
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COMBATTING DIMENSIONAL COLLAPSE IN LLM PRE-
TRAINING DATA VIA DIVERSIFIED FILE SELECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Selecting high-quality pre-training data for large language models (LLMs) is cru-
cial for enhancing their overall performance under limited computation budget,
improving both training and sample efficiency. Recent advancements in file se-
lection primarily rely on using an existing or trained proxy model to assess the
similarity of samples to a target domain, such as high quality sources BookCorpus
and Wikipedia. However, upon revisiting these methods, the domain-similarity
selection criteria demonstrates a diversity dilemma, i.e. dimensional collapse in
the feature space, improving performance on the domain-related tasks but causing
severe degradation on generic performance. To prevent collapse and enhance diver-
sity, we propose a DiverSified File selection algorithm (DiSF), which selects the
most decorrelated text files in the feature space. We approach this with a classical
greedy algorithm to achieve more uniform eigenvalues in the feature covariance
matrix of the selected texts, analyzing its approximation to the optimal solution
under a formulation of γ-weakly submodular optimization problem. Empirically,
we establish a benchmark and conduct extensive experiments on the TinyLlama
architecture with models from 120M to 1.1B parameters. Evaluating across nine
tasks from the Harness framework, DiSF demonstrates a significant improvement
on overall performance. Specifically, DiSF saves 98.5% of 590M training files
in SlimPajama, outperforming the full-data pre-training1 within a 50B training
budget, and achieving about 1.5x training efficiency and 5x data efficiency.

1 INTRODUCTION

Random DSIR QuRating-W DiSF(Ours)

WinoGrande
HellaSwag

PIQA

ARC-e
ARC-c

OBQA

BoolQ

67.459.3

27.8

33.5
52.8
50.7

56.5
60.8

16.8
19.5

20.9

23.4

45.9
47.3

Figure 1: Commonsense reasoning abil-
ity of pre-trained TinyLlama 1B us-
ing various selection methods evalu-
ated on seven tasks of Harness. DSIR
uses Wikipedia and BookCorpus as high
quality source and QuRating-W selects
samples with writing style score. All
methods select 1.5% of training files in
SlimPajama and pre-train 50B tokens.

Pre-trained Large Language Models (LLMs) have demon-
strated remarkable capabilities (Brown, 2020a; Chowdhery
et al., 2023a; Touvron et al., 2023b), but their training is
computationally expensive, with costs increasing as model
size and training data grow (Rae et al., 2021; Patterson
et al., 2021; Thoppilan et al., 2022). For instance, training
GPT-3 with 175 billion parameters is estimated to produce
552 tons of CO2 emissions and consume 1,287 MWh of
energy (Patterson et al., 2021). In practice of commer-
cial use and common academic research, training budgets
such as the number of pre-trained tokens are typically
predefined, determined by available devices and training
time constraints (Hoffmann et al., 2022). To optimize
the performance of LLMs within the budget, selecting
high-quality pre-training data from large text corpora is
essential, boosting both training and sample efficiency.

Recent innovations of selecting files for pre-training LLMs
mostly rely on using an existing or trained proxy model
and designing a proxy function to access the similarity to
a target domain, which is regarded as high-quality data.

1Full-data pre-training in this paper refers to pre-training the LLMs on all training files in SlimPajama until
the specified training budget is reached.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) Heuristic (b) DSIR (c) QuRating-W (d) D4 (e) DISF

Figure 2: The t-SNE (Van der Maaten & Hinton, 2008) visualization of text features (normalized
to the unit sphere) selected by different methods on SlimPajama. We use Contriever (Izacard et al.,
2021) to extract features. (a) and (b) show Heuristic classification and DSIR based on the Wikipedia
and Book domains, while (c) depicts QuRating based on writing judgments. We visualize top 500 text
features selected by their criterion, which forms a long narrow band, indicating dimensional collapse.
(d) and (e) represent D4 and our DiSF. For D4, we display 500 random samples after reducing
redundancy, while for DiSF, we select samples with the highest values based on equation 6. Both
methods, especially DiSF, show more uniformly scattered features, indicating improved diversity.

Heuristic classification (Brown, 2020b; Chowdhery et al., 2023b) trains a binary classifier and select
similar content to text domains like Books and Wikipedia (Computer, 2023). DSIR (Xie et al., 2023b)
also targets these domains, using a hashed n-gram extractor to measure similarity. QuRating (Wettig
et al., 2024) leverages GPT-3.5-turbo to train a judge model that evaluates the quality of domains like
writing and education. However, as shown in Figure 1, these methods based on specific domains lead
to a diversity dilemma, known as dimensional collapse in representation learning (Jing et al., 2022;
Zbontar et al., 2021; Bardes et al., 2022; Shi et al., 2022). Their feature vectors of samples span
a lower-dimensional subspace, indicating less diversity, improving performance in domain related
tasks, such as reading comprehension (e.g., ARC (Clark et al., 2018) and OBQA (Mihaylov et al.,
2018)), but causing severe degradation in overall performance across diverse domains, particularly in
physical world knowledge tasks like PIQA (Bisk et al., 2020) and HellaSwag (Zellers et al., 2019).

In our paper, we revisit these algorithms by visualizing the feature representations of their selected
text samples as shown in Figure 2, and performing eigenvalue analysis on the features’ covariance
matrix (see Section 2 for details). As depicted in Figure 2 (a), (b), and (c), we observe dimensional
collapse, where text samples selected based on a specific domain show dominant top eigenvalues,
indicating long narrow feature spaces. In contrast, text samples selected using our diversified method
exhibit less dominant eigenvalues, leading to greater uniformity across feature dimensions (Figure 2
(e)). Recent methods, such as D4 (Tirumala et al., 2023) and INGENIOUS (Renduchintala et al.),
recognize the importance of diversity and select informative samples by leveraging feature distances
and similarity kernels, respectively. However, they fall short in achieving the level of uniform
representations attained by our approach as shown in Figure 2 (d) and (e) and Figure 3.

To prevent collapse and enhance diversity, we propose DiSF, that selects files by minimizing the
Frobenius norm of the features’ covariance matrix, achieving more uniform eigenvalues. We approach
this with the classical greedy algorithm and analyze its approximation to the optimal solution under the
formulation of γ-weakly submodular optimization problem (DAS, 2011). Empirically, we establish
a benchmark on the newly released and popular TinyLlama (Zhang et al., 2024) architecture with
models of 120M, 560M, and 1.1B parameters. Extensive experiments and ablation studies, conducted
across nine tasks on the Harness framework, demonstrate the superior general performance of our
method compared to baselines. Specifically, out of 590M training files in SlimPajama (Touvron
et al., 2023a; Computer, 2023), our DiSF selects just 1.5% (about 9B training tokens), outperforming
full-data pre-training under 50B training budget, and achieving approximately 1.5x training efficiency
and 5x data efficiency. In summary, our research makes three significant contributions to the field:

• We rethink recent file selection innovations in pre-training LLMs, and identify a diversity dilemma
known as dimensional collapse in feature representation learning, improving performance in
domain-specific tasks but causing severe degradation in overall performance (Section 2).

• To prevent collapse and enhance diversity, we propose DiSF, which selects the most decorrelated
text files using a classical greedy algorithm, and analyze its approximation to the optimal solution
under the formulation of γ-weakly submodular optimization problem (Section 3).

• We established a benchmark on TinyLlama architectures and SlimPajama text corpus with
evaluation on nine tasks from Harness. Extensive experiments and ablations demonstrate the
superior performance of our method, with improved training and sample efficiency (Section 4).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Summary of recent innovations in file selection for LLM pre-training, categorized by their
proxy model, proxy function to estimate sample importance, and whether requiring a target domain.

Selection Method Proxy Model (M) Proxy Function (FM) Domain Independent

Heuristic Cls. Trained binary classifier Probability to target domain %

DSIR (NeurIPS’23) Hashed n-gram extractor Similarity to target distribution %

QuRating (ICML’24) Trained judge model via GPT-3.5 Judgement score of target ability %

INGENIOUS (Emnlp’23) Pre-trained LLM with warming-up Facility Location on slimilarity matrix !

D4 (NeurIPS’23) Existing text feature extractor Distance in feature space !

DiSF (Ours) Existing text feature extractor Decorrelation of feature dimensions !

2 RETHINKING FILE SELECTION FOR LLM PRE-TRAINING UNDER BUDGET

In this section, we first introduce the definition of file selection objective, and then revisit recent file
selection innovations for pre-training LLMs, with a particular focus on the diversity dilemma.

2.1 PROBLEM STATEMENT

Given training and selection budgets T and S , our objective is to select the most valuable samples V
from a text corpus D = {D1, ..., Di, ..., DN} collected from various domains Di (e.g., Wikipedia or
samples with high writing qualities) to optimize model weights W on pre-training task L, thereby
maximizing general performance A. While A is challenging to verify on a given LLM, it can be
inferred through diverse abilities such as commonsense and problem-solving, with evaluation tools
like Harness (Gao et al., 2024). Mathematically, V can be obtained through selection objective as

argmax
U⊆D

A(argmin
W

L(W, T ,U)),

s.t. |U| ≤ S.
(1)

There are various options to define T , S, A, and L. In this work, we define the training budget T
as the number of pre-trained tokens, the selection budget S as the number of files, the pre-training
objective L as next-word prediction on SlimPajama (Computer, 2023; Touvron et al., 2023a), and the
LLM’s generic performance A as the evaluation across different tasks using the Harness framework.

2.2 RECENT SELECTION METHODS

Analyzing the objective defined in equation 1, the inner part minimizes the pre-training objective on
LLM with a predefined training budget and the selected samples, while the upper level focuses on
selecting the most valuable samples to maximize the LLM’s generic performance within the selection
budgets. Directly searching for valuable samples V in the full corpus D is extremely time-consuming
and expensive. To reduce this cost, recent innovations in file selection for LLM pre-training mostly
rely on using an existing or trained proxy model M and designing a proxy function FM based on a
target domain. Through linking text samples x ∈ D to the generic performance A, they transform
equation 1 into choosing the samples with the highest values of FM(x), as follows:

V = TopSFM(x ∈ D). (2)
As summarized in Table 1, typical Heuristic classification (Brown, 2020b; Chowdhery et al., 2023b)
trains a binary classifier to filter web data, selecting files with probabilities to a target format above a
noisy, such as BookCorpus and Wikipedia (Computer, 2023). Similarly, DSIR (Xie et al., 2023b)
improves it and also treats these two domains as high-quality domains to select files for general
purpose, with a hashed n-gram feature extractor to measure the similarity between the text features
and the target distribution. QuRating (Wettig et al., 2024) queries GPT-3.5-turbo and trains a judge
model to assess the text samples’ quality of a target style, such as writing and mathematics. However,
as shown in Figure 1, selection methods based on specific domains lead to a diversity dilemma, known
as dimensional collapse in representation learning (Jing et al., 2022; Zbontar et al., 2021; Bardes
et al., 2022; Chen et al., 2020), improving performance in the domain related task but causing severe
degradation in overall performance across diverse tasks. The recent method D4 (Tirumala et al.,
2023) and INGENIOUS (Renduchintala et al.) reduce file redundancy by leveraging feature distances
and selecting informative samples based on similarity kernels respectively, which improves diversity
but can not effectively mitigate dimensional collapse as ours (see both Figure 2 and Figure 3).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.3 DIVERSITY DILEMMA: DIMENSIONAL COLLAPSE

20 40 60 80 100
k

0.1

0.2

0.3

0.4

0.5

0.6

Do
m

in
an

ce
 sc

or
e

DiSF(Ours)
INGENIOUS
QuRating-A
D4
QuRating-W
Heuristic
DSIR

Figure 3: The dominance score for
recent methods calculated as

∑k
i=1 λi∑d
j=1 λj

,

where λi represents the i-th largest eigen-
value of the feature covariance matrix,
and d is the dimension of the feature
space. We use Contriever model to ex-
tract features. We select the top 500 text
samples based on their respective selec-
tion criteria. For D4, we select 500 ran-
dom samples after reducing redundancy.

As shown in Figure 2, dimensional collapse occurs in the
embedding space when samples are selected based on the
target domains. Their embedding vectors extracted by the
Contriever (Izacard et al., 2021) span a lower-dimensional
subspace, indicating less diversity. To quantify this, we
conduct an eigenvalue analysis on the covariance matrix
of selected text features under different selection methods,
and visualize the dominance score of the topk eigenvalues

calculated as
∑k

i=1 λi∑d
j=1 λj

, where λi is the i-th large eigen-

value of the covariance matrix, and d is the dimension of
the feature space. Smaller dominance score suggests more
uniform feature dimensions and richer information (Chen
et al., 2020; Zbontar et al., 2021; Shi et al., 2022; Jing
et al., 2022; Bardes et al., 2022). As demonstrated in
Figure 3, Heuristic classification, DSIR, and QuRating
with a focus on writing style (denoted as QuRating-W)
exhibit significantly higher dominance scores compared
to D4, INGENIOUS, and QuRating with all styles (de-
noted as QuRating-A), highlighting the reduced diversity
caused by target domains selection criteria. To address
this and enhance diversity, we propose a novel diversified
file selection algorithm (DiSF) to select text samples, span-
ning more uniform feature dimensions in the embedding
space. As red line shown in Figure 3, compared to D4
and QuRating-A, our DiSF further reduces the dominance score, demonstrating its effectiveness in
uniforming dimensions and mitigating dimensional collapse.

3 DISF: DIVERSIFIED FILE SELECTION

In this section, we define the diversified selection criterion of DiSF, and the selection procedures with
a classical greedy algorithm in batch level, and then provide a empirically verification way under
γ-weakly submodular optimization theories, followed with time complexity analysis.

3.1 METHOD

Selection criterion. Given a set of n text samples U = {x1, ..., xi, ...xn}, their text features with a
standard normalization Z = {z1, ..., zi, ...zn} are obtained by a text feature extractor M as

zi =
f(xi,M)− µ

σ
, (3)

where f calculates the feature representations of text samples,and µ and σ are the mean and variance
of {f(x1,M), ..., f(xi,M), ...f(xn,M)}, respectively. Then, the covariance matrix C is defined as

C(U,M) =
1

n− 1

n∑
i=1

zTi zi. (4)

As discussed in Section 2, our goal is to prevent dimensional collapse by ensuring more uniform
eigenvalues in the covariance matrix of the selected samples. Directly calculating and selecting based
on eigenvalues are costly, but it is feasible to optimize the Frobenius norm of the covariance matrix
∥C∥F (Zbontar et al., 2021; Bardes et al., 2022; Shi et al., 2022), as described in Lemma 1:
Lemma 1. Assuming a covariance matrix C ∈ Rd×d computed from the features with the standard
normalization, and its eigenvalues {λ1, λ2, ..., λd}, we will have the following equality that satisfied

d∑
i=1

(λi −
1

d

d∑
j=1

λj)
2 = ∥C∥2F − d.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

We provide a detailed proof in Appendix A.5 for clarity. From Lemma 1, it is evident that ensuring
the uniformity of the eigenvalues of the covariance matrix can be translated into minimizing the
Frobenius norm of the covariance matrix. Thus, given any text set U ⊆ D, we evaluate its importance
as −∥C(U,M)∥F , and define the selection objective as

argmax
U

−∥C(U,M)∥F , s.t. |U| ≤ S, (5)

where S is the predefined selection budget. Differing from typical selection algorithms that directly
define the importance of individual text samples through proxy function shown in equation 1, our
selection objective defined in equation 5 is calculated on a subset of samples.

Algorithm 1 Selection procedure of DiFS
Input:(D, b,S,M)

V← ∅.
Divide D into batches of bi with scale b.
for i = 1, . . . , ⌊ |D|

b
⌋ do

randomly select x∗ ∈ bi and Ui ← {x∗}.
while |Ui| ≤ b|S|

|D| do
bi ← bi \ {x∗}.
x∗ = argmaxx∈bi

FDISF
M (Ui ∪ {x}).

Ui ← Ui ∪ {x∗}.
end while
V = V ∪Ui.

end for
Output:V

Selection Procedure. To satisfy the non-negative
requirement in the later analysis, we first reformulate
our proxy function into a non-negative form as

FDiSF
M (U) = e−∥C(U,M)∥F , (6)

where U ⊆ D. We apply the classical greedy al-
gorithm to select the most valuable samples based
on our proxy function. This allows us to iteratively
choose the most valuable samples as follows:

U← U ∪ {argmax
x∈D\U

FDISF
M (U ∪ {x})}. (7)

However, directly applying the greedy algorithm as
shown in equation 7 to the entire text corpus is com-
putationally expensive, we perform the selection at
the batch scale. In Section 4.4, we provide an abla-
tion study of selection scale. Given a text corpus D, selection scale b, selection budget S, and proxy
model M, the selection process is outlined in Algorithm 1. We first divide the text corpus into ⌊ |D|

b ⌋
batches, where ⌊·⌋ is the round down command. In each batch bi, we initialize Ui with a randomly
selected sample and remove it from bi. Then, we iteratively apply (⌊ b|S|

|D| ⌋ − 1) times the greedy
algorithm, removing the most valuable sample from bi and adding it to Ui based on equation 7.
Finally, the selected samples are the combination of all Ui.

3.2 ANALYSIS

200 400 600 800 1000
Number of sample

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Va
lu

e
of

 p
ro

xy
 fu

nc
tio

n(
e

C(
U,

M
)

F

10
00

0
)

DiSF(Ours)
D4
QuRating-A
Random
QuRating-W
DSIR

Figure 4: Proxy value, as defined in
equation 6, calculated on different meth-
ods. For each method, we randomly
choose samples from their selected text
files with 1.5% selection budget. All
cases generally demonstrate the property
of monotonicity. Moreover, our selec-
tion method achieves significantly larger
proxy values, indicating much better uni-
formity of feature dimensions.

Selection Analysis. Diversity is often effectively mod-
eled by submodular functions (Nemhauser et al., 1978; Fu-
jishige, 2005; Balakrishnan et al., 2022; Hong et al., 2024),
which exhibit a property of diminishing returns, i.e., the
marginal gain an element brings to a subset decreases as
more elements are added to that subset. Mathematically,
given a set Ω, a set function f : 2N → R is γ-weakly
submodular if and only if, for any subsets A ⊆ B ⊆ Ω,
and a element x ∈ Ω \B, the following inequality holds:

f(A ∪ {x})− f(A) ≥ γ(f(B ∪ {x})− f(B)), (8)

where γ ∈ (0,1]. A non-negative monotone γ-weakly sub-
modular maximization problem can be solved using the
classical greedy algorithm, which guarantees a (1− e−γ)-
approximation to the optimal solution (function value on
selected samples compared to optimal value) (DAS, 2011).
As demonstrated in Figure 4, we empirically verify the
monotonicity of our proxy function by increasing the num-
ber of samples randomly chosen from the selected text
files of different methods. Additionally, the results in Fig-
ure 4 indicate a significantly higher proxy value for our
selection method compared to others, demonstrating the superior ability to mitigate dimensional

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 2: Submodular ratio estimated on 1000 batch of selection in SlimPajama. For each file batch,
we randomly sample 1000 cases of A, B and e, and record the smallest γ as defined in equation 9.

Range of γ 0.8-1 0.6-0.8 0.4-0.6 0.2-0.4 0-0.2 <0

Number of Batches 174 377 211 93 128 17

collapse. Since our proxy function also aims to capture the diversity within a given set, we estimate
the submodular ratio γ to provide insights into how our algorithm approaches the optimal solution
during exact selection on SlimPajama. As shown in Table 2, we estimate and record the submodular
ratio γ defined in equation 9 on 100 selection batch and in each batch we randomly sample 1000
cases of A, B and e, recording the smallest γ. Although the submodular ratio shows provides a very
pessimistic bound in applications (Santiago & Yoshida, 2020), in most cases, it lies within (0,1] and
exhibits a relatively large value, with an average submodular ratio of 0.478.

Time Complexity Analysis. Given the feature dimension d, the time complexity of our DiSF is less
than O(|S|2bd2), and we provide a detailed calculation of the results. All terms in the time complexity
are at most quadratic and independent of the overall dataset size, which we consider acceptable for
applying to file selection for LLM pre-training. Additionally, in Figure 7 of Section 4.4, we report
the exact time required to select data on the benchmark dataset. In Section 4.3 and Appendix A.4.2,
we compare the sampling and training efficiency of our method against the baselines.

4 EXPERIMENT

This part introduces the experimental setup, including dataset, evaluations, model architecture,
baselines, and training details in Section 4.1, the main results and efficiency analysis in Section 4.2
and Section 4.3, and extensive ablation studies for better understanding of our DiSF in Section 4.4.

4.1 SETUP

Dataset and evaluation. Following many prior works (Touvron et al., 2023a; Zhang et al., 2024;
Wettig et al., 2024; Xie et al., 2023a), we employ SlimPajama (Touvron et al., 2023a; Computer,
2023) as the text corpus, which is specifically curated for pre-training LLMs. All selections are
performed on about 590M training files of SlimPajama, processed with Llama tokenizer (Touvron
et al., 2023a). Notably, QuRating (Wettig et al., 2024) provides judgments on various properties of text
samples in SlimPajama using a judge model trained based on GPT-3.5-turbo, which can be directly
utilized in our implement. To capture the diversity dilemma and evaluate generic performance of pre-
trained LLMs, we use seven commonsense reasoning tasks from the popular framework Harness (Gao
et al., 2024), including four reading comprehension tasks (ARC-e, ARC-c (Clark et al., 2018),
OBQA (Mihaylov et al., 2018), and BoolQ (Clark et al., 2019)), and three physical world knowledge
tasks (PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), and WinoGrande (Sakaguchi
et al., 2021)). Besides, we also employ another two tasks MMLU (Hendrycks et al., 2021), and
BBH (Suzgun et al., 2022) from Harness to evaluate the problem-solving capabilities for further
clarify of our effectiveness. See Section 5 for detailed introduction of the dataset and tasks.

Model architecture. As for the model, we adopt Tinyllama architecture (Zhang et al., 2024)
with 120M, 560M, and 1.1B parameters. Thanks to FlashAttention (Dao et al., 2022) and Lit-
GPT (LightningAI, 2023), all experiments can be conducted on NVIDIA GeForce RTX 4090 GPUs
with 24GB memory, which is feasible for general academic research. All experiments and selection
are implemented by PyTorch (Paszke et al., 2019) on platforms with 8 GPUs and 64 CPUs. Except
for Tinyllama, we also adopt OPT (Zhang et al., 2022) and Pythia (Biderman et al., 2023) to verify the
scalability of our method on model architecture as ablation study shown in Section 4.4. For feature
extraction, we utilize the Contriever (Izacard et al., 2021) with approximately 110M parameters to
calculate feature representations of the text samples as defined in equation 3. We also experiment
with other pre-trained models as feature extractors, including the text encoder of CLIP (Radford
et al., 2021) and GPT-2 (Radford et al., 2019), as discussed in the ablation study of Section 4.4. See
Appendix A.3 for detailed introduction of model structures, as well as their training times.

Baselines. We compare our DiSF with Random selection and existing file selection methods
for LLM pre-training, including DSIR (Xie et al., 2023b), QuRating (Wettig et al., 2024), INGE-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 3: Performance on seven tasks and their average with the Harness framework. In the upper
part, we pre-train TinyLlama with 120M, 560M, and 1.1B parameters from scratch, with training
budget of 10B tokens and selection budget of 1.5% of total training files. In the lower part, the
training budget is increased to 50B. Results impacted by the diversity dilemma, best individual task
results, and the best average performance are respectively highlighted in bold blue, black, and red.

Model Size
Method Pre-training TinyLlama from scratch with 10B training budget on 1.5% selected files

#Metric ARC-e ARC-c OBQA BoolQ WinoGrande HellaSwag PIQA Avg.

120M

Random 37.1 18.2 12.8 61.1 49.9 27.0 58.7 37.8
DSIR 36.6 18.2 13.8 57.6 51.7 25.1 54.8 36.9
D4 38.0 18.1 13.6 60.1 51.8 27.8 57.8 38.2
QuRating-W 37.7 18.6 15.0 60.9 51.3 24.3 55.6 37.7
QuRating-A 39.1 18.3 14.2 60.7 50.8 27.4 58.4 38.4
Doremi 36.8 18.2 13.8 60.9 52.7 27.3 58.8 38.5
INGENIOUS 39.5 18.6 13.4 60.2 50.4 27.4 58.7 38.3
DiSF (Ours) 39.9 17.8 13.8 61.7 51.9 27.6 59.5 38.9

560M

Random 43.2 19.9 15.2 59.3 52.9 30.4 62.0 40.4
DSIR 41.8 19.3 16.8 60.5 50.3 26.0 56.0 38.7
D4 46.5 19.5 16.0 60.5 53.2 29.5 61.4 40.9
QuRating-W 42.0 21.3 17.4 59.5 49.8 28.4 58.2 39.5
QuRating-A 46.7 19.1 17.2 61.3 51.1 28.9 63.4 41.1
INGENIOUS 45.8 20.6 16.0 58.3 51.4 30.8 62.5 40.8
Doremi 42.7 19.3 15.8 60.9 50.4 30.0 63.7 40.4
DiSF (Ours) 47.5 21.2 16.2 58.9 51.0 31.1 64.2 41.4

1.1B

Random 44.8 19.0 16.4 59.9 51.3 30.8 64.1 40.9
DSIR 45.7 20.3 18.6 59.8 50.4 27.6 58.3 40.1
D4 46.2 19.3 18.8 60.2 51.3 30.9 65.4 41.7
QuRating-W 44.4 21.4 17.0 59.6 51.4 31.0 60.1 40.7
QuRating-A 47.4 20.9 19.8 59.1 50.2 30.1 63.3 41.6
INGENIOUS 45.3 19.6 19.8 60.0 51.2 31.2 64.9 41.7
Doremi 44.7 19.7 17.6 61.0 51.2 31.1 64.6 41.4
DiSF (Ours) 47.7 19.5 18.2 59.7 52.2 32.3 65.6 42.2

Model Size
Method Pre-training TinyLlama from scratch with 50B training budget on 1.5% selected files

#Metric ARC-e ARC-c OBQA BoolQ WinoGrande HellaSwag PIQA Avg.

120M

Random 41.5 17.6 16.6 56.3 52.2 28.4 59.5 38.9
DSIR 44.2 18.4 17.2 53.9 49.6 25.2 56.3 37.8
D4 42.1 19.2 17.0 58.3 52.6 28.1 60.9 39.7
QuRating-W 41.6 18.9 16.2 59.5 51.6 27.6 56.8 38.9
QuRating-A 46.8 19.7 15.8 60.5 51.1 27.9 58.4 40.0
INGENIOUS 42.2 19.1 16.3 58.7 51.2 28.5 61.0 39.6
Doremi 40.7 18.9 16.2 60.2 52.7 28.1 61.4 39.7
DiSF (Ours) 44.3 18.3 17.8 61.1 53.3 28.7 61.0 40.6

560M

Random 46.0 20.9 16.8 59.0 52.5 31.6 64.7 41.6
DSIR 45.9 22.2 18.5 58.1 50.7 27.8 59.3 40.4
D4 47.2 21.7 18.2 58.7 52.2 32.4 65.3 42.2
QuRating-W 46.9 23.4 19.5 56.5 52.2 28.5 61.3 41.2
QuRating-A 48.3 19.2 18.2 58.9 52.1 34.1 67.4 42.6
INGENIOUS 46.8 21.6 17.0 59.3 52.2 32.8 66.5 42.3
Doremi 47.2 22.4 18.6 59.0 52.6 33.1 66.2 42.7
DiSF (Ours) 47.3 22.0 18.8 60.8 52.8 33.5 67.4 43.2

1.1B

Random 51.4 20.9 18.2 56.2 51.3 34.7 67.3 42.9
DSIR 50.2 20.6 20.0 54.6 52.4 30.4 64.2 41.8
D4 53.6 22.1 20.9 57.3 52.9 35.2 67.7 44.2
QuRating-W 53.9 23.1 20.8 55.0 52.7 35.0 63.3 43.4
QuRating-A 53.6 23.7 21.2 60.1 51.6 36.5 67.0 44.8
INGENIOUS 51.7 21.6 22.2 56.9 51.7 36.8 67.9 44.1
Doremi 51.2 21.9 21.8 58.1 54.3 36.6 67.8 44.5
DiSF (Ours) 51.8 22.7 20.0 62.0 53.5 37.3 69.0 45.2

NIOUS (Renduchintala et al.), and D4 (Tirumala et al., 2023). Since DSIR improves on Heuristic
classification (Brown, 2020b; Chowdhery et al., 2023b), we present only DSIR results based on
Wikipedia and Books. For QuRating, based on the top judgment values, we select text samples for writ-
ing style (denoted as QuRating-W) and uniformly select across all styles (denoted as QuRating-A).
For INGENIOUS, we utilize Contriever to extract features, which is more efficient than warmed-up
model, as analyzed in Appendix A.2.4. Additionally, for a comprehensive comparison, we include
Doremi (Xie et al., 2023a), a recently proposed method that produces weights for pre-training on
multiple text domains. We use the weights as the selection ratio of text samples in different domains
in our experiment. Notably, in our ablation studies, we also compare our method with Full Data

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.1 0.2 0.3
| |/| |

39.5

41.0

Pe
rfo

rm
an

ce
 (%

) TinyLlama 120M, = 50B

Full Data

0.1 0.2 0.3
| |/| |

41.5

45.0

Pe
rfo

rm
an

ce
 (%

) TinyLlama 560M, = 50B

Full Data

0.1 0.2 0.3
| |/| |

44.0

46.5

Pe
rfo

rm
an

ce
 (%

) TinyLlama 1.1B, = 50B

Full Data

Figure 5: Average performance of TinyLlama pre-trained after 50B tokens on files selected by our
DiSF with varying selection budgets compared to Full Data pre-training on SlimPajama.

pre-training, which refers to pre-training the LLMs on all training files in SlimPajama until the
specified training budget is reached. See Appendix A.2 for detailed implementation of the baselines.

Pre-training details. We follow all settings in TinyLlama (Zhang et al., 2024). The optimizer is
AdamW (Loshchilov & Hutter, 2019), setting parameters β1 at 0.9 and β2 at 0.95. We adopt the
cosine learning rate schedule with a maximum learning rate of 4e-4 and the minimum of 4e-5, the
batch size of 2M tokens, the weight decay of 0.1, and the gradient clipping threshold of 1. The training
budgets are 10B and 50B tokens, with 1.5% selection budget of SlimPajama’s training files. Note
that, we choose to report performance with a 1.5% selection budget, since it achieves comparable
performance compared to Full Data pre-training under 50B pre-training budget on TinyLlama 1.1B.
Unless otherwise specified, the selection scale b is set to 1024. See Appendix A.3 for more details.

4.2 MAIN RESULTS

Performance on commonsense reasoning tasks. As shown in Table 3, selection methods based on
a target domain such as DSIR, D4, and QuRating-W improve performance on reading comprehension
tasks like ARC-c and OBQA, but suffer significant declines on physical world knowledge tasks
especially HellaSwag and PIQA (highlighted in blue), revealing the diversity dilemma. In contrast,
Doremi, D4, QuRating-A, and our DiSF, which select samples from multiple text domains, achieve
competitive results on OBQA and ARC-c while significantly improving overall performance across
the remaining tasks. This highlights the critical importance of diversity in pre-training LLMs. Notably,
our DiSF outperforms all baselines in terms of average performance across the seven tasks, with an
average improvement of 2.5% compared to DSIR. Furthermore, with increasing training budget, the
improvement on DSIR becomes more pronounced, rising from 2.1% to 3.4% on TinyLlama 1.1B.

Table 4: Problem-solving performance
on MMLU (5 shot) and BBH (3 shot)
of TinyLlama 1.1B with 1.5% selection
budget and 50B pre-training budget.

Method MMLU(5 shot) BBH(3 shot)

DSIR 22.9±0.4 18.5±0.4

QuRating-W 23.1±0.2 18.7±0.4

QuRating-A 24.5±0.4 20.2±0.4

D4 24.3±0.5 20.8±0.4

Doremi 23.1±0.5 20.3±0.4

DiSF (Ours) 25.4±0.4 21.2±0.4

Scalability on model size. To verify the scalability of
selection methods across different model sizes, we use
the TinyLlama architecture with models of 120M, 560M,
and 1.1B parameters. As shown in Table 3, our DiSF con-
sistently outperforms all baselines, demonstrating strong
scalability with increasing model size. Notably, as the
model scales from 120M to 1.1B, DiSF’s improvement
over DSIR grows from 2.8% to 3.4%, suggesting even
greater effectiveness for larger LLMs.

Performance on problem-solving tasks. As shown in
Table 4, we further verify the performance of pre-trained
TinyLlama 1.1B on two additional problem-solving tasks,
MMLU and BBH, using various selection methods. Except for better commonsense abilities, results
of our DiSF shown in Table 4, demonstrate a better problem-solving capability, outperforming all
other baselines. Specifically, on MMLU and BBH, our DiSF respectively achieves 2.5% and 2.7%
improvement compared to DSIR.

4.3 EFFICIENCY ANALYSIS

In this section, we try to analyze how many samples and computations we can save within the training
budget, compared to Full Data pre-training, that is data efficiency and training efficiency. Please
note that, Full Data pre-training refers to pre-training the LLMs on all SlimPajama’s training files

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 25 50
Pre-trained tokens (B)

34

41

Pe
rfo

rm
an

ce
 (%

) TinyLlama 120M

Full Data
DiSF (Ours)

0 25 50
Pre-trained tokens (B)

37

44

Pe
rfo

rm
an

ce
 (%

) TinyLlama 560M

Full Data
DiSF (Ours)

0 25 50
Pre-trained tokens (B)

36

46

Pe
rfo

rm
an

ce
 (%

) TinyLlama 1.1B

Full Data
DiSF (Ours)

Figure 6: Performance of TinyLlama pre-trained under our DiSF with 1.5% selection budget compared
to Full Data pre-training on SlimPajama, as the pre-trained tokens (training budget) increases.

until the specified training budget is reached. In Figure 5, we demonstrate the average commonsense
performance of TinyLlama with 120M, 560M, and 1.1B parameters, pre-trained after 50B tokens
on files selected by DiSF with varying selection budgets compared to Full Data. It is evident that
to achieve the equivalent or superior performance compared to Full Data with 50B training budget,
we only need to select about 20% of the pre-trained tokens (1.5% of SlimPajama’s training files),
achieving at least 5x data efficiency. In Figure 6, we show the curves of averaged commonsense
reasoning performance during the pre-training under our DiSF with 1.5% selection budget compared
to Full Data. It can be seen that, when achieving the performance of Full Data pre-trained with 50B
tokens, our methods only need 27B, 36B, and 40B tokens, respectively on TinyLlama with 120M,
560M, and 1.1B parameters, achieving an average of 1.5x training efficiency.

4.4 ABLATION STUDY

8 9 10 11 12
Selection Scale (log2 b)

38

46

Pe
rfo

rm
an

ce
 (%

)

12 hours 15 hours 26 hours 41 hours 55 hours

TinyLlama 1.1B

TinyLlama 560M

TinyLlama 120M

Figure 7: Performance of pre-trained TinyL-
lama under different selection scales (log2 b).
With 1.5% selection budget and 50B training
budget, we identify an ideal point with ac-
ceptable computational cost and near-optimal
performance, marked by a red star.

Selection budget. This part analyzes the perfor-
mance of pre-trained LLM with different selection
budgets when using our DiSF. We conduct the abla-
tion on TinyLlama 120M with 50B training budget
and present its average commonsense reasoning per-
formance. As shown in Figure 8, the performance
initially rises rapidly with increasing selection ratios,
reaching a peak of 41.2 with 3% of total training
files (about 20B tokens). Once the selected samples
exceed 3%, the performance begins to decline and
converge to the performance of Full Data pre-training.
This insight may help choose selection ratios and en-
hance understanding of our selection algorithm.

Table 5: Ablation study of our DiSF with dif-
ferent model architectures compared to other
selection methods, respectively using TinyL-
lama with 1.1B parameters, Pythia with 1B
parameters and OPT with 1.3B parameters.

Method TinyLlama Pythia OPT
DSIR 41.8 41.4 43.1
D4 44.2 43.9 44.7
QuRating-A 44.8 43.6 45.1
Doremi 44.5 43.7 44.9
Ours 45.2 44.2 45.5

Model architecture. To further verify performance
across different architectures, we additionally adopt
two large language models: Pythia (Biderman et al.,
2023) with 1B parameters and OPT (Zhang et al.,
2022) with 1.3B parameters. As shown in Table 5, we
compare the average commonsense reasoning perfor-
mance of our DiSF with baselines, including DSIR,
D4, QuRating-A, and Doremi, under the same train-
ing budget of 50B pre-trained tokens. The results
demonstrate that our DiSF consistently outperforms
the baselines, highlighting its effectiveness and scal-
ability across different model architectures.

Table 6: Ablation study of our DiSF with
different feature extractor. We show results,
respectively using Contriever with 110M pa-
rameters, text encoder of CLIP with 70M pa-
rameters and GPT-2 with 117M parameters.

TinyLlama CLIP Contriever GPT-2
120 M 39.5 40.6 40.0
560 M 42.1 43.1 42.3
1.1 B 43.9 45.2 44.4

Feature extractor. In our experiments, we uti-
lize a proxy model named Contriever (Izacard et al.,
2021), with about 110M parameters, as feature extrac-
tor to provide the embedding space for selected text
samples. We also try two other pre-trained models:
the text encoder of CLIP (Radford et al., 2021) with
about 70M parameters and GPT-2 (Radford et al.,
2019) with about 117M parameters. As shown in Ta-
ble 6, CLIP fails to deliver satisfactory performance,
because it struggles with longer text sequences. GPT-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

2 does not outperform the Contriever model because it is optimized for autoregressive text generation
rather than producing meaningful sentence representations, whereas Contriever, specifically designed
for measuring text similarity, excels at capturing text diversity.

| |38.5

41.5

Pe
rfo

rm
an

ce
 (%

)

TinyLlama 120M, = 50B

(1.5%,40.6)

(3%,41.2)

(10%,40.5)
(25%,40.1)

Full Data

1.5% Random Selection(0.5%,38.7)

(1%,39.8)

Figure 8: Average commonsense reasoning
performance of TinyLlama 120M pre-trained
under DiSF with different selection budget
and 50B training budget. Blue and grey lines
respectively denote Full Data pre-training and
random selection with 1.5% selection budget.

Selection scale. To manage the computational cost
of file selection, we apply submodular optimization
with classical greedy algorithm at the batch scale,
as shown in Algorithm 1, introducing the hyper-
parameter, selection scale b. The computational com-
plexity of the selection process, defined in equation 7,
is O(b

|S|2), where the larger b increases the compu-
tational burden. As ablation on b shown in Figure 7,
a larger batch size significantly raises computational
costs, while a smaller batch size fails to select suffi-
ciently diversified files. With a fixed selection budget
of 1.5%, training budget of 50B tokens, and Con-
triever as the feature extractor, we identified an ideal
point of 1024, marked by a red star, which balances
computational time and near-optimal performance.
This insight may provide valuable guidance for choos-
ing an appropriate selection scale in other settings.

5 RELATED WORK

In Section 2, we revisited recent works on file selection for pre-training LLMs. We introduce
evaluation, and model architecture in Section 4.1, and provide more details in Appendix A.1.1 and
A.3. In the following, we introduce about submodular optimization.

Submodular optimization. Submodularity is a property of functions defined on a set Ω that
exhibit diminishing returns. Submodular functions like facility location, log determinant, and graph
cut (Salhi, 1991b; Fujishige, 2005; Krause & Golovin, 2014; Kaushal et al., 2019; Karanam et al.,
2022) are widely recognized for effectively modeling diversity (Nemhauser et al., 1978; Wei et al.,
2015; Balakrishnan et al., 2022; Hong et al., 2024). Moreover, submodular optimization has achieved
significant success in various fields, such as summarization (Kothawade et al., 2022; Kumari et al.,
2024), curriculum learning (Balakrishnan et al., 2022; Zhou & Bilmes, 2018), active learning (Wei
et al., 2015; Guillory & Bilmes, 2011), and subset selection (Jain et al., 2024; Lin & Bilmes, 2011),
where selecting diverse subsets is crucial. Given a set Ω, a set function f : 2N → R is γ-weakly
submodular if and only if, for any subsets A ⊆ B ⊆ Ω, and a element x ∈ Ω \ B, the following
inequality holds:

f(A ∪ {x})− f(A) ≥ γ(f(B ∪ {x})− f(B)), (9)

where γ ∈ (0,1]. When γ = 1 (Santiago & Yoshida, 2020; DAS, 2011), the function is submodular
function. A non-negative monotone γ-weakly submodular maximization problem can be solved
using the classical greedy algorithm, which guarantees a (1− e−γ)-approximation. In this work, our
function aims to evaluate diversity, making it well suited to be verified under this formulation.

6 CONCLUSION

In this work, we revisit recent innovations in file selection for pre-training large language models
(LLMs) and identify a diversity dilemma: dimensional collapse, where performance improves
on specific tasks but degrades overall across diverse tasks. To address this, we propose a novel
Diversified File selection method (DiSF) which selects decorrelated text files in the embedding space
to enhance diversity. DiSF achieves more uniform eigenvalues of the feature covariance matrix by
minimizing its Frobenius norm and solve it with a greedy algorithm. We analyze its time complexity
and approximation to optimal solution under γ-weakly submodular optimization, and establish a
benchmark with TinyLlama architecture, evaluating performance across nine tasks from the Harness
framework. Extensive experiments and ablation studies demonstrate the critical role of diversity in
file selection for LLM pre-training and showcase DiSF’s superior effectiveness and efficiency.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Amro Kamal Mohamed Abbas, Kushal Tirumala, Daniel Simig, Surya Ganguli, and Ari S Morcos.
Semdedup: Data-efficient learning at web-scale through semantic deduplication. In ICLR 2023
Workshop on Mathematical and Empirical Understanding of Foundation Models. 18

Ravikumar Balakrishnan, Tian Li, Tianyi Zhou, Nageen Himayat, Virginia Smith, and Jeff Bilmes.
Diverse client selection for federated learning via submodular maximization. In International
Conference on Learning Representations, 2022. 5, 10

Adrien Bardes, Jean Ponce, and Yann Lecun. Vicreg: Variance-invariance-covariance regularization
for self-supervised learning. In ICLR 2022-International Conference on Learning Representations,
2022. 2, 3, 4

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023. 6, 9

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020. 2, 6, 16

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020a. 1

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020b. 2,
3, 7

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PMLR, 2020. 3, 4

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–113,
2023a. 1

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–113,
2023b. 2, 3, 7

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019. 6, 16

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018. 2, 6, 16

Together Computer. Redpajama: an open dataset for training large language models, 2023. URL
https://github.com/togethercomputer/RedPajama-Data. 2, 3, 6, 16

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022. 6

A DAS. Submodular meets spectral: Greedy algorithms for subset selection, sparse approximation
and dictionary selection. In Proc. 28th Int. Conf. on Machine Learning (ICML’11), pp. 1057–1064,
2011. 2, 5, 10

Satoru Fujishige. Submodular functions and optimization. Elsevier, 2005. 5, 10

11

https://github.com/togethercomputer/RedPajama-Data

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 07 2024. URL https://zenodo.org/records/12608602.
3, 6, 16

Xinyang Geng and Hao Liu. Openllama: An open reproduction of llama, May 2023. URL https:
//github.com/openlm-research/open_llama. 20

Andrew Guillory and Jeff A Bilmes. Online submodular set cover, ranking, and repeated active
learning. Advances in neural information processing systems, 24, 2011. 10

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations, 2021. 6, 17

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022. 1

Feng Hong, Yueming Lyu, Jiangchao Yao, Ya Zhang, Ivor Tsang, and Yanfeng Wang. Diversified
batch selection for training acceleration. In Forty-first International Conference on Machine
Learning, 2024. 5, 10

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand
Joulin, and Edouard Grave. Unsupervised dense information retrieval with contrastive learning,
2021. URL https://arxiv.org/abs/2112.09118. 2, 4, 6, 9

Eeshaan Jain, Tushar Nandy, Gaurav Aggarwal, Ashish Tendulkar, Rishabh Iyer, and Abir De.
Efficient data subset selection to generalize training across models: transductive and inductive
networks. Advances in Neural Information Processing Systems, 36, 2024. 10

Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding dimensional collapse in
contrastive self-supervised learning. In International Conference on Learning Representations,
2022. 2, 3, 4

Athresh Karanam, Krishnateja Killamsetty, Harsha Kokel, and Rishabh Iyer. Orient: Submodular
mutual information measures for data subset selection under distribution shift. Advances in neural
information processing systems, 35:31796–31808, 2022. 10

Vishal Kaushal, Rishabh Iyer, Suraj Kothawade, Rohan Mahadev, Khoshrav Doctor, and Ganesh
Ramakrishnan. Learning from less data: A unified data subset selection and active learning
framework for computer vision. In 2019 IEEE Winter Conference on Applications of Computer
Vision (WACV), pp. 1289–1299. IEEE, 2019. 10

Suraj Kothawade, Vishal Kaushal, Ganesh Ramakrishnan, Jeff Bilmes, and Rishabh Iyer. Prism: A
rich class of parameterized submodular information measures for guided data subset selection. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 10238–10246, 2022.
10

Andreas Krause and Daniel Golovin. Submodular function maximization. Tractability, 3(71-104):3,
2014. 10

Lilly Kumari, Shengjie Wang, Arnav Das, Tianyi Zhou, and Jeff Bilmes. An end-to-end submodular
framework for data-efficient in-context learning. In Findings of the Association for Computational
Linguistics: NAACL 2024, pp. 3293–3308, 2024. 10

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023. 20

LightningAI. Litgpt. https://github.com/Lightning-AI/litgpt, 2023. 6

12

https://zenodo.org/records/12608602
https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama
https://arxiv.org/abs/2112.09118
https://github.com/Lightning-AI/litgpt

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hui Lin and Jeff A Bilmes. Optimal selection of limited vocabulary speech corpora. In INTER-
SPEECH, pp. 1489–1492, 2011. 10

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. 8

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018. 2, 6, 16

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations for
maximizing submodular set functions—i. Mathematical programming, 14:265–294, 1978. 5, 10

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019. 6

David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild,
David So, Maud Texier, and Jeff Dean. Carbon emissions and large neural network training. arXiv
preprint arXiv:2104.10350, 2021. 1

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019. 6, 9

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021. 6, 9

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021. 1

HSVNS Kowndinya Renduchintala, Krishnateja Killamsetty, Sumit Bhatia, Milan Aggarwal, Ganesh
Ramakrishnan, Rishabh K Iyer, and Balaji Krishnamurthy. Ingenious: Using informative data
subsets for efficient pre-training of language models. In The 2023 Conference on Empirical
Methods in Natural Language Processing. 2, 3, 7, 18

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.
6, 16

Said Salhi. Discrete location theory. Journal of the Operational Research Society, 42(12):1124–1125,
1991a. 18

Said Salhi. Discrete location theory. Journal of the Operational Research Society, 42(12):1124–1125,
1991b. 10

Richard Santiago and Yuichi Yoshida. Weakly submodular function maximization using local
submodularity ratio. arXiv preprint arXiv:2004.14650, 2020. 6, 10

Yujun Shi, Kuangqi Zhou, Jian Liang, Zihang Jiang, Jiashi Feng, Philip HS Torr, Song Bai, and Vin-
cent YF Tan. Mimicking the oracle: An initial phase decorrelation approach for class incremental
learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 16722–16731, 2022. 2, 4

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Beyond neural
scaling laws: beating power law scaling via data pruning. Advances in Neural Information
Processing Systems, 35:19523–19536, 2022. 18

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022. 17

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022. 6, 17

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog
applications. arXiv preprint arXiv:2201.08239, 2022. 1

Kushal Tirumala, Daniel Simig, Armen Aghajanyan, and Ari Morcos. D4: Improving llm pretraining
via document de-duplication and diversification. Advances in Neural Information Processing
Systems, 36, 2023. 2, 3, 7, 18

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a. 2, 3, 6, 16

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023b. 1

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008. 2

Kai Wei, Rishabh Iyer, and Jeff Bilmes. Submodularity in data subset selection and active learning.
In International conference on machine learning, pp. 1954–1963. PMLR, 2015. 10

Alexander Wettig, Aatmik Gupta, Saumya Malik, and Danqi Chen. Qurating: Selecting high-quality
data for training language models. In Forty-first International Conference on Machine Learning,
2024. 2, 3, 6, 17

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy S Liang,
Quoc V Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up
language model pretraining. Advances in Neural Information Processing Systems, 36, 2023a. 6, 7,
18

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy S Liang. Data selection for language
models via importance resampling. Advances in Neural Information Processing Systems, 36:
34201–34227, 2023b. 2, 3, 6, 17

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
learning via redundancy reduction. In International conference on machine learning, pp. 12310–
12320. PMLR, 2021. 2, 3, 4

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019. 2, 6, 16

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385, 2024. 2, 6, 8

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022. 6, 9

Tianyi Zhou and Jeff Bilmes. Minimax curriculum learning: Machine teaching with desirable
difficulties and scheduled diversity. In International conference on learning representations, 2018.
10

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

In the Appendix, we provide additional information including dataset, baselines, model and training
details, and the proof of Lemma 1. As shown in the following, to help readers read, we provide a
table of contents of the full paper.

CONTENTS

1 Introduction 1

2 Rethinking File Selection for LLM Pre-training under Budget 3

2.1 Problem Statement . 3

2.2 Recent Selection Methods . 3

2.3 Diversity Dilemma: Dimensional Collapse . 4

3 DiSF: Diversified File Selection 4

3.1 Method . 4

3.2 Analysis . 5

4 Experiment 6

4.1 Setup . 6

4.2 Main Results . 8

4.3 Efficiency Analysis . 8

4.4 Ablation Study . 9

5 Related Work 10

6 Conclusion 10

A Appendix 15

A.1 Dataset:SlimPajama . 16

A.1.1 Evaluation . 16

A.2 Baselines . 17

A.2.1 DSIR. 17

A.2.2 QuRating. 17

A.2.3 Doremi. 18

A.2.4 INGENIOUS . 18

A.2.5 D4. 18

A.3 Model and training details . 18

A.4 More analysis . 20

A.4.1 Performance on larger dataset and model scale 20

A.4.2 Training efficiency compared to all baselines 20

A.4.3 Complexity analysis . 20

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.4.4 Comparison to submodular functions . 20

A.4.5 Observation of dimensional collapse on Starcoder 21

A.5 Proof of Lemma 1 . 21

A.1 DATASET:SLIMPAJAMA

SlimPajama is a high-quality text corpus specifically created for pre-training large language models.
This corpus, derived from RedPajama (Computer, 2023), underwent additional cleaning and dedupli-
cation processes. The original RedPajama corpus, an open-source research project, was designed to
replicate the pretraining data of Llama (Touvron et al., 2023a) and contains over 1.2 trillion tokens.
After extensive filtering to remove low-quality and duplicate content, SlimPajama retains only 50%
of the original tokens from RedPajama. The original distribution of SlimPajama and the text files
selected by different algorithms are shown in Figure 9. Notably, compared to domains like ArXiv,
GitHub, and StackExchange, Heuristic classification and DSIR tend to select a higher proportion of
files from Books and Wikipedia, and Qurating-W also favors the Books domain. This bias toward
specific domains may explain why these methods encounter dimensional collapse and performance
degradation in overall task performance.

Pe
rc
en
ta
ge
(%
)

Original

Pe
rc
en
ta
ge
(%
)

Pe
rc
en
ta
ge
(%
)

Pe
rc
en
ta
ge
(%
)

Pe
rc
en
ta
ge
(%
)

Heuristic DSIR

QuRating-W DiSF(Ours)

Commoncrawl C4 GitHub Books StackExchange ArXivWikipedia

Pe
rc
en
ta
ge
(%
)

D4

Figure 9: The file distributions of the original SlimPajama and selected by Heuristic classification,
DSIR, QuRating-W, D4, and our DiSF.

A.1.1 EVALUATION

Table 7: Commonsense performance of IN-
GENIOUS when using Warmed-up model
(INGENIOUS-W) and Contriever (INGENIOUS-
C) with 50B training budget.

Method TinyLlama-120M TinyLlama-1.1B

INGENIOUS-W 39.0 39.6
INGENIOUS-C 43.2 44.1

Harness evaluation framework. To demon-
strate the diversity dilemma and evaluate the
general performance of the pre-trained LLMs,
we utilize seven commonsense reasoning tasks
from the widely recognized evaluation frame-
work, Harness (Gao et al., 2024), including
four reading comprehension tasks: OBQA (Mi-
haylov et al., 2018): Inspired by open book ex-
ams, this task tests the ability to comprehend
and apply knowledge similarly to human understanding; ARC-e and ARC-c (Clark et al., 2018):
7,787 multiple-choice science questions at a grade-school level, divided into an easy set (ARC-e)
and a challenge set (ARC-c); BoolQ (Clark et al., 2019): A reading comprehension task that focuses
on naturally occurring yes/no questions, and three physical world knowledge tasks: HellaSwag
(Zellers et al., 2019): A collection to assess physically situated commonsense reasoning capabilities;
WinoGrande (Sakaguchi et al., 2021): An expansion of the Winograd Schema Challenge (WSC)
with increased scale and complexity; PIQA (Bisk et al., 2020): A task to measure the understanding

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

and reasoning about physical interactions in the real world. To further verify our effectiveness, we
also employ two problem-solving tasks from Harness: MMLU (Hendrycks et al., 2021): A task
to measure the world knowledge and problem-solving capabilities across various subjects; BBH
(Suzgun et al., 2022): A subset of 23 challenging tasks from the BIG-Bench benchmark (Srivastava
et al., 2022) to measure the ability of complex instruction following.

Table 8: Commonsense performance when pre-trained on SlimPajama with Open-Llama 3B, 1.5%
selection ratio and 10B training budget.

Method Random DSIR QuRating-A QuRating-W DiSF (Ours)

Commonsense ability 43.1 41.9 42.6 43.6 44.4

Table 9: Commonsense performance when pre-trained on both StarcoderData, and SlimPajama with
TinyLlama 1.1B, 1.5% selection ratio and 10B training budget.

Method Random DSIR DiSF (Ours)

Commonsense ability 40.3 40.0 41.4
bbh 12.6 12.5 13.3
mmlu 23.0 22.1 23.7
code x glue 0.80 0.59 0.86

Table 10: Comparison on sample efficiency pre-trained after 50B tokens. We record selected tokens
to achieve the performance of Full Data pre-trained with 50B tokens. The ablation interval is 0.5%.

Setting Full-Data DSIR QuRating-W QuRating-A D4 DiSF (Ours)

TinyLlama-120M 1.00 0.60 0.40 0.15 0.20 0.15
TinyLlama-560M 1.00 0.80 0.45 0.20 0.25 0.20
TinyLlama-1.1B 1.00 0.80 0.40 0.25 0.25 0.20

Table 11: Comparison on training efficiency pre-trained with 1.5% selection ratio. We record pre-
trained tokens to achieve the performance of Full Data pre-trained with 50B tokens. - denotes the
method can not reach that performance. The ablation interval is 1B.

Setting Full-Data DSIR QuRating-W QuRating-A D4 DiSF (Ours)

TinyLlama-120M 50B - - 32B 36B 27B
TinyLlama-560M 50B - - 46B 47B 36B
TinyLlama-1.1B 50B - - 52B 56B 40B

A.2 BASELINES

A.2.1 DSIR.

DSIR (Xie et al., 2023b) treats Books and Wikipedia as high-quality targets for file selection,
employing a hashed n-gram feature extractor to measure the similarity between the text features and
the target distribution. In our experiments, following the selection procedures outlined in DSIR, we
calculate importance scores using raw data (SlimPajama) and target data (Wikipedia and Books) in
an n-gram feature space. The importance weights are then applied to resample a subset of the raw
dataset. As for files in Wikipedia and Books domains, we proportionally integrate into the selected
dataset.

A.2.2 QURATING.

QuRating (Wettig et al., 2024) queries GPT-3.5-turbo to train a judge model, that assess the specific
quality of text samples, including four criteria: writing style, required expertise, facts & trivia, and
educational value. In this paper, for Qurating-W, we select samples with the highest scores for writing
style, while for QuRating-A, we proportionally select top-scoring samples across all four criteria.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.2.3 DOREMI.

Doremi (Xie et al., 2023a), a recently proposed method that produces domain weights for pre-training
on multiple text domains. In our experiments, we follow the domain weights calculation process of
Doremi, using the domain weights from the initial data distribution as an initial reference to train a
small reference model on the SlimPajama dataset. We then leverage this reference model to guide the
training of a small proxy model, designed to generate domain weights. Finally, these domain weights
are employed as the random selection ratio for text domains to construct selected dataset.

A.2.4 INGENIOUS

INGENIOUS (Renduchintala et al.) extracts features using a model after a warm-up phase and
employs Facility Location (Salhi, 1991a) to design a proxy function for feature importance, which
measures the similarity between samples in the embedding space. Notably, as shown in Table 7, we
observed that INGENIOUS, when using a warmed-up model for feature extraction (INGENIOUS-
W), does not achieve satisfactory performance with our selected feature extractor, Contriever
(INGENIOUS-C). Although INGENIOUS-C performs competitively compared to Random, DSIR,
QuRating-W, and QuRating-A, our method consistently achieves the best performance across all
settings.

A.2.5 D4.

The recent method D4 (Tirumala et al., 2023) notices the importance of diversified selection, involving
SemDeDup (Abbas et al.) and Prototypicality (Sorscher et al., 2022) to reduce file redundancy, but
can not achieve satisfactory uniform representations as ours. In this paper, we sequentially applied
the SemDeDup and Prototypicality methods to filter the data, controlling the filtering ratios of these
two steps to be Rdedup = 0.75 and Rproto = 0.02, respectively.

Table 12: Model structure and training details of pre-training TinyLlama 120M.
Parameter name Value
Parameter number 121,129,728
Hidden size 768
Intermediate Hidden Size 2048
Context Len 2048
Heads 12
Layers 12
Vocab size 32000
Minimum learning rate 4e-5
Maximum learning rate 4e-4
Optimizer AdamW
β1 of optimizer 0.9
β2 of optimizer 0.95
Warmup steps 2000
Batch size 2M tokens
Weight decay 0.1
Activation function SwiGLU
Gradient clipping threshold 1.0
Platform 8 NVIDIA GeForce RTX 4090 GPUs
Training times on 10B tokens about 0.2 days
Training times on 50B tokens about 1 days

A.3 MODEL AND TRAINING DETAILS

For better clarity and reproducibility, we provide the model structures and training details for
pretraining TinyLlama with 120M, 560M, and 1.1B parameters, as shown in Tables 12, 13, and

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 13: Model structure and training details of pre-training TinyLlama 560M.
Parameter name Value
Parameter number 561,072,128
Hidden size 2048
Intermediate Hidden Size 2048
Context Len 2048
Heads 16
Layers 20
Vocab size 32000
Minimum learning rate 4e-5
Maximum learning rate 4e-4
Optimizer AdamW
β1 of optimizer 0.9
β2 of optimizer 0.95
Warmup steps 2000
Batch size 2M tokens
Weight decay 0.1
Activation function SwiGLU
Gradient clipping threshold 1.0
Platform 8 NVIDIA GeForce RTX 4090 GPUs
Training times on 10B tokens about 0.9 days
Training times on 50B tokens about 4.5 days

Table 14: Model structure and training details of pre-training TinyLlama 1.1B.
Parameter name Value
Parameter number 1,100,048,384
Hidden size 2048
Intermediate Hidden Size 5632
Context Len 2048
Heads 32
Layers 22
Vocab size 32000
Minimum learning rate 4e-5
Maximum learning rate 4e-4
Optimizer AdamW
β1 of optimizer 0.9
β2 of optimizer 0.95
Warmup steps 2000
Batch size 2M tokens
Weight decay 0.1
Activation function SwiGLU
Gradient clipping threshold 1.0
Platform 8 NVIDIA GeForce RTX 4090 GPUs
Training times on 10B tokens about 1.7 days
Training times on 50B tokens about 8.5 days

14, respectively. These tables detail the configurations used in our experiments, facilitating easier
replication of our results. Please note that our goal in this paper is not to optimize all hyper-parameters
for the best LLM, but rather to compare selection methods under fair and reasonable conditions.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.4 MORE ANALYSIS

A.4.1 PERFORMANCE ON LARGER DATASET AND MODEL SCALE

To evaluate the effectiveness of our selection method on larger models and datasets, we 1) pre-train
Open-Llama 3B (Geng & Liu, 2023) on SlimPajama, 2) TinyLlama-120M on both SlimPajama and
StarcoderData (Li et al., 2023), and 3) TinyLlama-120M on StarcoderData. StarcoderData is a dataset
created for code generation, containing approximately 210M files (500GB of data). We assess the
pre-trained models on common sense ability (7 tasks) and an additional code task, code x glue using
harness evaluation. As shown in Table 8, we pre-train open-llama 3B with 10B training budget and
1.5% selection budget with SlimPajama. We compare our method with Random, DSIR, QuRating-
A, and QuRating-W. DSIR and QuRating-W meet performance degradation due to dimensional
collapse, while our method achieves the best performance on all tasks. As shown in Table 9, we
pre-train TinyLlama-120M on both SlimPajama and StarcoderData with 1.5% selection budget and
50B training budget, compared to random selection and DSIR. Results of DSIR show performance
degradation in code ability.We analyze that, DSIR tends to ignore code files in StarcoderData due to
the selection critetion is based on WikiPedia, which means dimensional collapse happens. Besides,
our DiSF can mitigate this collapse and achives both the best performance on common sense ability,
problem solving ability and programming ability.

A.4.2 TRAINING EFFICIENCY COMPARED TO ALL BASELINES

To compare the computational and data efficiency of our approach with all baselines, we present
additional results under the same settings as Figures 5 and 6, shown in Tables 10 and 11. The results
demonstrate that, to achieve equivalent performance to Full Data with a 50B training budget, our
method requires the fewest samples and pre-training tokens compared to the baselines, showing
promising efficiency. Additionally, We also compare the cost of our method with all baselines in the
process of selecting data. As reported in QuRating, annotating the data using the GPT API costs
520 NVIDIA H100 hours with additional ranking procedures of 3 hours. For DSIR, it takes more
than 2 days using 48 CPUs in our platform. For DOREMI, training a 120M proxy model to provide
weights for domains takes us approximately one week. In contrast, our method utilizes a public
feature extractor and selects samples in about 26 hours using one GPU and 48 CPUs. Combining
these facts and our complexity analysis, we believe our method is practical among these methods for
larger datasets.

A.4.3 COMPLEXITY ANALYSIS

For a detailed analysis of time complexity, we divide it into two parts: 1) computational complexity
shown in Algorithm 1. In each batch, we initialize Ui with a randomly selected sample and remove it
from the batch. Then, we iteratively apply (⌊ b|S|

|D| ⌋ − 1) times the Argmax command on the batch of
data with our proxy fuction. Denote the computational cost of our proxy function with k text samples
as F|U|=k(U) = OFk), the computation cost will be:

O(1 + ...+
|D|
b
)

b|S|
|D|∑
k=1

(b− k)(Fk+1) ≤ O(
|D|2

b2
)
b|S|
|D|

bFk+1 = O(|D|SF b|S|
|D| +1

),

where b is the batch scale, |D| is the total data scale, |S| is the selection budget. 2) The complexity
of proxy function O(Fk). Given text features z and their feature dimension d, Frobenius norm and
z · zT are both O(d2). Since our proxy function calculates k times the z · zT , O(Fk) = kd2. Finally,
the complexity of our DiSF will be:

O(DiSF) ≤ O(|D|SF b|S|
|D| +1

) = O(|S|2bd2)

All terms in the time complexity are at most quadratic and independent of the overall dataset size,
which we consider acceptable for applying to larger datasets. The space complexity largely depends
on the stored features of all text files: O(|D|d2).

A.4.4 COMPARISON TO SUBMODULAR FUNCTIONS

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 15: Dominance score compared to DiSF-LD and INGENIOUS.

DSIR D4 QuRating-W QuRating-A DiSF-LD INGENIOUS DiSF (Ours)

k=20 0.319 0.240 0.279 0.192 0.220 0.179 0.129
k=20 0.428 0.330 0.396 0.299 0.325 0.267 0.231
k=20 0.516 0.404 0.484 0.391 0.425 0.374 0.303
k=20 0.589 0.468 0.557 0.470 0.476 0.432 0.371
k=20 0.651 0.525 0.619 0.539 0.534 0.497 0.433

Table 16: Pre-trained performance compared to DiSF-LD.

Setting Random DSIR D4 QuRating-W QuRating-A DiSF-LD DiSF (Ours)

TinyLlama120M 38.9 37.8 39.7 38.9 40.0 39.5 40.6

In this section, we compare our proxy function with two strictly submodular functions: facility
location and log-determinant. For the facility location function, we compare with INGENIOUS.
Additionally, we introduce a variant defined as FLD=LogDet(I+C) (DiSF-LD), where I is the identity
matrix and C is covariance matrix. We evaluate this variant alongside our original proxy function on
TinyLlama-120M, using a 1.5% selection ratio and a 50B training budget. We also compare DiSF,
DiSF-LD, and INGENIOUS in terms of their dominance scores. As shown in Tables 3, 16 and 15,
the results demonstrate that both DiSF-LD and INGENIOUS help mitigate dimensional collapse and
improve the performance of pre-trained LLMs. However, neither method achieves the same level
of performance or dominance score as our original DiSF. This is due to their inability to directly
optimize the uniformity of feature dimensions, leading to a trade-off between strict submodularity
and the specific goal of optimizing dimensional uniformity.

Table 17: File selection of DSIR on Starcoder. We denote selected file ratios of DSIR based on
Wikipedia domain under both Starcoderdata and SlimPajama as DSIR-W-SS , on Wikipedia domain
under Starcoderdata as DSIR-W-S and Python domain under Starcoderdata as DSIR-P-S.

Method go java javascript php python ruby slimpajama donimance score

Original 0.59% 2.52% 2.45% 1.97% 1.61% 0.43% 74.07% 0.5715
DSIR-W-SS 0.00% 0.77% 0.54% 0.00% 0.5% 0.00% 94.0% 0.6947
DSIR-W-S 0.03% 12.37% 17.15% 0.12% 7.58% 0.00% - 0.5912
DSIR-P-S 0.00% 25.04% 4.36% 2.20% 50.38% 0.00% - 0.6833

A.4.5 OBSERVATION OF DIMENSIONAL COLLAPSE ON STARCODER

As shown in Table 17, we present the selection results of DSIR on Starcoderdata, as well as on both
Starcoderdata and SlimPajama, across two domains: Wikipedia and Python. The results demonstrate
that DSIR, when applied to a single domain, tends to select similar files, indicating dimensional
collapse. Notably, during our analysis of the scores output by QuRater, we found that the writing
style scores for most files in Starcoderdata are negative. As a result, these files are unlikely to be
selected when combined with SlimPajama, further highlighting the issue of dimensional collapse.
Additionally, as shown in Table 17, we additionally present the dominance score (calculated as the
topk eigenvalue ratio,

∑
i=1kλi∑d
j=1 λj

) for files selected by DSIR based on both the Wikipedia and Python

domains. The results show a significantly large dominance score, further emphasizing the severity of
dimensional collapse in the files selected by DSIR.

A.5 PROOF OF LEMMA 1

Lemma 2. Assuming a covariance matrix M ∈ Rd×d computed from the feature of each sample
with the standard normalization, and its eigenvalues {λ1, λ2, ..., λd}, we will have the following
equality that satisfied

d∑
i=1

(λi −
1

d

d∑
j=1

λj)
2 = ||M ||2F − d.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Proof. Let M ∈ Rd×d be a covariance matrix computed from features that have been standard-
ized—that is, the data has been centered (zero mean) and scaled to have unit variance along each
dimension. This standard normalization implies that the trace of M equals d:

Tr(M) =

d∑
i=1

λi = d.

This means the average eigenvalue is:

λ̄ =
1

d

d∑
i=1

λi = 1.

Left-Hand Side (LHS) Calculation:

The left-hand side involves the sum of squared deviations of the eigenvalues from their mean:

d∑
i=1

λi −
1

d

d∑
j=1

λj

2

=

d∑
i=1

(
λi − λ̄

)2
=

d∑
i=1

(λi − 1)2.

Expanding each term on the right, we get the following equation:

d∑
i=1

(λi − 1)2 =

d∑
i=1

(
λ2
i − 2λi + 1

)
=

d∑
i=1

λ2
i − 2

d∑
i=1

λi +

d∑
i=1

1.

Simplifying with
∑d

i=1 λi = d and
∑d

i=1 1 = d, we have:

d∑
i=1

λ2
i − 2d+ d =

d∑
i=1

λ2
i − d.

Right-Hand Side (RHS) Calculation:

First, the Frobenius norm of a matrix M is defined as

∥M∥2F =

d∑
i=1

d∑
j=1

M2
ij = Tr(M⊤M).

Since M is symmetric (M = M⊤), this simplifies to:

∥M∥2F = Tr(M2).

Using the spectral theorem, we have

M = UΛU⊤,

where U is an orthogonal matrix whose columns are the eigenvectors of M , and Λ =
diag(λ1, λ2, . . . , λd) contains the eigenvalues. Since U⊤U = I , we have the following equation:

M2 = (UΛU⊤)(UΛU⊤) = UΛU⊤UΛU⊤ = UΛ2U⊤,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Therefore, the trace of M2 is

Tr(M2) = Tr(UΛ2U⊤) = Tr(Λ2U⊤U) = Tr(Λ2) =

d∑
i=1

λ2
i .

Thus, the right-hand side is

∥M∥2F − d =

(
d∑

i=1

λ2
i

)
− d.

Conclusion:

Comparing both sides:

d∑
i=1

λi −
1

d

d∑
j=1

λj

2

=
d∑

i=1

λ2
i − d = ∥M∥2F − d.

This completes the proof.

23

