace(VP )/d)
d ≤ (λ+Mτ/d)d. Therefore,

log
det(VP )

det(V0)
≤ d log

(
1 +

Mτ

λd

)
. (1)

By telescoping, we have that log det(VP )
det(V0)

=
∑P

p=1 log
det(Vp)

det(Vp−1)
. Therefore, we have at most

R = ⌈d log(1 + Mτ
λd )⌉ epochs such that log det(Vp)

det(Vp−1)
≥ 1; otherwise, it violates the condition
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in Equation (1). WLOG, we use logarithm base 2 for the determinant ratio. This implies that for all
but R epochs,

1 ≤ det(Vp)

det(Vp−1)
≤ 2, (2)

We call the epochs satisfying Equation (2) as good epochs. We imagine a single agent play-
ing M(τ − 1) actions x1,1, x2,1, . . . , xM−1,τ−1, xM,τ−1 sequentially. Let Wm,t = λI +∑M

i=1

∑t−1
s=1 wi,sxi,sx

⊤
i,s+

∑m−1
j=1 wj,txj,tx

⊤
j,tbe the covariance matrix of this imaginary agent when

it gets to xm,t. If xm,t belongs to a good epoch, say the j-th epoch, we have the following:

1 ≤
∥xm,t∥V −1

m,t

∥xm,t∥W−1
m,t

≤

√
det(Wm,t)

det(Vm,t)
≤

√
det(Vj)

det(Vj−1)
≤
√
2, (3)

where the first inequality is due to the fact that Wm,t ≽ Vm,t, and the second inequality follows from
Lemma C.2.

Now, applying the Proposition A.1, we bound the pseudo-regret rm,t of these good epochs as follows:

rm,t ≤ 2βt min
(
1, ∥xm,t∥V −1

m,t

)
≤ 2βt min

(
1, ∥xm,t∥W−1

m,t

√
det(Wm,t)

det(Vm,t)

)
≤ 2
√
2βt min

(
1, ∥xm,t∥W−1

m,t

)
,

where we use Lemma C.2 in the second inequality, and Equation (3) in the third inequality.

LetRgood(M, τ) be the group regret of these good epochs up to round τ . Suppose Pgood contains
all the good epochs, and Bp contains all the pairs (m, t) belonging to epoch p. We have

Rgood(M, τ) =
∑

p∈Pgood

∑
(m,t)∈Bp

rm,t

≤
∑

p∈Pgood

∑
(m,t)∈Bp

2
√
2βτ−1 min

(
1, ∥xm,t∥W−1

m,t

)
=

∑
p∈Pgood

∑
(m,t)∈Bp∧wm,t=1

2
√
2βτ−1 min

(
1, ∥xm,t∥W−1

m,t

)
︸ ︷︷ ︸

I1:Rounds of good epoch with wm,t=1

+
∑

p∈Pgood

∑
(m,t)∈Bp∧wm,t<1

2
√
2βτ−1 min

(
1, ∥xm,t∥W−1

m,t

)
︸ ︷︷ ︸

I2:Rounds of good epoch with wm,t<1

,

where in the last equality we split the summation to two cases: wm,t = 1, and wm,t < 1.

For term I1, we consider all the pair (m, t) in good epochs up to round τ such that wm,t = 1;
we assume that we have a total of such K pairs, and these pairs can be sequentially listed as
{(m̄1, t̄1), (m̄2, t̄2), · · · , (m̄K , t̄K)}. With this notation, for i ≤ K, we construct the auxiliary
covariance matrix Am̄i,t̄i = λI +

∑i−1
k=1 xm̄k,t̄kx

⊤
m̄k,t̄k

. Thus, we have Wm̄i,t̄i ≽ Am̄i,t̄i , which
implies ∥xm̄i,t̄i∥W−1

m̄i,t̄i

≤ ∥xm̄i,t̄i∥A−1
m̄i,t̄i

.
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We now have the following for term I1:

I1 =
∑

p∈Pgood

∑
(m,t)∈Bp∧wm,t=1

2
√
2βτ−1 min

(
1, ∥xm,t∥W−1

m,t

)

=

K∑
k=1

2
√
2βτ−1 min

(
1,
∥∥xm̄k,t̄k

∥∥
W−1

m̄k,t̄k

)

≤
K∑

k=1

2
√
2βτ−1 min

(
1,
∥∥xm̄k,t̄k

∥∥
A−1

m̄k,t̄k

)

≤ 2
√
2βτ−1

√
Mτ

√√√√ K∑
i=1

min

(
1,
∥∥xm̄k,t̄k

∥∥2
A−1

m̄k,t̄k

)

≤ 4βτ−1

√
2Mτ log

(
det(VP )

det(V0)

)

≤ 4
√
2βτ−1

√
dMτ log

(
1 +

Mτ

λd

)
≤ 4
√
2βτ−1

√
dMτξτ ,

where in the second inequality we use Cauchy Schwarz’s inequality and the fact that K ≤Mτ , and
use Lemma C.3 in the second inequality.

For term I2, since we consider the case such that wm,t < 1, thus, by the definition of wm,t we have
1
αwm,t · ∥xm,t∥V −1

m,t
= 1. Therefore, we have,

I2 = 2
√
2
∑

p∈Pgood

∑
(m,t)∈Bp∧wm,t<1

min
(
1, βτ∥xm,t∥W−1

m,t

)

= 2
√
2
∑

p∈Pgood

∑
(m,t)∈Bp∧wm,t<1

min

(
1, βτ

wm,t∥xm,t∥V −1
m,t

α
∥xm,t∥W−1

m,t

)

≤ 4
∑

p∈Pgood

∑
(m,t)∈Bp∧wm,t<1

min

1, βτ

wm,t∥xm,t∥2W−1
m,t

α

 ,

where the last inequality follows from Equation (3).

Similarly to what we have done with I1, we consider all the pair (m, t) in good epochs up to round τ
such that wm,t < 1; we assume that we have a total of such K pairs, and these pairs can be sequentially
listed as {(m̄1, t̄1), (m̄2, t̄2), · · · , (m̄K , t̄K)}. Furthermore, we define x̄m,t =

√
wm,txm,t, and

construct the auxiliary covariance matrix,

W̄m̄i,t̄i = λI +

i−1∑
k=1

wm̄k,t̄kxm̄k,t̄kx
⊤
m̄k,t̄k

= λI + x̄m̄k,t̄k x̄
⊤
m̄k,t̄k

.

Thus, we have Wm̄i,t̄i ≽ W̄m̄i,t̄i , which implies ∥xm̄i,t̄i∥W−1
m̄i,t̄i

≤ ∥xm̄i,t̄i∥W̄−1
m̄i,t̄i

.

17



Therefore,

I2 ≤ 4

K∑
k=1

min

(
1, βτ−1wm̄k,t̄k/α

∥∥xm̄k,t̄k

∥∥2
W−1

m̄k,t̄k

)

≤ 4

K∑
k=1

min

(
1 + βτ−1/α, (1 + βτ−1/α)∥

√
wm̄k,t̄kxm̄k,t̄k∥

2
W−1

m̄k,t̄k

)

≤ 4(1 + βτ−1/α)

K∑
k=1

min

(
1, ∥x̄m̄k,t̄k∥

2
W̄−1

m̄k,t̄k

)
≤ 4(1 + βτ−1/α)d log

(
1 +

Mτ

λd

)
≤ 4(1 + βτ−1/α)dξτ ,

where we use Lemma C.3 in the fourth inequality. Putting the bounds for I1 and I2 together, we have

Rgood(M, τ) = I1 + I2 ≤ 4
√
2βτ−1

√
dMτξτ + 4

(
1 +

βτ−1

α

)
dξτ

= 4
√
2

(
βτ−1

√
dMτξτ + dξτ +

βτ−1

α
dξτ

)
.

Plugging βτ−1 =
√
λ+ αεMτ +

√
d log( 1+Mτ/λ

δ1
), the regret of the good epochs is bounded as

Rgood(M, τ) ≤ 4
√
2

(√
λdMτξτ + αε

√
d(Mτ)1.5

√
ξτ + d

√
Mτξτ +

√
λdξτ
α

+ εdMτξτ +
(dξτ )

1.5

α

)
.

Now, we focus on the epochs that are not good, which do not satisfy Equation (2). Let p be
one such epoch, and let t0 be the first round and n be the length, respectively, of the epoch p.
Recall that at the beginning of each epoch, agents’ covariance matrices are synchronized, i.e.,
Vm,t0 = λI + Vsyn,∀m ∈ [M ]. We can then bound the regret of the (bad) epoch p as follows.

Rbad(M,p) ≤ 2βτ−1

M∑
m=1

t0+n∑
t=t0

min
(
1, ∥xm,t∥V −1

m,t

)

≤ 2βτ−1

M∑
m=1

√
n

√√√√t0+n∑
t=t0

min

(
1, ∥xm,t∥2V −1

m,t

)

≤ 2βτ−1

M∑
m=1

√
n log

det(Vm,t0+n)

det(Vm,t0)
,

where we use Cauchy-Schwarz’s inequality and Lemma C.3 in the second inequality.

Lets say the synchronization is triggered on round t0 + n+ 1, i.e., for one of the agents we have that
(n+ 1) log

det(Vm,t0+n+1)

det(Vm,t0
) > D. Since n log

det(Vm,t0+n)

det(Vm,t0
) < D for all m ∈ [M ], for this bad epoch

(i.e., from round t0 to round t0 + n), we can bound the group regret as

Rbad(M,p) ≤ 2βτ−1M
√
D.

As we argued earlier, since detVp ≤ (λ + MT
d )d, the bad epochs are rare, i.e., there are at most

R = ⌈d log(1 + Mτ
λd )⌉ (otherwise, if det(Vp)/ det(Vp−1) > 2 for more than R rounds, then the

condition of Equation (1) is violated). Setting D = τ log(Mτ)/(dM) and plugging βτ−1 into the
bound above,

Rbad(M, τ) ≤ 2Rβτ−1M
√
D

≤ 2
(
dξτ

(√
λ+ αεMτ +

√
dξτ

)
M
√
D
)

≤ 2
(√

λdMτ(ξτ )
1.5 + αε

√
d(Mτξτ )

1.5 + d
√
Mτξ2τ

)
.
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We finish the proof by putting the regret of the good and the bad epochs together,

R(M, τ) = Rgood(M, τ) +Rbad(M, τ)

≤ 4
√
2
(√

λdMτ(ξτ )
1.5 + αε

√
d(Mτ)1.5

√
ξτ + d

√
Mτξτ +

√
λdξτ
α

+ εdMτξτ

+
(dξτ )

1.5

α
+ αε

√
d(Mτξτ )

1.5 + d
√
Mτξ2τ

)
.

A.3 Proof of Theorem 4.2

Proof. Setting δ1 = δ2 = 1/(M2T ), then the group regret caused by failure event, which does not
satisfy Lemma 4.1, is at most MT · (Mδ1 +Mδ2) = O(1). Thus, we mainly consider the group
regret when Lemma 4.1 holds.

From round τ onward, agents switch to independent learning mode, this is the group regret from
round τ to the end, we denote it as Rind(M,T ). Furthermore, for round t ≥ τ , we have Vm,t =

λI +
∑t−1

s=τ xm,sx
⊤
m,s as the gram matrix which only contains agent’s data.

Applying Proposition A.1, we have the following

Rind(M,T ) ≤
M∑

m=1

T∑
t=τ

2βt min
(
1, ∥xm,t∥V −1

m,t

)

≤ 2

M∑
m=1

βT

√
T − τ

√√√√ T∑
t=τ

min

(
1, ∥xm,t∥2V −1

m,t

)

≤ 2

M∑
m=1

(
√
λ+

√
d log

(
1 + T/(λd)

δ2

))√
T − τ

√
2d log

(
1 +

T

λd

)
≤ 4
√
2Md

√
T − τξT ,

where we use Cauchy-Schwarz’s inequality in the first inequality, and Lemma 4.1 in the second
inequality. Combining with the regret from the beginning up to round τ from Theorem 4.1, we have

R(M,T ) = Rcollab(M,T ) +Rind(M,T )

≤ 20
√
2
(
d
√
Mτ + εdMτ + dM

√
T − τ

)
ξ2T

(4)

We notice that Equation (4) has the second term that is linear in term of Mτ . To avoid linear regret,
the choice of τ needs to adapt to the dissimilarity level ε.

For the last two terms, by Cauchy-Schwarz’s inequality, we have εdMτ + dM
√
T − τ ≤

dM
√
2(ε2τ2 + T − τ)), this term can be optimized by setting τ = 1

2ε2 . We need to restrict
τ = min(⌊ 12ε

−2⌋, T ) since τ can not exceed T . In other words, all agents can collaborate up to
round min

(
⌊ 12ε

−2⌋, T
)
.

Next, we consider the following two cases:

Case 1: For 1
2ε

−2 ≤ T , we have that dM
√
T − τ ≤ dM

√
T , and εdMτ = dM

2ε ≤ dM
√
T . Thus,

εdMτ + dM
√
T − τ ≤ 2dM

√
T .

Case 2: For 1
2ε

−2 > T , we have τ = T . This implies that εdMτ + dM
√
T − τ = εdMT . We also

have εdMT < 1√
2
dM
√
T due to 1

2ε
2 > T .

Notice that, in both cases, εdMτ + dM
√
T − τ is evaluated as small as εdMT and always be upper

bounded by 2dM
√
T . Therefore, in Equation (4), the summation of the last two terms of the group

regret is upper bounded by 2min{εdMT, dM
√
T}.
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By the choice of δ1, δ2, λ, and assume that d ≥ 1, we can upper bound ξT ≤ 4 log(MT ). Therefore,
we have the following for the expected group regret

E [R(M,T )] ≤ 20
√
2
(
d
√
MT + 2min{εdMT, dM

√
T}
)
ξ2T

≤ 320
√
2
(
d
√
MT + 2min{εdMT, dM

√
T}
)
log2(MT )

B Proof of Lower Bound

B.1 Proof of Theorem 4.3

Before proving the theorem, we give a formal definition of ε-MALCB problem for p-norm,
Definition B.1. Given an instance of multi-agent linear bandits, it belongs to the class of p-norm
ε-MALCB, which we denote as Ip(ε), if for all i, j ∈ [M ], ∥θi − θj∥p ≤ ε.

To prove Theorem 4.3, we use the results of the two following lemmas on max-norm ε-MALCB
instances.
Lemma B.1. Let I∞(ε) be the class of max-norm ε-MALCB instances that satisfy the Assumption 3.1.
For ε ≥ 0, we have the following,

inf
A

sup
I∈I∞(ε)

RA,I(M,T ) = Ω(d
√
MT ).

Lemma B.2. Let I∞(ε) be the class of max-norm ε-MALCB instances that satisfy the Assumption 3.1.
Assume d ≤ 2T, d2

48 ≤ T . For ε ≥ 0, we have the following,

inf
A

sup
I∈I∞(ε)

RA,I(M,T ) = Ω
(
min

{
εMT

√
d, dM

√
T
})

.

Proof of Theorem 4.3. Combining the results of Lemma B.1 and Lemma B.2, we have the following
results for the class of max-norm ε-MALCB, for ε ≥ 0,

inf
A

sup
I∈I∞(ε)

RA,I(M,T ) = Ω
(
d
√
MT +min

{
εMT

√
d, dM

√
T
})

.

In addition, ∥x∥∞ ≤ ε implies ∥x∥2 ≤ ε
√
d, therefore, I∞(ε) ⊆ I2(ε

√
d). In other words, for

ε ≥ 0,

inf
A

sup
I∈I2(ε)

RA,I(M,T ) ≥ inf
A

sup
I∈I∞

(
ε√
d

)RA,I(M,T ) = Ω
(
d
√
MT +min

{
εMT, dM

√
T
})

.

Proof of Lemma B.1. In this lemma, we prove that solving any ε-MALCB instance for T rounds
is at least as hard as solving a (single-agent) linear bandits for MT rounds. We prove the lemma
by contradiction, which is based on linear bandits lower bound of Lemma C.1. We have that
I∞(ε′) ⊆ I∞(ε), for 0 ≤ ε′ ≤ ε. This implies, for ε ≥ 0,

inf
A

sup
I∈I∞(ε)

RA,I(M,T ) ≥ inf
A

sup
I∈I∞(0)

RA,I(M,T ).

We completes the proof by proving infA supI∈I∞(0)RA,I(M,T ) = Ω
(
d
√
MT

)
.

Now, we assume there exists an algorithm A which achieves supI∈I∞(0)RA,I(M,T ) < d
√
MT

16
√
3

.

We observe that I∞(0) is the class of multi-agent solving exactly the same linear bandits problem.
We simulate the algorithm B on a single agent linear bandits for MT rounds by the protocol of
M agents solving an identical linear bandits for T rounds. Therefore, if we have RA,I(M,T ) <
d
√
MT

16
√
3

then we also achieveRB,I(MT ) < d
√
MT

16
√
3

, which contradicts Lemma C.1. Thus, we have

supI∈I∞(0)RA,I(M,T ) ≥ d
√
MT

16
√
3

, which completes the proof.
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Proof of Lemma B.2. We extend Lemma C.1 to multi-agent linear contextual bandit by constructing
the following max-norm ε-MALCB instance.

Max-norm ε-MALCB instance. The set of linear parameter of M agents {θm}Mm=1 belong to a
d-dimensional hypercube θm ∈ {±ε}d, where ε ∈ [0, 1√

d
]. Let D =

{
x ∈ Rd : ∥x∥2 ≤ 1

}
be the

action set given to agents at every round. The reward when agent m picks action x is defined as
rm,x = θ⊤mx+ ηm,x, where the noise samples from a standard normal distribution, ηm,x ∼ N (0, 1).

We first verify if the instance satisfies the Assumption 3.1. It satisfies the context assumption since
we also restrict the context vector to lie in the unit ball. It also satisfies the ∥θm∥ ≤ 1 assumption
because we restrict ε ∈ [0, 1√

d
]. Finally, ηm,x ∼ N (0, 1) is 1-subGaussian distribution. This instance

belongs to I∞(2ε) since ∥θi − θj∥∞ ≤ 2ε for all i, j ∈ [M ].

Now, we proceed to prove Lemma B.2. Let {θm}Mm=1 be a set of parameters of the max-norm
ε-MALCB instance. For brevity, we omit the commas in the subscripts when it is clear from the
context, e.g., θmi = θm,i or xtmi = xt,m,i,∀t ∈ [T ],m ∈ [M ], i ∈ [d]. Given m ∈ [M ], i ∈ [d],
we define the stopping time τmi = T ∧ min{t :

∑t
s=1 x

2
smi ≥ t/d}, and the function Umi(z) =∑τmi

t=1(
1√
d
− xtmi · z)2. We then have following result for Umi(1):

Umi(1) =

τmi∑
t=1

(
1√
d
− xtmi

)2

≤ 2

τmi∑
t=1

1

d
+ 2

τmi∑
t=1

x2
tmi ≤

4T

d
+ 2. (5)

Let x⋆
m be the optimal action of agent m. We then have the following for the group regret

RA(M,T ) = E{θm}M
m=1

[
T∑

t=1

M∑
m=1

d∑
i=1

(x⋆
miθmi − xtmiθmi)

]

= ε · E{θm}M
m=1

[
T∑

t=1

M∑
m=1

d∑
i=1

(
1√
d
− xtmi sign(θmi)

)]

≥ ε
√
d

2
· E{θm}M

m=1

[
T∑

t=1

M∑
m=1

d∑
i=1

(
1√
d
− xtmi sign(θmi)

)2
]

≥ ε
√
d

2
·

M∑
m=1

d∑
i=1

E{θm}M
m=1

[
τmi∑
t=1

(
1√
d
− xtmi sign(θmi)

)2
]
,

where we use the fact that optimal action x⋆
m = [ θm1

∥θm∥ , · · · ,
θmd

∥θm∥ ]
⊤, which is a unit vector and has

the same direction with θm, the first inequality holds due to ∥xtm∥2 ≤ 1.

Now, let {θ′m}Mm=1 be another set of linear parameters that are different at only one coordinate of
the linear parameter of only one agent compared to {θm}Mm=1. Specifically, fix g ∈ [M ], i ∈ [d],
we have θg,i = −θ′g,i; otherwise, θk,j = θ′k,j , for (k, j) ̸= (g, i),∀k ∈ [M ], j ∈ [d]. To simplify the

notion, we define Φ,Φ′ as Md-dimensional vectors, where Φ,Φ′ ∈ {±ε}Md. That is, Φ,Φ′ represent
{θm}Mm=1, {θ′m}Mm=1, respectively. We let P and P′ be the law of Ugi(z) w.r.t. the interaction of the
multi-agent linear bandits induced by Φ,Φ′, respectively. We then get

EΦ [Ugi(1)] ≥ EΦ′ [Ugi(1)]−
(
4T

d
+ 2

)√
1

2
DKL (P||P′)

≥ EΦ′ [Ugi(1)]−
ε

2

(
4T

d
+ 2

)√√√√E

[
τgi∑
t=1

x2
tgi

]

≥ EΦ′ [Ugi(1)]−
ε

2

(
4T

d
+ 2

)√
T

d
+ 1

≥ EΦ′ [Ugi(1)]− 4
√
3ε

(
T

d

)3/2

,
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where the first inequality holds due to Lemma C.5 and Equation (5), the second inequality follows
the stopping time arguments from Lattimore and Csaba [2020], the last inequality holds due to the
assumption that d ≤ 2T . Then,

EΦ [Ugi(1)] + EΦ′ [Ugi(−1)] ≥ EΦ′ [Ugi(1) + Ugi(−1)]− 4
√
3ε

(
T

d

)3/2

= 2EΦ′

[
τgi
d

+

τgi∑
t=1

x2
tgi

]
− 4
√
3ε

(
T

d

)3/2

≥ 2T

d
− 4
√
3ε

(
T

d

)3/2

≥ T

d
,

where the last inequality holds for ε ∈ [0, 1
4
√
3

√
d
T ], this satisfies the requirement ε ∈ [0, 1√

d
] of

the instance construction due to the assumption that d2

48 ≤ T . Furthermore, we denote Φ−mi as a
(Md− 1)-dimensional vector, which is obtained by excluding Φmi from vector Φ. LetRΦ(M,T )
be the regret w.r.t. Φ, and applying randomization hammer, we have the following,∑

Φ∈{±ε}Md

RΦ(M,T ) ≥ ε
√
d

2

M∑
m=1

d∑
i=1

∑
Φ∈{±ε}Md

EΦ [Umi (sign (εmi))]

=
ε
√
d

2

M∑
m=1

d∑
i=1

∑
Φ−mi∈{±ε}Md−1

∑
Φmi∈{±ε}

EΦ [Umi (sign (εmi))]

≥ ε
√
d

2

M∑
m=1

d∑
i=1

∑
Φ−mi∈{±ε}Md−1

T

d
= 2Md−2εMT

√
d.

Therefore, we conclude that there exists an instance with the parameter set of {θm}Mm=1 such that

R(M,T ) ≥ εMT
√
d

4 , for ε ∈ [0, 1
4
√
3

√
d
T ]. Notice that this proof holds for I∞(2ε) class. Scaling

down by 2, we have the following for I∞(ε) class,

RI∞(ε)(M,T ) = RI∞(2· ε2 )(M,T ) ≥ εMT
√
d

8
, for ε ∈

[
0,

1

2
√
3

√
d

T

]
.

Observe that εMT
√
d

8 is a strictly increasing function w.r.t. ε. It is at most dM
√
T

16
√
3

, when ε = 1
2
√
3

√
d
T .

In other words,RI∞(ε)(M,T ) ≥ min( εMT
√
d

8 , dM
√
T

16
√
3
) for ε ∈ [0, 1

2
√
3

√
d
T ].

Recall that infA supI∈I∞(ε)R(M,T ) ≥ infA supI∈I∞(ε′)R(M,T ), for any ε ≥ ε′ ≥ 0. Thus, we
conclude, ∀ε ≥ 0, the following holds,

inf
A

sup
I∈I∞(ε)

RA,I(M,T ) ≥ min(
εMT

√
d

8
,
dM
√
T

16
√
3

),

which completes the proof.

C Supporting Lemmas

Lemma C.1. ([Lattimore and Csaba, 2020, Theorem 24.2]). Assume d ≤ 2n and let D ={
x ∈ Rd : ∥x∥2 ≤ 1

}
. Then there exists a parameter vector θ ∈ Rd with ∥θ∥22 = d2/(48n) such

that Rn(D, θ) ≥ d
√
n/(16

√
3).

Lemma C.2. ([Abbasi-Yadkori et al., 2011, Lemma 12]). Let A,B and C be positive semi-definite
matrices such that A = B + C. Then, we have that

sup
x ̸=0

x⊤Ax

x⊤Bx
≤ det(A)

det(B)
.

22



Lemma C.3. ([Abbasi-Yadkori et al., 2011, Lemma 11]). Let {Xt}∞t=1 be a sequence in Rd, V a
d× d positive definite matrix and define V̄t = V +

∑t
s=1 XsX

⊤
s . Then, we have that

log

(
det
(
V̄n

)
det(V )

)
≤

n∑
t=1

∥Xt∥2V̄ −1
t−1

.

Further, if ∥Xt∥2 ≤ L for all t, then

n∑
t=1

min
{
1, ∥Xt∥2V̄ −1

t−1

}
≤ 2

(
log det

(
V̄n

)
− log detV

)
≤ 2

(
d log

((
trace(V ) + nL2

)
/d
)
− log detV

)
Lemma C.4. (Self-Normalized Bound for Vector-Valued Martingales, [Abbasi-Yadkori et al., 2011,
Theorem 1]). Let {Ft}∞t=0 be a filtration. Let {ηt}∞t=1 be a real-valued stochastic process such that
ηt is Ft-measurable and ηt is conditionally R-sub-Gaussian for some R ≥ 0 i.e.

∀λ ∈ R E
[
eληt | Ft−1

]
≤ exp

(
λ2R2

2

)
.

Let {Xt}∞t=1 be an Rd-valued stochastic process such that Xt is Ft−1-measurable. Assume that V is
a d× d positive definite matrix. For any t ≥ 0, define V̄t = V +

∑t
s=1 XsX

⊤
s . Then, for any δ > 0,

with probability at least 1− δ, for all t ≥ 0,∥∥∥∥∥
t∑

s=1

ηsXs

∥∥∥∥∥
2

V̄ −1
t

≤ 2R2 log

(
det
(
V̄t

)1/2
det(V )−1/2

δ

)
.

Lemma C.5. (Pinsker’s inequality [Lattimore and Csaba, 2020, Equation 14.12])

For measures P and Q on the same probability space (Ω,F), we have the following,

sup
A∈F

P (A)−Q(A) ≤
√

1

2
DKL(P ||Q).

23


	Introduction
	Related work
	Preliminaries
	Main Results
	H-LinUCB Algorithm
	Lower bound

	Numerical Simulations
	Conclusions
	Proof of Upper Bound
	Proof of lemma:confidencehflin
	Proof of theorem:ubtau
	Proof of theorem:ubshort

	Proof of Lower Bound
	Proof of theorem:lb2norm

	Supporting Lemmas

