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ABSTRACT

Modeling the 3D structures of proteins is critical for obtaining effective protein
structure representations, which further boosts protein function understanding.
Existing protein structure encoders mainly focus on modeling short-range inter-
actions within protein structures, while they neglect modeling the interactions at
multiple length scales that are actually complete interactive patterns in protein
structures. To attain complete interaction modeling with efficient computation, we
introduce the EurNet for Efficient multi-range relational modeling. In EurNet,
we represent the protein structure as a multi-relational residue-level graph with
different types of edges for modeling short-range, medium-range and long-range
interactions. To efficiently process these different interactive relations, we pro-
pose a novel modeling layer, called Gated Relational Message Passing (GRMP),
as the basic building block of EurNet. GRMP can capture multiple interactive
relations in protein structures with little extra computational cost. We verify the
state-of-the-art performance of EurNet on EC and GO protein function prediction
benchmarks, and the proposed GRMP layer is proved to achieve better efficiency-
performance trade-off than the widely-used relational graph convolution.

1 INTRODUCTION

Proteins play important roles in governing various biological processes and life itself, boosting a
broad range of applications in drug discovery (Teague, 2003) and healthcare (Organization & Uni-
versity, 2007). Proteins are composed of a chain of amino acids (a.k.a., residues) that fold into
specific 3D conformations, and these 3D structures further determine diverse functions of proteins.
Machine learning models (Hermosilla et al., 2021; Jing et al., 2021; Zhang et al., 2022) have shown
great promise in extracting informative representations from protein structures, which further boost
protein function prediction (Gligorijević et al., 2021) and protein design (Hsu et al., 2022).

Existing protein structure encoders (Hermosilla et al., 2021; Jing et al., 2021; Zhang et al., 2022)
mainly focus on capturing the short-range interactions within protein structures (e.g., peptide and
hydrogen bonds), and some impressive performance on function prediction (Gligorijević et al., 2021;
Zhang et al., 2022) is gained based on such modeling manner. However, it is worth noticing that
residues in protein structures can interact beyond short range towards medium and long ranges by
non-bond interactions like hydrophobic interaction. These non-local interactions are not explicitly
modeled by previous methods, which limits their effectiveness. This limitation motivates us to study
protein structure modeling that captures the interactions at multiple spatial ranges.

To attain this goal, we propose a novel protein structure encoder called EurNet for Efficient multi-
range relational modeling. Specifically, EurNet represents the protein structure as a multi-relational
residue-level graph in which different types of edges are constructed to separately model short-
range, medium-range and long-range interactions in the whole structure. To efficiently process these
various interactive relations, we introduce the Gated Relational Message Passing (GRMP) layer
as EurNet’s basic building block. GRMP separately performs (1) relational message aggregation
on each individual feature channel and (2) node-wise aggregation of different feature channels.
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Compared to the classical relational graph convolution (RGConv) (Schlichtkrull et al., 2018), GRMP
enjoys lower computational cost when more relations are to be modeled, and thus can better perform
multi-range relational modeling of protein structures given the same computational budget.

We study the effectiveness and efficiency of EurNet on EC and GO protein function prediction
benchmarks. Under the fair comparison with comparable model size, EurNet consistently outper-
forms the previous SOTA GearNet with a clear margin in terms of protein-centric maximum F-score
(EC: 0.768 v.s. 0.730; GO-BP: 0.437 v.s. 0.356; GO-MF: 0.563 v.s. 0.503; GO-CC: 0.421 v.s. 0.414).
These performance improvements remain when edge-level message passing is involved. In addition,
we demonstrate the superior efficiency-performance trade-off of the proposed GRMP layer over the
broadly-used relational graph convolution, when they serve as the building block for multi-relational
modeling of protein structures.

2 RELATED WORK

Protein structure modeling. Under the guidance of the principle that “protein structures are de-
terminants of their functions”, a variety of protein structure encoders have been developed to ac-
quire informative protein representations on different structural granularities, including residue-level
structures (Gligorijević et al., 2021; Zhang et al., 2022), atom-level structures (Jing et al., 2021; Her-
mosilla et al., 2021) and protein surfaces (Gainza et al., 2020; Sverrisson et al., 2021). This work
focuses on the residue-level protein structure modeling. GearNet (Zhang et al., 2022) relates to our
work by exploring multi-relational modeling of residue-level structures with short-range linking and
relational graph convolution (RGConv). By comparison, the proposed EurNet models a broader
range of interactions including short, medium and long ranges, and it studies the gated relational
message passing (GRMP) as a more efficient and equally effective alternative of RGConv.

Multi-relational data modeling. Multi-relational data are ubiquitous in the real world, e.g., knowl-
edge graphs (Toutanova & Chen, 2015), customer-product networks (Li et al., 2014) and pro-
teins (Zhang et al., 2022). To effectively model multiple types of relations/interactions, existing
works have explored embedding-based methods (Bordes et al., 2013; Sun et al., 2019), multi-headed
attention (Vaswani et al., 2017) and different relational graph neural networks (GNNs) (Schlichtkrull
et al., 2018; Vashishth et al., 2019; Busbridge et al., 2019; Zhu et al., 2021). Previous relational
GNNs mainly focus on the model expressivity, and few works (Li et al., 2021) study the compu-
tational efficiency for multi-relational modeling at scale. EurNet is designed to model the multi-
relational interactions within protein structures in a computationally efficient way.

3 METHOD

3.1 PROBLEM DEFINITION

We consider the alpha carbon (i.e., Cα) graph as the representation of protein structure, which is
an informative and light-weight summary of the overall protein 3D structure and is widely used in
the literature (Gligorijević et al., 2021; Baldassarre et al., 2021; Zhang et al., 2022). To be specific,
we extract all Cαs of a protein as the node set V of our graph. Based on these nodes, we construct
three groups of edges Eshort = {{(u, v, r)}|r ∈ Rshort}, Emedium = {{(u, v, r)}|r ∈ Rmedium}
and Elong = {{(u, v, r)}|r ∈ Rlong} to represent short-, medium- and long-range interactions
in the protein structure, where (u, v, r) denotes an edge from node u to node v with relation r,
and Rshort/Rmedium/Rlong is the set of relations for short-/medium-/long-range interactions. To
capture the interactions on different spatial ranges, all these edges are gathered into the edge set
E = Eshort ∪ Emedium ∪ Elong = {{(u, v, r)}|r ∈ R} with the integrated relation set R = Rshort ∪
Rmedium ∪ Rlong. In this way, the protein structure is represented as a multi-relational graph G =
(V, E ,R) that is aware of diverse types of interactions within the structure.

3.2 RELATIONAL EDGE CONSTRUCTION FOR SHORT-, MEDIUM- AND LONG-RANGE
INTERACTIONS

In this section, we elucidate the construction scheme of multi-range relational edges. See Fig. 1 for
a graphical illustration.
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Figure 1: Illustration of multi-range rela-
tional edges. Abbr., dist.: distance.

Relational edges for short-range interactions
(|Rshort| = 6). We construct short-range edges in-
spired by two kinds of bond interactions in the short
range, i.e., peptide and hydrogen bonds.

• Peptide bonds link the residues that are consec-
utive on protein sequence, which motivates us
to connect residues close on sequence. In spe-
cific, we build sequential edges to connect the
Cα nodes within the distance of 2 on the protein
sequence, where each of the sequential distances
{-2,-1,0,1,2} is regarded as a single relation (i.e.,
5 relations in total).

• Hydrogen bonds are formed between spatially
close residues, holding the secondary structures
of proteins. To capture hydrogen bonds with
different lengths, based on the length distribu-
tion (Egli & Sarkhel, 2007), we construct spa-
tial edges to connect the Cα nodes within the
Euclidean distance of 10 angstroms. All spatial
edges own the same relation.

Relational edges for medium-range interactions
(|Rmedium| = 2). Medium-range interactions are
performed between the residues that are not close
both on sequence and structure (Gromiha & Sel-
varaj, 2004). According to the statistics (Gromiha
& Selvaraj, 2004), for each Cα node, we first filter out all its neighbors within the sequential dis-
tance of 5 or within the Euclidean distance of 10 angstroms. We then connect it with the remaining
nodes that are 5 nearest and 5∼10 nearest to it (measured by Euclidean distance), and the con-
nections with these two sets of medium-range neighbors are regarded as two different relations for
strong and weak medium-range interactions, respectively.

Relational edges for long-range interactions (|Rlong| = 1). Inspired by the long-range interaction
modeling of small molecules (Gilmer et al., 2017; Ying et al., 2021), we introduce the virtual node to
model long-range interactions within protein structures, which guarantees that all pairs of residues
are within 2 hops in our constructed graph. Specifically, we employ a virtual node as the whole
protein representation and link it to all Cα nodes with a single relation. These edges make each
residue aware of the status of all other residues, and thus the long-range interactions beyond short
and medium ranges can be captured.

We gather all these edges with 9 different interactive relations into the edge set E and the relation
set R, which, together with the Cα node set V , derive the full graph G = (V, E ,R) for multi-range
relational protein structure modeling.

3.3 GATED RELATIONAL MESSAGE PASSING

Relational Graph Convolution (RGConv) (Schlichtkrull et al., 2018) is a typical method to model
the constructed multi-relational graph G. It employs a unique convolutional kernel matrix Wr to ag-
gregate the messages of relation r, leading to |R| different kernel matrices in total for neighborhood
aggregation. The RGConv layer updates the representation of node v from zv to z′v as below:

zaggrv =
∑
r∈R

∑
u∈Nr(v)

1

|Nr(v)|
Wrzu, z′v = W selfzv + zaggrv , (1)

where zaggrv is the aggregated message for node v, Nr(v) = {u|(u, v, r) ∈ E} are v’s neighbors
with relation r, and W self is the weight matrix for self-update (we omit all bias terms for brevity).

We assume that, when introducing a new relation, the in-degree of each node will increase by d̄ on
average. By taking the efficient implementation of RGConv with sparse matrix multiplication, it
can be shown that the floating-point operations (FLOPs) of RGConv with C-dimensional input and
output node features has the following form (see Appendix A for proof):
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Figure 2: Graphical illustration for node representation update in the GRMP layer. We specifically
show the neighborhood aggregation and representation update procedure of the node denoted in red.
Abbr., Multi.: multiply with; Rel.: relation; aggr.: aggregation.

FLOPs(RGConv) = |R| · (2d̄|V|C + 2|V|C2) + 2|V|C2 + |V|C. (2)

Therefore, the computational cost will scale with the relation number |R| by the factor of 2d̄|V|C +
2|V|C2. Considering both the node (i.e., residue) number |V| and the feature dimension C could be
large when modeling large protein structures with large models, the 2|V|C2 term will be the main
obstacle of exploring more relations with moderate extra computation.

For more efficient multi-relational modeling, we aim at an approach that (1) can effectively model
the interactions among relational messages and among feature channels, and (2) owns a gentle scal-
ing behavior when modeling increasing number of relations within protein structures. To attain this
goal, we propose the Gated Relational Message Passing (GRMP) layer. Inspired by light-weight sep-
arable graph convolution methods (Balcilar et al., 2020; Li et al., 2021) that aggregate neighborhood
features in a channel-wise way, GRMP decomposes the relation-channel entangled aggregation of
RGConv into (i) the aggregation of intra- and inter-relation messages on each individual channel and
(ii) the aggregation of different feature channels. Specifically, it consecutively performs following
steps: 1 a pre-layer node-wise channel aggregation with the weight matrix W in, 2 an intra-relation
message aggregation through channel-wise graph convolution, 3 an inter-relation message aggre-
gation by node-adaptive weighted summation, 4 a post-layer node-wise channel aggregation with
the weight matrix W out, and 5 the final node representation update by regarding the aggregated
neighborhood information as gate. Formally, GRMP updates the representation of node v from zv
to z′v as below (see Fig. 2 for a graphical illustration):

zaggrv =

step 4︷ ︸︸ ︷
W out

( step 3︷ ︸︸ ︷∑
r∈R

αr(v) ·
∑

u∈Nr(v)

1

|Nr(v)|
wr ⊙ (W inzu︸ ︷︷ ︸

step 1

)

︸ ︷︷ ︸
step 2

)
, z′v = W selfzv ⊙ zaggrv︸ ︷︷ ︸

step 5

, (3)

where α(v) = Wαzv ∈ R|R| are the attentive weights assigned to all relations on node v (Wα is the
weight matrix for node-adaptive relation weighting), wr is the channel-wise convolutional kernel
vector for relation r (with the same shape as the node feature vector after step 1 ), and ⊙ denotes
the Hadamard product. The definitions of zaggrv , Nr(v) and W self follow Eq. (1), and all bias terms
are omitted for brevity.

Under the efficient implementation with sparse matrix multiplication, GRMP consumes the FLOPs
as below when taking C-dimensional input and output node features (see Appendix A for proof):

FLOPs(GRMP) = |R| · (2d̄+ 7)|V|C + 6|V|C2. (4)

Therefore, the relation number |R| scales the computational cost of GRMP with the scaling factor
(2d̄+ 7)|V|C. Compared to the scaling factor 2d̄|V|C + 2|V|C2 of RGConv, this factor gets rid of
the quadratic reliance on feature dimension and thus leads to a gentler scaling behavior when mod-
eling increasing number of relations. This merit enables GRMP-based models to achieve superior
efficiency-performance trade-off against RGConv-based models, as studied in Sec. 4.3.
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Table 1: Benchmark results on EC and GO protein function prediction.

Model EC GO-BP GO-MF GO-CC

Fmax AUPR Fmax AUPR Fmax AUPR Fmax AUPR

CNN 0.545 0.526 0.244 0.159 0.354 0.351 0.287 0.204
3DCNN_MQA 0.077 0.029 0.240 0.132 0.147 0.075 0.305 0.144
GCN 0.320 0.319 0.252 0.136 0.195 0.147 0.329 0.175
GAT 0.368 0.320 0.284 0.171 0.317 0.329 0.385 0.249
GVP 0.489 0.482 0.326 0.224 0.426 0.458 0.420 0.279
GraphQA 0.509 0.543 0.308 0.199 0.329 0.347 0.413 0.265

GearNet 0.730 0.751 0.356 0.211 0.503 0.490 0.414 0.276
EurNet 0.768 0.756 0.437 0.223 0.563 0.499 0.421 0.267

GearNet-Edge 0.810 0.872 0.403 0.251 0.580 0.570 0.450 0.303
EurNet-Edge 0.829 0.876 0.456 0.262 0.592 0.576 0.453 0.298

3.4 ARCHITECTURE OF EURNET

EurNet follows the general architecture of GearNet (Zhang et al., 2022) to have a fair comparison
with this SOTA model. To be specific, based on the input node features (i.e., the one-hot encoding
of amino acid types), six GRMP layers with 512 hidden dimensions are stacked for multi-range
relational modeling. After each layer, the sum pooling over all Cα representations is deemed as
the whole-protein representation, and these per-layer protein representations are concatenated to
produce the final output. To perform a downstream task, a task-specific prediction head is appended.

Note that, in EurNet, all graph construction and message passing operations rely only on the quanti-
ties (e.g., sequential and Euclidean distance) that are invariant to translation, rotation and reflection.
Therefore, EurNet satisfies E(3)-invariance (Mumford et al., 1994).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Datasets. Two standard protein function prediction benchmarks are used in our experiments:

• Enzyme Commission (EC) number prediction (Gligorijević et al., 2021) requires the model
to predict the EC numbers of a protein based on its tertiary structure, where the EC numbers
describe the protein’s catalysis of biochemical reactions. This task involves the binary prediction
of 538 different EC numbers, forming 538 binary classification problems.

• Gene Ontology (GO) term prediction (Gligorijević et al., 2021) seeks to predict the GO terms
owning by a protein based on its tertiary structure. This benchmark is further split into three
branches based on three types of ontologies: biological process (BP), molecular function (MF)
and cellular component (CC). Each branch is formed by multiple binary classification problems.

Training and evaluation. An AdamW (Loshchilov & Hutter, 2017) optimizer (betas: [0.9, 0.999],
weight decay: 0) is used to train the model for 200 epochs with the binary cross entropy loss. We
adopt a cosine learning rate scheduler to linearly increase the learning rate from 1.0 × 10−7 to
1.0× 10−4, and the learning rate is decayed to 1.0× 10−6 in the rest epochs with a cosine rate. All
models are trained with batch size 16 on 4 Tesla-V100-32GB GPUs (i.e., four proteins per GPU).

For all models on all tasks, we select the checkpoint for evaluation based on the validation set
performance, and we report all results on the seed 1024 following Zhang et al. (2022). Following
the original benchmark (Gligorijević et al., 2021), we use two evaluation metrics, the protein-centric
maximum F-score, i.e., Fmax, and the pair-centric area under precision-recall curve, i.e., AUPR.

4.2 BENCHMARK RESULTS

Baselines. We compare with the SOTA GearNet (Zhang et al., 2017) under two settings, i.e., with
and without edge message passing (“-Edge” in Tab. 1). More details about edge message passing are
provided in Appendix B. We also include other baselines, i.e., CNN (Shanehsazzadeh et al., 2020),
3DCNN_MQA (Derevyanko et al., 2018), GCN (Kipf & Welling, 2016), GAT (Veličković et al.,
2017), GVP (Jing et al., 2021) and GraphQA (Baldassarre et al., 2021), for complete comparisons.
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Table 2: Efficiency-Performance trade-off comparison between GRMP and RGConv. Throughput
measures the number of proteins that the model can process in one second. Abbr., dim.: dimension.

Layer Hidden dim. EC GO-BP GO-MF GO-CC

Throughput AUPR Throughput AUPR Throughput AUPR Throughput AUPR

RGConv 422 34.4 0.740 32.8 0.209 32.6 0.478 32.8 0.260
GRMP 512 34.6 0.756 32.9 0.223 32.7 0.499 33.0 0.267
RGConv 512 31.2 0.753 29.7 0.221 29.6 0.493 29.6 0.270
GRMP 592 31.5 0.770 30.1 0.233 29.9 0.508 30.0 0.279

Results. All benchmark results are reported in Tab. 1. For the Fmax metric, EurNet consistently
outperforms GearNet with a clear margin on all four tasks, and the performance gains remain after
involving edge message passing. For the AUPR metric, EurNet outperforms GearNet on 6 out of 8
benchmark settings. Since EurNet follows the general architecture of GearNet for fair comparison,
we can conclude the effectiveness of medium- and long-range interaction modeling and GRMP-
based multi-relational modeling, which are novel modeling mechanisms in EurNet.

4.3 STUDY OF EFFICIENCY-PERFORMANCE TRADE-OFF

Setups. In this experiment, we compare the efficiency-performance trade-off of the proposed GRMP
layer with that of the RGConv layer. We employ the throughput metric (i.e., the number of proteins
that the model can process in one second) to measure the efficiency, and use the AUPR metric to
measure the performance. GRMP and RGConv layers are respectively embedded into the EurNet
architecture so as to have a fair comparison.

Results. In Tab. 2, we compare between GRMP and RGConv under the comparable throughput. (1)
We first set the hidden dimension of GRMP as 512. Under the comparable throughput, RGConv
can only have the dimension of 422, and its AUPR scores are clearly lower than those of GRMP
on all four tasks. (2) We then increase RGConv’s hidden dimension to 512. At this time, RGConv
can achieve comparable AUPR scores against GRMP under the same hidden dimension, while the
throughput of RGConv is decreased by 3.0∼3.2 across four tasks. Under the comparable throughput,
GRMP can have the hidden dimension of 592, which leads to clearly higher AUPR scores on all
four tasks. These results demonstrate that GRMP owns a better efficiency-performance trade-off
than RGConv in terms of protein structure modeling.

4.4 ABLATION STUDY Table 3: Ablation study of multi-range
edges on EC.

short medium long Fmax AUPR

✓ 0.750 0.730
✓ 0.708 0.688

✓ 0.647 0.615

✓ ✓ 0.755 0.739
✓ ✓ 0.760 0.747

✓ ✓ 0.720 0.699

✓ ✓ ✓ 0.768 0.756

Tab. 3 shows the performance of EurNet on EC by using
different ranges of edges. When a single range of edges are
employed, the model with short-range edges obtains the
highest performance. This result illustrates the importance
of capturing short-range interactions for protein structure
modeling. By adding medium-range or long-range edges,
both Fmax and AUPR scores are improved, where the ex-
tra modeling of non-local interactions (e.g., hydrophobic
interactions) contributes to this improvement. By using all
three ranges of edges, the full model of EurNet achieves the best Fmax and AUPR scores, which
demonstrates the necessity of modeling each range of interactions.

5 CONCLUSIONS AND FUTURE WORK

This work proposes the EurNet to model residue-level protein structures. EurNet constructs rela-
tional edges on short, medium and long ranges to capture the interactions on multiple length scales.
The novel gated relational message passing (GRMP) layer serves as the basic building block of Eu-
rNet to efficiently perform multi-relational protein structure modeling. We verify the effectiveness
and efficiency of EurNet on EC and GO protein function prediction benchmarks.

In future works, we will extend EurNet to model atom-level protein structures and protein surfaces,
and we will also explore protein structure pre-training with EurNet.
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A FLOPS OF RGCONV AND GRMP

For FLOPs computation, we consider the multi-relational graph G = (V, E ,R) with node set V ,
edge set E and relation (i.e., edge type) set R, and both input and output node features are with C
feature channels. In addition, we assume that, when introducing a new relation, the in-degree of
each node will increase by d̄ on average.
Proposition 1. To process the assumed multi-relational graph, the Relational Graph Convolution
(RGConv) consumes the FLOPs as below under the efficient implementation with sparse matrix
multiplication:

FLOPs(RGConv) = |R| · (2d̄|V|C + 2|V|C2) + 2|V|C2 + |V|C.

Proof. We divide the computation of RGConv into three steps and compute the FLOPs of each step:

1 In the first step, the adjacency of all node pairs on |R| different relations are summarized in
the adjacency matrix A ∈ R|V|×|R||V|, where the element Ai,(j−1)|R|+k indicates the weight
of the edge from the i-th node to the j-th node with the k-th relation:

Ai,(j−1)|R|+k =

{
1

|Nrk
(vj)| there is an edge from i-th node to j-th node with k-th relation,

0 otherwise,
(5)

where Nrk(vj) = {u|(u, vj , rk) ∈ E} is the neighborhood set of node vj with relation rk.
Using this adjacency matrix, each node will have |R| different slots to receive the relational
messages passed to it. All relational message passing operations can be realized by a sparse
matrix multiplication:

Z̃ = A⊤Z, (6)

where Z ∈ R|V|×C denotes input node features, and Z̃ ∈ R|R||V|×C denotes the relational
slots of all nodes after message passing. By utilizing the sparsity of the adjacency matrix, this
step consumes following FLOPs:

FLOPs(RGConv− 1 ) = 2|E|C = 2d̄|R||V|C. (7)

2 In the second step, we first integrate the relational slots of each node to get the reshaped
Z̃ ∈ R|V|×|R|C . At this time, each node is represented by a |R|C-dimensional vector, i.e., the
aggregated messages of all relations. Next, we concatenate the convolutional kernel matrices
of all relations to produce W conv ∈ R|R|C×C , and this matrix is applied upon Z̃ to combine
the messages in the same relational slot and aggregate messages across different relations:

Zaggr = Z̃W conv, (8)

where Zaggr ∈ R|V|×C denotes the aggregated neighborhood information for each node. This
step has the FLOPs as below:

FLOPs(RGConv− 2 ) = 2|R||V|C2. (9)

3 In the final step, a self-update with matrix W self ∈ RC×C is first performed on the input
feature of each node, and the self-updated node feature is further added with the aggregated
neighborhood information:

Z ′ = ZW self + Zaggr, (10)
where Z ′ ∈ R|V|×C denotes output node features. This step has the FLOPs as below:

FLOPs(RGConv− 3 ) = 2|V|C2 + |V|C. (11)

Therefore, by summing up the computational cost of three steps, the RGConv consumes the follow-
ing FLOPs in total:

FLOPs(RGConv) = |R| · (2d̄|V|C + 2|V|C2) + 2|V|C2 + |V|C.
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Proposition 2. To process the assumed multi-relational graph, the Gated Relational Message Pass-
ing (GRMP) consumes the FLOPs as below under the efficient implementation with sparse matrix
multiplication:

FLOPs(GRMP) = |R| · (2d̄+ 7)|V|C + 6|V|C2.

Proof. Following the steps of GRMP stated in Eq. (3), we compute the FLOPs of each step:

1 In the first step, we conduct a pre-layer node-wise channel aggregation with the weight matrix
W in ∈ RC×C :

Z in = ZW in, (12)
where Z ∈ R|V|×C denotes the input node features, and Z in ∈ R|V|×C denotes the channel-
aggregated node features. This step has the FLOPs consumption as below:

FLOPs(GRMP− 1 ) = 2|V|C2. (13)

2 In the second step, we first gather the messages within the same relation for each node, which
is realized by the sparse matrix multiplication between Z in and the adjacency matrix A ∈
R|V|×|R||V| (A is identically defined as in the step 1 of Proposition 1):

Z̃ in = A⊤Z in, (14)

where Z̃ in ∈ R|R||V|×C represents the relational slots of all nodes after message passing. The
relational slots of each node are then integrated to get the reshaped Z̃ in ∈ R|V|×|R|C . By
concatenating the convolutional kernel vectors of all relations, we have wconv ∈ R|R|C×1,
and this vector is broadcast to all nodes to perform channel-wise message aggregation via
Hadamard product:

Z̃aggr = (1convw
⊤
conv)⊙ Z̃ in, (15)

where 1conv ∈ R|V|×1 is the all-one vector for broadcasting, and Z̃aggr ∈ R|V|×|R|C denotes
the relational slots of all nodes after intra-relation message aggregation.

To conduct the operations in Eqs. (14) and (15), this step consumes the following FLOPs:

FLOPs(GRMP− 2 ) = 2|E|C + 2|R||V|C = 2d̄|R||V|C + 2|R||V|C. (16)

3 In the third step, we first compute the attentive weights assigned to all relations on each node:

Mα = ZWα, (17)

where Wα ∈ RC×|R| is the weight matrix for node-adaptive relation weighting, and Mα ∈
R|V|×|R| denotes the relation weights on all nodes. After that, a weighted summation is per-
formed to aggregate the messages of different relations in Z̃aggr (in this operation, we use the
reshaped Z̃aggr ∈ R|V|×|R|×C and the reshaped Mα ∈ R|V|×|R|×1):

>
Zaggr =

|R|∑
i=1

(Mα
:,i,: 1

⊤
α )⊙ Z̃aggr

:,i,: , (18)

where 1α ∈ RC×1 is the all-one vector for broadcasting relation weights to all feature chan-
nels, and

>
Zaggr ∈ R|V|×C denotes the per-node neighborhood representations after inter-

relation message aggregation.

To perform Eqs. (17) and (18), this step has the following FLOPs consumption:

FLOPs(GRMP− 3 ) = 2|R||V|C+ |R| ·2|V|C+(|R|−1)|V|C = 5|R||V|C−|V|C. (19)

4 The fourth step conducts a post-layer node-wise channel aggregation with the weight matrix
W out ∈ RC×C :

Zaggr =
>
ZaggrW out, (20)

where Zaggr ∈ R|V|×C denotes the channel-aggregated neighborhood representations. This
step consumes the FLOPs as below:

FLOPs(GRMP− 4 ) = 2|V|C2. (21)
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5 In the final step, the input feature of each node first performs self-update with the weight matrix
W self ∈ RC×C , and the self-updated node feature is further updated by its neighborhood
representation via a gating mechanism:

Z ′ = ZW self ⊙ Zaggr, (22)

where Z ′ ∈ R|V|×C denotes output node features. This step has the FLOPs as below:

FLOPs(GRMP− 5 ) = 2|V|C2 + |V|C. (23)

Therefore, by summing up the computational cost of five steps, the GRMP has the following FLOPs
consumption in total:

FLOPs(GRMP) = |R| · (2d̄+ 7)|V|C + 6|V|C2. (24)

B MORE EXPERIMENTAL SETUPS

Edge message passing. Zhang et al. (2022) proposes to enhance the GearNet by edge-level message
passing, which well captures the interactions between edges. To compare with the GearNet-Edge
model enhanced in this way, we adapt the same edge message passing scheme to our EurNet.

Specifically, based on the constructed multi-relational graph G = (V, E ,R), we further construct a
line graph (Harary & Norman, 1960) Gline = (Vline, Eline,Rline). In this graph, each node v ∈ Vline

corresponds to an edge in the original graph G. There will an edge (u, v, r) between nodes u, v ∈
Vline if the corresponding edges of u and v are adjacent in the original graph, and the edge type
r ∈ {0, 1, · · · , 7} is determined by the angle ∠(u,v)’s allocation in 8 equally-divided bins of [0, π]
(∠(u,v) denotes the angle between the corresponding edges of u and v in the original graph). Based
on this multi-relational line graph, we employ the GRMP layer (Sec. 3.3) to propagate information
between the nodes in Gline and thus between the edges in the original graph G. Readers are referred
to Zhang et al. (2022) for more details. We name the EurNet equipped with such an edge message
passing scheme as EurNet-Edge.
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