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ABSTRACT

Selecting high-quality pre-training data for large language models (LLMs) is cru-
cial for enhancing their overall performance under limited computation budget,
improving both training and sample efficiency. Recent advancements in file se-
lection primarily rely on using an existing or trained proxy model to assess the
similarity of samples to a target domain, such as high quality sources BookCorpus
and Wikipedia. However, upon revisiting these methods, the domain-similarity
selection criteria demonstrates a diversity dilemma, i.e. dimensional collapse in
the feature space, improving performance on the domain-related tasks but causing
severe degradation on generic performance. To prevent collapse and enhance diver-
sity, we propose a DiverSified File selection algorithm (DiSF), which selects the
most decorrelated text files in the feature space. We approach this with a classical
greedy algorithm to achieve more uniform eigenvalues in the feature covariance
matrix of the selected texts, analyzing its approximation to the optimal solution
under a formulation of γ-weakly submodular optimization problem. Empirically,
we establish a benchmark and conduct extensive experiments on the TinyLlama
architecture with models from 120M to 1.1B parameters. Evaluating across nine
tasks from the Harness framework, DiSF demonstrates a significant improvement
on overall performance. Specifically, DiSF saves 98.5% of 590M training files
in SlimPajama, outperforming the full-data pre-training1 within a 50B training
budget, and achieving about 1.5x training efficiency and 5x data efficiency.

1 INTRODUCTION
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Figure 1: Commonsense reasoning abil-
ity of pre-trained TinyLlama 1B us-
ing various selection methods evalu-
ated on seven tasks of Harness. DSIR
uses Wikipedia and BookCorpus as high
quality source and QuRating-W selects
samples with writing style score. All
methods select 1.5% of training files in
SlimPajama and pre-train 50B tokens.

Pre-trained Large Language Models (LLMs) have demon-
strated remarkable capabilities (Brown, 2020a; Chowdhery
et al., 2023a; Touvron et al., 2023b), but their training is
computationally expensive, with costs increasing as model
size and training data grow (Rae et al., 2021; Patterson
et al., 2021; Thoppilan et al., 2022). For instance, training
GPT-3 with 175 billion parameters is estimated to produce
552 tons of CO2 emissions and consume 1,287 MWh of
energy (Patterson et al., 2021). In practice of commer-
cial use and common academic research, training budgets
such as the number of pre-trained tokens are typically
predefined, determined by available devices and training
time constraints (Hoffmann et al., 2022). To optimize
the performance of LLMs within the budget, selecting
high-quality pre-training data from large text corpora is
essential, boosting both training and sample efficiency.

Recent innovations of selecting files for pre-training LLMs
mostly rely on using an existing or trained proxy model
and designing a proxy function to access the similarity to
a target domain, which is regarded as high-quality data.

1Full-data pre-training in this paper refers to pre-training the LLMs on all training files in SlimPajama until
the specified training budget is reached.
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(a) Heuristic (b) DSIR (c) QuRating-W (d) D4 (e) DISF

Figure 2: The t-SNE (Van der Maaten & Hinton, 2008) visualization of text features (normalized
to the unit sphere) selected by different methods on SlimPajama. We use Contriever (Izacard et al.,
2021) to extract features. (a) and (b) show Heuristic classification and DSIR based on the Wikipedia
and Book domains, while (c) depicts QuRating based on writing judgments. We visualize top 500 text
features selected by their criterion, which forms a long narrow band, indicating dimensional collapse.
(d) and (e) represent D4 and our DiSF. For D4, we display 500 random samples after reducing
redundancy, while for DiSF, we select samples with the highest values based on equation 6. Both
methods, especially DiSF, show more uniformly scattered features, indicating improved diversity.

Heuristic classification (Brown, 2020b; Chowdhery et al., 2023b) trains a binary classifier and select
similar content to text domains like Books and Wikipedia (Computer, 2023). DSIR (Xie et al., 2023b)
also targets these domains, using a hashed n-gram extractor to measure similarity. QuRating (Wettig
et al., 2024) leverages GPT-3.5-turbo to train a judge model that evaluates the quality of domains like
writing and education. However, as shown in Figure 1, these methods based on specific domains lead
to a diversity dilemma, known as dimensional collapse in representation learning (Jing et al., 2022;
Zbontar et al., 2021; Bardes et al., 2022; Shi et al., 2022). Their feature vectors of samples span
a lower-dimensional subspace, indicating less diversity, improving performance in domain related
tasks, such as reading comprehension (e.g., ARC (Clark et al., 2018) and OBQA (Mihaylov et al.,
2018)), but causing severe degradation in overall performance across diverse domains, particularly in
physical world knowledge tasks like PIQA (Bisk et al., 2020) and HellaSwag (Zellers et al., 2019).

In our paper, we revisit these algorithms by visualizing the feature representations of their selected
text samples as shown in Figure 2, and performing eigenvalue analysis on the features’ covariance
matrix (see Section 2 for details). As depicted in Figure 2 (a), (b), and (c), we observe dimensional
collapse, where text samples selected based on a specific domain show dominant top eigenvalues,
indicating long narrow feature spaces. In contrast, text samples selected using our diversified method
exhibit less dominant eigenvalues, leading to greater uniformity across feature dimensions (Figure 2
(e)). Recent methods, such as D4 (Tirumala et al., 2023) and INGENIOUS (Renduchintala et al.),
recognize the importance of diversity and select informative samples by leveraging feature distances
and similarity kernels, respectively. However, they fall short in achieving the level of uniform
representations attained by our approach as shown in Figure 2 (d) and (e) and Figure 3.

To prevent collapse and enhance diversity, we propose DiSF, that selects files by minimizing the
Frobenius norm of the features’ covariance matrix, achieving more uniform eigenvalues. We approach
this with the classical greedy algorithm and analyze its approximation to the optimal solution under the
formulation of γ-weakly submodular optimization problem (DAS, 2011). Empirically, we establish
a benchmark on the newly released and popular TinyLlama (Zhang et al., 2024) architecture with
models of 120M, 560M, and 1.1B parameters. Extensive experiments and ablation studies, conducted
across nine tasks on the Harness framework, demonstrate the superior general performance of our
method compared to baselines. Specifically, out of 590M training files in SlimPajama (Touvron
et al., 2023a; Computer, 2023), our DiSF selects just 1.5% (about 9B training tokens), outperforming
full-data pre-training under 50B training budget, and achieving approximately 1.5x training efficiency
and 5x data efficiency. In summary, our research makes three significant contributions to the field:

• We rethink recent file selection innovations in pre-training LLMs, and identify a diversity dilemma
known as dimensional collapse in feature representation learning, improving performance in
domain-specific tasks but causing severe degradation in overall performance (Section 2).

• To prevent collapse and enhance diversity, we propose DiSF, which selects the most decorrelated
text files using a classical greedy algorithm, and analyze its approximation to the optimal solution
under the formulation of γ-weakly submodular optimization problem (Section 3).

• We established a benchmark on TinyLlama architectures and SlimPajama text corpus with
evaluation on nine tasks from Harness. Extensive experiments and ablations demonstrate the
superior performance of our method, with improved training and sample efficiency (Section 4).
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Table 1: Summary of recent innovations in file selection for LLM pre-training, categorized by their
proxy model, proxy function to estimate sample importance, and whether requiring a target domain.

Selection Method Proxy Model (M) Proxy Function (FM) Domain Independent

Heuristic Cls. Trained binary classifier Probability to target domain %

DSIR (NeurIPS’23) Hashed n-gram extractor Similarity to target distribution %

QuRating (ICML’24) Trained judge model via GPT-3.5 Judgement score of target ability %

INGENIOUS (Emnlp’23) Pre-trained LLM with warming-up Facility Location on slimilarity matrix !

D4 (NeurIPS’23) Existing text feature extractor Distance in feature space !

DiSF (Ours) Existing text feature extractor Decorrelation of feature dimensions !

2 RETHINKING FILE SELECTION FOR LLM PRE-TRAINING UNDER BUDGET

In this section, we first introduce the definition of file selection objective, and then revisit recent file
selection innovations for pre-training LLMs, with a particular focus on the diversity dilemma.

2.1 PROBLEM STATEMENT

Given training and selection budgets T and S , our objective is to select the most valuable samples V
from a text corpus D = {D1, ..., Di, ..., DN} collected from various domains Di (e.g., Wikipedia or
samples with high writing qualities) to optimize model weights W on pre-training task L, thereby
maximizing general performance A. While A is challenging to verify on a given LLM, it can be
inferred through diverse abilities such as commonsense and problem-solving, with evaluation tools
like Harness (Gao et al., 2024). Mathematically, V can be obtained through selection objective as

argmax
U⊆D

A(argmin
W

L(W, T ,U)),

s.t. |U| ≤ S.
(1)

There are various options to define T , S, A, and L. In this work, we define the training budget T
as the number of pre-trained tokens, the selection budget S as the number of files, the pre-training
objective L as next-word prediction on SlimPajama (Computer, 2023; Touvron et al., 2023a), and the
LLM’s generic performance A as the evaluation across different tasks using the Harness framework.

2.2 RECENT SELECTION METHODS

Analyzing the objective defined in equation 1, the inner part minimizes the pre-training objective on
LLM with a predefined training budget and the selected samples, while the upper level focuses on
selecting the most valuable samples to maximize the LLM’s generic performance within the selection
budgets. Directly searching for valuable samples V in the full corpus D is extremely time-consuming
and expensive. To reduce this cost, recent innovations in file selection for LLM pre-training mostly
rely on using an existing or trained proxy model M and designing a proxy function FM based on a
target domain. Through linking text samples x ∈ D to the generic performance A, they transform
equation 1 into choosing the samples with the highest values of FM(x), as follows:

V = TopSFM(x ∈ D). (2)
As summarized in Table 1, typical Heuristic classification (Brown, 2020b; Chowdhery et al., 2023b)
trains a binary classifier to filter web data, selecting files with probabilities to a target format above a
noisy, such as BookCorpus and Wikipedia (Computer, 2023). Similarly, DSIR (Xie et al., 2023b)
improves it and also treats these two domains as high-quality domains to select files for general
purpose, with a hashed n-gram feature extractor to measure the similarity between the text features
and the target distribution. QuRating (Wettig et al., 2024) queries GPT-3.5-turbo and trains a judge
model to assess the text samples’ quality of a target style, such as writing and mathematics. However,
as shown in Figure 1, selection methods based on specific domains lead to a diversity dilemma, known
as dimensional collapse in representation learning (Jing et al., 2022; Zbontar et al., 2021; Bardes
et al., 2022; Chen et al., 2020), improving performance in the domain related task but causing severe
degradation in overall performance across diverse tasks. The recent method D4 (Tirumala et al.,
2023) and INGENIOUS (Renduchintala et al.) reduce file redundancy by leveraging feature distances
and selecting informative samples based on similarity kernels respectively, which improves diversity
but can not effectively mitigate dimensional collapse as ours (see both Figure 2 and Figure 3).
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2.3 DIVERSITY DILEMMA: DIMENSIONAL COLLAPSE
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Figure 3: The dominance score for
recent methods calculated as

∑k
i=1 λi∑d
j=1 λj

,

where λi represents the i-th largest eigen-
value of the feature covariance matrix,
and d is the dimension of the feature
space. We use Contriever model to ex-
tract features. We select the top 500 text
samples based on their respective selec-
tion criteria. For D4, we select 500 ran-
dom samples after reducing redundancy.

As shown in Figure 2, dimensional collapse occurs in the
embedding space when samples are selected based on the
target domains. Their embedding vectors extracted by the
Contriever (Izacard et al., 2021) span a lower-dimensional
subspace, indicating less diversity. To quantify this, we
conduct an eigenvalue analysis on the covariance matrix
of selected text features under different selection methods,
and visualize the dominance score of the topk eigenvalues

calculated as
∑k

i=1 λi∑d
j=1 λj

, where λi is the i-th large eigen-

value of the covariance matrix, and d is the dimension of
the feature space. Smaller dominance score suggests more
uniform feature dimensions and richer information (Chen
et al., 2020; Zbontar et al., 2021; Shi et al., 2022; Jing
et al., 2022; Bardes et al., 2022). As demonstrated in
Figure 3, Heuristic classification, DSIR, and QuRating
with a focus on writing style (denoted as QuRating-W)
exhibit significantly higher dominance scores compared
to D4, INGENIOUS, and QuRating with all styles (de-
noted as QuRating-A), highlighting the reduced diversity
caused by target domains selection criteria. To address
this and enhance diversity, we propose a novel diversified
file selection algorithm (DiSF) to select text samples, span-
ning more uniform feature dimensions in the embedding
space. As red line shown in Figure 3, compared to D4
and QuRating-A, our DiSF further reduces the dominance score, demonstrating its effectiveness in
uniforming dimensions and mitigating dimensional collapse.

3 DISF: DIVERSIFIED FILE SELECTION

In this section, we define the diversified selection criterion of DiSF, and the selection procedures with
a classical greedy algorithm in batch level, and then provide a empirically verification way under
γ-weakly submodular optimization theories, followed with time complexity analysis.

3.1 METHOD

Selection criterion. Given a set of n text samples U = {x1, ..., xi, ...xn}, their text features with a
standard normalization Z = {z1, ..., zi, ...zn} are obtained by a text feature extractor M as

zi =
f(xi,M)− µ

σ
, (3)

where f calculates the feature representations of text samples,and µ and σ are the mean and variance
of {f(x1,M), ..., f(xi,M), ...f(xn,M)}, respectively. Then, the covariance matrix C is defined as

C(U,M) =
1

n− 1

n∑
i=1

zTi zi. (4)

As discussed in Section 2, our goal is to prevent dimensional collapse by ensuring more uniform
eigenvalues in the covariance matrix of the selected samples. Directly calculating and selecting based
on eigenvalues are costly, but it is feasible to optimize the Frobenius norm of the covariance matrix
∥C∥F (Zbontar et al., 2021; Bardes et al., 2022; Shi et al., 2022), as described in Lemma 1:
Lemma 1. Assuming a covariance matrix C ∈ Rd×d computed from the features with the standard
normalization, and its eigenvalues {λ1, λ2, ..., λd}, we will have the following equality that satisfied

d∑
i=1

(λi −
1

d

d∑
j=1

λj)
2 = ∥C∥2F − d.

4
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We provide a detailed proof in Appendix A.5 for clarity. From Lemma 1, it is evident that ensuring
the uniformity of the eigenvalues of the covariance matrix can be translated into minimizing the
Frobenius norm of the covariance matrix. Thus, given any text set U ⊆ D, we evaluate its importance
as −∥C(U,M)∥F , and define the selection objective as

argmax
U

−∥C(U,M)∥F , s.t. |U| ≤ S, (5)

where S is the predefined selection budget. Differing from typical selection algorithms that directly
define the importance of individual text samples through proxy function shown in equation 1, our
selection objective defined in equation 5 is calculated on a subset of samples.

Algorithm 1 Selection procedure of DiFS
Input:(D, b,S,M)

V← ∅.
Divide D into batches of bi with scale b.
for i = 1, . . . , ⌊ |D|

b
⌋ do

randomly select x∗ ∈ bi and Ui ← {x∗}.
while |Ui| ≤ b|S|

|D| do
bi ← bi \ {x∗}.
x∗ = argmaxx∈bi

FDISF
M (Ui ∪ {x}).

Ui ← Ui ∪ {x∗}.
end while
V = V ∪Ui.

end for
Output:V

Selection Procedure. To satisfy the non-negative
requirement in the later analysis, we first reformulate
our proxy function into a non-negative form as

FDiSF
M (U) = e−∥C(U,M)∥F , (6)

where U ⊆ D. We apply the classical greedy al-
gorithm to select the most valuable samples based
on our proxy function. This allows us to iteratively
choose the most valuable samples as follows:

U← U ∪ {argmax
x∈D\U

FDISF
M (U ∪ {x})}. (7)

However, directly applying the greedy algorithm as
shown in equation 7 to the entire text corpus is com-
putationally expensive, we perform the selection at
the batch scale. In Section 4.4, we provide an abla-
tion study of selection scale. Given a text corpus D, selection scale b, selection budget S, and proxy
model M, the selection process is outlined in Algorithm 1. We first divide the text corpus into ⌊ |D|

b ⌋
batches, where ⌊·⌋ is the round down command. In each batch bi, we initialize Ui with a randomly
selected sample and remove it from bi. Then, we iteratively apply (⌊ b|S|

|D| ⌋ − 1) times the greedy
algorithm, removing the most valuable sample from bi and adding it to Ui based on equation 7.
Finally, the selected samples are the combination of all Ui.

3.2 ANALYSIS
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Figure 4: Proxy value, as defined in
equation 6, calculated on different meth-
ods. For each method, we randomly
choose samples from their selected text
files with 1.5% selection budget. All
cases generally demonstrate the property
of monotonicity. Moreover, our selec-
tion method achieves significantly larger
proxy values, indicating much better uni-
formity of feature dimensions.

Selection Analysis. Diversity is often effectively mod-
eled by submodular functions (Nemhauser et al., 1978; Fu-
jishige, 2005; Balakrishnan et al., 2022; Hong et al., 2024),
which exhibit a property of diminishing returns, i.e., the
marginal gain an element brings to a subset decreases as
more elements are added to that subset. Mathematically,
given a set Ω, a set function f : 2N → R is γ-weakly
submodular if and only if, for any subsets A ⊆ B ⊆ Ω,
and a element x ∈ Ω \B, the following inequality holds:

f(A ∪ {x})− f(A) ≥ γ(f(B ∪ {x})− f(B)), (8)

where γ ∈ (0,1]. A non-negative monotone γ-weakly sub-
modular maximization problem can be solved using the
classical greedy algorithm, which guarantees a (1− e−γ)-
approximation to the optimal solution (function value on
selected samples compared to optimal value) (DAS, 2011).
As demonstrated in Figure 4, we empirically verify the
monotonicity of our proxy function by increasing the num-
ber of samples randomly chosen from the selected text
files of different methods. Additionally, the results in Fig-
ure 4 indicate a significantly higher proxy value for our
selection method compared to others, demonstrating the superior ability to mitigate dimensional
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Table 2: Submodular ratio estimated on 1000 batch of selection in SlimPajama. For each file batch,
we randomly sample 1000 cases of A, B and e, and record the smallest γ as defined in equation 9.

Range of γ 0.8-1 0.6-0.8 0.4-0.6 0.2-0.4 0-0.2 <0

Number of Batches 174 377 211 93 128 17

collapse. Since our proxy function also aims to capture the diversity within a given set, we estimate
the submodular ratio γ to provide insights into how our algorithm approaches the optimal solution
during exact selection on SlimPajama. As shown in Table 2, we estimate and record the submodular
ratio γ defined in equation 9 on 100 selection batch and in each batch we randomly sample 1000
cases of A, B and e, recording the smallest γ. Although the submodular ratio shows provides a very
pessimistic bound in applications (Santiago & Yoshida, 2020), in most cases, it lies within (0,1] and
exhibits a relatively large value, with an average submodular ratio of 0.478.

Time Complexity Analysis. Given the feature dimension d, the time complexity of our DiSF is less
than O(|S|2bd2), and we provide a detailed calculation of the results. All terms in the time complexity
are at most quadratic and independent of the overall dataset size, which we consider acceptable for
applying to file selection for LLM pre-training. Additionally, in Figure 7 of Section 4.4, we report
the exact time required to select data on the benchmark dataset. In Section 4.3 and Appendix A.4.2,
we compare the sampling and training efficiency of our method against the baselines.

4 EXPERIMENT

This part introduces the experimental setup, including dataset, evaluations, model architecture,
baselines, and training details in Section 4.1, the main results and efficiency analysis in Section 4.2
and Section 4.3, and extensive ablation studies for better understanding of our DiSF in Section 4.4.

4.1 SETUP

Dataset and evaluation. Following many prior works (Touvron et al., 2023a; Zhang et al., 2024;
Wettig et al., 2024; Xie et al., 2023a), we employ SlimPajama (Touvron et al., 2023a; Computer,
2023) as the text corpus, which is specifically curated for pre-training LLMs. All selections are
performed on about 590M training files of SlimPajama, processed with Llama tokenizer (Touvron
et al., 2023a). Notably, QuRating (Wettig et al., 2024) provides judgments on various properties of text
samples in SlimPajama using a judge model trained based on GPT-3.5-turbo, which can be directly
utilized in our implement. To capture the diversity dilemma and evaluate generic performance of pre-
trained LLMs, we use seven commonsense reasoning tasks from the popular framework Harness (Gao
et al., 2024), including four reading comprehension tasks (ARC-e, ARC-c (Clark et al., 2018),
OBQA (Mihaylov et al., 2018), and BoolQ (Clark et al., 2019)), and three physical world knowledge
tasks (PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), and WinoGrande (Sakaguchi
et al., 2021)). Besides, we also employ another two tasks MMLU (Hendrycks et al., 2021), and
BBH (Suzgun et al., 2022) from Harness to evaluate the problem-solving capabilities for further
clarify of our effectiveness. See Section 5 for detailed introduction of the dataset and tasks.

Model architecture. As for the model, we adopt Tinyllama architecture (Zhang et al., 2024)
with 120M, 560M, and 1.1B parameters. Thanks to FlashAttention (Dao et al., 2022) and Lit-
GPT (LightningAI, 2023), all experiments can be conducted on NVIDIA GeForce RTX 4090 GPUs
with 24GB memory, which is feasible for general academic research. All experiments and selection
are implemented by PyTorch (Paszke et al., 2019) on platforms with 8 GPUs and 64 CPUs. Except
for Tinyllama, we also adopt OPT (Zhang et al., 2022) and Pythia (Biderman et al., 2023) to verify the
scalability of our method on model architecture as ablation study shown in Section 4.4. For feature
extraction, we utilize the Contriever (Izacard et al., 2021) with approximately 110M parameters to
calculate feature representations of the text samples as defined in equation 3. We also experiment
with other pre-trained models as feature extractors, including the text encoder of CLIP (Radford
et al., 2021) and GPT-2 (Radford et al., 2019), as discussed in the ablation study of Section 4.4. See
Appendix A.3 for detailed introduction of model structures, as well as their training times.

Baselines. We compare our DiSF with Random selection and existing file selection methods
for LLM pre-training, including DSIR (Xie et al., 2023b), QuRating (Wettig et al., 2024), INGE-
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Table 3: Performance on seven tasks and their average with the Harness framework. In the upper
part, we pre-train TinyLlama with 120M, 560M, and 1.1B parameters from scratch, with training
budget of 10B tokens and selection budget of 1.5% of total training files. In the lower part, the
training budget is increased to 50B. Results impacted by the diversity dilemma, best individual task
results, and the best average performance are respectively highlighted in bold blue, black, and red.

Model Size
Method Pre-training TinyLlama from scratch with 10B training budget on 1.5% selected files

#Metric ARC-e ARC-c OBQA BoolQ WinoGrande HellaSwag PIQA Avg.

120M

Random 37.1 18.2 12.8 61.1 49.9 27.0 58.7 37.8
DSIR 36.6 18.2 13.8 57.6 51.7 25.1 54.8 36.9
D4 38.0 18.1 13.6 60.1 51.8 27.8 57.8 38.2
QuRating-W 37.7 18.6 15.0 60.9 51.3 24.3 55.6 37.7
QuRating-A 39.1 18.3 14.2 60.7 50.8 27.4 58.4 38.4
Doremi 36.8 18.2 13.8 60.9 52.7 27.3 58.8 38.5
INGENIOUS 39.5 18.6 13.4 60.2 50.4 27.4 58.7 38.3
DiSF (Ours) 39.9 17.8 13.8 61.7 51.9 27.6 59.5 38.9

560M

Random 43.2 19.9 15.2 59.3 52.9 30.4 62.0 40.4
DSIR 41.8 19.3 16.8 60.5 50.3 26.0 56.0 38.7
D4 46.5 19.5 16.0 60.5 53.2 29.5 61.4 40.9
QuRating-W 42.0 21.3 17.4 59.5 49.8 28.4 58.2 39.5
QuRating-A 46.7 19.1 17.2 61.3 51.1 28.9 63.4 41.1
INGENIOUS 45.8 20.6 16.0 58.3 51.4 30.8 62.5 40.8
Doremi 42.7 19.3 15.8 60.9 50.4 30.0 63.7 40.4
DiSF (Ours) 47.5 21.2 16.2 58.9 51.0 31.1 64.2 41.4

1.1B

Random 44.8 19.0 16.4 59.9 51.3 30.8 64.1 40.9
DSIR 45.7 20.3 18.6 59.8 50.4 27.6 58.3 40.1
D4 46.2 19.3 18.8 60.2 51.3 30.9 65.4 41.7
QuRating-W 44.4 21.4 17.0 59.6 51.4 31.0 60.1 40.7
QuRating-A 47.4 20.9 19.8 59.1 50.2 30.1 63.3 41.6
INGENIOUS 45.3 19.6 19.8 60.0 51.2 31.2 64.9 41.7
Doremi 44.7 19.7 17.6 61.0 51.2 31.1 64.6 41.4
DiSF (Ours) 47.7 19.5 18.2 59.7 52.2 32.3 65.6 42.2

Model Size
Method Pre-training TinyLlama from scratch with 50B training budget on 1.5% selected files

#Metric ARC-e ARC-c OBQA BoolQ WinoGrande HellaSwag PIQA Avg.

120M

Random 41.5 17.6 16.6 56.3 52.2 28.4 59.5 38.9
DSIR 44.2 18.4 17.2 53.9 49.6 25.2 56.3 37.8
D4 42.1 19.2 17.0 58.3 52.6 28.1 60.9 39.7
QuRating-W 41.6 18.9 16.2 59.5 51.6 27.6 56.8 38.9
QuRating-A 46.8 19.7 15.8 60.5 51.1 27.9 58.4 40.0
INGENIOUS 42.2 19.1 16.3 58.7 51.2 28.5 61.0 39.6
Doremi 40.7 18.9 16.2 60.2 52.7 28.1 61.4 39.7
DiSF (Ours) 44.3 18.3 17.8 61.1 53.3 28.7 61.0 40.6

560M

Random 46.0 20.9 16.8 59.0 52.5 31.6 64.7 41.6
DSIR 45.9 22.2 18.5 58.1 50.7 27.8 59.3 40.4
D4 47.2 21.7 18.2 58.7 52.2 32.4 65.3 42.2
QuRating-W 46.9 23.4 19.5 56.5 52.2 28.5 61.3 41.2
QuRating-A 48.3 19.2 18.2 58.9 52.1 34.1 67.4 42.6
INGENIOUS 46.8 21.6 17.0 59.3 52.2 32.8 66.5 42.3
Doremi 47.2 22.4 18.6 59.0 52.6 33.1 66.2 42.7
DiSF (Ours) 47.3 22.0 18.8 60.8 52.8 33.5 67.4 43.2

1.1B

Random 51.4 20.9 18.2 56.2 51.3 34.7 67.3 42.9
DSIR 50.2 20.6 20.0 54.6 52.4 30.4 64.2 41.8
D4 53.6 22.1 20.9 57.3 52.9 35.2 67.7 44.2
QuRating-W 53.9 23.1 20.8 55.0 52.7 35.0 63.3 43.4
QuRating-A 53.6 23.7 21.2 60.1 51.6 36.5 67.0 44.8
INGENIOUS 51.7 21.6 22.2 56.9 51.7 36.8 67.9 44.1
Doremi 51.2 21.9 21.8 58.1 54.3 36.6 67.8 44.5
DiSF (Ours) 51.8 22.7 20.0 62.0 53.5 37.3 69.0 45.2

NIOUS (Renduchintala et al.), and D4 (Tirumala et al., 2023). Since DSIR improves on Heuristic
classification (Brown, 2020b; Chowdhery et al., 2023b), we present only DSIR results based on
Wikipedia and Books. For QuRating, based on the top judgment values, we select text samples for writ-
ing style (denoted as QuRating-W) and uniformly select across all styles (denoted as QuRating-A).
For INGENIOUS, we utilize Contriever to extract features, which is more efficient than warmed-up
model, as analyzed in Appendix A.2.4. Additionally, for a comprehensive comparison, we include
Doremi (Xie et al., 2023a), a recently proposed method that produces weights for pre-training on
multiple text domains. We use the weights as the selection ratio of text samples in different domains
in our experiment. Notably, in our ablation studies, we also compare our method with Full Data
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Figure 5: Average performance of TinyLlama pre-trained after 50B tokens on files selected by our
DiSF with varying selection budgets compared to Full Data pre-training on SlimPajama.

pre-training, which refers to pre-training the LLMs on all training files in SlimPajama until the
specified training budget is reached. See Appendix A.2 for detailed implementation of the baselines.

Pre-training details. We follow all settings in TinyLlama (Zhang et al., 2024). The optimizer is
AdamW (Loshchilov & Hutter, 2019), setting parameters β1 at 0.9 and β2 at 0.95. We adopt the
cosine learning rate schedule with a maximum learning rate of 4e-4 and the minimum of 4e-5, the
batch size of 2M tokens, the weight decay of 0.1, and the gradient clipping threshold of 1. The training
budgets are 10B and 50B tokens, with 1.5% selection budget of SlimPajama’s training files. Note
that, we choose to report performance with a 1.5% selection budget, since it achieves comparable
performance compared to Full Data pre-training under 50B pre-training budget on TinyLlama 1.1B.
Unless otherwise specified, the selection scale b is set to 1024. See Appendix A.3 for more details.

4.2 MAIN RESULTS

Performance on commonsense reasoning tasks. As shown in Table 3, selection methods based on
a target domain such as DSIR, D4, and QuRating-W improve performance on reading comprehension
tasks like ARC-c and OBQA, but suffer significant declines on physical world knowledge tasks
especially HellaSwag and PIQA (highlighted in blue), revealing the diversity dilemma. In contrast,
Doremi, D4, QuRating-A, and our DiSF, which select samples from multiple text domains, achieve
competitive results on OBQA and ARC-c while significantly improving overall performance across
the remaining tasks. This highlights the critical importance of diversity in pre-training LLMs. Notably,
our DiSF outperforms all baselines in terms of average performance across the seven tasks, with an
average improvement of 2.5% compared to DSIR. Furthermore, with increasing training budget, the
improvement on DSIR becomes more pronounced, rising from 2.1% to 3.4% on TinyLlama 1.1B.

Table 4: Problem-solving performance
on MMLU (5 shot) and BBH (3 shot)
of TinyLlama 1.1B with 1.5% selection
budget and 50B pre-training budget.

Method MMLU(5 shot) BBH(3 shot)

DSIR 22.9±0.4 18.5±0.4

QuRating-W 23.1±0.2 18.7±0.4

QuRating-A 24.5±0.4 20.2±0.4

D4 24.3±0.5 20.8±0.4

Doremi 23.1±0.5 20.3±0.4

DiSF (Ours) 25.4±0.4 21.2±0.4

Scalability on model size. To verify the scalability of
selection methods across different model sizes, we use
the TinyLlama architecture with models of 120M, 560M,
and 1.1B parameters. As shown in Table 3, our DiSF con-
sistently outperforms all baselines, demonstrating strong
scalability with increasing model size. Notably, as the
model scales from 120M to 1.1B, DiSF’s improvement
over DSIR grows from 2.8% to 3.4%, suggesting even
greater effectiveness for larger LLMs.

Performance on problem-solving tasks. As shown in
Table 4, we further verify the performance of pre-trained
TinyLlama 1.1B on two additional problem-solving tasks,
MMLU and BBH, using various selection methods. Except for better commonsense abilities, results
of our DiSF shown in Table 4, demonstrate a better problem-solving capability, outperforming all
other baselines. Specifically, on MMLU and BBH, our DiSF respectively achieves 2.5% and 2.7%
improvement compared to DSIR.

4.3 EFFICIENCY ANALYSIS

In this section, we try to analyze how many samples and computations we can save within the training
budget, compared to Full Data pre-training, that is data efficiency and training efficiency. Please
note that, Full Data pre-training refers to pre-training the LLMs on all SlimPajama’s training files
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Figure 6: Performance of TinyLlama pre-trained under our DiSF with 1.5% selection budget compared
to Full Data pre-training on SlimPajama, as the pre-trained tokens (training budget) increases.

until the specified training budget is reached. In Figure 5, we demonstrate the average commonsense
performance of TinyLlama with 120M, 560M, and 1.1B parameters, pre-trained after 50B tokens
on files selected by DiSF with varying selection budgets compared to Full Data. It is evident that
to achieve the equivalent or superior performance compared to Full Data with 50B training budget,
we only need to select about 20% of the pre-trained tokens (1.5% of SlimPajama’s training files),
achieving at least 5x data efficiency. In Figure 6, we show the curves of averaged commonsense
reasoning performance during the pre-training under our DiSF with 1.5% selection budget compared
to Full Data. It can be seen that, when achieving the performance of Full Data pre-trained with 50B
tokens, our methods only need 27B, 36B, and 40B tokens, respectively on TinyLlama with 120M,
560M, and 1.1B parameters, achieving an average of 1.5x training efficiency.

4.4 ABLATION STUDY
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TinyLlama 560M

TinyLlama 120M

Figure 7: Performance of pre-trained TinyL-
lama under different selection scales (log2 b).
With 1.5% selection budget and 50B training
budget, we identify an ideal point with ac-
ceptable computational cost and near-optimal
performance, marked by a red star.

Selection budget. This part analyzes the perfor-
mance of pre-trained LLM with different selection
budgets when using our DiSF. We conduct the abla-
tion on TinyLlama 120M with 50B training budget
and present its average commonsense reasoning per-
formance. As shown in Figure 8, the performance
initially rises rapidly with increasing selection ratios,
reaching a peak of 41.2 with 3% of total training
files (about 20B tokens). Once the selected samples
exceed 3%, the performance begins to decline and
converge to the performance of Full Data pre-training.
This insight may help choose selection ratios and en-
hance understanding of our selection algorithm.

Table 5: Ablation study of our DiSF with dif-
ferent model architectures compared to other
selection methods, respectively using TinyL-
lama with 1.1B parameters, Pythia with 1B
parameters and OPT with 1.3B parameters.

Method TinyLlama Pythia OPT
DSIR 41.8 41.4 43.1
D4 44.2 43.9 44.7
QuRating-A 44.8 43.6 45.1
Doremi 44.5 43.7 44.9
Ours 45.2 44.2 45.5

Model architecture. To further verify performance
across different architectures, we additionally adopt
two large language models: Pythia (Biderman et al.,
2023) with 1B parameters and OPT (Zhang et al.,
2022) with 1.3B parameters. As shown in Table 5, we
compare the average commonsense reasoning perfor-
mance of our DiSF with baselines, including DSIR,
D4, QuRating-A, and Doremi, under the same train-
ing budget of 50B pre-trained tokens. The results
demonstrate that our DiSF consistently outperforms
the baselines, highlighting its effectiveness and scal-
ability across different model architectures.

Table 6: Ablation study of our DiSF with
different feature extractor. We show results,
respectively using Contriever with 110M pa-
rameters, text encoder of CLIP with 70M pa-
rameters and GPT-2 with 117M parameters.

TinyLlama CLIP Contriever GPT-2
120 M 39.5 40.6 40.0
560 M 42.1 43.1 42.3
1.1 B 43.9 45.2 44.4

Feature extractor. In our experiments, we uti-
lize a proxy model named Contriever (Izacard et al.,
2021), with about 110M parameters, as feature extrac-
tor to provide the embedding space for selected text
samples. We also try two other pre-trained models:
the text encoder of CLIP (Radford et al., 2021) with
about 70M parameters and GPT-2 (Radford et al.,
2019) with about 117M parameters. As shown in Ta-
ble 6, CLIP fails to deliver satisfactory performance,
because it struggles with longer text sequences. GPT-

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

2 does not outperform the Contriever model because it is optimized for autoregressive text generation
rather than producing meaningful sentence representations, whereas Contriever, specifically designed
for measuring text similarity, excels at capturing text diversity.
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(1%,39.8)

Figure 8: Average commonsense reasoning
performance of TinyLlama 120M pre-trained
under DiSF with different selection budget
and 50B training budget. Blue and grey lines
respectively denote Full Data pre-training and
random selection with 1.5% selection budget.

Selection scale. To manage the computational cost
of file selection, we apply submodular optimization
with classical greedy algorithm at the batch scale,
as shown in Algorithm 1, introducing the hyper-
parameter, selection scale b. The computational com-
plexity of the selection process, defined in equation 7,
is O( b

|S|2 ), where the larger b increases the compu-
tational burden. As ablation on b shown in Figure 7,
a larger batch size significantly raises computational
costs, while a smaller batch size fails to select suffi-
ciently diversified files. With a fixed selection budget
of 1.5%, training budget of 50B tokens, and Con-
triever as the feature extractor, we identified an ideal
point of 1024, marked by a red star, which balances
computational time and near-optimal performance.
This insight may provide valuable guidance for choos-
ing an appropriate selection scale in other settings.

5 RELATED WORK

In Section 2, we revisited recent works on file selection for pre-training LLMs. We introduce
evaluation, and model architecture in Section 4.1, and provide more details in Appendix A.1.1 and
A.3. In the following, we introduce about submodular optimization.

Submodular optimization. Submodularity is a property of functions defined on a set Ω that
exhibit diminishing returns. Submodular functions like facility location, log determinant, and graph
cut (Salhi, 1991b; Fujishige, 2005; Krause & Golovin, 2014; Kaushal et al., 2019; Karanam et al.,
2022) are widely recognized for effectively modeling diversity (Nemhauser et al., 1978; Wei et al.,
2015; Balakrishnan et al., 2022; Hong et al., 2024). Moreover, submodular optimization has achieved
significant success in various fields, such as summarization (Kothawade et al., 2022; Kumari et al.,
2024), curriculum learning (Balakrishnan et al., 2022; Zhou & Bilmes, 2018), active learning (Wei
et al., 2015; Guillory & Bilmes, 2011), and subset selection (Jain et al., 2024; Lin & Bilmes, 2011),
where selecting diverse subsets is crucial. Given a set Ω, a set function f : 2N → R is γ-weakly
submodular if and only if, for any subsets A ⊆ B ⊆ Ω, and a element x ∈ Ω \ B, the following
inequality holds:

f(A ∪ {x})− f(A) ≥ γ(f(B ∪ {x})− f(B)), (9)

where γ ∈ (0,1]. When γ = 1 (Santiago & Yoshida, 2020; DAS, 2011), the function is submodular
function. A non-negative monotone γ-weakly submodular maximization problem can be solved
using the classical greedy algorithm, which guarantees a (1− e−γ)-approximation. In this work, our
function aims to evaluate diversity, making it well suited to be verified under this formulation.

6 CONCLUSION

In this work, we revisit recent innovations in file selection for pre-training large language models
(LLMs) and identify a diversity dilemma: dimensional collapse, where performance improves
on specific tasks but degrades overall across diverse tasks. To address this, we propose a novel
Diversified File selection method (DiSF) which selects decorrelated text files in the embedding space
to enhance diversity. DiSF achieves more uniform eigenvalues of the feature covariance matrix by
minimizing its Frobenius norm and solve it with a greedy algorithm. We analyze its time complexity
and approximation to optimal solution under γ-weakly submodular optimization, and establish a
benchmark with TinyLlama architecture, evaluating performance across nine tasks from the Harness
framework. Extensive experiments and ablation studies demonstrate the critical role of diversity in
file selection for LLM pre-training and showcase DiSF’s superior effectiveness and efficiency.
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A APPENDIX

In the Appendix, we provide additional information including dataset, baselines, model and training
details, and the proof of Lemma 1. As shown in the following, to help readers read, we provide a
table of contents of the full paper.
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A.1 DATASET:SLIMPAJAMA

SlimPajama is a high-quality text corpus specifically created for pre-training large language models.
This corpus, derived from RedPajama (Computer, 2023), underwent additional cleaning and dedupli-
cation processes. The original RedPajama corpus, an open-source research project, was designed to
replicate the pretraining data of Llama (Touvron et al., 2023a) and contains over 1.2 trillion tokens.
After extensive filtering to remove low-quality and duplicate content, SlimPajama retains only 50%
of the original tokens from RedPajama. The original distribution of SlimPajama and the text files
selected by different algorithms are shown in Figure 9. Notably, compared to domains like ArXiv,
GitHub, and StackExchange, Heuristic classification and DSIR tend to select a higher proportion of
files from Books and Wikipedia, and Qurating-W also favors the Books domain. This bias toward
specific domains may explain why these methods encounter dimensional collapse and performance
degradation in overall task performance.
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Figure 9: The file distributions of the original SlimPajama and selected by Heuristic classification,
DSIR, QuRating-W, D4, and our DiSF.

A.1.1 EVALUATION

Table 7: Commonsense performance of IN-
GENIOUS when using Warmed-up model
(INGENIOUS-W) and Contriever (INGENIOUS-
C) with 50B training budget.

Method TinyLlama-120M TinyLlama-1.1B

INGENIOUS-W 39.0 39.6
INGENIOUS-C 43.2 44.1

Harness evaluation framework. To demon-
strate the diversity dilemma and evaluate the
general performance of the pre-trained LLMs,
we utilize seven commonsense reasoning tasks
from the widely recognized evaluation frame-
work, Harness (Gao et al., 2024), including
four reading comprehension tasks: OBQA (Mi-
haylov et al., 2018): Inspired by open book ex-
ams, this task tests the ability to comprehend
and apply knowledge similarly to human understanding; ARC-e and ARC-c (Clark et al., 2018):
7,787 multiple-choice science questions at a grade-school level, divided into an easy set (ARC-e)
and a challenge set (ARC-c); BoolQ (Clark et al., 2019): A reading comprehension task that focuses
on naturally occurring yes/no questions, and three physical world knowledge tasks: HellaSwag
(Zellers et al., 2019): A collection to assess physically situated commonsense reasoning capabilities;
WinoGrande (Sakaguchi et al., 2021): An expansion of the Winograd Schema Challenge (WSC)
with increased scale and complexity; PIQA (Bisk et al., 2020): A task to measure the understanding
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and reasoning about physical interactions in the real world. To further verify our effectiveness, we
also employ two problem-solving tasks from Harness: MMLU (Hendrycks et al., 2021): A task
to measure the world knowledge and problem-solving capabilities across various subjects; BBH
(Suzgun et al., 2022): A subset of 23 challenging tasks from the BIG-Bench benchmark (Srivastava
et al., 2022) to measure the ability of complex instruction following.

Table 8: Commonsense performance when pre-trained on SlimPajama with Open-Llama 3B, 1.5%
selection ratio and 10B training budget.

Method Random DSIR QuRating-A QuRating-W DiSF (Ours)

Commonsense ability 43.1 41.9 42.6 43.6 44.4

Table 9: Commonsense performance when pre-trained on both StarcoderData, and SlimPajama with
TinyLlama 1.1B, 1.5% selection ratio and 10B training budget.

Method Random DSIR DiSF (Ours)

Commonsense ability 40.3 40.0 41.4
bbh 12.6 12.5 13.3
mmlu 23.0 22.1 23.7
code x glue 0.80 0.59 0.86

Table 10: Comparison on sample efficiency pre-trained after 50B tokens. We record selected tokens
to achieve the performance of Full Data pre-trained with 50B tokens. The ablation interval is 0.5%.

Setting Full-Data DSIR QuRating-W QuRating-A D4 DiSF (Ours)

TinyLlama-120M 1.00 0.60 0.40 0.15 0.20 0.15
TinyLlama-560M 1.00 0.80 0.45 0.20 0.25 0.20
TinyLlama-1.1B 1.00 0.80 0.40 0.25 0.25 0.20

Table 11: Comparison on training efficiency pre-trained with 1.5% selection ratio. We record pre-
trained tokens to achieve the performance of Full Data pre-trained with 50B tokens. - denotes the
method can not reach that performance. The ablation interval is 1B.

Setting Full-Data DSIR QuRating-W QuRating-A D4 DiSF (Ours)

TinyLlama-120M 50B - - 32B 36B 27B
TinyLlama-560M 50B - - 46B 47B 36B
TinyLlama-1.1B 50B - - 52B 56B 40B

A.2 BASELINES

A.2.1 DSIR.

DSIR (Xie et al., 2023b) treats Books and Wikipedia as high-quality targets for file selection,
employing a hashed n-gram feature extractor to measure the similarity between the text features and
the target distribution. In our experiments, following the selection procedures outlined in DSIR, we
calculate importance scores using raw data (SlimPajama) and target data (Wikipedia and Books) in
an n-gram feature space. The importance weights are then applied to resample a subset of the raw
dataset. As for files in Wikipedia and Books domains, we proportionally integrate into the selected
dataset.

A.2.2 QURATING.

QuRating (Wettig et al., 2024) queries GPT-3.5-turbo to train a judge model, that assess the specific
quality of text samples, including four criteria: writing style, required expertise, facts & trivia, and
educational value. In this paper, for Qurating-W, we select samples with the highest scores for writing
style, while for QuRating-A, we proportionally select top-scoring samples across all four criteria.
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A.2.3 DOREMI.

Doremi (Xie et al., 2023a), a recently proposed method that produces domain weights for pre-training
on multiple text domains. In our experiments, we follow the domain weights calculation process of
Doremi, using the domain weights from the initial data distribution as an initial reference to train a
small reference model on the SlimPajama dataset. We then leverage this reference model to guide the
training of a small proxy model, designed to generate domain weights. Finally, these domain weights
are employed as the random selection ratio for text domains to construct selected dataset.

A.2.4 INGENIOUS

INGENIOUS (Renduchintala et al.) extracts features using a model after a warm-up phase and
employs Facility Location (Salhi, 1991a) to design a proxy function for feature importance, which
measures the similarity between samples in the embedding space. Notably, as shown in Table 7, we
observed that INGENIOUS, when using a warmed-up model for feature extraction (INGENIOUS-
W), does not achieve satisfactory performance with our selected feature extractor, Contriever
(INGENIOUS-C). Although INGENIOUS-C performs competitively compared to Random, DSIR,
QuRating-W, and QuRating-A, our method consistently achieves the best performance across all
settings.

A.2.5 D4.

The recent method D4 (Tirumala et al., 2023) notices the importance of diversified selection, involving
SemDeDup (Abbas et al.) and Prototypicality (Sorscher et al., 2022) to reduce file redundancy, but
can not achieve satisfactory uniform representations as ours. In this paper, we sequentially applied
the SemDeDup and Prototypicality methods to filter the data, controlling the filtering ratios of these
two steps to be Rdedup = 0.75 and Rproto = 0.02, respectively.

Table 12: Model structure and training details of pre-training TinyLlama 120M.
Parameter name Value
Parameter number 121,129,728
Hidden size 768
Intermediate Hidden Size 2048
Context Len 2048
Heads 12
Layers 12
Vocab size 32000
Minimum learning rate 4e-5
Maximum learning rate 4e-4
Optimizer AdamW
β1 of optimizer 0.9
β2 of optimizer 0.95
Warmup steps 2000
Batch size 2M tokens
Weight decay 0.1
Activation function SwiGLU
Gradient clipping threshold 1.0
Platform 8 NVIDIA GeForce RTX 4090 GPUs
Training times on 10B tokens about 0.2 days
Training times on 50B tokens about 1 days

A.3 MODEL AND TRAINING DETAILS

For better clarity and reproducibility, we provide the model structures and training details for
pretraining TinyLlama with 120M, 560M, and 1.1B parameters, as shown in Tables 12, 13, and
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Table 13: Model structure and training details of pre-training TinyLlama 560M.
Parameter name Value
Parameter number 561,072,128
Hidden size 2048
Intermediate Hidden Size 2048
Context Len 2048
Heads 16
Layers 20
Vocab size 32000
Minimum learning rate 4e-5
Maximum learning rate 4e-4
Optimizer AdamW
β1 of optimizer 0.9
β2 of optimizer 0.95
Warmup steps 2000
Batch size 2M tokens
Weight decay 0.1
Activation function SwiGLU
Gradient clipping threshold 1.0
Platform 8 NVIDIA GeForce RTX 4090 GPUs
Training times on 10B tokens about 0.9 days
Training times on 50B tokens about 4.5 days

Table 14: Model structure and training details of pre-training TinyLlama 1.1B.
Parameter name Value
Parameter number 1,100,048,384
Hidden size 2048
Intermediate Hidden Size 5632
Context Len 2048
Heads 32
Layers 22
Vocab size 32000
Minimum learning rate 4e-5
Maximum learning rate 4e-4
Optimizer AdamW
β1 of optimizer 0.9
β2 of optimizer 0.95
Warmup steps 2000
Batch size 2M tokens
Weight decay 0.1
Activation function SwiGLU
Gradient clipping threshold 1.0
Platform 8 NVIDIA GeForce RTX 4090 GPUs
Training times on 10B tokens about 1.7 days
Training times on 50B tokens about 8.5 days

14, respectively. These tables detail the configurations used in our experiments, facilitating easier
replication of our results. Please note that our goal in this paper is not to optimize all hyper-parameters
for the best LLM, but rather to compare selection methods under fair and reasonable conditions.
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A.4 MORE ANALYSIS

A.4.1 PERFORMANCE ON LARGER DATASET AND MODEL SCALE

To evaluate the effectiveness of our selection method on larger models and datasets, we 1) pre-train
Open-Llama 3B (Geng & Liu, 2023) on SlimPajama, 2) TinyLlama-120M on both SlimPajama and
StarcoderData (Li et al., 2023), and 3) TinyLlama-120M on StarcoderData. StarcoderData is a dataset
created for code generation, containing approximately 210M files (500GB of data). We assess the
pre-trained models on common sense ability (7 tasks) and an additional code task, code x glue using
harness evaluation. As shown in Table 8, we pre-train open-llama 3B with 10B training budget and
1.5% selection budget with SlimPajama. We compare our method with Random, DSIR, QuRating-
A, and QuRating-W. DSIR and QuRating-W meet performance degradation due to dimensional
collapse, while our method achieves the best performance on all tasks. As shown in Table 9, we
pre-train TinyLlama-120M on both SlimPajama and StarcoderData with 1.5% selection budget and
50B training budget, compared to random selection and DSIR. Results of DSIR show performance
degradation in code ability.We analyze that, DSIR tends to ignore code files in StarcoderData due to
the selection critetion is based on WikiPedia, which means dimensional collapse happens. Besides,
our DiSF can mitigate this collapse and achives both the best performance on common sense ability,
problem solving ability and programming ability.

A.4.2 TRAINING EFFICIENCY COMPARED TO ALL BASELINES

To compare the computational and data efficiency of our approach with all baselines, we present
additional results under the same settings as Figures 5 and 6, shown in Tables 10 and 11. The results
demonstrate that, to achieve equivalent performance to Full Data with a 50B training budget, our
method requires the fewest samples and pre-training tokens compared to the baselines, showing
promising efficiency. Additionally, We also compare the cost of our method with all baselines in the
process of selecting data. As reported in QuRating, annotating the data using the GPT API costs
520 NVIDIA H100 hours with additional ranking procedures of 3 hours. For DSIR, it takes more
than 2 days using 48 CPUs in our platform. For DOREMI, training a 120M proxy model to provide
weights for domains takes us approximately one week. In contrast, our method utilizes a public
feature extractor and selects samples in about 26 hours using one GPU and 48 CPUs. Combining
these facts and our complexity analysis, we believe our method is practical among these methods for
larger datasets.

A.4.3 COMPLEXITY ANALYSIS

For a detailed analysis of time complexity, we divide it into two parts: 1) computational complexity
shown in Algorithm 1. In each batch, we initialize Ui with a randomly selected sample and remove it
from the batch. Then, we iteratively apply (⌊ b|S|

|D| ⌋ − 1) times the Argmax command on the batch of
data with our proxy fuction. Denote the computational cost of our proxy function with k text samples
as F|U|=k(U) = OFk), the computation cost will be:

O(1 + ...+
|D|
b
)

b|S|
|D|∑
k=1

(b− k)(Fk+1) ≤ O(
|D|2

b2
)
b|S|
|D|

bFk+1 = O(|D|SF b|S|
|D| +1

),

where b is the batch scale, |D| is the total data scale, |S| is the selection budget. 2) The complexity
of proxy function O(Fk). Given text features z and their feature dimension d, Frobenius norm and
z · zT are both O(d2). Since our proxy function calculates k times the z · zT , O(Fk) = kd2. Finally,
the complexity of our DiSF will be:

O(DiSF ) ≤ O(|D|SF b|S|
|D| +1

) = O(|S|2bd2)

All terms in the time complexity are at most quadratic and independent of the overall dataset size,
which we consider acceptable for applying to larger datasets. The space complexity largely depends
on the stored features of all text files: O(|D|d2).

A.4.4 COMPARISON TO SUBMODULAR FUNCTIONS
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Table 15: Dominance score compared to DiSF-LD and INGENIOUS.

DSIR D4 QuRating-W QuRating-A DiSF-LD INGENIOUS DiSF (Ours)

k=20 0.319 0.240 0.279 0.192 0.220 0.179 0.129
k=20 0.428 0.330 0.396 0.299 0.325 0.267 0.231
k=20 0.516 0.404 0.484 0.391 0.425 0.374 0.303
k=20 0.589 0.468 0.557 0.470 0.476 0.432 0.371
k=20 0.651 0.525 0.619 0.539 0.534 0.497 0.433

Table 16: Pre-trained performance compared to DiSF-LD.

Setting Random DSIR D4 QuRating-W QuRating-A DiSF-LD DiSF (Ours)

TinyLlama120M 38.9 37.8 39.7 38.9 40.0 39.5 40.6

In this section, we compare our proxy function with two strictly submodular functions: facility
location and log-determinant. For the facility location function, we compare with INGENIOUS.
Additionally, we introduce a variant defined as FLD=LogDet(I+C) (DiSF-LD), where I is the identity
matrix and C is covariance matrix. We evaluate this variant alongside our original proxy function on
TinyLlama-120M, using a 1.5% selection ratio and a 50B training budget. We also compare DiSF,
DiSF-LD, and INGENIOUS in terms of their dominance scores. As shown in Tables 3, 16 and 15,
the results demonstrate that both DiSF-LD and INGENIOUS help mitigate dimensional collapse and
improve the performance of pre-trained LLMs. However, neither method achieves the same level
of performance or dominance score as our original DiSF. This is due to their inability to directly
optimize the uniformity of feature dimensions, leading to a trade-off between strict submodularity
and the specific goal of optimizing dimensional uniformity.

Table 17: File selection of DSIR on Starcoder. We denote selected file ratios of DSIR based on
Wikipedia domain under both Starcoderdata and SlimPajama as DSIR-W-SS , on Wikipedia domain
under Starcoderdata as DSIR-W-S and Python domain under Starcoderdata as DSIR-P-S.

Method go java javascript php python ruby slimpajama donimance score

Original 0.59% 2.52% 2.45% 1.97% 1.61% 0.43% 74.07% 0.5715
DSIR-W-SS 0.00% 0.77% 0.54% 0.00% 0.5% 0.00% 94.0% 0.6947
DSIR-W-S 0.03% 12.37% 17.15% 0.12% 7.58% 0.00% - 0.5912
DSIR-P-S 0.00% 25.04% 4.36% 2.20% 50.38% 0.00% - 0.6833

A.4.5 OBSERVATION OF DIMENSIONAL COLLAPSE ON STARCODER

As shown in Table 17, we present the selection results of DSIR on Starcoderdata, as well as on both
Starcoderdata and SlimPajama, across two domains: Wikipedia and Python. The results demonstrate
that DSIR, when applied to a single domain, tends to select similar files, indicating dimensional
collapse. Notably, during our analysis of the scores output by QuRater, we found that the writing
style scores for most files in Starcoderdata are negative. As a result, these files are unlikely to be
selected when combined with SlimPajama, further highlighting the issue of dimensional collapse.
Additionally, as shown in Table 17, we additionally present the dominance score (calculated as the
topk eigenvalue ratio,

∑
i=1kλi∑d
j=1 λj

) for files selected by DSIR based on both the Wikipedia and Python

domains. The results show a significantly large dominance score, further emphasizing the severity of
dimensional collapse in the files selected by DSIR.

A.5 PROOF OF LEMMA 1

Lemma 2. Assuming a covariance matrix M ∈ Rd×d computed from the feature of each sample
with the standard normalization, and its eigenvalues {λ1, λ2, ..., λd}, we will have the following
equality that satisfied

d∑
i=1

(λi −
1

d

d∑
j=1

λj)
2 = ||M ||2F − d.
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Proof. Let M ∈ Rd×d be a covariance matrix computed from features that have been standard-
ized—that is, the data has been centered (zero mean) and scaled to have unit variance along each
dimension. This standard normalization implies that the trace of M equals d:

Tr(M) =

d∑
i=1

λi = d.

This means the average eigenvalue is:

λ̄ =
1

d

d∑
i=1

λi = 1.

Left-Hand Side (LHS) Calculation:

The left-hand side involves the sum of squared deviations of the eigenvalues from their mean:

d∑
i=1

λi −
1

d

d∑
j=1

λj

2

=

d∑
i=1

(
λi − λ̄

)2
=

d∑
i=1

(λi − 1)2.

Expanding each term on the right, we get the following equation:

d∑
i=1

(λi − 1)2 =

d∑
i=1

(
λ2
i − 2λi + 1

)
=

d∑
i=1

λ2
i − 2

d∑
i=1

λi +

d∑
i=1

1.

Simplifying with
∑d

i=1 λi = d and
∑d

i=1 1 = d, we have:

d∑
i=1

λ2
i − 2d+ d =

d∑
i=1

λ2
i − d.

Right-Hand Side (RHS) Calculation:

First, the Frobenius norm of a matrix M is defined as

∥M∥2F =

d∑
i=1

d∑
j=1

M2
ij = Tr(M⊤M).

Since M is symmetric (M = M⊤), this simplifies to:

∥M∥2F = Tr(M2).

Using the spectral theorem, we have

M = UΛU⊤,

where U is an orthogonal matrix whose columns are the eigenvectors of M , and Λ =
diag(λ1, λ2, . . . , λd) contains the eigenvalues. Since U⊤U = I , we have the following equation:

M2 = (UΛU⊤)(UΛU⊤) = UΛU⊤UΛU⊤ = UΛ2U⊤,
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Therefore, the trace of M2 is

Tr(M2) = Tr(UΛ2U⊤) = Tr(Λ2U⊤U) = Tr(Λ2) =

d∑
i=1

λ2
i .

Thus, the right-hand side is

∥M∥2F − d =

(
d∑

i=1

λ2
i

)
− d.

Conclusion:

Comparing both sides:

d∑
i=1

λi −
1

d

d∑
j=1

λj

2

=
d∑

i=1

λ2
i − d = ∥M∥2F − d.

This completes the proof.
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