
DistillNeRF: Perceiving 3D Scenes from Single-Glance Images by
Distilling Neural Fields and Foundation Model Features

Letian Wang1,2 Seung Wook Kim1 Jiawei Yang3 Cunjun Yu1,4 Boris Ivanovic1

Steven Waslander2 Yue Wang1,3 Sanja Fidler1,2 Marco Pavone1,5 Peter Karkus1

1NVIDIA Research 2University of Toronto 3University of Southern California
4National University of Singapore 5Stanford University

Abstract

We propose DistillNeRF, a self-supervised learning framework addressing the chal-
lenge of understanding 3D environments from limited 2D observations in outdoor
autonomous driving scenes. Our method is a generalizable feedforward model that
predicts a rich neural scene representation from sparse, single-frame multi-view
camera inputs with limited view overlap, and is trained self-supervised with differ-
entiable rendering to reconstruct RGB, depth, or feature images. Our first insight
is to exploit per-scene optimized Neural Radiance Fields (NeRFs) by generating
dense depth and virtual camera targets from them, which helps our model to learn
enhanced 3D geometry from sparse non-overlapping image inputs. Second, to
learn a semantically rich 3D representation, we propose distilling features from pre-
trained 2D foundation models, such as CLIP or DINOv2, thereby enabling various
downstream tasks without the need for costly 3D human annotations. To leverage
these two insights, we introduce a novel model architecture with a two-stage lift-
splat-shoot encoder and a parameterized sparse hierarchical voxel representation.
Experimental results on the NuScenes and Waymo NOTR datasets demonstrate
that DistillNeRF significantly outperforms existing comparable state-of-the-art
self-supervised methods for scene reconstruction, novel view synthesis, and depth
estimation; and it allows for competitive zero-shot 3D semantic occupancy pre-
diction, as well as open-world scene understanding through distilled foundation
model features. Demos and code will be available at https://distillnerf.github.io/.

1 Introduction

Understanding and interpreting complex 3D environments from limited 2D observations is a funda-
mental challenge in autonomous driving and beyond. Many efforts have been made to tackle this
challenge by learning from labor-intensive and costly 3D annotations, such as 3D bounding boxes
[1, 2] and semantic occupancy labels [3, 4, 5, 6]. However, these approaches typically struggle with
scalability due to their excessive reliance on expensive annotations.

Neural scene representations, such as NeRFs [7, 8] and 3D Gaussian Splatting (3DGS) [9], have
recently emerged as a compelling paradigm for learning 3D representations from 2D signals in a self-
supervised manner. While these methods demonstrated strong capabilities in view synthesis for indoor
scenes [10], and more recently also for challenging dynamic outdoor scenes [11, 12, 13, 14], they
require delicately training a new representation for each new scene, leading to extensive computation
budget and time needs, typically in the order of hours or minutes. This falls short of the real-time
computational requirements for autonomous driving, which typically demand a processing speed of
2-10 Hz. Additionally, most works focus on view synthesis only [11, 12, 13], resulting in learned 3D
representations that lack semantics, sidestep downstream tasks, and do not fully exploit the potential

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://distillnerf.github.io/

Differentiable
Rendering

Per-Scene
Optimized NeRFs

CLIP / DINO Feature

RGB / Depth

Distillation

Zero-Shot 3D Semantic Occupancy Prediction

Sparse Hierarchical
Voxels

Encoder & Lifting
Lift-Splat-Shoot

2D to 3D

…..

Distillation

Open-Vocabulary Query

Downstream
Tasks

Inference
Training

Figure 1: DistillNeRF is a generalizable model for 3D scene representation, self-supervised by natural
sensor streams along with distillation from offline NeRFs and vision foundation models. It supports
rendering RGB, depth, and foundation feature images, without test-time per-scene optimization, and
enables zero-shot 3D semantic occupancy prediction and open-vocabulary text queries.

of neural scene representations to transform various sources of 2D information into 3D, such as
features from 2D visual foundation models [15, 16].

To this end, we propose DistillNeRF (Fig. 1), a conceptually simple framework for learning general-
izable neural scene representations in driving scenes, by distilling 1) offline optimized NeRFs for
enhanced geometry and appearance, and 2) pre-trained 2D foundation models, DINOv2 [17, 16] and
CLIP [15], for enriched semantics. Generalizable scene representations with feed-forward models
is an active area of research [18, 19, 20], and the autonomous driving domain remains particularly
challenging due to sparse camera views with little overlap: prior generalizable NeRFs for driving
are shown to be struggling with view synthesis [21, 22, 23]. In contrast, we show that by distilling
per-scene optimized NeRFs and visual foundation models, DistillNeRF allows predicting a 3D feature
volume with strong geometry, appearance, and semantics, from sparse single-timestep images. The
representation is capable of rendering tasks without per-scene optimization (e.g. scene reconstruction,
novel view synthesis, foundation model feature prediction), and support downstream tasks, such as
open-vocabulary text query and zero-shot 3D semantic occupancy prediction.

DistillNeRF comprises two stages: offline per-scene NeRF training, and distillation into a generaliz-
able model. The first stage trains a NeRF for each scene individually from each scene’s driving log,
exploiting all available multi-view, multi-timestep information. Specifically, we use EmerNerf [14],
a recent NeRF approach with decomposed static and dynamic fields. The second stage trains a
generalizable encoder to directly lift multi-camera 2D images captured at a single timestep to a
3D continuous feature field, from which we render images, and supervise with dense depth and
novel-view RGB targets generated from the per-scene optimized NeRFs, and foundation model
features. Specifically, we propose a novel model architecture with 1) a two-stage Lift-Splat-Shoot
encoder [24] to lift 2D observations into 3D; 2) a sparse hierarchical 3D voxel for efficient runtime
and memory, parameterized to account for unbounded driving scenes; 3) feature image generation
via differentiable volumetric rendering, decoded into appearance, and optionally, foundation model
features.

Extensive experiments on the NuScenes [25] and Waymo NOTR [26, 14] dataset demonstrate that Dis-
tillNeRF allows for high-quality scene reconstruction and novel view synthesis in previously unseen
environments without per-scene training, on par with test-time per-scene optimization approaches,
and significantly outperforming previous generalizable approaches. We also show strong results for
zero-shot 3D semantic occupancy prediction, and promising quantitative results for open-vocabulary
scene understanding.

2 Related Work

Neural Scene Representations. Neural scene representations, like NeRFs [7, 27] and 3DGS [9, 28],
have brought unprecedented success in learning powerful representations of 3D scenes, and have
also been successfully applied to challenging driving scenes populated with dynamic objects [29, 30,

2

12, 31, 32, 33, 34, 35]. However, these methods typically require expensive training for each scene,
typically in the order of hours or minutes.

Generalizable NeRFs. Generalizable Neural Radiance Fields, such as [18, 36, 37, 38, 39], adapt
the capabilities of conventional NeRFs for 3D scene reconstruction and novel view synthesis into
a generalizable feedforward model. They replace the costly per-scene optimization with a single
feedforward pass through the models. Recent works have extended such approaches to challenging
driving scenes and demonstrated the potential in down-stream tasks [22, 5, 23, 40, 41]. However,
due to the challenging sparse-view limited-overlapping camera settings on vehicles, these methods
usually fail to show strong rendering performance. To the best of our knowledge, we are the very first
work to achieve strong scene reconstruction and reasonable novel-view synthesis on par with offline
per-scene optimized NeRFs in driving scenes.

NeRFs with Feature Fields. Recent advancements extend NeRFs beyond novel view synthesis by
integrating 2D features from foundation models into 3D space, equipping neural fields with semantic
understanding [42]. Recent approaches also demonstrate similar capabilities in outdoor driving scenes
[14] by distilling DINO features into the scene representation. However, these approaches suffer
from prolonged optimization times when combined with feature distillation, and thus are impractical
for online autonomous driving due to their costly per-scene optimization. Closely related to our work,
FeatureNeRF [20] is a generalizable method that distills DINOv2 [17] features into 3D for keypoint
transfer, but only investigates simple indoor object-level synthetic datasets like ShapeNet [43], where
a large number of overlapping camera images are placed around the object to scan it from various
angles. In contrast, we address the more challenging outdoor scene-level settings of autonomous
driving, with sparse limited-overlapping camera image inputs. Our method, DistillNeRF, infers 3D
feature fields in a single forward pass, making real-time application possible.

NeRFs in Driving. Most NeRF-related works in autonomous driving focus on 1) offline scene
reconstruction or sensor simulation [11, 12, 14, 13], that accurately reconstruct 3D or 4D scenes with
detailed appearance and geometry; 2) exploring potential in downstream tasks [21, 23, 22, 40], that
uses volumetric rendering to learn 3D representations from sensor inputs to enlighten online driving.
Our work takes the best of these two lines of research: we distill the precise geometry and novel views
from offline per-scene optimized NeRFs and rich semantic features from foundation models into our
online model. Consequently, our online model not only excels in scene reconstruction and novel
view synthesis, but also shows competitive downstream performance, such as zero-shot semantic
occupancy prediction, and open-vocabulary query. To the best of our knowledge, we are the first to
do so.

Distilling NeRFs. Model distillation is a well-established idea [44]. NeRFs have also been distilled
into, e.g., Generative Adversarial Networks in [45], and feed-forward models for temporal object
shape prediction in [46]. However, prior work mainly focuses on static, object-centric, or indoor
scenes. To the best of our knowledge, we are the first to propose distilling a per-scene optimized
NeRFs with static-dynamic decomposition into a generalizable model for outdoor driving scenes.

3 Method

DistillNeRF predicts a generalizable scene representation in the form of sparse hierarchical voxels
from single-timestep multi-view RGB image inputs, and is self-supervised by natural sensor streams,
through volumetric rendering to output RGB, depth, and feature images.

The method is depicted in Fig. 1, the detailed architecture in Fig. 2, and key capabilities in Fig. 3 and
Fig. 4. Inputs are N posed RGB camera images {Ii}Ni=1. We use a 2D backbone to extract N feature
images {Xi}Ni=1. We then lift the 2D features to a 3D voxel-based neural field V ∈ RH×W×D×C ,
and apply sparse quantization and convolution to fuse features from multiple views. To account for
unbounded scenes we use a parameterized neural field with fixed-scale inner voxels, and varying-
scale outer voxels contracting the infinite range. Volumetric rendering is performed to supervise the
reconstruction of the scene. For better guidance on scene geometry, we “distill” knowledge from
offline optimized NeRFs, using rendered dense depth images from original camera views and virtual
camera views. Foundation model features, from CLIP or DINOv2, are set as additional reconstruction
objectives and thus are also “distilled” into our model to enrich scene semantics. We introduce design
principals in the following section, and refer to Appendix A.7 for implementation details.

3

Figure 2: DistillNeRF model architecture. (left) single-view encoding with two-stage probabilistic
depth prediction; (center) multi-view pooling into a sparse hierarchical voxel representation using
sparse quantization and convolution; (right) volumetric rendering from sparse hierarchical voxels.

3.1 Sparse Hierarchical Voxel Model

Single-View Lifting. For each of the N camera image inputs, we follow a similar procedure as
Lift-Splat-Shoot (LSS) [24] to lift the 2D image features to the 3D neural field. Unlike typical LSS
and variants [24, 41, 47] that predict depth in one shot, we propose a two-stage, coarse-to-fine strategy
with two jointly trained predictors to capture more nuanced depth. The first stage, following prior
LSS works, predicts categorical depth and aggregates them into a single prediction with ray marching.
The second stage then predicts a distribution over a fine-grained set of categorical depth values, which
are centered around the first-stage predicted coarse depth.

Specifically, in the first stage, we feed each image to a 2D backbone to generate a depth feature map
of size H ×W ×D. The depth feature map is regarded as a discrete frustum where D denotes the
number of pre-defined categorical depths. Inspired by the volume rendering equation [7], each entry
in the frustum is a density value. That is, the d’th channel of the frustum at pixel (h,w) represents
the density value σh,w,d of the frustum entry at (h,w, d). The occupancy weight of entry (h,w, d) is
then

O(h,w, d) = exp(−
d−1∑
j=1

δjσh,w,j)(1− exp(−δdσh,w,d)), (1)

where δd = td+1 − td is the distance between each pre-defined depth t in the frustum. Coarse depth
for pixel (h,w) is obtained by aggregating with ray marching:

D(h,w) =
D∑

d=1

O(h,w, d)td. (2)

In the second stage, centered around the initial coarse depth prediction, we dynamically sample a
set of D′ fine-grained depth candidates. This involves uniform sampling, with the sampling range
adaptively adjusted based on the coarse depth estimate. We then embed these fine-grained depth
candidates, and combine their embeddings with the depth features from the first stage, and feed them
to another network to generate the density of each fine-grained depth candidate. The occupancy
weights O′ of the fine-grained depth candidates are predicted similarly by Eq 1, which can also be
regarded as probabilities of each fine-grained depth candidate.

With the candidate depths associated with probabilities, we then lift 2D image features to 3D.
Specifically, we use a 2D image backbone to get 2D image features ϕ, and assign the 2D image
features to the 3D frustum according to each pixel’s depth. That is, for pixel (h,w), its image feature
ϕh,w is distributed to each fine-grained depth candidates t′d by [O′

h,w,dϕh,w, σ
′
h,w,d], where we scale

the pixel image feature ϕh,w with occupancy O′
h,w,d and concatenate it with density σ′

h,w,d.

Multi-View Fusion. After constructing the frustum for each view, we transform the frustums to the
world coordinates using the camera poses, and fuse them into a shared 3D voxel-based neural field V ,

4

GT RGB

Rendered RGB

Rendered Depth

Rendered CLIP

Rendered DINOv2

Text Query: Car

Text Query: Building

Text Query: Road

Occupancy

Semantic Occupancy

Figure 3: DistillNeRF Capabilities - Given single-frame multi-view cameras as input and without
test-time per-scene optimization, DistillNeRF can reconstruct RGB images (row 2), estimate depth
(row 3), render foundation model features (rows 4, 5) which enables open-vocabulary text queries
(rows 6, 7, 8), and predict binary and semantic occupancy in zero shot (rows 9, 10).

where each voxel represents a region in the world coordinates and carries both densities and features.
When lifted frustum entries from different views lie in the same voxel, we fuse them with average
pooling.

Sparse Hierarchical Voxels. Unlike previous works [41, 48, 21] using dense voxels, which uniformly
quantizes the neural field and potentially wastes computation and memory on large empty regions, we
apply sparse quantization on the neural field. Specifically, we follow the octree representation [49] to
recursively divide the neural field into specified levels, according to the 3D positions of the lifted 2D
features. While an octree with many levels and thus smaller voxel sizes can capture more accurate
3D positions of lifted features, overly fine-grained octrees can lead to difficulty in querying features
during rendering (e.g. missing far-away features due to large gaps between sampled rays). To this
end, we generate two octrees with different quantization granularities, one fine octree with more
quantization levels capturing details of the lifted features, and one coarse octree to represent general
information of a larger range. Sparse convolutions [50] are then applied to both octrees to encode
the relationships and interactions among voxels, during which the features in the fine octree are also
downsampled and concatenated with the coarse octree to enhance details.

Neural Field Parameterization. Unlike prior works that consider a neural field covering a fixed
range [41, 21, 22], our work aims at accounting for the unbounded-scene settings in the driving
scenes by proposing a parameterized neural field. We want to keep the inner-range voxels at the
real scale and high resolution due to their importance to various downstream tasks (e.g., occupancy
prediction in 50 meters’ range), while contracting the scene up to infinite distance in the outer range
of the voxels at a lower resolution, so we can render with low memory and computation cost (e.g.
sky, far-away buildings). Inspired by [8, 51], we propose a transform function that maps a 3D point

5

GT

Zero-Shot Transfer

Zero-Shot Transfer + Recoloring

Finetuned

Figure 4: DistillNeRF Generalizability - Trained on the nuScenes dataset, our model demonstrates
strong zero-shot transfer performance on the unseen Waymo NOTR dataset, achieving decent recon-
struction quality (row 2). This quality can be further enhanced by applying simple color alterations
to account for camera-specific coloring discrepancies (row 3). After fine-tuning (row 4), our model
surpasses the offline per-scene optimized EmerNeRF, achieving higher PSNR (29.84 vs. 28.87) and
SSIM (0.911 vs. 0.814). See Tab 3 for quantitative results.

in the world coordinates p = (x, y, z) to the coordinates in the parameterized neural field:

f(p) =

α p

pinner
if |p| ≤ pinner(

1− pinner

|p| (1− α)

)
p
|p| if |p| > pinner

. (3)

The transformed coordinates f(p) will always be within [0, 1], where pinner sets the range of
the inner voxel (region of interest) and varies in x, y, z directions, and α ∈ [0, 1] denotes the
contraction ratio, namely the proportion of the inner range in the parameterized neural field. Consistent
parameterizations are enforced for both the single-view lifting process (on the depth space) and the
multi-view fusion process (on the 3D coordinate space).

Volume Rendering from Sparse Hierarchical Voxels. Finally, we use differentiable volumetric
rendering to project the 3D neural field onto 2D feature maps and render images. Specifically, for
each pixel of each camera, we shoot a ray originating from the camera to the neural field according
to the camera poses, and sample points along the ray. Feature Querying: For each sample point,
we query both fine and coarse octree to get the density and features of the corresponding voxel that
the sample point lies in. Further, to capture both high-level information and fine-grained details,
the features from both octrees are concatenated as the final feature. Density Querying: Regarding
the density, while the fine octree captures more accurate 3D positioning, since the fine octree voxel
only covers a small region, the sample points could be easily within empty voxels and thus query no
information, especially for faraway regions. To this end, for each sample point, we first query the fine
octree to get the fine density. If the fine density is empty, we query the coarse octree to complement
the density. Two-Stage Sampling: Regarding the sampling strategy, we follow [8] to sample points
for each ray with two phases: first we sample a set of points uniformly, then we sample another set
of points with importance sampling given densities for the first set of points, so to enhance surface
details in the scene. With the densities and features of the sampled points we do volumetric rendering
using Eq 2 to get the 2D feature map for each camera. Decoding: The rendered 2D feature maps are
then fed into a CNN decoder to enhance high-frequency details, and upsample the final RGB image
without increasing the rendering resolution/cost. Note that from the volume rendering process, we
can also get the expected depth for each pixel [29].

3.2 Self-supervised Training with Distillation

Distillation from Offline NeRFs. While our model can be trained by simply reconstructing RGB
images, it remains challenging to learn scene geometry from only single time-step camera image
inputs. The challenge is especially pronounced with typical autonomous vehicle setups where
mounted cameras are facing outwards and have limited view overlap, making multi-view recon-

6

struction degrade to the monocular setting and aggravating depth ambiguity. A natural idea is to
use images from multiple time steps to encourage view overlaps. However, driving scenes typically
contain many dynamic objects that move between time steps, introducing noise to the reconstruction
objective. Instead, we propose to leverage the high-quality geometry of per-scene optimized NeRFs
that aggregate information from a full sensor stream. Specifically, we use EmerNeRF [14], a recent
NeRF approach that handles dynamic objects by decomposing the scene into static and dynamic
fields in a self-supervised manner. We propose two different ways to distill knowledge from per-scene
optimized NeRFs, which together construct LNeRF , a distillation loss from offline NeRFs:

• Dense 2D depth. Depth supervision from LiDAR point clouds, Ldepth, is commonly used to
facilitate 3D geometry learning, however, point clouds are typically sparse and only provide depth
labels for a limited horizontal/vertical range. Thus we propose to use offline optimized NeRFs as
a depth auto-labeling tool. Specifically, for each training target image we render a dense depth
map from the offline NeRF, and use it as additional depth supervision, Ldepth′ .

• Virtual cameras. In addition to depth distillation from original camera views, we can leverage
temporally decomposed NeRFs to render depth from “virtual cameras”, i.e., novel views, while
keeping the time dimension frozen. In this manner, the virtual depth and RGB images can be used
as additional reconstruction targets, thus the number of target images and the view overlap between
cameras can be artificially increased, encouraging consistent depth prediction and improving
novel-view synthesis performance.

Distillation from Foundation Models. In addition to RGB and depth prediction, can we learn 3D
representations that contain rich semantics and enable a wider range of downstream tasks? Witnessing
the rise of vision foundation models with generalized capabilities across various vision tasks, we
propose to distill 2D foundation model features, such as CLIP [15] and DINOv2 [16], into our 3D
scene representation model. We achieve this by simply introducing an additional MLP to our rendered
2D feature images, and train the model to reconstruct the foundation model feature images with an L1
loss Lfound. We demonstrate early attempts at utilizing these foundation models on open-vocabulary
text query tasks shown in Fig 3, but we leave more comprehensive explorations to future work.

Training objective. In summary, we train our model for a linear combination of loss terms:
L = Lrgb + Ldepth + Ldensity︸ ︷︷ ︸

rendering

+LNeRF + Lfound︸ ︷︷ ︸
distillation

, (4)

where Lrgb and Ldepth are rendering losses for RGB and depth; Ldensity is a density entropy loss
encouraging clearer surfaces and structured density values as in [14]; LNeRF and Lfound denote
distillation losses from offline NeRFs and foundation models. Please refer to Appendix A.5 for more
details on the losses.

4 Experiments

We benchmark DistillNeRF against SOTA generalizable NeRFs, offline NeRFs, as well as compa-
rable methods on the popular NuScenes dataset [52]. We first evaluate the rendering performance,
i.e., scene reconstruction, novel view synthesis, and feature reconstruction (Table 1). We further
evaluate the learned 3D geometry through depth estimation (Table 2), and 3D semantic occupancy
prediction (Table 4). Ablations of DistillNeRF are also analyzed in each task and displayed in each
table, additional ablations are available in Tab A.2, Tab 6, and Tab A.6 of the Appendix. Qual-
itative results, including open vocabulary queries, are in Fig. 3, 6, and 7. Videos are online at
https://distillnerf.github.io/. Implementation and training details are in the Appendix A.7.

Dataset. The nuScenes dataset [52] contains 1000 driving scenes from different geographic areas,
each scene capturing approx. 20 seconds of driving, resulting in approx 40000 frames in total. Scenes
are captured via six cameras mounted on the vehicle heading in different directions along with point
clouds from LiDAR. We use the default data split, 700 scenes for training, 150 scenes for validation.
We adopt the resolution of input RGB images, rendered RGB, and rendered depth are 114×228,
114×228, and 64×114 respectively. We also evaluate the generalizability of our method on the Waymo
NOTR dataset [14], a balanced and diverse benchmark derived from the Waymo Open Dataset [26].
NOTR features 120 unique, hand-picked driving sequences, split into 32 static, 32 dynamic, and 56
diverse scenes across seven challenging conditions. We adopt the resolution of input RGB images,
rendered RGB, and rendered depth are 144×216, 144×216, and 72×108 respectively.

7

https://distillnerf.github.io/

Table 1: Reconstruction and novel-view synthesis on nuScenes validation set. DistillNeRF is on par
with the per-scene optimized NeRFs, both in RGB and foundation feature rendering, and significantly
outperforms SOTA generalizable NeRF methods. In the DistillNeRF variants, we denote ’Depth’ as
the depth distillation from offline NeRFs, ’Param.’ as the parameterized space, and ’Virt.’ as the
distillation from virtual cameras in offline NeRFs. See Fig. 6 and Fig. 7 for qualitative results.

Method Single Timestep
Input

No Test-Time
Per-Scene Opt

Foundation
Model Lifting

RGB Reconstruct RGB Novel-View
Synthesis

Foundation Feature
Reconstruction

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ CLIP PSNR ↑ DINOv2 PSNR ↑
EmerNerf [14] % % " 30.88 0.879 - - 20.91 21.12
Single-Frame EmerNerf " % " - - 20.95 0.585 - -
SelfOcc [22] " " % 20.67 0.556 18.22 0.464 - -
UniPad [21] " " % 19.44 0.497 16.45 0.375 - -

Depth | Param. | Virt. DistillNeRF Variants

% % % " " " 28.01 0.872 19.12 0.501 - -
" % % " " " 30.11 0.917 20.27 0.567 18.69 18.48
" " % " " " 28.42 0.879 20.06 0.565 - -
" " " " " " 28.72 0.880 20.78 0.590 - -

Table 2: Depth estimation results on the nuScenes validation set. Depth targets are defined by (a)
sparse LiDAR scans or (b) dense depth images rendered from EmerNerf. We use highlighting across
comparable methods with rendering support and no test-time optimization. DistillNeRF outperforms
comparable generalizable NeRF methods, especially on dense depth targets.

(a) Sparse LiDAR GT No Test-Time
Per-Scene Opt

Support
Rendering Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

EmerNerf [14] % " 0.073 0.346 2.696 0.159 0.942 0.975 0.986
SelfOcc* [22] " % 0.214 2.418 6.556 0.31 0.745 0.875 0.932
SelfOcc [22] " " 0.342 5.497 7.678 0.370 0.705 0.841 0.905
UniPAD [21] " " 0.254 2.945 5.903 0.318 0.670 0.867 0.935

Depth Distill | Virtual Distill DistillNeRF Variants

% | % " " 0.248 3.090 6.096 0.312 0.704 0.885 0.947
" | % " " 0.233 2.890 5.890 0.296 0.703 0.881 0.945
" | " " " 0.223 1.776 5.461 0.293 0.763 0.903 0.961

(b) Dense Depth GT No Test-Time
Per-Scene Opt

Support
Rendering Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

SelfOcc* [22] " % 0.257 3.391 9.188 0.383 0.6379 0.8198 0.9022
SelfOcc [22] " " 0.348 5.554 10.556 0.442 0.611 0.775 0.863
UniPAD [21] " " 0.276 3.119 6.267 0.327 0.649 0.870 0.941

Depth Distill | Virtual Distill DistillNeRF Variants

% | % " " 0.270 3.670 6.301 0.389 0.653 0.826 0.886
" | % " " 0.235 3.008 5.859 0.311 0.726 0.890 0.942
" | " " " 0.228 1.898 5.654 0.302 0.689 0.879 0.943

4.1 Rendering Images and Foundation Features

Setup. We evaluate our model on previously unseen scenes from the validation set. For scene
reconstruction, we compare the rendered images against GT images for the same time step. For
novel-view synthesis, we render the novel-view image from the next timestep’s camera pose, and
compare it against the next timestep’s GT image. We use standard metrics: peak signal-to-noise
ratio (PSNR) and structural similarity index (SSIM). We compare with two SOTA generalizable
NeRF methods in driving scenes, SelfOcc [22] and UniPAD [21], which do not see the validation
set during training, similar to ours. We also compare with the SOTA per-scene optimized method,
EmerNeRFs [14], which is trained on the validation set. Since EmerNerfs are trained on all timesteps
in the scene, we cannot evaluate them for novel views. Instead, for novel-view evaluation we adapt
Single-Frame EmerNeRFs, each of which is trained only on a single timestep and then evaluated for
the next timestep. Due to the prohibitive training cost of Single-Frame EmerNerf on all timesteps, for
all methods we report mean metrics over only the second frame of each scene.

RGB Reconstruction and Novel-View Synthesis. In Table 1, we show the results the image
reconstruction and novel-view synthesis on the nuScenes validation set. The results show that our
generalizable model is on par with the per-scene optimized NeRFs, and significantly outperforms
SOTA generalizable methods, both for RGB reconstruction and novel-view synthesis. Without per-
scene optimization, reconstruction PSNR for our best model variant is close to per-scene optimized
EmerNerfs (30.11 vs 30.88), and achieves even higher SSIM (0.917 vs 0.879). Similarly, our novel-
view PSNR is close to Single-Frame EmerNerf (20.78 vs 20.95), while SSIM is slightly higher
(0.590 vs 0.585). Compared prior SOTA generalizable methods, our model outperforms the best-
performing method (SelfOcc) in PSNR by 45.6% and 14.0%, and in SSIM by 64.9% and 27.1%,
for reconstruction and novel-view synthesis, respectively. Novel-view metrics are generally lower
than reconstruction metrics. Note that our novel-view setting is challenging, as the vehicle can travel
large distances (in 0.5s) between the input-view and novel-view camera poses, and capture elements

8

that are invisible in the original camera pose. Further, dynamic objects that move between frames
act as noise in our novel-view targets. Qualitative results are in Fig. 6. EmerNerf and our approach
are close to the ground truth, while UniPAD generates blurry reconstructions with scan patterns, and
SelfOcc generates grayish images and struggles to reconstruct the scene precisely.

Table 3: Trained on the nuScenes dataset, Distill-
NeRF shows strong generalizability to the unseen
Waymo NOTR dataset.

Method PSNR SSIM
EmerNeRF 28.87 0.814

Zero-Shot Transfer 21.03 0.841
Zero-Shot Transfer + Recolor 24.85 0.867
Finetune 29.84 0.911

Generalization to Unseen Waymo NOTR
Dataset As in Fig 4 and Tab 3, we evaluate
the generalizability of DistillNeRF to unseen
domains. Trained on the nuScenes dataset,
our model demonstrates strong zero-shot trans-
fer performance on the unseen Waymo NOTR
dataset. This quality can be further enhanced by
applying simple color alterations to account for
camera-specific coloring discrepancies. After
fine-tuning, our model surpasses the offline per-
scene optimized EmerNeRF on the data, achieving higher PSNR (29.84 vs. 28.87) and SSIM (0.911
vs. 0.814). We use the full Waymo NOTR data for evaluation, and quote original EmerNeRF metrics.

Foundation Feature Reconstruction. We choose the DistillNeRF variant with the best RGB
reconstruction performance, and train it replacing the RGB image targets with feature image targets
extracted from CLIP or DINOv2. Following EmerNerf, we reduce the dimensionality of target
features to 64 dimensions using Principle Component Analysis (PCA). Results in Table 1 indicate
that our method can successfully reconstruct CLIP and DINOv2 features, with a reconstruction
performance not far from per-scene optimized EmerNerf. Note that EmerNerf additionally learns a
separate positional-encoding head to denoise target features, which could also improve DistillNeRF
results in the future. In Fig. 3 we show qualitative examples for foundation feature predictions, as well
as results for utilizing the predicted features for open vocabulary scene understanding. Specifically,
we obtain CLIP text embeddings for keywords, such "Car", "Building", "Road", and visualize the
normalized similarity of the text embedding with rendered pixel-wise CLIP features. The results
indicate the ability of DistillNeRF to understand rich semantics of the scene to a remarkable extent.

Ablations. Ablation results in Table 1 and Fig. 7 indicate that depth distillation from offline NeRFs
increases reconstruction and novel-view synthesis performance, while virtual camera distillation
benefits novel-view synthesis. The parameterized space slightly reduces the rendering metrics, but as
shown in Fig 7, it is capable of generating unbounded depth.

4.2 Depth Estimation

Setup. We evaluate depth up to 80m using common metrics (Abs Rel, Sq Rel, RMSE, RMSE log, and
δ < t) [53, 54, 55]. We use two different depth targets: Sparse LiDAR GT, the common evaluation
setting using LiDAR point cloud as ground truth, which is accurate but spare and has limited range
(e.g. only 3m height); and Dense Depth GT, that uses EmerNerf to define dense depth targets with
large range. We compare against the same baselines as for rendering. For UniPAD we increase
the maximum range to 80m and retrain the model. For SelfOcc, we evaluate two model variants,
SelfOcc* that supports depth prediction only (used in [22]), and SelfOcc that also supports rendering
(thus more similar to our method). Same as before, we evaluate over the second frame of each scene.

Depth Comparison. Results in Table 2 and Fig. 6 show that while EmerNerf has superior depth
accuracy by being optimized for each scene, our method outperforms prior SOTA generalizable
NeRFs (SelfOcc and UniPAD). Specifically, while SelfOcc which only considers the depth prediction
task shows high performance (noted as SelfOcc*), when we evaluate the model that supports both
depth and rendering (noted as SelfOcc), the performance drops considerably. Looking at Fig. 6,
SelfOcc and UniPAD generate unreasonable depths for higher regions of the image, which is not
reflected when evaluated against the sparse LiDAR ground truth. When evaluated on dense depth
targets (Table 2b), their performance drops, while our approach shows more consistent performance
for the two sources of ground truth.

Ablations. Consistently with previous results, distillation from offline NeRFs also improve depth
estimation (Table 2). Quantitatively (Fig. 7), without depth distillation, we see inconsistent depth
predictions between low and high regions of the image; without parameterized space, the model

9

Table 4: Unsupervised 3D occupancy prediction on the Occ3D-nuScenes [5] dataset. Our method
learns meaningful geometry and reasonable semantics compared to alternative unsupervised methods.
F-mIoU, mIoU and G-IoU denote the IoU for foreground-object classes, IoU for all classes, and
geometric IoU ignoring the classes.

Method F-
m

Io
u

m
Io

U

G
-I

oU

■
ot

he
rs

■
ba

rr
ie

r

■
bi

cy
cl

e

■
bu

s

■
ca

r

■
co

ns
.v

eh
.

■
m

ot
or

cy
cl

e

■
pe

de
st

ri
an

■
tr

af
fic

co
ne

■
tr

ai
le

r

■
tr

uc
k

■
dr

iv
e.

su
rf

.

■
ot

he
rfl

at

■
si

de
w

al
k

■
te

rr
ai

n

■
m

an
m

ad
e

■
ve

ge
ta

tio
n

SimpleOcc [59] 3.68 - 7.99 - 0.67 1.18 3.21 7.63 1.02 0.26 1.80 0.26 1.07 2.81 40.44 - 18.30 17.01 13.42 10.84
OccNeRF [23] 5.33 - 10.81 - 0.83 0.82 5.13 12.49 3.50 0.23 3.10 1.84 0.52 3.90 52.62 - 20.81 24.75 18.45 13.19
SelfOcc (BEV) [22] 2.71 6.76 44.33 0.00 0.00 0.00 0.00 9.82 0.00 0.00 0.00 0.00 0.00 6.97 47.03 0.00 18.75 16.58 11.93 3.81
SelfOcc (TPV) [22] 4.14 9.30 45.01 0.00 0.15 0.66 5.46 12.54 0.00 0.80 2.10 0.00 0.00 8.25 55.49 0.00 26.30 26.54 14.22 5.60

Depth Distill DistillNeRF Variants

% 3.48 4.63 13.41 0.02 0.77 1.41 5.77 6.33 1.56 1.32 4.38 3.3 0.47 4.34 20.14 0.00 8.36 8.44 4.76 7.37
" 6.40 8.93 29.11 0.03 1.35 2.08 10.21 10.09 2.56 1.98 5.54 4.62 1.43 7.90 43.02 0.00 16.86 15.02 14.06 15.06

can only predict depth in a limited depth range, while with parameterized space we can generate
reasonable unbounded depth.

4.3 3D Semantic Occupancy Prediction

Setup. To evaluate the zero-shot downstream capabilities of DistillNeRF, we run evaluation on the
Occ3D-nuScenes dataset [5] for 3d semantic occupancy prediction. The dataset comprises semantic
occuapancy labels with 18 classes in the range [-40m, -40m, -1m, 40m, 40m, 5.4m] with voxel size
0.4m. We evaluate both binary and semantic 3d occupancy prediction. In DistillNeRF we use density
thresholding (<0.001) to define whether a voxel is occupied. For semantic occupancy prediction,
following [23], we use a pre-trained open vocabulary model GroundedSAM [56, 57, 58] to generate
2D semantic masks for the input images. Then, we project the center of occupied voxels onto the
2D masks to get the semantic class, following [22]. We found that the resolution of input and output
images is important for occupancy prediction with DistillNeRF, so we increased them to 400×228
and 200×114, respectively.

We compare our method with SOTA self-supervised methods that do not use occupancy annotation:
SimpleOcc [59], OccNeRF [23], and SelfOcc [22]. Following prior work, we report Intersection-
over-Union (IoU) for each semantic category, mean IoU over all categories (mIoU), and geometry
only IoU (G-IoU) for binary occupancy that ignores the semantic class. Additionally, we also report
mean IoU over foreground categories (F-mIoU), that is, for categories excluding, drivable surface,
sidewalk, terrain, other flat, and others.

Results. We show the comparison of occupancy prediction in Table 4. Our approach achieves
competitive performance and excels on F-mIoU compared to the baselines, presumably because
the sparse voxel representation emphasizes and better fits the foreground objects. SelfOcc (TPV)
produces the highest mIoU and G-IoU, in part because it takes advantage of the fact that these metrics
are dominated by ground-related classes (drive. surf., sidewalk, terrain), and it learns a prior for
predicting the ground level as occupied even for non-visible regions (Fig.4 in [22]). Comparing
ablations from DistillNeRF, we observe that distillation from offline NeRFs significantly improves
performance (8.93 vs. 4.63 mIoU).

5 Conclusion

We proposed a framework for generalizable 3D scene representation prediction from sparse multi-
view image inputs, using distillation from per-scene optimized NeRFs and visual foundation models.
We also introduced a novel model architecture with spare hierarchical voxels. Our method achieved
promising results in various downstream tasks.

Our approach is not without limitations. First, we currently rely on LiDAR to train offline EmerNerfs
for distillation. Second, our sparse voxel representation naturally trades off rendering efficiency for
dense scene representation, and thus may not be suitable for all downstream tasks. An interesting idea
would be to combine a low-resolution dense voxel with a sparse voxel, or explore respresentations
similar to Gaussian Splatting instead of voxels. Finally, there are numerous exciting directions for
future work, including introducing temporal input, learning static-dynamic decomposition similar
to EmerNerf, and utilizing the learned rich 3D scene representation for downstream tasks, such as
detection, tracking, mapping, and planning.

10

References
[1] Zhiqi Li, Wenhai Wang, Hongyang Li, Enze Xie, Chonghao Sima, Tong Lu, Yu Qiao, and

Jifeng Dai. Bevformer: Learning bird’s-eye-view representation from multi-camera images via
spatiotemporal transformers. arXiv:2203.17270, 2022.

[2] Zhijian Liu, Haotian Tang, Alexander Amini, Xingyu Yang, Huizi Mao, Daniela Rus, and Song
Han. Bevfusion: Multi-task multi-sensor fusion with unified bird’s-eye view representation. In
IEEE International Conference on Robotics and Automation (ICRA), 2023.

[3] Yuanhui Huang, Wenzhao Zheng, Yunpeng Zhang, Jie Zhou, and Jiwen Lu. Tri-perspective
view for vision-based 3d semantic occupancy prediction. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 9223–9232, 2023.

[4] Wenwen Tong, Chonghao Sima, Tai Wang, Li Chen, Silei Wu, Hanming Deng, Yi Gu, Lewei Lu,
Ping Luo, Dahua Lin, et al. Scene as occupancy. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 8406–8415, 2023.

[5] Xiaoyu Tian, Tao Jiang, Longfei Yun, Yucheng Mao, Huitong Yang, Yue Wang, Yilun Wang,
and Hang Zhao. Occ3d: A large-scale 3d occupancy prediction benchmark for autonomous
driving. Advances in Neural Information Processing Systems, 36, 2024.

[6] Yunpeng Zhang, Zheng Zhu, and Dalong Du. Occformer: Dual-path transformer for vision-
based 3d semantic occupancy prediction. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 9433–9443, 2023.

[7] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoor-
thi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis.
Communications of the ACM, 65(1):99–106, 2021.

[8] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-
nerf 360: Unbounded anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 5470–5479, 2022.

[9] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian
splatting for real-time radiance field rendering. ACM Transactions on Graphics, 42(4):1–14,
2023.

[10] Matthias Seefelder and David Duckworth. Reconstructing indoor spaces with nerf, 2023.
Accessed: 2024-05-22.

[11] Ze Yang, Yun Chen, Jingkang Wang, Sivabalan Manivasagam, Wei-Chiu Ma, Anqi Joyce Yang,
and Raquel Urtasun. Unisim: A neural closed-loop sensor simulator. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1389–1399, 2023.

[12] Jianfei Guo, Nianchen Deng, Xinyang Li, Yeqi Bai, Botian Shi, Chiyu Wang, Chenjing Ding,
Dongliang Wang, and Yikang Li. Streetsurf: Extending multi-view implicit surface reconstruc-
tion to street views. arXiv preprint arXiv:2306.04988, 2023.

[13] Yunzhi Yan, Haotong Lin, Chenxu Zhou, Weijie Wang, Haiyang Sun, Kun Zhan, Xianpeng
Lang, Xiaowei Zhou, and Sida Peng. Street gaussians for modeling dynamic urban scenes.
arXiv preprint arXiv:2401.01339, 2024.

[14] Jiawei Yang, Boris Ivanovic, Or Litany, Xinshuo Weng, Seung Wook Kim, Boyi Li, Tong Che,
Danfei Xu, Sanja Fidler, Marco Pavone, et al. Emernerf: Emergent spatial-temporal scene
decomposition via self-supervision. arXiv preprint arXiv:2311.02077, 2023.

[15] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

[16] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

11

[17] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 9650–9660, 2021.

[18] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelnerf: Neural radiance fields
from one or few images. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4578–4587, 2021.

[19] David Charatan, Sizhe Lester Li, Andrea Tagliasacchi, and Vincent Sitzmann. pixelsplat: 3d
gaussian splats from image pairs for scalable generalizable 3d reconstruction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 19457–19467,
2024.

[20] Jianglong Ye, Naiyan Wang, and Xiaolong Wang. Featurenerf: Learning generalizable nerfs by
distilling foundation models. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 8962–8973, 2023.

[21] Honghui Yang, Sha Zhang, Di Huang, Xiaoyang Wu, Haoyi Zhu, Tong He, Shixiang Tang,
Hengshuang Zhao, Qibo Qiu, Binbin Lin, et al. Unipad: A universal pre-training paradigm for
autonomous driving. arXiv preprint arXiv:2310.08370, 2023.

[22] Yuanhui Huang, Wenzhao Zheng, Borui Zhang, Jie Zhou, and Jiwen Lu. Selfocc: Self-
supervised vision-based 3d occupancy prediction. arXiv preprint arXiv:2311.12754, 2023.

[23] Chubin Zhang, Juncheng Yan, Yi Wei, Jiaxin Li, Li Liu, Yansong Tang, Yueqi Duan, and Jiwen
Lu. Occnerf: Self-supervised multi-camera occupancy prediction with neural radiance fields.
arXiv preprint arXiv:2312.09243, 2023.

[24] Jonah Philion and Sanja Fidler. Lift, splat, shoot: Encoding images from arbitrary camera rigs
by implicitly unprojecting to 3d. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XIV 16, pages 194–210. Springer, 2020.

[25] Motional. nuScenes Prediction Challenge, 2020. Available at https://www.nuscenes.org/
prediction?externalData=all&mapData=all&modalities=Any.

[26] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul
Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability in perception for
autonomous driving: Waymo open dataset. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 2446–2454, 2020.

[27] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics
primitives with a multiresolution hash encoding. ACM transactions on graphics (TOG), 41(4):1–
15, 2022.

[28] Zhiwen Fan, Wenyan Cong, Kairun Wen, Kevin Wang, Jian Zhang, Xinghao Ding, Danfei Xu,
Boris Ivanovic, Marco Pavone, Georgios Pavlakos, et al. Instantsplat: Unbounded sparse-view
pose-free gaussian splatting in 40 seconds. arXiv preprint arXiv:2403.20309, 2024.

[29] Konstantinos Rematas, Andrew Liu, Pratul P Srinivasan, Jonathan T Barron, Andrea Tagliasac-
chi, Thomas Funkhouser, and Vittorio Ferrari. Urban radiance fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12932–12942, 2022.

[30] Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Pradhan, Ben Mildenhall, Pratul P
Srinivasan, Jonathan T Barron, and Henrik Kretzschmar. Block-nerf: Scalable large scene
neural view synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8248–8258, 2022.

[31] Zian Wang, Tianchang Shen, Jun Gao, Shengyu Huang, Jacob Munkberg, Jon Hasselgren, Zan
Gojcic, Wenzheng Chen, and Sanja Fidler. Neural fields meet explicit geometric representations
for inverse rendering of urban scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8370–8380, 2023.

12

https://www.nuscenes.org/prediction?externalData=all&mapData=all&modalities=Any
https://www.nuscenes.org/prediction?externalData=all&mapData=all&modalities=Any

[32] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T Barron, Sofien Bouaziz, Dan B
Goldman, Ricardo Martin-Brualla, and Steven M Seitz. Hypernerf: A higher-dimensional
representation for topologically varying neural radiance fields. arXiv preprint arXiv:2106.13228,
2021.

[33] TH Wu, FC Zhong, A Tagliasacchi, F Cole, and C Oztireli. D2nerf: Self-supervised decoupling
of dynamic and static objects from a monocular video. In NeurIPS, 2022.

[34] Guangming Wang, Lei Pan, Songyou Peng, Shaohui Liu, Chenfeng Xu, Yanzi Miao, Wei Zhan,
Masayoshi Tomizuka, Marc Pollefeys, and Hesheng Wang. Nerf in robotics: A survey. In arXiv
preprint arXiv:2405.01333, 2024.

[35] Lei He, Leheng Li, Wenchao Sun, Zeyu Han, Yichen Liu, Sifa Zheng, Jianqiang Wang,
and Keqiang Li. Neural radiance field in autonomous driving: A survey. arXiv preprint
arXiv:2404.13816, 2024.

[36] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P Srinivasan, Howard Zhou, Jonathan T
Barron, Ricardo Martin-Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet: Learning
multi-view image-based rendering. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4690–4699, 2021.

[37] Yuan Liu, Sida Peng, Lingjie Liu, Qianqian Wang, Peng Wang, Christian Theobalt, Xiaowei
Zhou, and Wenping Wang. Neural rays for occlusion-aware image-based rendering. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
7824–7833, 2022.

[38] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang, Fanbo Xiang, Jingyi Yu, and Hao
Su. Mvsnerf: Fast generalizable radiance field reconstruction from multi-view stereo. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 14124–
14133, 2021.

[39] M. Johari, Y. Lepoittevin, and F. Fleuret. Geonerf: Generalizing nerf with geometry priors. In
Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition
(CVPR), 2022.

[40] Zetong Yang, Li Chen, Yanan Sun, and Hongyang Li. Visual point cloud forecasting enables
scalable autonomous driving. arXiv preprint arXiv:2312.17655, 2023.

[41] Seung Wook Kim, Bradley Brown, Kangxue Yin, Karsten Kreis, Katja Schwarz, Daiqing Li,
Robin Rombach, Antonio Torralba, and Sanja Fidler. Neuralfield-ldm: Scene generation with
hierarchical latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8496–8506, 2023.

[42] Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo Kanazawa, and Matthew Tancik. Lerf:
Language embedded radiance fields. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 19729–19739, 2023.

[43] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
model repository. arXiv preprint arXiv:1512.03012, 2015.

[44] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[45] Mohamad Shahbazi, Evangelos Ntavelis, Alessio Tonioni, Edo Collins, Danda Pani Paudel,
Martin Danelljan, and Luc Van Gool. Nerf-gan distillation for efficient 3d-aware generation
with convolutions. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 2888–2898, 2023.

[46] Jeff Tan, Gengshan Yang, and Deva Ramanan. Distilling neural fields for real-time articulated
shape reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4692–4701, 2023.

13

[47] Cody Reading, Ali Harakeh, Julia Chae, and Steven L Waslander. Categorical depth distribution
network for monocular 3d object detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 8555–8564, 2021.

[48] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-fast
convergence for radiance fields reconstruction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 5459–5469, 2022.

[49] Donald Meagher. Geometric modeling using octree encoding. Computer graphics and image
processing, 19(2):129–147, 1982.

[50] Benjamin Graham and Laurens Van der Maaten. Submanifold sparse convolutional networks.
arXiv preprint arXiv:1706.01307, 2017.

[51] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun. Nerf++: Analyzing and
improving neural radiance fields. arXiv preprint arXiv:2010.07492, 2020.

[52] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu,
Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuScenes: A multimodal
dataset for autonomous driving. In Conference on Computer Vision and Pattern Recognition,
2020.

[53] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G Lowe. Unsupervised learning of
depth and ego-motion from video. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1851–1858, 2017.

[54] Yi Wei, Linqing Zhao, Wenzhao Zheng, Zheng Zhu, Yongming Rao, Guan Huang, Jiwen Lu,
and Jie Zhou. Surrounddepth: Entangling surrounding views for self-supervised multi-camera
depth estimation. In Conference on Robot Learning, pages 539–549. PMLR, 2023.

[55] Clément Godard, Oisin Mac Aodha, Michael Firman, and Gabriel J Brostow. Digging into
self-supervised monocular depth estimation. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 3828–3838, 2019.

[56] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
Segment anything. arXiv:2304.02643, 2023.

[57] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for
open-set object detection. arXiv preprint arXiv:2303.05499, 2023.

[58] Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao, Jiayu Chen, Xinyu
Huang, Yukang Chen, Feng Yan, Zhaoyang Zeng, Hao Zhang, Feng Li, Jie Yang, Hongyang Li,
Qing Jiang, and Lei Zhang. Grounded sam: Assembling open-world models for diverse visual
tasks, 2024.

[59] Wanshui Gan, Ningkai Mo, Hongbin Xu, and Naoto Yokoya. A simple attempt for 3d occupancy
estimation in autonomous driving. arXiv preprint arXiv:2303.10076, 2023.

[60] Adam Rashid, Satvik Sharma, Chung Min Kim, Justin Kerr, Lawrence Yunliang Chen, Angjoo
Kanazawa, and Ken Goldberg. Language embedded radiance fields for zero-shot task-oriented
grasping. In 7th Annual Conference on Robot Learning, 2023.

[61] Krishna Murthy Jatavallabhula, Alihusein Kuwajerwala, Qiao Gu, Mohd Omama, Tao Chen,
Alaa Maalouf, Shuang Li, Ganesh Iyer, Soroush Saryazdi, Nikhil Keetha, et al. Conceptfusion:
Open-set multimodal 3d mapping. arXiv preprint arXiv:2302.07241, 2023.

[62] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2117–2125, 2017.

[63] Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang
Zhao. Depth anything: Unleashing the power of large-scale unlabeled data. arXiv preprint
arXiv:2401.10891, 2024.

14

Figure 5: Scene-level reconstruction in autonomous driving poses different challenges compared to
object-level reconstruction. 1) Typical object-level indoor NeRF involves an "inward" multi-view
setup, where numerous cameras are positioned around the object from various angles. This setup
creates extensive view overlap and simplifies geometry learning. In contrast, the outdoor driving task
uses an "outward" sparse-view setup, with only 6 cameras facing different directions from the car. The
limited overlap between cameras significantly aggravates the ambiguity in depth/geometry learning.
2) In the images captured from unbounded driving scenes, nearby objects occupy significantly more
pixels than those far away, even if their physical sizes are identical. This introduces the difficulty in
processing and coordinating distant/nearby objects.

A Appendix

A.1 Discussion on Challenges in Driving Scenes

Compared to object-centric indoor scenes, the online autonomous driving with sparse camera images
poses two key challenges, which is also illustrated in Fig 5:

1. Sparse views with limited overlap complicate depth estimation and geometry learning: Typical
object-level indoor NeRF involves an "inward" multi-view setup, where numerous cameras are
positioned around the object from various angles. This setup creates extensive view overlap and
simplifies geometry learning. In contrast, the outdoor driving task uses an "outward" sparse-view
setup, with only 6 cameras facing different directions from the car. The limited overlap between
cameras increases the ambiguity in depth/geometry learning. To this end, following designs are made:

• Depth distillation: depth images rendered from per-scene NeRF are used to supervise our
model. These per-scene optimized depth images are high-quality, dense, and consistent
spatially/temporally

• Virtual camera distillation: virtual cameras are created as additional targets to artificially
increase view overlaps

• Two-stage Lift-Splat-Shoot strategy: proposed to capture more nuanced depth
• Features from 2D pre-trained encoder: help the model learn better depth estimations and 2D

image features

2. Difficulty in processing and coordinating distant/nearby objects in the unbounded scene: Unlike
object-centric indoor problems, in the unbounded driving scene, the images usually contain unevenly
distributed visual information based on distance: nearby objects occupy significantly more pixels
than those far away, even if their physical sizes are identical. This is usually not the case in common
NeRF benchmarks, and motivates multiple key designs:

• Parameterized space: introduced to account for the unbounded scene, unlike Self-
Occ/UniPAD with a limited range (50m) and losing geometry information for far-away
scenes.

• Density complement: far-away objects occupy pixels, and thus sampled rays could easily
miss them (e.g. distant cars). Thus we propose to query densities from both fine/coarse
voxel, and complement density.

• Light-weight upsampling decoder: applied to rendered feature images, to 1) upsample
the final RGB image without additional rendering cost; 2) enable robustness to noises in
rendered features

15

Table 5: Ablation studies on key components in our model.

Density
Complement Decoder Pretrained

Encoder
Two-stage

LSS
Two-Depth
Distillation PSNR SSIM

✗ ✓ ✓ ✓ ✓ 22.76 0.669
✓ ✗ ✓ ✓ ✓ 25.34 0.839
✓ ✓ ✗ ✓ ✓ 21.35 0.536
✓ ✓ ✓ ✗ ✓ 27.40 0.859
✓ ✓ ✓ ✓ ✗ 28.01 0.872
✓ ✓ ✓ ✓ ✓ 30.11 0.917

A.2 Ablation Studies on Model Component

Following the discussions above, as shown in Tab 5, we ablated key components of our sparse voxel
representation such as density complement, decoder, pre-trained 2D encoder, and the two-stage LSS.
We remove one component each time to ablate its effect. In the last row, we also further add the depth
distillation from offline NeRF, which represents the best performance of our full model.

• No density complement: we observe a significant drop of PSNR from 28.01 to 22.76,
demonstrating the importance of better coordination between low-level and high-level sparse
voxels.

• No decoder: we see a decent drop of PSNR from 28.01 to 25.76, showing the effectiveness
of using the decoder for robustness to noises in rendered features.

• No pre-trained 2D encoder: we see a significant drop of PSNR from 28.01 to 21.35, which is
expected since using pre-trained 2D encoder has been a commonly acknowledged approach
in the field, which SOTA methods such as UniPAD and SelfOcc all adopt.

• No two-stage LSS: we observe a slight drop of PSNR from 28.01 to 27.40.

• Add depth distillation from offline NeRF: we observe the jump of PSNR from 28.01 to 30.11.

Note that every ablation above outperforms the SOTA methods UniPAD and SelfOcc, which have
PSNR of 19.44 and 20.67 respectively.

A.3 Discussion on Advantages of Different Ways of Lifting 2D to 3D.

In this work, we employ lift-splat-shoot with convolutions to lift 2D features to 3D. In comparison,
another common approach of lifting is 3D-to-2D feature projection, which is exploited in two threads
of generalizable approaches: 1) image-based methods, such as GeoNeRF, IBRNet; 2) voxel-based
methods, such as UniPAD, NeRF-Det.

In the image-based generalizable methods, for one query point along the ray from novel views,
features are extracted from the feature volume of surrounding source views via projection and
interpolation. Our multi-view fusion/voxel grid approach possessed multiple advantages:

• Explicit Representation: Voxel-based methods provide a direct/explicit 3D scene representa-
tion, allowing more straightforward manipulation, analysis, and understanding of spatial
relationships in the scene (e.g. removing or replacing object for simulation use)

• Scalability: As in our case, voxel-based methods can scale to different levels of detail
by adjusting the voxel resolution. This scalability allows for efficient representation and
rendering of both large scenes and fine details.

In voxel-based generalizable works, a 3D voxel is created, and the feature of each voxel is generated
by projecting the voxel coordinates to 2D image features and feature interpolation, where an explicit
representation is offered. However, the issues with this approach include

• As pointed out by NeRF-Det, this approach is equivalent to shooting a ray from the camera
into the scene, and populating all voxels on the ray with the same 2D features, which could
have strong depth ambiguity along the ray since all voxels on the ray have the same feature.

16

• Besides, such 3D-to-2D projection introduces non-trivial challenges for 3D voxel grids
sparsification, since every voxel is populated with features.

Therefore, in this work, we choose to use the multi-view fusion approach and a lift-splat-shoot
approach where

• the model predicts the depth of each pixel, and only lifts 2D features to voxels around the
depth of the pixel;

• the model enables easy voxel sparsifications, which accelerates 3D encoding via sparse
convolutions.

• depth frustums are explicitly created for each view, and the distillation from Per-Scene
NeRF depth would be more straightforward (applying depth loss or regularization on the
frustums).

As in our experiments, when comparing against UniPAD which takes the 3D-to-2D feature projection
approach, our method shows better view synthesis and depth prediction performance, and offers
higher inference efficiency. We hope to present our approach as an interesting and promising method
that could be valuable to the community.

A.4 Discussions and Ablations on Foundation Model Feature Distillation

In our paper, we distill the foundation model features into our model for enhanced semantics. The
resulting model is able to create a 3D representation populated with foundation model features, and
render 2D foundation model features from the 3D scene. However, to generate 2D foundation model
feature images, there could be simpler baselines, e.g. rendering RGB and then feeding the RGB
renderings into CLIP/DINO models. As shown in Tab 6, we compared the reconstruction accuracy
and inference speed for the two approaches.

As expected, given the high-quality rendered RGB images from our model, directly feeding these
rendered RGB images into CLIP/DINO models generates a good original-view reconstruction accu-
racy (CLIP: 19.81 vs. 18.69, DINO: 21.70 vs. 18.48). However, this baseline introduces significantly
higher inference latency and memory consumption due to the additional use of CLIP/DINO models.
Specifically, for the CLIP model, the inference time is three times longer (1.656s vs. 0.501s, 3.3
times), and for the DINO model, the inference time is almost twice as long (0.948s vs. 0.501s, 1.89
time).

Besides, we would like to emphasize that by distilling 2D foundation model features into our model,
we not only enable it to render 2D foundation model feature images, but also lift 2D foundation
models into 3D simultaneously. The resulting 3D voxel fields, similar to those in EmerNeRF [14]
and LeRF [42], contain rich semantic information. As demonstrated by prior works such as LeRF-
ToGo [60], ConceptFusion [61] and FeatureNeRF [20], such 3D foundational features can greatly
facilitate 3D multimodal grounding (e.g. bridging language via CLIP features) and effectively benefit
downstream tasks such as segmentation, keypoint transfer, and robot planning in open world.

Table 6: The reconstruction accuracy and inference speed of two approaches to generate foundation
model feature images.

CLIP Inference time (s) CLIP PSNR DINO Inference time (s) DINO PSNR
DistillNeRF rendering RGB + FM model 1.65651 19.81 0.94878 21.70
DistillNeRF rendering FM (Ours) 0.50175 18.69 0.50175 18.48

A.5 Details on Training Losses

At the end of Sec 3, we introduced the training loss of our method:

L = Lrgb + Ldepth + Ldensity︸ ︷︷ ︸
rendering

+LNeRF + Lfound︸ ︷︷ ︸
distillation

, (5)

where Lrgb and Ldepth are rendering losses for RGB and depth; Ldensity is a density entropy loss
as in [14]; LNeRF and Lfound denote distillation losses from offline NeRFs and foundation models.
Here we introduce more details on each loss terms by describing their equations or pseudo code:

17

• Lrgb comprises L1 loss and perceptual loss:

||GTRGB − PredRGB ||2 + LPIPS(GTRGB , P redRGB) (6)

• Ldepth includes L1 and MSE loss:

||GTdepth − Preddepth||
max_gt_depth

+
||GTdepth − Preddepth||2

max_gt_depth
(7)

where we normalize the absolute depth values to 0 1, and the L1 and MSE losses are
computed between ground truth depths (LiDAR points projected onto image planes) and
predicted depths.

• Ldensity is a density entropy loss from EmerNeRF, which encourages the opacity of a ray to
be 1:

BEC(opacity, ones_like(opacity)) (8)
, where opacity is the accumulated opacity per ray, and BCE is the binary cross entropy loss.

• Lnerf captures the distillation from per-scene NeRFs, including: 1) Dense depth distillation
loss: The same depth loss equation as above, but computed with a different ground-truth,
namely dense depth maps rendered from per-scene NeRFs in original camera views. 2)
Novel camera view supervision: the same RGB and depth losses above, but between the
per-scene NeRFs’ rendered results and our online models’ predictions.

• Lfound : L1 loss on the predicted foundation model features:

||GTfeats − Predfeats|| (9)

A.6 Inference Time Analysis

In our paper, we demonstrate that our method substantially outperforms other SOTA generalizable
approaches, specifically SelfOcc and UniPad, with a reconstruction PSNR of 30.11 compared to
20.67 and 19.44, respectively. To provide a thorough evaluation, we also analyzed the inference
speed of our method alongside SelfOcc and UniPad, and present the results in Tab. A.6. The table
details the inference time for each component in our method: our model requires a total of 0.4867s
for inference, with 0.3594s dedicated to voxel prediction from six image inputs and 0.1273s for
rendering six images (achieving approximately 47 fps for a single camera). In comparison, SelfOcc
and UniPad achieve total inference times of 0.1771s and 0.6514s, respectively.

• As expected, SelfOcc achieves high inference speed, since it adopts an implicit representation
where deformable cross-attention is used to aggregate information from the image features to
generate a 3D SDF field. In comparison, our explicit voxel representation takes decent time
for the 3D convolution operations, but offers additional benefits such as more straightforward
manipulation (e.g. removing or replacing object for simulation use), and flexibility to scale
to different levels of detail by adjusting the voxel resolution.

• UniPad utilizes a voxel-based representation, making it more directly comparable to our
approach. Our method shows faster inference speed, presumably due to key designs such as
voxel sparsification, and the lightweight decoder that enables efficient rendering.

Evaluations were conducted on the same desktop-grade system (13th Gen Intel(R) Core(TM) i7-
13700KF, NVIDIA GeForce RTX 4090) and used the same image resolution (228 × 128). To ensure
accurate inference time measurement, we performed CUDA synchronization to exclude the time
associated with tensor transfers.

A.7 Implementation Details

The resolution of input RGB images, rendered RGB, and rendered depth are 114×228, 114×228, and
64×114 respectively. To favor downstream tasks (e.g. occupancy prediction typically considers the
region of interest as [-40, -40, -1.6, 40, 40, 4.8]), in our parameterized neural field, the range of the
inner voxel is 50 meters for the two horizontal directions and 6.4 meters for the vertical directions,
and the proportion of the inner range α is set as 0.8. For the sparse voxel representation, we create
two multi-resolution octrees with the finest levels of 7 and 9, respectively, where we employ the
Kaolin library for implementation, ensuring robust and efficient handling of voxel data.

18

Table 7: Inference time comparison with SOTA methods, and a breakdown on each component in our
model.

Method (Component) Run Time (s) Reconstruction PSNR
SelfOcc 0.1771 20.67
UniPAD 0.6514 19.44
DistillNeRF (Ours) 0.4867 30.11

Encoder 0.3594 -
Single-view encoding 0.0407 -
Multi-view fusion 0.3186 -

Voxel convolution 0.2494 -
Renderer 0.1273 -

Projection + Ray march 0.1264 -
Decoder 0.0008 -

During single-view encoding, to generate the depth feature map in the first stage, we feed each
image to feature pyramid network (FPN) [62] to generate multi-scale fused features, which are
then concatenated with prior depth features from [63] as the final depth feature map for the image.
Specifically, we extracted the feature before the output layer as the prior depth feature. To generate
the density of each depth candidate in the second stage, we first embed the depth candidate, then
concatenate it with the depth feature map from the first stage, and further embed the concatenated
feature. To generate the 2D image features, we use the same strategy as in the first-stage depth
prediction, namely feeding each image to feature pyramid network (FPN) [62] to generate multi-scale
fused features, which are then concatenated with prior depth features from [63].

Regarding the virtual camera distillation, for each of the six cameras, we move the camera pose
1 meter away from the original camera pose in three directions (upward, leftward, and rightward),
to render virtual depths/RGB images from offline NeRFs. During training, for each camera, we
randomly sample one virtual view for supervision in addition to the original camera view. To facilitate
CLIP/DINOv2 feature synthesis, we use the PCA matrix to reduce the feature dimension from 768 to
64. The PCA matrix is generated according to random samples from ground-truth feature images,
and is applied to all data samples.

We trained DistillNeRFs on 8x A100 GPUs, each with 80 GB memory, for around 4 days. We use
a learning rate of 0.0002, and the Adam optimizer with an exponential decay rate of the moving
averages β1 = 0, β2 = 0.99. We apply a gradient clip with a maximum 35 l2 norm to stabilize
training. At inference, our model takes around 1.708s for single-view encoding/lifting, and multi-view
fusion, and around 0.685s for rendering RGB images, tested on a local machine with an NVIDIA
TITAN RTX GPU, and an Intel(R) Core(TM) i9-10980XE CPU. Moderate training instabilities and
oscillations were observed, particularly in depth prediction, which tended to fluctuate across epochs
and runs. This behavior is likely due to the trade-off between geometry and rendering introduced by
the sparse hierarchical design.

19

Figure 6: Qualitative comparison on RGB image and depth image reconstruction. Our generalizable
DistillNerf is on par with SOTA offline per-scene optimized NeRF method (EmerNerf), and signifi-
cantly outperforms SOTA generalizable methods (UniPAD and SelfOcc).

20

Figure 7: Qualitative ablation studies of our model on the RGB image and depth image reconstruction.
Without depth distillation, we see inconsistent depth predictions between low and high regions of
the image. Without parameterized space, the model can only predict depth in a limited depth range,
while with parameterized space we can generate reasonable unbounded depth.

21

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We believe our claims accurately reflect actual contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed in the last section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

22

Justification: We do not have theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We believe our main results can be reproduced with the provided details in the
main text. Additionally we also plan to release code and pretrained model checkpoints.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

23

Answer: [No]

Justification: We are unable to release code at the time of submission, however, we do plan
to do so shortly after.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We believe the key required details have been already included in the main
text, but we also plan to release code to reproduce our results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: we did not include statistical significance results due to the prohibitive cost
of training both our model and baselines, and because for the majority of our baselines
statistical significance results were not reported.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See implementation details section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed and abided by the NeurIPS Code of Ethics, and ensured
anonymity in the submission.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The focus of this research is on scene representation and reconstruction for
autonomous driving. We utilize publicly available datasets that may raise individual privacy
concerns, as well as foundation models trained on diverse data, where the exact source
of data is not always defined. The driving dataset used to train our model should aim to
protect personal privacy, for example, by using advanced object detection technologies to
anonymize faces and vehicle license plates. Additionally, a challenging aspect that requires
special attention involves ensuring data diversity, including not just geographical variety,
but also differences in population, architectural styles, and the timing of data collection.

25

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We believe our paper does not have higher risk for misuse; however, it inherits
risks associated with foundation models, for which existing safeguards should be used.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All sources and licences have been accredited to the best of our knowledge.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

26

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Releasing assets is not the main contribution of the paper, but we do plan to
release code and trained checkpoints along with appropriate documentation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No experiments with crowdsourcing or human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No experiments with crowdsourcing or human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

27

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28

	Introduction
	Related Work
	Method
	Sparse Hierarchical Voxel Model
	Self-supervised Training with Distillation

	Experiments
	Rendering Images and Foundation Features
	Depth Estimation
	3D Semantic Occupancy Prediction

	Conclusion
	Appendix
	Discussion on Challenges in Driving Scenes
	Ablation Studies on Model Component
	Discussion on Advantages of Different Ways of Lifting 2D to 3D.
	Discussions and Ablations on Foundation Model Feature Distillation
	Details on Training Losses
	Inference Time Analysis
	Implementation Details

