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Abstract
Recent multi-modal audio-language models
(ALMs) excel at text-audio retrieval but strug-
gle with frame-wise audio understanding. Prior
works use temporal-aware labels or unsupervised
training to improve frame-wise capabilities, but
they still lack fine-grained labeling capability to
pinpoint when an event occurs. While traditional
sound event detection models can precisely lo-
calize events, they are limited to pre-defined cat-
egories, making them ineffective for real-world
scenarios with out-of-distribution events. In this
work, we introduce FLAM, an open-vocabulary
contrastive audio-language model capable of lo-
calizing specific sound events. FLAM employs a
memory-efficient and calibrated frame-wise ob-
jective with logit adjustment to address spurious
correlations, such as event dependencies and la-
bel imbalances during training. To enable frame-
wise supervision, we leverage a large-scale dataset
with diverse audio events, LLM-generated cap-
tions and simulation. Experimental results and
case studies demonstrate that FLAM significantly
improves the open-vocabulary localization capa-
bility while maintaining strong performance in
global retrieval and downstream tasks.

1. Introduction
Multi-modal contrastive models, such as Vision–Language
Models (VLMs) (Radford et al., 2021; Zhai et al., 2023) and
Audio–Language Models (ALMs) (Elizalde et al., 2023;
Wu* et al., 2023), effectively learn open-vocabulary repre-
sentations that enable strong retrieval, understanding (Liu
et al., 2024), and text-conditioned generation (Ramesh et al.,
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2022; Liu et al., 2023a; Evans et al., 2024). In the audio
domain, ALMs like CLAP (Elizalde et al., 2023; Wu* et al.,
2023) learn instance-level alignments between audio and
text. However, these global embeddings cannot precisely
localize the temporal boundaries of specific acoustic events.

Enabling local alignment between audio frames and text
would significantly benefit applications like audio content
search and event detection, allowing users to pinpoint ex-
actly when a described sound occurs. However, unlike the
image domain—where large datasets (Schuhmann et al.,
2022) and granular segmentation labels (Kirillov et al.,
2023) are more readily available—audio frame-level an-
notations paired with text are exceedingly scarce. Existing
Sound Event Detection (SED) datasets (Serizel et al., 2020)
often have a limited, fixed vocabulary and remain relatively
small in size due to the significant human effort required for
annotation. Although self-supervised approaches (Xu et al.,
2021; 2024; Li et al., 2024) attempt to learn local align-
ment from audio-text pairs, the overall data volume remains
modest relative to other domains, limiting their scalability.

In this paper, we present FLAM (Frame-Wise Language–
Audio Modeling), an ALM model designed for frame-level
open-vocabulary SED. Unlike standard ALMs, FLAM’s au-
dio encoder provides both a global sample-level embedding
and a sequence of frame-level embeddings. By matching
each frame embedding to text embeddings, FLAM can de-
tect not only whether a sound event is present but also when
it occurs within the clip.

We train FLAM with a frame-level contrastive objective
and incorporate logit adjustment techniques (Menon et al.,
2021; Tsirigotis et al., 2023) to deal with the spurious
correlations of frame labels during training. Then, we
propose a memory-efficient training strategy, which handles
large batches of frame-wise data without compromising
computational feasibility. To overcome the lack of
frame-level audio-text annotations, we build a large-scale
data augmentation pipeline that synthesizes 10-second
audio mixtures from text-labeled acoustic events. This
approach automatically re-labels event boundaries, creating
a one-million-sample dataset of diverse, open-vocabulary
SED examples.
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Our key contributions are as follows:

• Frame-Level Open-Vocabulary SED: We introduce
FLAM, extending ALMs to produce both sample-level
and frame-level representations for open-vocabulary
event detection.

• De-biased Frame-level Contrastive Learning: We
develop a frame-level contrastive objective that in-
cludes a bias correction term and an unbiased event
classifier, effectively handling label imbalance in SED
training (Figure 1).

• Scalable Data Augmentation: We propose a pipeline
that synthesizes audio mixtures with precise event
boundaries from text-labeled corpora, yielding a large-
scale (1M samples) open-vocabulary SED dataset.

• State-of-the-Art Performance: FLAM outperforms
prior self-supervised approaches on both traditional
closed-set and open-set SED (Fig. 2, Table 1), while
preserving the strong retrieval (Table 2) and zero-shot
classification (Table 3).1

2. Preliminaries
As a multi-modal representation learning paradigm, con-
trastive learning methods introduce instance-level classifica-
tion tasks using paired observations found in batches at each
training step. Specifically in CLIP (Radford et al., 2021),
which is also adopted by ALMs such as CLAP (Elizalde
et al., 2023; Wu* et al., 2023), a contrastive learning task is
formed so that individual samples from one modality can be
classified against alternative samples in a batch using their
associated observations from the other modality, and vice
versa. In more detail, for audio-language contrastive learn-
ing, suppose that we sample a batch B = {(Xi, Yi)}Bi=1

from the training dataset, which contains audio samples,
Xi, paired with text descriptions, Yi. An audio encoder
fa maps an audio sample x to a d-dimensional embedding,
which is afterwards L2-normalized to produce ea ∈ Rd.
Likewise, a text encoder f t maps text descriptions y to em-
beddings which after L2-normalization we call et ∈ Rd.
The encoders are based on feature extractors, Ea and Et re-
spectively, followed by Multi-Layer Perceptrons (MLP). In
brief, we get instance-level embeddings for an audio sample
x and a text description y by

ea(x) =
fa(x)

∥fa(x)∥2
, et(y) =

ft(y)

∥ft(y)∥2
,

and we type eai = ea(Xi) to mean the embedding of an au-
dio Xi in a batch, and similarly eti = et(Yi) the embedding
of a text description Yi.

1Detailed results with real-world sound event detection exam-
ples are shown at: https://flam-model.github.io/

Given these instance-level embeddings, CLIP models clas-
sify pairs of observations in a batch B by minimizing an
InfoNCE (van den Oord et al., 2018) objective, LCLIP =

− 1
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)
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(1)
where α is a logit scale, α = eα

′
, controlled by a trainable

parameter α′. We would like the dot product between em-
beddings, eai · etj , to be high for positive pairs, where i = j,
and low for negative pairs, for which i ̸= j.

Another form of instance-level contrastive representation
learning method is explored by Zhai et al. (2023, SigLIP).
In their work, pairs of observations are directly classified as
positive or negative. Instead of an InfoNCE loss, Zhai et al.
(2023) minimize a binary cross-entropy loss LSigLIP =

− 1

B

B∑
i=1

B∑
j=1

log σ
(
zi,j (α eai · etj + β)

)
, (2)

where zi,j = 1 if i = j and zi,j = −1 if not, and σ is the
logistic function. As before α > 0 is a trainable logit scale,
and β is a trainable logit bias. Proper initialization for the
logit bias is crucial for effective model training, mitigating
the effects of 1 : B − 1 label imbalance between positive
and negative pairs. If an appropriate logit bias did not exist,
a model could trivially predict negative values for eai ·etj for
all i, j ∈ [B]2, thus impeding learning in large batch sizes.
In contrast, offsetting logits with an appropriate bias, which
captures the training artifact of the marginal statistic on z
labels, enables learning high eai · etj values when zi,j = 1
and low values when zi,j = −1. We include details in §C.1.

3. Methodology
Open-vocabulary SED aims to locate text descriptions of
acoustic events in an audio signal. Figure 1 provides a high-
level comparison between traditional contrastive ALMs and
our proposed FLAM approach for frame-level event de-
tection. In this work, we train our model directly on a
labeled open-vocabulary SED dataset. At each training
step of our method, we sample a batch from the dataset
BSED = {(Xi, {(Yi,k, Z

loc
i,k )}

Ki

k=1)}Bi=1. The batch contains
audio clip samples Xi, along with a variable number Ki of
positive text descriptions Yi,k that correspond to the acous-
tic events present in each audio clip. Each text descrip-
tion is accompanied by frame-wise labels Zloc

i,k ∈ {−1, 1}L
indicating when in the audio each event occurs. When
Zloc
i,k,l = 1, it means that the acoustic event described by

Yi,k is present in Xi,l, frame l ∈ [L] of audio clip Xi. Con-
versely, Zloc

i,k,l = −1 indicates that the acoustic event is not
audible at frame Xi,l. We construct SED data by synthesiz-
ing audio mixtures from a larger audio-text corpus, and we
describe the data augmentation process in §4.
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Figure 1. Comparison of traditional audio-language contrastive modeling (left) with the proposed Frame-wise Language-Audio Modeling
(FLAM, right). Traditional models generate global embeddings for audio-text pairs and optimize an instance-wise contrastive objective.
In contrast, FLAM integrates both instance-wise and fine-grained frame-wise contrastive objectives. Audio mixtures are synthesized
from event instances, paired with text descriptions, and processed to produce frame-wise embeddings. Frame-wise contrastive learning
explicitly aligns individual audio frames with textual event descriptions using event-specific scales and biases, enabling precise temporal
localization of sound events.

Traditional SED targets a fixed set of classes, predicting
a binary label per time frame. In contrast, we propose
open-vocabulary SED in this work as detecting the temporal
boundary of any event described by some text y. To this
end, we propose that, given an audio sample x, the audio
encoder fa,loc outputs frame-level representations in RL×d,
which we consequently L2-normalize (Figure 1) along the
embedding dimension,

ea,loc(x)l =
fa,loc(x)l

∥fa,loc(x)l∥2
∈ Rd, l ∈ [L] (3)

consisting of d-dimensional embeddings for each frame out
of total L frames. Unchanged from the instance-level set-
ting, the text encoder ft yields a single embedding et(y) =

ft(y)
∥ft(y)∥2

∈ Rd for any text query y. For notational conve-

nience in the batch setting, we write ea,loci,l = ea,loc(Xi)l to
represent the embedding of frame l of an audio sample Xi.

Unlike contrastive ALMs which are usually concerned
only with instance-level rankings via a comparison of dot
products of text query and audio clip embeddings, open-
vocabulary SED requires 1) detection with unlimited open-
set language prompts, and 2) calibrated probabilities for
each frame and event. This is because each frame can con-
tain a variable number of active events, including none. To
detect temporal occurrence of acoustic events, we propose
to construct a classifier which takes a temporal audio em-
bedding and a text embedding, and detects whether an event
y occurs in frame l ∈ [L] of audio x.

The reason for proposing this formulation is twofold. First,
it can efficiently leverage current contrastive ALMs. Con-

trastive ALMs often produce temporal representations,
ea,loc(·), in the second-to-the last layer, which we can use to
obtain a global representation, ea(·) = 1

L

∑
l∈[L] e

a,loc(·)l,
by averaging across the frame dimension (Chen et al., 2022).
Thus, our formulation can be built upon current ALMs with
minimal computation overhead on model inference. Second,
our formulation is computationally efficient at inference
time. Compared to an alternative formulation which di-
rectly outputs events matching given both audio and event
text query, our formulation allows us to precompute tem-
poral audio representations ea,loc(·) and only compute text
embeddings when a new prompt is given.

Figure 1 illustrates the key differences between traditional
audio-language modeling and our proposed FLAM frame-
work. Traditional approaches (left) produce global embed-
dings and optimize instance-level alignment between audio
and text pairs. In contrast, FLAM (right) leverages both
global and frame-level embeddings to enable precise tem-
poral localization. Specifically, FLAM synthesizes audio
mixtures from diverse events, creating temporally aligned
frame-level embeddings. These embeddings are explicitly
aligned with textual event descriptions through frame-wise
contrastive learning, augmented by event-dependent scaling
and biases. This dual objective structure allows FLAM to
not only detect whether events occur but precisely localize
when they occur in audio clips.

3.1. Robust Training and Inference

We propose to formulate the open-vocabulary SED as a con-
trastive objective based on binary classification. Given
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Figure 2. Example outputs from FLAM and MGA-CLAP on open-vocabulary sound-event-detection example (top row) with detailed
value at each frame (bottom row). FLAM, trained with event-dependent logit adjustment, converts raw cosine similarity into calibrated
predictions. By contrast, the unsupervised MGA-CLAP model produces less accurate results and cannot be calibrated from its output.

a batch BSED randomly sampled from the training set,
we collect all the event descriptions found in the batch
Y =

⋃
i∈[B]{Y (i,k)}Ki

k=1 with |Y| = K elements, and re-
define frame-wise labels on the union of description for all
i ∈ [B], k′ ∈ [K], l ∈ [L], as zi,k′,l = 1 if Yk′ = Y (i,k)

and Zloc
i,k,l = 1 for some k ∈ [Ki], otherwise zi,k′,l = −1.

In essence by computing the union of event descriptions, we
deduplicate potential overlapping acoustic events present in
different audio samples in the batch while maintaining con-
sistency with the dataset about positive audio frames with
respect to acoustic event descriptions. In addition, we as-
sume that all frames of an audio sample Xi are negative with
respect to an acoustic event description y which does not
appear in the dataset for that audio sample, y /∈ {Yi,k}Ki

k=1.
We propose to minimize the open-vocabulary SED objective
LSED =

− 1

BKL

B∑
i=1

K∑
k=1

L∑
l=1

log σ (zi,k,l h(Xi, l,Yk)) , (4)

where h(x, l, y) is a logit function we model as

h(x, l, y) = αt(y) ea,loc(x)l · et(y) + βt(y) (5)

with αt(·) > 0 being a text-dependent logit scale and βt(·)
a text-dependent logit bias. Note that we slightly abuse
notation so that etk = ft(Yk)

∥ft(Yk)∥2
in Figure 1.

Compared to LSigLIP in Eq. 2, our loss in Eqs. 4-5 is still
a binary cross-entropy classification objective, which acts
at the frame-level of an audio instead of the instance-level,
and aims to learn pdata(z = 1 | x, l, y) via σ (h(x, l, y)).
Moreover, in contrast to SigLIP, our logit scale and bias
are conditioned on event descriptions. As we show in the
following sections, this allows us to model label-imbalance
structures on a finer level which we argue it is important for
open-vocabulary SED.

3.2. Logit Adjustment for Event-dependent Imbalances

From the binary classification perspective of our objective
LSED (§3.1), labels zi,k,l are highly imbalanced, as the
large majority of frame–text pairs are negative. Beyond the
dependence on the batch size, which increases the number of
negative frame-text pairs as we have discussed in §2 about
SigLIP, we need to consider dependencies of positive frame-
text pairs on the event descriptions present in our training
dataset. For example, “thunder” may occur infrequently
and have a short duration in our dataset, whereas “rain falls”
may appear more frequently and persist for a longer time. It
is important to counteract such idiosyncrasies of our training
dataset, if we would like our final model to perform robustly
across event descriptions in the open-vocabulary case.

To avoid overfitting to dataset-specific priors and the par-
ticular choice of batch size, we introduce a text-dependent
logit bias term βt(·) in the logit function of Eq. 5. Prior
work on long-tailed multi-class classification (Menon et al.,
2021), and more recently on training classifiers under spuri-
ous correlations (Liu et al., 2023b; Tsirigotis et al., 2023),
has developed logit adjustment techniques to handle distri-
bution shifts due to training data biases. Here, we adapt
logit adjustment to binary classification in order to deal with
the aforementioned label imbalance challenges.

Inference Our goal is to robustly determine whether each
frame (x, l) contains a given event y. We seek a classifier
that treats positive and negative predictions equally regard-
less of y. As we show in §C.3, the Bayes-optimal classifier,
under our working hypotheses, is given by

z∗(x, l, y) = arg max
z∈{−1,1}

pdata(z | x, l, y)
pdata(z | y)

. (6)

Since z ∈ {−1, 1}, taking the argmax corresponds to
checking whether pdata(z = 1 | x, l, y) > pdata(z =
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Table 1. Sound event detection performance on synthetic open-vocabulary SED (Held-out, ASFX-SED) and traditional closed-set SED
dataset (DESED, MAESTRO, Audioset-strong, UrbanSED). FLAM produces more accurate sound event detection compared with existing
models on both open-vocabulary and closed-set SED datasets. Bold numbers shows the best performance across all models. MGA-CLAP∗

is MGA-CLAP trained on our data.

Model
Held-out ASFX-SED DESED MAESTRO Audioset-S UrbanSED

AUROC AUROC PSDS AUROC MPAUC PSDS AUROC PSDS AUROC

FLAM-Global 67.76 65.14 7.09 85.52 51.13 1.11 82.54 0.82 67.39
FLAM (proposed) 91.0 81.23 9.37 91.66 56.97 11.16 94.76 29.52 93.62
MGA-CLAP∗ 74.17 69.56 14.72 89.28 52.50 1.24 79.12 6.42 78.22

MGA-CLAP (reported) - - 26.4 - - 10.1 - 8.7 -

1 | y). In other words, p(z = 1 | y) acts as the classification
threshold for the posterior p(z = 1 | x, l, y). To achieve a
fixed boundary at 0.5, independent of the event description
y, we define

s
(
x, l, y

)
=

pdata(z = 1 | x, l, y)
pdata(z = 1 | x, l, y) + pdata(z = 1 | y)

.

(7)
A value of s(x, l, y) > 0.5 indicates a positive detection.
Furthermore, if β∗(y) = log pdata(z=1|y)

pdata(z=−1|y) is sufficiently
negative, the ratio in Eq. 7 can be approximated by

s
(
x, l, y

)
≈ σ

(
log

pdata(y | x, l)
pdata(y)

)
. (8)

Logit Bias Training Assuming that our training and model
hypothesis are able to attain the minimum of our LSED loss
in Eq. 4, our model learns

h∗(x, l, y) = log
pdata(y | x, l)

pdata(y)
+ β∗(y), (9)

as we show in §C.2. We observe that if we have the logit
bias βt(y) in Eq. 5 approximate β∗(y), then we effectively
absorb the spurious train-time statistical relationships and
enable αt(y) ea,loc(x)l · et(y) in Eq. 5 to approximate the
robust logit log pdata(y|x,l)

pdata(y)
of the classifier in Eq. 8.

However, computing β∗(y) for every possible text prompt
y is generally intractable. We therefore approximate this
quantity via independently training βt as an auxiliary classi-
fier, implemented via a lightweight MLP appended to the
text feature extractor, βt(y) = MLPp

(
Et(y)

)
. We train the

MLP to minimize the loss Lp =

− 1

K

K∑
k=1

[
z̄k log σ

(
βt(Yk)

)
+ (1− z̄k) log σ

(
−βt(Yk)

)]
,

(10)

where z̄k = 1
BL

∑
i∈[B],l∈[L] 0.5 (zi,k,l + 1) ∈ [0, 1], the

average label for prompt Yk across all frames l and clips
i in the current batch. This approach introduces minimal

computational overhead and leverages the language under-
standing of the text encoder. To prevent SED objective
interfere with bias estimation, we stop gradients propagate
from the LSED in Eq. 4 to the MLP of classifier βt. We
train the text-dependent logit scale αt in similar manner
where another MLP appended to text feature extractor, giv-
ing αt(y) = MLPα(Et(y)). Different in per-text bias, we
update MLPα via LSED in Eq. 4.

Finally, we have experimentally found that adopting a per-
text logit scale, which is trained by minimizing LSED of
Eq. 4, to be additionally beneficial for downstream open-
vocabulary SED.

3.3. Memory-Efficient Training

Computing the full LSED across all B ×K × L frame-text
pairs can be prohibitively memory-intensive. To address
this challenge, we adopt a chunked approach inspired by
SigLIP (Zhai et al., 2023) that avoids gathering all embed-
dings on a single GPU. Specifically, each of the NGPU

GPUs processes its local subset of audio frames and text
prompts to compute pairwise losses. Since each audio clip
may contain a varying number of events, we allocate text
slots equal to five times the number of audio clips in a batch,
padding any unused audio or text entries with placeholders.
Next, we pass the text embeddings (and associated masks) to
the next GPU in a ring. After NGPU−1 transmissions, each
GPU has accumulated all cross-device loss terms without
centralized data collection. This strategy enables large-batch
training while respecting single-GPU memory constraints.

4. Dataset and Data Augmentation
FLAM is trained on two data sources: (1) a large-scale au-
dio–text corpus, similar to those used by contrastive ALMs,
and (2) an open-vocabulary SED dataset synthesized by in-
serting one or more sound events (and their captions) into
10-second background clips. Below, we first describe the
audio–text corpus (§4.1), then explain the augmentation
procedure (§4.2).
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Table 2. Recall performance of text to audio (T2A) and audio to text (A2T) retrieval. FLAM has comparable Audio-text retrieval
performance evaluated on ASFX, Clotho and Audiocaps datasets. Bold numbers shows the best performance across models trained on our
dataset, while underlined numbers indicates best performance among all models. MGA-CLAP∗ is MGA-CLAP trained on our data.

ASFX Clotho AudioCaps

T2A A2T T2A A2T T2A A2TModel Dataset
R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

FLAM - Global 4.4 14.8 4.0 13.8 14.3 35.8 17.9 39.8 36.0 70.5 46.1 78.6
FLAM 4.4 15.2 3.9 13.9 13.8 33.2 16.7 42.2 32.1 64.8 43.3 75.0

MGA-CLAP∗
FLAM-Collection

3.9 14.8 3.9 13.8 13.4 30.3 18.7 39.1 36.7 69.9 47.2 78.3

Reported Performance from Prior Studies (but trained on different datasets)

LAION-CLAP LAION-Audio-630K 2.0 7.6 1.6 6.0 16.1 38.3 22.7 48.5 36.1 71.8 46.8 82.9
CompA CompA-Collection - - - - 16.8 43.5 23.9 50.7 36.1 78.6 47.8 83.5

MGA-CLAP WavCaps 2.3 8.3 2.0 7.4 20.4 46.0 25.3 51.2 41.8 76.1 54.4 83.6

4.1. Audio–Text Dataset

We gather a large mix of licensed proprietary sound effect
datasets and publicly available CC-licensed general audio
datasets, consisting of approximately 1.1M audio samples
with corresponding metadata. Sound-effect data typically
contain a single clean event accompanied by tags or captions,
while general-audio datasets are noisier and may contain
multiple events that are not fully described. Because the
sound-effect clips are generally clean, they are well-suited
for insertion into diverse backgrounds without significant
interference. We prompt Mixtral (Jiang et al., 2024) with
the file name, tags, and any available textual descriptions to
generate captions of lengths in 2-13 words.

4.2. SED Data Augmentation

Event and Background Audio Filtering We divide the
corpus into two categories: sound events, which are shorter
than 10 seconds and do not contain the keyword “ambiance”,
and background audio, which lasts at least 10 seconds and
includes the keyword “ambiance”.

Event Selection and Placement To create a 10 s training
mixture, we randomly pick one background clip and sample
N ∼ U(1, 10) events. In 80% of cases, events are drawn
from sound effect datasets; in 20%, from general audio
datasets. Each event is placed at a random start time, with
at most three events overlapping.

Splitting and Repetition A naive placement procedure
risks biasing the model to single instances of each event
whereas real-world scenario often seek to detect events that
are repeated or fragmented in time. To reflecting realistic
event occurrence, each sound event is split into U(2, 3) seg-
ments (with each segment at least 0.5 s long) in 10% of the
cases, and repeated U(2, 3) times in other 10% of the cases.

Random Loudness and Mixing An offset is sampled
from U(6, 30) dB for each event relative to the background.

We then randomly place each event into random position,
allowing a maximum of 3 concurrent sound events. When
mixing audio, we apply a 10 ms fade-in/out for each event
before mixing to ensure natural onsets and offsets.

RMS-Based Boundary Correction To reduce label noise
from silence in events, we compute the A-weighted RMS
loudness over each event and classify frames below −70 dB
as inactive. We also include a smoothing step to avoid rapid
label fluctuations (see § C.4).

5. Experiments
We pursue four main research questions in this work:
(1) How does FLAM perform on both open-vocabulary and
closed-set SED tasks? (2) How does FLAM perform on stan-
dard audio–text retrieval benchmarks? (3) How does FLAM
perform on downstream tasks typically used to evaluate con-
trastive ALMs? (4) How effective is our proposed design of
combining frame-wise and global contrastive learning?

5.1. Training Setup

Our model architecture follows the LAION-CLAP frame-
work. The audio encoder Ea(·) is an HTSAT network (Chen
et al., 2022), while the text encoder Et(·) is a RoBERTa
model (Liu, 2019). The HTSAT model takes 10-second
audio inputs, and, after an MLP projection layer, it outputs
a L = 32 frame embedding sequence ea,loc(x) ∈ RL×d. A
global audio representation ea(x) is obtained by averaging
these frame-wise embeddings over time.

We first train an ALM baseline using only the global con-
trastive objective from §2. This baseline, FLAM-Global,
is conceptually similar to a CLAP-style model (Wu* et al.,
2023), and is trained on the audio-text corpus described in
§4, along with Clotho (Drossos et al., 2020) and Audio-
Caps (Kim et al., 2019). We train on 10 second audio clips
in 48kHz. Further training details can be found in § C.5.
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Table 3. Zero-shot classification accuracy. FLAM consistently out-
performs the baselines across three benchmark datasets, underscor-
ing the advantage of frame-level alignment for robust zero-shot
performance. MGA-CLAP∗ is MGA-CLAP trained on our data.

Model ESC50 US8K VGGSound

FLAM-Global 81.6 65.4 38.9
FLAM 86.9 75.6 39.3
MGA-CLAP∗ 72.6 69.9 38.6

LAION-CLAP 89.1 73.2 29.1
CompA 89.1 85.7 29.5
MGA-CLAP 94.9 83.7 31.8

Our final system, FLAM, initialize from FLAM-Global and
trains additionally on a frame-wise contrastive objective
LSED and a prior loss Lp. The total loss is:

L = γCLIP LCLIP + γSED LSED + γp Lp,

where we set γCLIP = 1, γSED = 200, and γp = 1. We
set γCLIP and γSED such that LCLIP and LSED are in same
scale, while we found setting γp = 1 is enough to make
Lp converge. This approach allows FLAM to integrate both
global sample-level alignment and fine-grained frame-level
alignment.

We generate 1 Million mixtures for training using the aug-
mentation procedure where each mixture has a length of 10
seconds. We hold out 5k backgrounds and 10k events, and
make 10k mixtures from the held-out events as our primary
test set (Held-out). For additional evaluation of general-
ization, we create another 10k test mixtures, ASFX-SED,
using sound effects from the Adobe Audition SFX Library
(ASFX)(Wilkins et al., 2023) that were entirely unseen dur-
ing training.2 Since our frame-wise contrastive method
accommodates closed-set SED, we train FLAM not only on
the synthetic open-vocabulary SED dataset (§4.2) but also
on AudioSet-Strong (Hershey et al., 2021), DESED (Serizel
et al., 2020), and UrbanSED (Salamon et al., 2017). We
retain the global contrastive objective so that FLAM sees
the same data as FLAM-Global, thereby reinforcing robust
sample-level alignment during the second training stage.
Further details of training FLAM is included in C.6.

We compare FLAM to MGA-CLAP (Li et al., 2024), which
follows a similar architecture (HTSAT + BERT (Devlin,
2018)) and uses only a global contrastive objective. MGA-
CLAP adds a shared codebook for text and audio embed-
dings, adopts a contrastive loss that upweights hard nega-
tive samples, and modifies the HTSAT model to be more
temporal-aware. We re-train MGA-CLAP on our dataset for
direct comparison with FLAM and FLAM-Global.

2We publicly release the ASFX-SED dataset for future bench-
marking: http://flam-model.github.io/asfx-sed.
html.

5.2. SED Performance

Table 1 summarizes results on closed-set datasets (DESED,
MAESTRO, AudioSet-Strong, UrbanSED) and two syn-
thetic open-vocabulary test sets (Held-out, ASFX-SED).
Acoustic events and audio backgrounds of both Held-out
and ASFX-SED datasets are unseen during training. We
report PSDS, and MPAUC depending on each dataset’s stan-
dard metric, and additionally use a frame-based AUROC
for all dataset (details of evaluation metrics in § C.7). For
open-vocabulary SED datasets, we calculate AUROC by
only compute true positive and false positive rates over the
events that actually occur in an audio clip.

FLAM achieves substantially better frame-level alignment
than both FLAM-Global and MGA-CLAP on nearly every
metric. On DESED, MAESTRO, and UrbanSED, FLAM
yields improved or comparable AUROCs, while also scoring
better PSDS values except DESED dataset. We hypothesize
that the PSDS on DESED mainly results from its limited
scale, containing only 692 real-world annotated samples,
thus could be more prone to higher variance and incomplete
coverage of acoustic events. FLAM’s performance on the
synthetic tasks (Synth, ASFX) is particularly strong, indi-
cating effective generalization to unseen audio events. In
contrast, FLAM-Global fares reasonably well on retrieval
but underperforms on fine-grained detection, highlighting
the need for explicit frame-level training. The MGA-CLAP
is indeed better than FLAM-Global on SED metrics, but
it performs poorly compared to FLAM, which proves the
self-supervised local alignment is less robust than FLAM’s
direct frame-wise objective. To further validate that FLAM’s
performance gains result specifically from improved frame-
level alignment rather than merely enhanced classification,
we introduce an alignment-specific metric based on Spear-
man correlation, which shows FLAM achieves substantially
better temporal alignment compared to baselines (see Ap-
pendix C.11).

5.3. Accurate and Calibrated Output

FLAM’s robust training with logits correction and inference
using an unbiased classifier enables it to produce intuitive,
calibrated probabilities for event detection. Figure 2 com-
pares FLAM’s detection output with MGA-CLAP, with ad-
ditional examples in § A. FLAM effectively transforms raw
cosine frame-text similarity into interpretable probabilities,
whereas MGA-CLAP fails to detect certain events and lacks
an effective output calibration mechanism.

To demonstrate the effectiveness of our bias-corrected objec-
tive, we trained ablated models without per-text logits bias
correction and per-text logit scaling. As shown in Figure 3,
FLAM consistently achieves higher F1 scores across vari-
ous thresholds on the ASFX-SED dataset using the same
inference formulation. The precision of all models increases
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Figure 3. Framewise F1, precision and recall on ASFX-SED
dataset. FLAM achieves higher F1 under various threshold com-
pared to ablated models without text-dependent bias and scale,
showing the effectiveness of our logit-correction objective.

with the threshold, indicating that FLAM’s output is polar-
ized due to the unbiased classifier transforming raw outputs
into near-binary probabilities. Additional qualitative results
in § B show that FLAM provides more accurately calibrated
detection outputs, whereas ablated models produce either
overconfident or poorly confident probabilities.

5.4. Retrieval Performance

We evaluate text-audio retrieval using recall at ranks 1 and
5 on Clotho (Drossos et al., 2020), AudioCaps (Kim et al.,
2019), and the ASFX dataset. Table 2 shows that FLAM
and FLAM-Global achieve strong performance on ASFX
dataset, indicating that our training corpus generalizes well
to the sound effects domain. Existing ALMs like LAION-
CLAP and CompA perform better on Clotho and Audio-
Caps but only moderately on ASFX, which highlights the
limitations of noisy web-scraped audio data those models
trained on for specialized sound effects. Additionally, MGA-
CLAP trained on our dataset matches FLAM’s performance
on Clotho and AudioCaps, further demonstrating the sig-
nificant impact of training distribution. Notably, FLAM’s
frame-wise training results in minimal degradation of re-
trieval scores, demonstrating that enhancing local alignment
does not compromise sample-level performance.

5.5. Zeroshot Classification Performance

Table 3 reports results on ESC-50, US8K, and VGGSound
under zero-shot classification, where each dataset’s class
names serve as the text queries. FLAM surpasses FLAM-
Global and MGA-CLAP when all are trained on our corpus,
showing that frame-level supervision also refines global
representations. Relative to larger-scale ALMs like CompA,
FLAM remains competitive, particularly on VGGSound.
These results suggest that explicit frame-level alignment
enhances overall discriminative ability without sacrificing

broad classification performance.

6. Related Works

Sound Event Detection Sound Event Detection (SED)
seeks to detect which sound events occur in an audio sig-
nal and where they occur temporally (Mesaros et al., 2021).
Conventional SED systems typically framed as a multi-label,
multi-class classification problem over discrete time frames,
with a binary cross-entropy (BCE) objective applied at each
frame (JiaKai, 2018; Cornell et al., 2024). SED datasets
often remain small in both duration and number of classes
as temporal annotation of acoustic events is expensive and
time consuming. Synthetic methods, e.g., Scaper (Salamon
et al., 2017) address label scarcity by mixing isolated sound
events with background audio, yielding accurate boundaries
at scale. Our approach departs from traditional SED in that
we target an open-vocabulary setting, where any textual
description of a sound event can serve as a query. In con-
trast to traditional SED data synthesis, our work extends
this strategy to an open-vocabulary regime, enabling event
detection for any textual query.

Fine-Grained Multi-modal Alignment Pairing local and
global information in the same sample has been success-
fully explored in the image domain through contrastive
representation learning approaches such as Deep Info-
Max (Hjelm et al., 2019) and distillation-based methods
like DINO (Caron et al., 2021). These techniques enhance
performance across general and downstream image tasks.
More recently, VLMs including GLIP (Li et al., 2022) have
incorporated CLIP-style extensions into object detection
pipelines to facilitate zero-shot open-set object detection
and grounding. Similarly, Mukhoti et al. (2023) introduce
Patch-Aligned Contrastive Learning (PACL) as an unsu-
pervised extension of CLIP for open-vocabulary semantic
segmentation. PACL leverages a large-scale captioned im-
age dataset and includes a ”variational” CLIP objective that
softly classifies image patches through a softmax over their
local alignment with the associated caption.

In the audio domain, neither labeled local alignment datasets
nor large-scale unsupervised datasets with up to a billion
samples are available. Some audio-language models im-
prove temporal reasoning (e.g., ”a car crashes before a man
cries”) by incorporating temporal compositional examples
into contrastive objectives, enabling the learning of complex
temporal relationships (Ghosh et al., 2024; Wu et al., 2023;
Yuan et al., 2024). However, these approaches only achieve
instance-level or partial alignment without explicit event
localization. Few studies address local text-audio align-
ment. Text-Audio Grounding (Xu et al., 2021; 2024) aligns
word-audio pairs by mapping 527 AudioSet events (Gem-
meke et al., 2017) to phrases in the 46k-sample AudioCaps
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captions, but it is limited by its ontology and dataset size.
MGA-CLAP (Li et al., 2024) represents a more closely re-
lated approach that builds on an audio-language contrastive
model with a shared codebook to regularize embeddings
and trains ALM with a temporal-aware audio encoder using
contrastive loss with hard negatives, enhancing temporal
correspondence yet still relying on sample-level labels. In
contrast, our work leverages ground-truth temporal labels
for open-vocabulary, frame-wise SED, integrates synthetic
and closed-set data to enhance localization, and enables
training on a million-scale supervised dataset.

7. Conclusion
In this paper, we introduced FLAM, a frame-wise au-
dio–language modeling framework for open-vocabulary
sound event detection. Our approach augments standard
audio–text contrastive learning by incorporating a frame-
level contrastive objective and a text-dependent logit bias
correction mechanism to address severe label imbalance.
Through large-scale data synthesis in which we mix labeled
sound events into diverse 10-second background clips, we
created an extensive training corpus that enabled robust
frame-wise supervision. Experimental results demonstrate
that FLAM significantly outperforms models trained solely
at the clip level in terms of fine-grained event localization,
while preserving strong retrieval performance and reliable
zero-shot classification. By aligning text-based queries to
localized acoustic frames, this work extends the versatility
of multimodal audio–language models and opens the door to
open-vocabulary sound event detection. The improved tem-
poral precision of FLAM not only benefits open-vocabulary
sound event detection but also offers more interpretable
global and local representations that could strengthen down-
stream tasks requiring temporal alignment.

FLAM represents an initial step toward large-scale open-
vocabulary sound event detection, but several aspects remain
to be improved. The current training corpus, while diverse,
is still limited in scale; future work could explore larger and
more diverse corpora, potentially by synthesizing additional
labeled mixtures or leveraging web-scale audio. The model
architecture itself is relatively lightweight, suggesting that
scaling up the encoder or introducing more expressive ar-
chitectures may yield further gains. Additionally, FLAM
uses a fixed 10-second audio input and a coarse frame reso-
lution, which constrains its ability to handle longer or more
temporally nuanced recordings. Future efforts could focus
on supporting variable-length audio and adopting encoders
with finer temporal granularity. Beyond architectural and
data improvements, future work could explore the use of
real-world frame-level annotations, better evaluation proto-
cols, KL penalty to align frame-level outputs with global
model, and generative augmentation strategies to further

enhance open-vocabulary localization.

Impact Statement
This work introduces FLAM, a model for frame-wise audio-
language alignment to improve sound event detection using
natural language queries. Our goal is to advance the field
of multimodal learning by enabling fine-grained and inter-
pretable audio understanding. FLAM may benefit applica-
tions such as content indexing, accessibility, and multimedia
retrieval. While we do not foresee significant ethical risks,
we encourage responsible use of the model in real-world
scenarios.
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A. Sound Event Detection Results
A.1. ASFX-SED Dataset

(a) (b)

Figure 4. Sound event detection results of FLAM on ASFX-SED dataset
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A.2. Synthetic Held-out Dataset

(a) (b)

Figure 5. Sound event detection results of FLAM on synthetic held-out dataset.
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A.3. Audioset-Strong Dataset

(a) (b)

Figure 6. Sound event detection results of FLAM on Audioset-Strong dataset.
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B. Ablation Models Output Comparison

(a) (b)

Figure 7. Sound event detection results of FLAM on ASFX-SED dataset compared with ablation models.
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Table 4. Sound event detection performance on synthetic open-vocabulary SED (Held-out, ASFX-SED) and traditional closed-set SED
dataset (DESED, MAESTRO, Audioset-strong, UrbanSED) among ablated models.

Model
Held-out ASFX-SED DESED MAESTRO Audioset-S UrbanSED

AUROC AUROC PSDS AUROC MPAUC PSDS AUROC PSDS AUROC

FLAM 91.0 81.23 9.37 91.66 56.97 11.16 94.76 29.52 93.62
w/o FLAM-Global Init 91.35 80.34 6.37 89.7 52.62 10.56 94.3 29.53 92.35
w/o Closed-set SED data 86.91 74.94 9.02 89.7 53.92 2.42 84.37 6.51 76.12
w/o Global Loss 91.33 81.15 10.25 91.98 32.45 10.77 93.89 30.68 93.08

(a) (b)

Figure 8. Sound event detection results of FLAM on synthetic held-out dataset compared with ablation models.

C. Appendix
C.1. SigLIP Objective

SigLIP (Zhai et al., 2023) treats contrastive alignment as a binary classification problem LSigLIP =

− 1

B

B∑
i=1

B∑
j=1

log σ
(
zi,j (α eai · etj + β)

)
, (11)

where zi,j ∈ {±1} is +1 if Ai and Yj match, and −1 otherwise. Here, β is a learnable bias, and α > 0 is again a trainable
logit scale factor. This can be viewed as a synthetic binary classification with label zi,j trained with binary cross entropy
loss.

In original SigLIP paper, the authors initialize the learnable bias as −10 to compensate the fact that most labels are negative
labels in the binary classification problem during training. In this paper, we provide a perspective of β that is derived from
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(a) (b)

Figure 9. Sound event detection results of FLAM on Audioset-Strong dataset compared with ablation models.

the logit adjustment for the label-imbalanced binary classification problem, which ultimately leads to the formulation of the
objective in §3.

Consider the binary classification objective in SigLIP objective (Eq. 11) written equivalently as follows, for binary labels
z′i,j = 0.5 (zi,j + 1) ∈ {0, 1}:

− 1

B

∑
i∈[B],j∈[B]

z′i,j log σ (h(Xi, Yj)) + (1− z′i,j) log σ (−h(Xi, Yj)) , (12)

where σ(·) is the sigmoid function σ(x) = 1
1+exp(−x) , and h(·, ·) is the logit function, which is defined as:

h(x, y) = α ea(x) · et(y) + β. (13)

Thus, in expectation and at the minimum, we can view the SigLIP model as learning

σ ((h(x, y)) ≈ pdata(z = 1 | x, y). (14)

We can see, however, that this conditional distribution is sensitive to the marginal distribution of the labels during training
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pdata(z = 1):

pdata(z = 1 | x, y) = pdata(z = 1, x, y)

pdata(z = 1, x, y) + pdata(z = −1 | x, y)

=
1

1 + pdata(z=−1,x,y)
pdata(z=1,x,y)

= σ

(
log

pdata(z = 1, x, y)

pdata(z = −1, x, y)

)

= σ

(
log

pdata(x, y | z = 1)

pdata(x, y | z = −1)
+ log

pdata(z = 1)

pdata(z = −1)

)
= σ

(
log

pdata(x, y)

pdata(x)pdata(y)
+ log

1
B

B−1
B

)

= σ

(
log

pdata(y|x)
pdata(y)

− log(B − 1)

)
. (15)

The classification problem that SigLIP learns is label-imbalanced due to the outnumbered negative samples compared
to positive samples. In the derivation above, we can observe that for very large batch sizes, the term − log(B − 1) can
effectively dominate the logit making pdata(z = 1 | x, y) → 0 as B → ∞. If model logit bias β = 0 in Eq. 13, then the dot
product has to learn to be negative for all x and y, thus impeding the learning of positive associations. However, by setting it
directly so that β = − log(B − 1) we find that

α ea(x) · et(y)��+β = log
pdata(y|x)
pdata(y)

((((((− log(B − 1), (16)

and the dot product of embeddings is effectively learning the same log-density ratio as CLIP. To verify our reasoning, we
note that the optimal batch size and β combination in the SigLIP paper was B = 32768 and β = −10. Indeed, the optimal
β according to our reasoning is − log 32768 = −10.397 ≈ −10.

C.2. Optimum of LSED

Similarly to the derivation of the model at optimum in expectation for SigLIP in §C.1, we have the following for our
proposed loss in Eq. 4

pdata(z = 1 | x, l, y) = pdata(z = 1, x, l, y)

pdata(z = 1, x, l, y) + pdata(z = −1 | x, l, y)

=
1

1 + pdata(z=−1,x,l,y)
pdata(z=1,x,l,y)

= σ

(
log

pdata(z = 1, x, l, y)

pdata(z = −1x, l, y)

)

= σ

(
log

pdata(x, l | y, z = 1)

pdata(x, l | y, z = −1)
+ log

pdata(y, z = 1)

pdata(y, z = −1)

)
= σ

(
log

pdata(x, l | y)
pdata(x, l)

+ log
pdata(z = 1 | y)����pdata(y)

pdata(z = −1 | y)����pdata(y)

)
= σ

(
log

pdata(y | x, l)
pdata(y)

+ β∗(y)

)
. (17)

C.3. Derivation of Robust Classifier

As we have argued in §3.2, we recognize that our proposed LSED in Eq. 4 introduces an imbalance in the labels z ∈ {−1, 1}
between positive and negative tuples of frames l in audio samples x and event descriptions y. Furthermore, we recognise
the possibility that our training dataset may impede learning an open-vocabulary detector as it may introduce spurious
correlations among the labels z and the contained event description y. That is the event “barking” might be more rare in
terms of positive frames contained in the dataset, than the even “meowing”. However, an open-vocabulary detector should
not prioritize learning some events more than others, as we would like it to be able to detect audio frames of relevance
regardless of event descriptions provided.

Mathematically, this means that our training and testing conditions of our model may differ. In particular under the training
set, pdata(z = 1 | y1) ̸= pdata(z = 1 | y2) for different event descriptions y1 ̸= y2. However at test-time, we deploy out
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model under a distribution where ptest(z = 1 | y1) = ptest(z = 1 | y2) = ptest(z = 1) for y1 ̸= y2. That is during test-time
we assume that label and event description are marginally independent. Moreover, we are equally interested in detecting
events, as well as their absence, correctly. This is reflected in a uniform test-time condition across possible labels. In other
words, ptest(z = 1) = U(z = 1) = 0.5. Finally, we consider that the mechanism, that generates positive or negative frames
given a certain event, is invariant between train-time and test-time conditions, pdata(x, l | y, z) = ptest(x, l | y, z).

Following Menon et al. (2021) and Tsirigotis et al. (2023), the Bayes-optimal robust classifier is given by

z∗(x, l, y) = arg max
z∈{−1,1}

ptest(z | x, l, y). (18)

We use the Bayes rule and the assumed invariance to express an equivalent classifier in terms of the training distribution
pdata

ptest(z | x, l, y) ∝z
ptest(z | x, l, y)
U{−1,1}(z)

=
ptest(z | x, l, y)
ptest(z | y)

∝z ptest(x, l | y, z) = pdata(x, l | y, z)

∝z
pdata(z | x, l, y)
pdata(z | y)

. (19)

So, we would like to find a classifier for which

z∗(x, l, y) = arg max
z∈{−1,1}

pdata(z | x, l, y)
pdata(z | y)

. (20)

In our case, there are two possible outcomes for the classifier z = 1 and z = −1. Taking the argmax involves comparing the
two density ratios. Specifically, we decide that z∗(x, l, y) = 1 if

pdata(z = 1 | x, l, y)
pdata(z = 1 | y)

>
pdata(z = −1 | x, l, y)
pdata(z = −1 | y)

pdata(z = 1 | x, l, y)
pdata(z = 1 | y)

>
1− pdata(z = 1 | x, l, y)
1− pdata(z = 1 | y)

pdata(z = 1 | x, l, y) > pdata(z = 1 | y)

(21)

Essentially, pdata(z = 1 | y) determines a threshold for the classifier pdata(z = 1 | x, l, y) = σ (h(x, l, y)) to robustly
decide whether frame (x, l) can be described by y. Observe that pdata(z | x, l, y) has different decision boundary for
different prompt y. To fix this, we define a new function s(x, l, y) that has unified decision boundary of 0.5 for all y:

s(x, l, y) =
pdata(z = 1 | x, l, y)

pdata(z = 1 | x, l, y) + pdata(z = 1 | y)
. (22)

Notice that s(x, l, y) > 0.5 ⇔ pdata(z = 1 | x, y) > pdata(z = 1 | y).

In practice, we can use σ(pdata(y|x,l)
pdata(y)

) to get approximate value of s(x, l, y) when β∗(y) is negative enough for all y. This is
because:

s(x, l, y) =
pdata(z = 1 | x, l, y)

pdata(z = 1 | x, y) + pdata(z = 1 | y)

=
1

1 + pdata(z=1|y)
pdata(z=1|x,l,y)

=
1

1 + σ(β∗(y))

σ
(
log

pdata(y|x,l)

pdata(y)
+β∗(y)

)
=

1

1 + 1+e
−(log

pdata(y|x,l)
pdata(y)

+β∗(y))

1+e−β∗(y)

→ 1

1 + e
− log

pdata(y|x,l)
pdata(y) �����

(−e−β∗(y))

����−e−β∗(y)

= σ(log
pdata(y | x, l)

pdata(y)
) as β∗ → −∞.

(23)

In practice, we observe β∗ to be near −8, which result in neglectble difference before and after the approximation. By
approximating s(x, l, y) with σ(log pdata(y|x,l)

pdata(y)
), we save the compute for estimating β∗(y) during inference.
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C.4. Loudness Relabel

We compute the RMS curve using a window size of 2400 and a hop size of 1200 (50 Hz at a 48 kHz sample rate). Post-
processing proceeds as follows: (1) remove negative segments shorter than 10 frames (200 ms) if they lie between positive
segments (mark them as positive), (2) remove positive segments shorter than 2 frames (40 ms) if the total event exceeds 10
frames (200 ms).

C.5. Training Details for FLAM-Global

Following LAION-CLAP (Wu* et al., 2023), we initialize HTSAT and RoBERTa from pretrained checkpoints. We use a
batch size of 768, a learning rate of 10−4, and an Adam optimizer with β1 = 0.9, β2 = 0.99. The learning rate schedule
employs cosine warmup (3200 steps) followed by linear decay, for a total of 50,000 steps.

All sampled captions are converted to lower case, with a maximum text input length of 77 tokens. We sample data from
our (1.1M) dataset, AudioCaps, and Clotho at weights of (1.0, 0.1, 0.1). During training, 30% of the time we randomly
downsample audio to 16 kHz or 32 kHz, then upsample back to 48 kHz. For each audio, we randomly choose one of its
captions and one of its tags, forming the training text as “keyword, tag”. We also removed all samples from evaluation
datasets from the general audio training data.

C.6. Training Details for FLAM

We train FLAM with a batch size of 512 and a learning rate of 10−4, using Adam (β1 = 0.9, β2 = 0.99) and the same
warmup-then-decay schedule with 3200 steps of warmup and train 120,000 steps. When sampling, we use our dataset,
AudioCaps, and Clotho with weights (1.0, 0.1, 0.1). Additionally, we sample from synthetic SED data, AudioSet-strong,
UrbanSED, and DESED with weights (0.5, 0.5, 0.1, 0.1). We again apply the same audio downsampling strategy as in
FLAM-Global.

To improve event-caption generalization, we replace LLM-generated captions with random tags 50% of the time. We
initialize the last bias layer of the per-text bias MLP to -8 (matching the average converged logit bias in Lp) and the last bias
layer of the per-text scale MLP to log(10), following CLIP (Radford et al., 2021) and SigLip (Zhai et al., 2023).

C.7. Details of SED Metrics

Following MGA-CLAP (Li et al., 2024), we apply a median filter of size 3 frames to the SED output before evaluation. We
use sed scores eval (Ebbers et al., 2022) to compute the following:

• PSDS, (or refereed to as “PSDS1” in other works) with DTC=0.7, GTC=0.7, αST = 1, αCT = 0, and emax = 100.

• MPAUC, the mean partial AUC on segment-level ROC curves (1 s segments), capped at an FPR of 0.1.

• AUROC, the full ROC AUC on segments of length 0.3125 s (the HTSAT frame length).

C.8. Training Details of MGA-CLAP

We follow MGA-CLAP (Li et al., 2024) in hyperparameters and architectures except that: (1) we use 77 input text tokens
instead of 30, (2) we train for 50,000 steps to match FLAM-Global.

C.9. Details of Ablation Models

The ablated models are defined as follows:

• FLAM without per-text scale uses a scalar scale initialized to log(10), which is updated by the SED loss.

• FLAM without per-text bias employs a scalar bias initialized to −10, following SigLIP’s default, and this bias is
updated by the SED loss.

• FLAM without per-text bias and scale incorporates both a scalar scale initialized to log(10) and a scalar bias
initialized to −10.

All ablated models utilize the same hyperparameters as the original FLAM model.
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C.10. Ablations on SED Training

We conducted ablation experiments to investigate the impact of three factors: (1) removing FLAM-Global initialization (i.e.,
initialization from pre-trained HTSAT and RoBERTa), (2) removing the global loss during SED training, and (3) removing
the closed-set SED dataset. Table 4 presents the results. While removing FLAM-Global initialization and global loss leads
to only a minor drop in performance, removing the closed-set SED dataset causes a significant performance degradation,
underscoring the importance of closed-set data in our SED training.

C.11. Alignment Correlation Metric

To robustly quantify the alignment quality between audio frames and textual descriptions, we propose an alignment-specific
metric based on Spearman’s rank correlation coefficient (ρ). This metric directly measures how well the model’s frame-level
similarity predictions correspond to the actual temporal occurrence of audio events, independent of absolute similarity
magnitudes or decision thresholds.

Formally, for each captioned event, we compute Spearman correlation between:

• The model’s predicted output for each frames.

• The binary ground-truth event presence labels for corresponding frames.

A higher Spearman ρ indicates more accurate temporal alignment of predictions.

Table 5 shows FLAM significantly outperforms baseline models (MGA-CLAP, FLAM-Global) on two open-vocabulary
datasets (ASFX-SED and synthetic Held-out), confirming that the improved SED performance of FLAM indeed arises
from enhanced frame-level alignment.

Table 5. Spearman rank correlation (ρ) measuring alignment quality. FLAM achieves significantly higher alignment correlations than
baseline methods on both datasets, indicating superior temporal alignment. All reported correlations have a p-value < 0.01.

Model ASFX-SED ρ Held-out ρ

FLAM 0.409 0.600
MGA-CLAP 0.256 0.352
FLAM-Global 0.197 0.262

C.12. Additional Ablation Experiments

We present further ablation experiments to clarify the impact of the global loss component and temporal granularity (number
of frames, L).

Global Loss Ablation Removing the global contrastive loss (FLAM - no global loss) resulted in a slight improvement
in SED metrics but a significant drop in retrieval and zero-shot classification performance. As shown in Tables 6, 7, and
8, the global loss is essential to maintain robust global alignment required for effective retrieval tasks. This indicates a
critical trade-off between local alignment objectives for SED and global representation quality necessary for retrieval and
classification.

Temporal Granularity Ablation (L = 128) Increasing temporal resolution from L = 32 to L = 128 (FLAM - L = 128)
yielded minor gains in SED performance but adversely affected retrieval and zero-shot classification accuracy, suggesting
that finer temporal resolution may encourage overly specialized frame-level embeddings at the expense of globally coherent
audio representations.

The detailed ablation results are summarized in Tables 6, 7, and 8.

These additional experiments reinforce the necessity of joint global-local training, highlighting trade-offs inherent in
temporal granularity choices, and underscore the importance of balanced frame-level and global objectives.
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Table 6. Sound event detection performance on synthetic open-vocabulary SED (Held-out, ASFX-SED) and traditional closed-set SED
dataset (DESED, MAESTRO, Audioset-strong, UrbanSED).

Model
Held-out ASFX-SED DESED MAESTRO Audioset-S UrbanSED

AUROC AUROC PSDS AUROC MPAUC PSDS AUROC PSDS AUROC

FLAM-Global 67.76 65.14 7.09 85.52 51.13 1.11 82.54 0.82 67.39
FLAM (proposed) 91.0 81.23 9.37 91.66 56.97 11.16 94.76 29.52 93.62
MGA-CLAP∗ 74.17 69.56 14.72 89.28 52.50 1.24 79.12 6.42 78.22

FLAM - no global loss 91.33 81.15 10.25 91.98 32.45 10.77 93.89 30.68 93.08
FLAM - L = 128 92.6 82.51 9.52 92.45 49.79 11.3 94.83 36.0 95.1

MGA-CLAP (reported) - - 26.4 - - 10.1 - 8.7 -

Table 7. Recall performance of text to audio (T2A) and audio to text (A2T) retrieval.
ASFX Clotho AudioCaps

T2A A2T T2A A2T T2A A2TModel Dataset
R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

FLAM - Global 4.4 14.8 4.0 13.8 14.3 35.8 17.9 39.8 36.0 70.5 46.1 78.6
FLAM 4.4 15.2 3.9 13.9 13.8 33.2 16.7 42.2 32.1 64.8 43.3 75.0

MGA-CLAP∗
FLAM-Collection

3.9 14.8 3.9 13.8 13.4 30.3 18.7 39.1 36.7 69.9 47.2 78.3

FLAM - no global loss FLAM-Collection 0.8 2.8 1.4 5.0 5.4 13.5 8.1 23.0 3.9 20.3 7.1 23.6
FLAM - L = 128 4.4 14.8 3.8 13.4 11.6 29.4 16.0 38.0 21.8 53.1 28.9 64.0

Reported Performance from Prior Studies (but trained on different datasets)

LAION-CLAP LAION-Audio-630K 2.0 7.6 1.6 6.0 16.1 38.3 22.7 48.5 36.1 71.8 46.8 82.9
CompA CompA-Collection - - - - 16.8 43.5 23.9 50.7 36.1 78.6 47.8 83.5

MGA-CLAP WavCaps 2.3 8.3 2.0 7.4 20.4 46.0 25.3 51.2 41.8 76.1 54.4 83.6

Table 8. Zero-shot classification accuracy.
Model ESC50 US8K VGGSound

FLAM-Global 81.6 65.4 38.9
FLAM 86.9 75.6 39.3
MGA-CLAP∗ 72.6 69.9 38.6

FLAM - no global loss 66.9 70.4 18.5
FLAM - L = 128 83.1 79.0 33.3

LAION-CLAP 89.1 73.2 29.1
CompA 89.1 85.7 29.5
MGA-CLAP 94.9 83.7 31.8
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