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Abstract

Being able to harness the power of large datasets for developing cooperative multi-1

agent controllers promises to unlock enormous value for real-world applications.2

Many important industrial systems are multi-agent in nature and are difficult to3

model using bespoke simulators. However, in industry, distributed processes can4

often be recorded during operation, and large quantities of demonstrative data5

stored. Offline multi-agent reinforcement learning (MARL) provides a promis-6

ing paradigm for building effective decentralised controllers from such datasets.7

However, offline MARL is still in its infancy and therefore lacks standardised8

benchmark datasets and baselines typically found in more mature subfields of9

reinforcement learning (RL). These deficiencies make it difficult for the community10

to sensibly measure progress. In this work, we aim to fill this gap by releasing11

off-the-grid MARL (OG-MARL): a growing repository of high-quality datasets with12

baselines for cooperative offline MARL research. Our datasets provide settings that13

are characteristic of real-world systems, including complex environment dynamics,14

heterogeneous agents, non-stationarity, many agents, partial observability, subopti-15

mality, sparse rewards and demonstrated coordination. For each setting, we provide16

a range of different dataset types (e.g. Good, Medium, Poor, and Replay) and17

profile the composition of experiences for each dataset. We hope that OG-MARL18

will serve the community as a reliable source of datasets and help drive progress,19

while also providing an accessible entry point for researchers new to the field.20

1 Introduction21

RL algorithms typically require extensive online interactions with an environment to be able to learn22

robust policies (Yu, 2018). This limits the extent to which previously-recorded experience may be23

leveraged for RL applications, forcing practitioners to instead rely heavily on optimised environment24

simulators that are able to run quickly and in parallel on modern compute hardware.25

In a simulation, it is not atypical to be able to generate years of operating behaviour of a specific26

system (Berner et al., 2019; Vinyals et al., 2019). However, achieving this level of online data27

generation throughput in real-world systems, where a realistic simulator is not readily available, can28

be challenging or near impossible. More recently, the field of offline RL has offered a solution to29

this challenge by bridging the gap between RL and supervised learning. In offline RL, the aim is to30

develop algorithms that are able to leverage large existing datasets of sequential decision-making to31

learn optimal control strategies that can be deployed online (Levine et al., 2020). Many researchers32
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Figure 1: Top: an illustration of offline MARL. Behaviour policies
collect experiences and store them in an offline dataset. New policies
are trained from the offline data without any online environment
interactions. At the end of training, the policies are deployed in the
environment. Right: a code snippet demonstrating how to record
new datasets, as well as load existing ones, using OG-MARL.

from og_marl import SMAC
from og_marl import QMIX
from og_marl import OfflineLogger

# Instantiate environment
env = SMAC("3m")

# Wrap env in offline logger
env = OfflineLogger(env)

# Make multi-agent system
system = QMIX(env)

# Collect data
system.run_online()

# Load dataset
dataset = env.get_dataset("Good")

# Train offline
system.run_offline(dataset)

believe that offline RL could help unlock the full potential of RL when applied to the real world,33

where success has been limited (Dulac-Arnold et al., 2021).34

Although the field of offline RL has experienced a surge in research interest in recent years (Prudencio35

et al., 2023), the focus on offline approaches specific to the multi-agent setting has remained relatively36

neglected, despite the fact that many real-world problems are naturally formulated as multi-agent37

systems (e.g. traffic management (Zhang et al., 2019), a fleet of ride-sharing vehicles (Sykora et al.,38

2020), a network of trains (Mohanty et al., 2020) or electricity grid management (Khattar and Jin,39

2022)). Moreover, systems that require multiple agents (programmed and/or human) to execute40

coordinated strategies to perform optimally, arguably have a higher barrier to entry when it comes to41

creating bespoke simulators to model their online operating behaviour.42

Offline RL research in the single agent setting has benefited greatly from publicly available datasets43

and benchmarks such as D4RL (Fu et al., 2020) and RL Unplugged (Gulcehre et al., 2020). Without44

such offerings in the multi-agent setting to help standardise research efforts and evaluation, it remains45

challenging to gauge the state of the field and reproduce results from previous work. Ultimately, to46

develop new ideas that drive the field forward, standardised sets of tasks and baselines are required.47

In this paper, we present OG-MARL, a rich set of datasets specifically curated for cooperative offline48

MARL. We generated diverse datasets on a range of popular cooperative MARL environments. For49

each environment, we provide different types of behaviour resulting in Good, Medium and Poor50

datasets as well as Replay datasets (a mixture of the previous three). We developed and applied a51

quality assurance methodology to validate our datasets to ensure that they contain a diverse spread52

of experiences. Together with our datasets, we provide initial baseline results using state-of-the-art53

offline MARL algorithms.54

The OG-MARL code and datasets are publicly available through our website.1 Additionally, we55

invite the community to contribute their own datasets to the growing repository on OG-MARL and56

use our website as a platform for storing and distributing datasets for the benefit of the research57

community. We hope the lessons contained in our methodology for generating and validating datasets58

help future researchers to produce high-quality offline MARL datasets and help drive progress.59

2 Related Work60

Datasets. In the single-agent RL setting, D4RL (Fu et al., 2020) and RL Unplugged (Gulcehre61

et al., 2020) have been important contributions, providing a comprehensive set of offline datasets for62

benchmarking offline RL algorithms. While not originally included, D4RL was later extended by Lu63

et al. (2022) to incorporate datasets with pixel-based observations, which they highlight as a notable64

1https://sites.google.com/view/og-marl
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deficiency of other datasets. The ease of access to high-quality datasets provided by D4RL and RL65

Unplugged has enabled the field of offline RL to make rapid progress over the past years (Kostrikov66

et al., 2021; Ghasemipour et al., 2022; Nakamoto et al., 2023). However, these repositories lack67

datasets for MARL, which we believe, alongside additional technical difficulties such as large joint68

action spaces (Yang et al., 2021), has resulted in slower progress in the field.69

Offline Multi-Agent Reinforcement Learning. To date, there has been a limited number of papers70

published on cooperative offline MARL, resulting in benchmarks, datasets and algorithms that do71

not adhere to any unified standard, making comparisons between works difficult. In brief, Zhang72

et al. (2021) carried out an in-depth theoretical analysis of finite-sample offline MARL. Jiang and73

Lu (2021) proposed a decentralised multi-agent version of the popular offline RL algorithm BCQ74

(Fujimoto et al., 2019) and evaluated it on their own datasets of a multi-agent version of MuJoCo75

(MAMuJoCo) (Peng et al., 2021). Yang et al. (2021) highlighted how extrapolation error accumulates76

rapidly in the number of agents and propose a new method they call Implicit Constraint Q-Learning77

(ICQ) to address this. The authors evaluate their method on their own datasets collected using the78

popular StarCraft Mulit-Agent Challenge (SMAC) (Samvelyan et al., 2019). Pan et al. (2022) showed79

that Conservative Q-Learning (CQL) (Kumar et al., 2020), a very successful offline RL method,80

does not transfer well to the multi-agent setting since the multi-agent policy gradients are prone to81

uncoordinated local optima. To overcome this, the authors proposed a zeroth-order optimization82

method to better optimize the conservative value functions, and evaluate their method on their own83

datasets of a handful of SMAC scenarios, the two agent HalfCheetah scenario from MAMuJoCo and84

some simple Multi Particle Environments (MPE) (Lowe et al., 2017). Meng et al. (2021) propose a85

multi-agent decision transformer (MADT) architecture, which builds on the decision transformer86

(DT) (Chen et al., 2021), and demonstrated how it can be used for offline pre-training and online87

fine-tuning in MARL by evaluating their method on their own SMAC datasets. Barde et al. (2023)88

explored a model-based approach for offline MARL and evaluated their method on MAMuJoCo.89

Datasets and baselines for Offline MARL. In all of the aforementioned works, the authors generate90

their own datasets for their experiments and provide only a limited amount of information about the91

composition of their datasets (e.g. spread of episode returns and/or visualisations of the behaviour92

policy). Furthermore, each paper proposes a novel algorithm and typically compares their proposal to93

a set of baselines specifically implemented for their work. The lack of commonly shared benchmark94

datasets and baselines among previous papers has made it difficult to compare the relative strengths95

and weaknesses of these contributions and is one of the key motivations for our work.96

Finally, we note works that have already made use of the pre-release version of OG-MARL. Formanek97

et al. (2023) investigated selective “reincarnation” in the multi-agent setting and Zhu et al. (2023)98

explored using diffusion models to learn policies in offline MARL. Both these works made use of99

OG-MARL datasets for their experiments, which allows for easier reproducibility and more sound100

comparison with future work using OG-MARL.101

3 Preliminaries102

Multi-Agent Reinforcement Learning. There are three main formulations of MARL tasks: com-103

petitive, cooperative and mixed. The focus of this work is on the cooperative setting. Cooperative104

MARL can be formulated as a decentralised partially observable Markov decision process (Dec-105

POMDP) (Bernstein et al., 2002). A Dec-POMDP consists of a tuple M = (N ,S, {Ai}, {Oi}, P ,106

E, ρ0, r, γ), where N ≡ {1, . . . , n} is the set of n agents in the system and s ∈ S describes the full107

state of the system. The initial state distribution is given by ρ0. Each agent i ∈ N receives only partial108

information from the environment in the form of a local observation oit, given according to an emission109

function E(ot|st, i). At each timestep t, each agent chooses an action ait ∈ Ai to form a joint action110

at ∈ A ≡
∏N

i Ai. Due to partial observability, each agent typically maintains an observation history111

oi0:t = (oi0, . . . , o
i
t), or implicit memory, on which it conditions its policy µi(ait|oi0:t), when choosing112

an action. The environment then transitions to a new state in response to the joint action selected in113

the current state, according to the state transition function P (st+1|st,at) and provides a shared scalar114
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reward to each agent according to a reward function r(s, a) : S×A → R. We define an agent’s return115

as its discounted cumulative rewards over the T episode timesteps, G =
∑T

t=0 γ
trt, where γ ∈ (0, 1]116

is the discount factor. The goal of MARL in a Dec-POMDP is to find a joint policy (π1, . . . , πn) ≡ π117

such that the return of each agent i, following πi, is maximised with respect to the other agents’118

policies, π−i ≡ (π\πi). That is, we aim to find π such that ∀i : πi ∈ argmaxπ̂iE
[
G | π̂i, π−i

]
119

Offline Reinforcement Learning. An offline RL algorithm is trained on a static, previously collected120

dataset Dβ of transitions (ot, at, rt, ot+1) from some (potentially unknown) behaviour policy πβ ,121

without any further online interactions. There are several well-known challenges in the offline RL122

setting which have been explored, predominantly in the single-agent literature. The primary issues123

are related to different manifestations of data distribution mismatch between the offline data and the124

induced online data. Levine et al. (2020) provide a detailed survey of the problems and solutions in125

offline RL.126

Offline Multi-Agent Reinforcement Learning. In the multi-agent setting, offline MARL algorithms127

are designed to learn an optimal joint policy (π1, . . . , πn) ≡ π, from a static dataset DN
β of previously128

collected multi-agent transitions ({o1t , . . . , ont }, {a1t , . . . , ant }, {r1t , . . . , rnt }, {o1t+1, . . . , o
n
t+1}), gen-129

erated by a set of interacting behaviour policies (π1
β , . . . , π

n
β ) ≡ πβ .130

4 Task Properties131

In order to design an offline MARL benchmark which is maximally useful to the community, we132

carefully considered the properties that the environments and datasets in our benchmark should133

satisfy. A major drawback in most prior work has been the limited diversity in the tasks that the134

algorithms were evaluated on. Meng et al. (2021) for example only evaluated their algorithm on135

SMAC datasets and Jiang and Lu (2021) only evaluated on MAMuJoCo datasets. This makes it136

difficult to draw strong conclusions about the generalisability of offline MARL algorithms. Moreover,137

these environments fail to test the algorithms along dimensions which may be important for real-world138

applications. In this section, we outline the properties we believe are important for evaluating offline139

MARL algorithms.140

Centralised and Independent Training. The environments supported in OG-MARL are designed141

to test algorithms that use decentralised execution, i.e. at execution time, agents need to choose142

actions based on their local observation histories only. However, during training, centralisation (i.e.143

sharing information between agents) is permissible, although not required. Centralised training144

with decentralised execution (CTDE) (Kraemer and Banerjee, 2016) is one of the most popular145

MARL paradigms and is well-suited for many real-world applications. Being able to test both146

centralised and independent training algorithms is important because it has been shown that neither147

paradigm is consistently better than the other (Lyu et al., 2021). As such, both types of algorithms148

can be evaluated using OG-MARL datasets and we also provide baselines for both centralised and149

independent training.150

Different types of Behaviour Policies. We generated datasets with several different types of151

behaviour policies including policies trained using online MARL with fully independent learners (e.g.152

independent DQN and independent TD3), as well as CTDE algorithms (e.g. QMIX and MATD3).153

Furthermore, some datasets generated with CTDE algorithms used a state-based critic while others154

used a joint-observation critic. It was important for us to consider both of these critic setups as they155

are known to result in qualitatively different policies (Lyu et al., 2022). More specific details of which156

algorithms were used to generate which datasets can be found in Table B.1 in the appendix.157

Partial Information. It is common for agents to receive only local information about their envi-158

ronment, especially in real-world systems that rely on decentralised components. Thus, some of159

the environments in OG-MARL test an algorithm’s ability to leverage agents’ memory in order to160

choose optimal actions based only on partial information from local observations. This is in contrast161

to settings such as MAMuJoCo where prior methods (Jiang and Lu, 2021; Pan et al., 2022) achieved162

reasonable results without instilling agents with any form of memory.163
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Different Observation Modalities. In the real world, agent observations come in many different164

forms. For example, observations may be in the form of a feature vector or a matrix representing a165

pixel-based visual observation. Lu et al. (2022) highlighted that prior single-agent offline RL datasets166

failed to test algorithms on high-dimensional pixel-based observations. OG-MARL tests algorithms167

on a diverse set of observation modalities, including feature vectors and pixel matrices of different168

sizes.169

Continuous and Discrete Action Spaces. The actions an agent is expected to take can be either170

discrete or continuous across a diverse range of applications. Moreover, continuous action spaces171

can often be more challenging for offline MARL algorithms as the larger action spaces make them172

more prone to extrapolation errors, due to out-of-distribution actions . OG-MARL supports a range173

of environments with both discrete and continuous actions.174

Homogeneous and Heterogeneous Agents. Real-world systems can either be homogeneous or175

heterogeneous in terms of the types of agents that comprise the system. In a homogeneous system,176

it may be significantly simpler to train a single policy and copy it to all agents in the system. On177

the other hand, in a heterogenous system, where agents may have significantly different roles and178

responsibilities, this approach is unlikely to succeed. OG-MARL provides datasets from environments179

that represent both homogeneous and heterogeneous systems.180

Number of Agents. Practical MARL systems may have a large number of agents. Most prior works181

to date have evaluated their algorithms on environments with typically fewer than 8 agents (Pan et al.,182

2022; Yang et al., 2021; Jiang and Lu, 2021). In OG-MARL, we provide datasets with between 2 and183

27 agents, to better evaluate large-scale offline MARL (see Table B.1).184

Sparse Rewards. Sparse rewards are challenging in the single-agent setting, but in the multi-agent185

setting, it can be even more challenging due to the multi-agent credit assignment problem (Zhou186

et al., 2020). Prior works focused exclusively on dense reward settings (Pan et al., 2022; Yang et al.,187

2021). To overcome this, OG-MARL also provides datasets with sparse rewards.188

Team and Individual Rewards. Some environments have team rewards while others can have an189

additional local reward component. Team rewards exacerbate the multi-agent credit assignment190

problem, and having a local reward component can help mitigate this. However, local rewards may191

result in sub-optimality, where agents behave too greedily with respect to their local reward and as a192

result jeopardize achieving the overall team objective. OG-MARL includes tasks to test algorithms193

along both of these dimensions.194

Procedurally Generated and Stochastic Environments. Some popular MARL benchmark environ-195

ments are known to be highly deterministic (Ellis et al., 2022). This limits the extent to which the196

generalisation capabilities of algorithms can be evaluated. Procedurally generated environments have197

proved to be a useful tool for evaluating generalisation in single-agent RL (Cobbe et al., 2020). In198

order to better evaluate generalisation in offline MARL, OG-MARL includes stochastic tasks that199

make use of procedural generation.200

Realistic Multi-Agent Domains. Almost all prior offline MARL works have evaluated their al-201

gorithms exclusively on game-like environments such as StarCraft (Yang et al., 2021) and particle202

simulators (Pan et al., 2022). Although a large subset of open research questions may still be readily203

investigated in such simulated environments, we argue that in order for offline MARL to become204

more practically relevant, benchmarks in the research community should begin to closer reflect real-205

world problems of interest. Therefore, in addition to common game-like benchmark environments,206

OG-MARL also supports environments which simulate more real-world like problems including207

energy management and control (Vazquez-Canteli et al., 2020; Wang et al., 2021). While there208

remains a large gap between these environments and truly real-world settings, it is a step in the right209

direction to keep pushing the field forward and enable useful contributions in the development of new210

algorithms and improving our understanding of key difficulties and failure modes.211
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(a) SMAC v1 & v2

(b) MAMuJoCo

(c) Flatland

(d) CityLearn

(e) Pistonball

(f) Co-op Pong

(g) Pursuit

(h) Voltage Control

Figure 2: MARL environments for which we provide datasets in OG-MARL.

5 Environments212

SMAC v1 (hetero- and homogeneous agents, local observations). SMAC is the most popular213

cooperative offline MARL environment used in the literature(Gorsane et al., 2022). SMAC focuses214

on the micromanagement challenge in StarCraft 2 where each unit is controlled by an independent215

agent that must learn to cooperate and coordinate based on local (partial) observations. SMAC played216

an important role in moving the MARL research community beyond grid-world problems and has217

also been very popular in the offline MARL literature (Yang et al., 2021; Meng et al., 2021; Pan et al.,218

2022). Thus, it was important for OG-MARL to support a range of SMAC scenarios.219

SMAC v2 (procedural generation, local observations). Recently some deficiencies in SMAC have220

been brought to light. Most importantly, SMAC is highly deterministic, and agents can therefore221

learn to memorise the best policy by conditioning on the environment timestep only. To address this,222

SMACv2 (Ellis et al., 2022) was recently released and includes non-deterministic scenarios, thus223

providing a more challenging benchmark for MARL algorithms. In OG-MARL, we publicly release224

the first set of SMACv2 datasets.225

MAMuJoCo (hetero- and homogeneous agents, continuous actions). The MuJoCo environment226

(Todorov et al., 2012) has been an important benchmark that helped drive research in continuous con-227

trol. More recently, MuJoCo has been adapted for the multi-agent setting by introducing independent228

agents that control different subsets of the whole MuJoCo robot (MAMuJoCo) (Peng et al., 2021).229

MAMuJoCo is an important benchmark because there are a limited number of continuous action230

space environments available to the MARL research community. MAMuJoCo has also been widely231

adopted in the offline MARL literature (Jiang and Lu, 2021; Pan et al., 2022). Thus, in OG-MARL232

we provide the largest openly available collection of offline datasets on scenarios in MAMuJoCo233

(Pan et al. (2022), for example, only provided a single dataset on 2-Agent HalfCheetah).234

PettingZoo (pixel observations, discrete and continuous actions). OpenAI’s Gym (Brockman235

et al., 2016) has been widely used as a benchmark for single agent RL. PettingZoo is a gym-like236

environment-suite for MARL (Terry et al., 2021) and provides a diverse collection of environments.237

In OG-MARL, we provide a general-purpose environment wrapper which can be used to generate238

new datasets for any PettingZoo environment. Additionally, we provide initial datasets on three239

PettingZoo environments including PistonBall, Co-op Pong and Pursuit (Gupta et al., 2017). We240

chose these environments because they have visual (pixel-based) observations of varying sizes; an241

important dimension along which prior works have failed to evaluate their algorithms.242

Flatland (real-world problem, procedural generation, sparse local rewards). The train scheduling243

problem is a real-world challenge with significant practical relevance. Flatland (Mohanty et al., 2020)244

is a simplified 2D simulation of the train scheduling problem that is an appealing benchmark for245
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(a) SMAC 27m_vs_30m (b) PettingZoo Co-op Pong (c) PettingZoo Pursuit

Figure 3: Violin plots of the probability distribution of episode returns for selected datasets in
OG-MARL. In blue the Poor datasets, in orange the Medium datasets and in green the Good datasets.
Wider sections of the violin plot represent a higher probability of sampling a trajectory with a given
episode return, while the thinner sections correspond to a lower probability. The violin plots also
include the median, interquartile range and min/max episode return for the datasets.

cooperative MARL for several reasons. Firstly, it randomly generates a new train track layout and246

timetable at the start of each episode, thus testing the generalisation capabilities of MARL algorithms247

to a greater degree than many other environments. Secondly, Flatland has a very sparse and noisy248

reward signal, as agents only receive a reward on the final timestep of the episode. Finally, agents249

have access to a local reward component. These properties make the Flatland environment a novel,250

challenging and realistic benchmark for offline MARL.251

Voltage Control and CityLearn (real-world problem, continuous actions). Energy management (Yu252

et al., 2021) is another appealing real-world application for MARL, especially given the large potential253

efficiency gains and corresponding positive effects on climate change that could be had (Rolnick254

et al., 2022). As such, we provide datasets for two challenging MARL environments related to energy255

management. Firstly, we provide datasets for the Active Voltage Control on Power Distribution Net-256

works environment (Wang et al., 2021). Secondly, we provide datasets for the CityLearn environment257

(Vazquez-Canteli et al., 2020) where the goal is to develop agents for distributed energy resource258

management and demand response between a network of buildings with batteries and photovoltaics.259

6 Datasets260

To generate the transitions in the datasets, we recorded environment interactions of partially trained261

online algorithms, as has been common in prior works for both single-agent (Gulcehre et al., 2020)262

and multi-agent settings (Yang et al., 2021; Pan et al., 2022). For discrete action environments, we263

used QMIX (Rashid et al., 2018) and independent DQN and for continuous action environments,264

we used independent TD3 (Fujimoto et al., 2018) and MATD3 (Lowe et al., 2017; Ackermann et al.,265

2019). Additional details about how each dataset was generated are included in Appendix C.266

Diverse Data Distributions. It is well known from the single-agent offline RL literature that the267

quality of experience in offline datasets can play a large role in the final performance of offline RL268

algorithms (Fu et al., 2020). In OG-MARL, we include a range of dataset distributions including269

Good, Medium, Poor and Replay datasets in order to benchmark offline MARL algorithms on a270

range of different dataset qualities. The dataset types are characterised by the quality of the joint271

policy that generated the trajectories in the dataset, which is the same approach taken in previous272

works (Meng et al., 2021; Yang et al., 2021; Pan et al., 2022). To ensure that all of our datasets have273

sufficient coverage of the state and action spaces, while also containing minimal repetition i.e. not274

being too narrowly focused around a single strategy, we used 3 independently trained joint policies275

to generate each dataset, and additionally added a small amount of exploration noise to the policies.276

The boundaries for the different categories were assigned independently for each environment and277

were related to the maximum attainable return in the environment. Additional details about how the278

different datasets were curated can be found in Appendix C.279
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Table 1: Results on the Pursuit and Co-op Pong datasets. The mean episode return with one standard
deviation across all seeds is given. In each row the best mean episode return is in bold.

Scenario Dataset BC QMIX QMIX+BCQ QMIX+CQL MAICQ

Co-op Pong
Good 31.2±3.5 0.6±3.5 1.9±1.1 90.0±4.7 75.4±3.9

Medium 21.6±4.8 10.6±17.6 20.3±12.2 64.9±15.0 84.6±0.9
Poor 1.0±0.9 14.4±16.0 30.2±20.7 52.7±8.5 74.8±7.8

Pursuit
Good 78.3±1.8 6.7±19.0 66.9±14.0 54.4±6.3 92.7±3.7

Medium 15.0±1.6 -24.4±20.2 16.6±10.7 20.6±10.3 35.3±3.0
Poor -18.5±1.6 -43.7±5.6 -0.7±4.0 -19.6±3.3 -4.1±0.7

Statistical characterisation of datasets. It is common in both the single-agent and multi-agent280

offline RL literature for researchers to curate offline datasets by unrolling episodes using an RL policy281

that was trained to a desired mean episode return. However, authors seldom report the distribution282

of episode returns induced by the policy. Reporting only the mean episode return of the behaviour283

policy can be misleading (Agarwal et al., 2021). To address this, we provide violin plots to visualise284

the distribution of expected episode returns. A violin plot is a powerful tool for visualising numerical285

distributions as they visualise the density of the distribution as well as several summary statistics286

such as the minimum, maximum and interquartile range of the data. These properties make the violin287

plot very useful for understanding the distribution of episode returns in the offline datasets, assisting288

with interpreting offline MARL results. Figure 3 provides a sample of the violin plots for different289

scenarios (the remainder of the plots can be found in the appendix). In each figure, the difference290

in shape and position of the three violins (blue, orange and green) illustrates the difference in the291

datasets with respect to the expected episode return. Additionally, we provide a table with the mean292

and standard deviation of the episode returns for each of the datasets in Table C.1, similar to Meng293

et al. (2021).294

7 Baselines295

In this section, we present the initial baselines that we provide with OG-MARL. This serves two296

purposes: i) to validate the quality of our datasets and ii) to enable the community to use these initial297

results for development and performance comparisons in future work. In the main text, we present298

results on two PettingZoo environments (Pursuit and Co-op Pong), since these environments and299

their corresponding datasets are a novel benchmark for offline MARL. Furthermore, it is the first set300

of environments with pixel-based observations to be used to evaluate offline MARL algorithms. We301

include all additional baseline results in Appendix D (Table D.4 and Table D.5).302

Baseline Algorithms. State-of-the-art algorithms were implemented from seminal offline MARL303

work. For discrete action environments we implemented Behaviour Cloning (BC), QMIX (Rashid304

et al., 2018), QMIX with Batch Constrained Q-Learning (Fujimoto et al., 2019) (QMIX+BCQ),305

QMIX with Conservative Q-Learning (Kumar et al., 2020) (QMIX+CQL) and MAICQ (Yang et al.,306

2021). For continuous action environments, Behaviour Cloning (BC), Independent TD3 (ITD3), ITD3307

with Behaviour Cloning regularisation (Fujimoto and Gu, 2021) (ITD3+BC), ITD3 with Conservative308

Q-Learning (ITD3+CQL) and OMAR (Pan et al., 2022) were implemented. Appendix D provides309

additional implementation details on the baseline algorithms.310

Experimental Setup. On Pursuit and Co-op Pong, all of the algorithms were trained offline for 50000311

training steps with a fixed batch size of 32. At the end of training, we evaluated the performance of312

the algorithms by unrolling the final joint policy in the environment for 100 episodes and recording313

the mean episode return over the episodes. We repeated this procedure for 10 independent seeds as314

per the recommendation by Gorsane et al. (2022). We kept the online evaluation budget (Kurenkov315

and Kolesnikov, 2022) fixed for all algorithms by only tuning hyper-parameters on Co-op Pong316

and keeping them fixed for Pursuit. Controlling for the online evaluation budget is important when317

comparing offline algorithms because online evaluation may be expensive, slow or dangerous in318
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(a) Good (b) Medium (c) Poor

Figure 4: Performance profiles (Agarwal et al., 2021) aggregated across all seeds on Pursuit and
Co-op Pong. Shaded regions show pointwise 95% confidence bands based on percentile bootstrap
with stratified sampling.

real-world problems, making online hyper-parameter fine-tuning infeasible. See Appendix D for a319

further discussion on hyper-parameter tuning in OG-MARL.320

Results. In Table 1 we provide the unnormalised mean episode returns for each of the discrete action321

algorithms on the different datasets for Pursuit and Co-op Pong.322

Aggregated Results. In addition to the tabulated results we also provide aggregated results as per323

the recommendation by Gorsane et al. (2022). In Figure 4 we plot the performance profiles (Agarwal324

et al., 2021) of the discrete action algorithms by aggregating across all seeds and the two environments,325

Pursuit and Co-op Pong. To facilitate aggregation across environments, where the possible episode326

returns can be very different, we adopt the normalisation procedure from Fu et al. (2020). On the327

Good datasets, we found that MAICQ and QMIX+CQL both outperformed behaviour cloning (BC).328

QMIX+BCQ did not outperform BC and vanilla QMIX performed very poorly. On the Medium329

datasets, MAICQ and QMIX+CQL once again performed the best, significantly outperforming BC.330

QMIX+BCQ marginally outperformed BC and vanilla QMIX failed. Finally, on the Poor datasets,331

MAICQ, QMIX+CQL and QMIX+BCQ all outperformed BC but MAICQ was the best by some332

margin. These results on PettingZoo environments, with pixel observations, further substantiate that333

MAICQ is the current state-of-the-art offline MARL algorithm in discrete action settings.334

8 Discussion335

Limitations and future work. The primary limitation of this work is that it focuses on the cooperative336

setting. Additionally, the datasets used in OG-MARL were exclusively generated by online MARL337

policies. Future work could explore the inclusion of datasets from alternate sources, such as hand-338

designed or human controllers, which may exhibit distinct properties (Fu et al., 2020). Moreover,339

an exciting research direction considers the offline RL problem as a sequence modeling task (Chen340

et al., 2021; Meng et al., 2021), and we aim to incorporate such models as additional baselines in341

OG-MARL in future iterations.342

Potential Negative Societal Impacts. While the potential positive impacts of efficient decentralized343

controllers powered by offline MARL are promising, it is essential to acknowledge and address the344

potential negative societal impacts (Whittlestone et al., 2021). Deploying a model trained using345

offline MARL in real-world applications requires careful consideration of safety measures (Gu et al.,346

2022; Xu et al., 2022). Practitioners should exercise caution to ensure the safe and responsible347

implementation of such models.348

Conclusion. In this work, we highlighted the importance of offline MARL as a research direction349

for applying RL to real-world problems. We specifically focused on the lack of a standard set of350

benchmark datasets, which is a significant obstacle to progress. To address this issue, we presented351

a set of relevant and diverse datasets for offline MARL. We profiled our datasets by visualising352

the distribution of episode returns in violin plots and tabulated mean and standard deviations. We353

validated our datasets by providing a set of initial baseline results with state-of-the-art offline MARL354

9



algorithms. Finally, we open-sourced all of our software tooling for generating new datasets and355

provided a website with our code, as well as for hosting and sharing the datasets. It is our hope that356

the research community will adopt and contribute towards OG-MARL as a framework for offline357

MARL research and that it helps to drive progress in this nascent field.358
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