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Abstract

Neural signals are typical nonstationary data where the functional mapping between
neural activities and the intentions (such as the velocity of movements) can occa-
sionally change. Existing studies mostly use a fixed neural decoder, thus suffering
from an unstable performance given neural functional changes. We propose a
novel evolutionary ensemble framework (EvoEnsemble) to dynamically cope with
changes in neural signals by evolving the decoder model accordingly. EvoEnsemble
integrates evolutionary computation algorithms in a Bayesian framework where the
fitness of models can be sequentially computed with their likelihoods according to
the incoming data at each time slot, which enables online tracking of time-varying
functions. Two strategies of evolve-at-changes and history-model-archive are de-
signed to further improve efficiency and stability. Experiments with simulations
and neural signals demonstrate that EvoEnsemble can track the changes in func-
tions effectively thus improving the accuracy and robustness of neural decoding.
The improvement is most significant in neural signals with functional changes.

1 Introduction

Nonstationary signals widely exist in the real world, where the properties and functions can change
continuously over time. Neural signals are typical nonstationary signals, where the inherent dynamics
in the neural systems, the plasticity of synapses driven by learning and adaptation contribute to the
variability of neural encoding of the brain [1, 2]. The nonstationary property of neural signals forms
a challenging problem in the brain-computer interfaces (BCIs) field [3–9], because the decoding
accuracy will degrade over time given changing neural functions and a fixed neural decoder.

Considering the nonstationary of neural signals, the neural encoding model, can be presented by:

yt = ht(xt) + qt, (1)

where yt denotes the neural signal we observed at time t, the function ht(·) is the neural encoding
model that changes over time, and xt denotes the state to be encoded such as the velocity of a
computer cursor, and qt is biological or external noises. Typical neural decoders such as OLE [10]
and Kalman filters (KF) [11] mostly assume a stationary ht(·), namely ht(·) ≡ h0(·), (t = 1, 2, 3, ...),

∗Corresponding authors: Yu Qi and Yueming Wang

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



which can be oversimplified especially for online BCI systems. Recent studies showed that, in online
BCI control, neural encoding functions change significantly with the influence of real-time feedback
such as the speed of the cursor and errors in control [12, 13]. The functional changes in neural
encoding frequently occur over time, even in a single target reaching trial [14].

How to cope with the functional changes in the neural system? Ideally, a neural decoder should
be capable of adjusting itself along with changes in neural signals. To this end, there are two main
types of solutions. The first one is re-calibration of neural decoders periodically or manually when
the performance degrades [15, 16] to maintain the control accuracy. Brandman et al. proposed a
framework for rapid calibration, which removed the traditional open-loop calibration phase and
reduced the original 2-5 min calibration interval to 2-5 s with Bayesian parameter updating. However,
such a training process can still disturb the BCI users and usually can not cope with changes in the
short-term such as single trials. Another way is to design an adaptive or dynamic model [17–19].
Wang et al. proposed a framework that used dual state-space models to estimate both kinematics and
neural tuning functions. However, this method does not directly model the neural variability. Qi et al.
proposed a novel dynamic ensemble Bayesian filter (DyEnsemble) which obtained the state-of-the-art
performance with nonstationary neural signals [20]. DyEnsemble constructs a pool of encoding
models, and adaptively assembles a decoder from these models online according to neural signals
with a recursive Bayesian filter, which allows the neural decoder adjust its functions to cope with
the changes in neural signals. However, DyEnsemble employs a static model pool, only addressing
neural changes in a certain range. The ability can be limited given continuous functional changes in
long-term neural recordings.

Regarding the encoding changes in neural signals as a functional tracking problem, we propose an
evolutionary ensemble Bayesian filter (EvoEnsemble) to track the neural encoding functions over
time by incorporating evolutionary computation in a recursive Bayesian framework. Specifically,
EvoEnsemble maintains a population (i.e., a set of candidate functions) to estimate the neural
functions, where the changing fitness of the population is dynamically computed by the likelihood
given neural signals (observation) over time. In this way, the population evolution can be driven by
the changes in neural signals. Meanwhile, the time-varying functions can be tracked by the posterior
distribution of the candidate functions with Bayesian model averaging rules.

The main contributions of this study can be summarized as follows: (1) We propose a new framework
that extends evolutionary computation in a Bayesian process to achieve robust state estimation with
neural functional changes; (2) We propose a particle-based solution to simultaneously track the
functional changes and estimate the state (e.g., the velocity of a cursor) sequentially online; (3) Two
strategies of evolve-at-changes and history-model-archive are proposed to improve the computational
efficiency and estimation stability.

Experiments with simulations and neural signals demonstrate the superiority of EvoEnsemble against
traditional decoders such as Kalman filters, and the improvement is most significant with functional
changes in neural signals.

2 State-space formulation with time-varying neural functions

Considering the temporal changes in neural functions, the state-space model can be defined by

xt = g(xt−1) + nt−1, (2)

yt = ht(xt) + qt, (3)

where t denotes the time slot. xt ∈ Rdz is the state we want to estimate; yt ∈ Rdy is the observation;
g(·) is the state transition function, with a Gaussian transition noise nt; and ht(·) is the time-varying
observation function which is dependent on t, with a Gaussian observation noise qt.

In a typical motor decoding problem, given a sequence of observed neural signals, a neural decoder
aims to estimate the corresponding kinematic states in a sequential manner. Here we define the state
xt with dz = 2, which contains the velocities of movements in x-axis and y-axis, and yt is the firing
rates of dy neurons.

The EvoEnsemble approach consists of two phases, one is the calibration phase and the other is
the test phase. During the calibration phase, training sample pairs are collected and used to learn
the transition function, as well as a set of initial encoding models to approximate the time-varying
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Figure 1: Illustration of the model evolution process (above) and the dynamic model assembling process (below).
At each time slot, EvoEnsemble encodes the prior kinematics with candidate models and then calculates the
model likelihoods through comparing the encoded neural signals with the observed neural signals. Afterwards,
the model likelihoods are used to evolve the model pool and assemble the models simultaneously.

observation function. Once the calibration phase is over, the transition function is fixed. Meanwhile, a
set of initial particles are randomly drown from a Gaussian distribution, to approximate the posterior
of the kinematic states. During the test phase, the particle likelihoods and model likelihoods are
calculated through comparing the neural signals encoded by the models with the observed ones. The
observation function changes along with the incoming neural signals through adaptively assembling
the encoding models in the model pool, where the assembling weights (i.e., the posterior probabilities
of the models) are updated from the model likelihood. When all models’ likelihoods in the model
pool are small, the model pool will be updated by EvoEnsemble through a differential evolution
algorithm, where model fitness is equal to the model likelihood.

3 Tracking functional changes with EvoEnsemble

EvoEnsemble tracks the changes of function ht(·) in Eq. (3) with a population of candidate functions
(model pool) which evolves with changes in data over time. Then it estimates ht(·) at each time slot t
by assembling the candidate functions in the model pool with a Bayesian model averaging algorithm.
To this end, there are several key problems: 1) how to evolve the model pool over time; 2) how to
dynamically assemble the model pool to an optimized estimation of ht(·); and 3) how to sequentially
estimate the state xt given ht(·).

Focusing on the problems above, the EvoEnsemble can be divided into three main components:
1) a population evolution algorithm to evolve the model pool in time (See Fig. 1 above); 2) a
dynamic Bayesian model ensemble approach estimate ht(·) from the model pool (See Fig. 1 below);
and 3) a particle filter to estimate xt given ht(·). Further, two strategies of evolve-at-changes and
history-model-archive are proposed to improve the efficiency and stability of the sequential process.

3.1 Population evolution in the Bayesian framework

In this section, we first introduce how to initialize the population, and then show how to dynamically
compute the fitness of the population with the model likelihoods in the Bayesian framework. After
that, we present the evolutionary process with the differential evolution (DE) algorithm.

3.1.1 Population initialization

The candidate model pool,M = {mk(·)|k = 1, 2, ..., N}, is first initialized by a set of encoding
models that transform kinematics into neural signals. To enrich the diversity of the model pool,
each model is trained with a different subset of the training data, which contains a randomly divided
segment. Here we use linear encoding models and the models are fitted with the least square algorithm.
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We denote the linear mapping matrix as Mk, and its parameters as a vector pk. Thus, for linear case,
the candidate model pool can also be denoted asM = {pk|k = 1, 2, ..., N}, where pk is the kth

individual in the evolution population. The specific operation of getting subset indices is given in
Appendix A.

3.1.2 Fitness definition by the model likelihood

The purpose of evolution is to search for the best individual in the population and evolve other
individuals towards it. Therefore, a fitness function that evaluates the quality of the model plays a
core role in evolutionary computation.

In the Bayesian framework, the fitness of a model can be defined by its likelihood given observation
data. A model with a high likelihood demonstrates good fitness. Since the candidate models in the
model pool are neural encoding functions, which predict neural signals given kinematic parameters,
we firstly infer the prior distribution of kinematics, namely xt, by Eq. (2), then for each candidate
function mk(·) we can infer the neural signal ŷk

t by Eq. (3), and compute the likelihood lk of the
observed neural signal yk

t given ŷk
t . The likelihood lk indicates the fitness of mk(·). The fitness

computation process is specified as follows.

Step1: Prior kinematics prediction. First, given the kinematics xt−1 at time t− 1, we can get the
prior kinematics p(xt|xt−1) at time t through the state transition function g(·) in Eq. (2).

Step2: Neural encoding with different models. Second, we can generate different neural signals
from the prior kinematics with different encoding models in the model pool. The neural signals
encoded by the kth model at time t is ŷk

t = mk(xt) = Mkxt.

Step3: Likelihood computing for each model. Third, we compute each model’s likelihood by
comparing its encoded neural signals ŷk

t with the incoming neural signals yt. One model’s likelihood
indicates how likely the observed neural signals are encoded by this model. The more likely it is, the
greater the value is. The marginal likelihood of the kth model, given the observed neural signals at
time t can be represented as follows:

pk(yt|y0:t−1) =

∫
pk(yt|xt)p(xt|y0:t−1)dxt, (4)

where the p(xt|y0:t−1) is the probability of a certain kinematic given all the neural signals before,
and pk(yt|xt) is the model likelihood given the certain kinematic. A particle-based solution towards
it will be given in Section 3.3, where the model likelihoods are obtained by summing the likelihoods
of a set of particles.

Step4: Fitness definition by the model likelihood. Finally, we define the fitness value of the
individual pk at time t using the likelihoods of recent time slots:

ft(p
k) =

1

lpre

t∑
j=t−lpre

pk(yj |y0:j−1), (5)

where lpre is the length of the recent time slots. Note that, the neural decoding is a sequential problem,
and we do not update the model pool at each time point. That is, we usually accumulate data for
several previous time slots for one update process.

3.1.3 Population evolution with the DE

With the initial model pool and the fitness function, we can evolve the population with evolutionary
computation algorithms. We use the DE algorithm with real-value encoding rather than those
evolutionary computation algorithms with binary encoding. DE is a global optimization algorithm
that follows an iterative population initialization, mutation, crossover and selection procedure. The
canonical DE is introduced in Appendix B, and here we present the DE in model evolution.

Current-to-pbest mutation. Mutation obtains evolution directions from individual differences. A
mutated population of the Gth generation {vk

G|k = 1, 2, ..., N} comes from the parent population
{pk

G|k = 1, 2, ..., N} according to a certain mutation strategy.
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To avoid the premature convergence problem and diverse the population [21], we adopt a
“DE/current-to-pbest/1" with archive strategy following [22]:

vk
G =pk

G+Fk ·(ppbest
G −pk

G)+Fk ·(p
r1k
G −p̃

r2k
G ), (6)

where ppbest
G is randomly chosen from the top 100∗p% of the population, and usually p ∈ [0.05, 0.2].

r1k and r2k are randomly selected indices in the range of [1, N ], being distinct from each other and

also the index k. The F is a list of the positive mutation factor and p̃
r2k
G is randomly selected from a

collection storing the inferior individuals. See more details in Appendix C.

Crossover. Crossover randomly selects component from either parent or mutated vectors in each
dimension. The individual after crossover is a D-dimension vector {uk

G =uk
1,G,u

k
2,G, ...,u

k
D,G}:

uk
j,G =

{
vkj,G, if rand(0, 1)≤CRk or j=jrand

pkj,G, otherwise
, (7)

where jrand is randomly chosen from [1, D], and the CR is a list of the positive crossover factor.

Selection. In the selection stage, the fitness function f(·) determines whether an individual stays in
the new population or not:

pk
G+1 =

{
uk
G, if f(uk

G) > f(pk
G)

pk
G, otherwise

. (8)

Usually, one model pool evolution process iterates for hundreds of generations (mutation, crossover,
selection) until it satisfies the pre-set conditions.

3.2 Estimating ht(·) with dynamic Bayesian model ensemble

A Bayesian model ensemble approach [20] is employed to estimate ht(·) at each time slot given the
model pool. Specifically, ht(·), can be represented as a weighted combination of models in the pool
by:

ht(·) =

N∑
k=1

wk
t ·mk(·), (9)

where wk
t is the assembling weight, changing with neural signals over time. It can be dynamically

obtained with the dynamic Bayesian ensemble algorithm.

Specifically, the assembling weight wk
t of each model mk(·) at time t is computed by the posterior

probability of each model given the observation neural signals yt

p(ht(·) = mk(·)|y0:t) =
p(ht(·) = mk(·)|y0:t−1)pk(yt|y0:t−1)

ΣN
j=1p(ht(·) = mj(·)|y0:t−1)pj(yt|y0:t−1)

, (10)

where p(ht(·) = mk(·)|y0:t−1) is the prior probability of mk(·) at time t, which is given by the
posterior probability of mk(·) at time t− 1; and pk(yt|y0:t−1) is the likelihood as in Eq. (4).

3.3 Estimating xt with a particle-based solution

With ht(·) at hand, we can estimate the posterior distribution of state xt by

p(xt|y0:t) =

N∑
k=1

p(xt|ht(·) = mk(·),y0:t)p(ht(·) = mk(·)|y0:t), (11)

where p(xt|ht(·) = mk(·),y0:t) is the posterior probability of the state with association to the kth

model, which can be estimated recursively with the Bayesian filter (i.e., the particle filter). And
p(ht(·) = mk(·)|y0:t) is the model weight coming from Eq. (10) with Bayesian model averaging
rules.

Specifically, we propose a particle-based solution to compute the model likelihoods and state
posterior simultaneously (see Appendix D for details). Suppose there is a set of particles
{x(1)

t ,x
(2)
t , ...,x

(Npar)
t }, and the normalised importance weights of particle s under the hypothe-

sis ht(·) = mk(·) are given by ωk(s)
t , s = 1, 2, ..., Npar, the particle-based marginal likelihood can
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be calculated as follows:

pk(yt|y0:t−1) =

Npar∑
s=1

ω
k(s)
t−1 p

k(yt|x
(s)
t ), (12)

where
∑Npar

s=1 ω
k(s)
t = 1. Further, the particle-based state posterior can be calculated by:

p(xt|ht(·) = mk(·),y0:t) ≈
Npar∑
s=1

ω
k(s)
t δ(xt − x(s)

t ), (13)

where δ is the Dirac delta function. When the Npar → ∞, the approximation approaches the true
posterior density.

3.4 Strategies for model pool update

We propose two strategies, namely evolve-at-changes and history-model-archive, to decide when to
update and how to update the model pool, respectively.

The evolve-at-changes strategy. The default setting of the EvoEnsemble is to update the model
pool at a regular interval tup. However, too large an interval may lead to untimely updates, while
too small an interval may lead to unnecessary updates. Evolve-at-changes is a strategy to choose
the update time adaptively according to the models’ likelihoods. Specifically, we maintain a list of
log-likelihood Lmax-ever where keeps the maximum log-likelihoods of all the candidate models in each
time slot. Every time a new neural signal comes in, we average the latest three values in Lmax-ever as
current log-likelihood lcur, and average the three values before the latest three values in Lmax-ever as
previous log-likelihood lpre. Meanwhile, we add a ratio rup for flexibility. Thus, the model pool will
update once lcur < rup · lpre. Besides, we limit the interval between two updates to 3 or more.

The history-model-archive strategy. The default setting of the EvoEnsemble is to update the model
pool using all individuals evolved by DE. However, DE tends to evolve the models all towards the
best model and leaves the model pool lacking diversity, which is insufficient to characterize the
variability of neural signals. Thus, we establish a history model archive mhis, to store the best models
in each time slot, whose size is in line with the main model pool. When the iterations of DE finish,
we randomly choose models in the history model archive, replacing the models in the evolved model
pool. Again, we define a ratio rpre to determine how many history models to be preserved in the
main model pool, which can be written as Npre = rpre · N . So the final updated model pool is
{pk|k = 1, 2, ..., N} = {pr1

his,p
r2
his, ...,p

rNpre
his ,pNpre+1,pNpre+2, ...,pN}.

4 Experiments and results

4.1 Performance with simulations

To evaluate the performance of EvoEnsemble with different conditions of functional changes, we
simulate several conditions of changing functions, including functions with slow or rapid monotonic
changes, functions with slow or rapid non-monotonic changes, and a piece-wisely changing function
(as shown by the red lines in Fig. 2 (a), see details in Appendix D). Specifically, the function’s
first parameter for conditions 1 - 4 is the same: h1

t = 7E-3t + 1, 1 ≤ t ≤ 300, while the second
parameters are:

(1) h2
t = 7E-4t− 1.9;

(2) h2
t = 1.12E-2t + 2.6;

(3) h2
t = 9.8E-6t2 − 2.8E-3t + 3.4;

(4) h2
t = −3.43E-5t2 + 4.2E-3t− 1.7;

For condition 5, the parameters piece-wisely change over time:
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Figure 2: (a) Function parameter h2
t tracking performance of EvoEnsemble (yellow) and EvoEnsemble(w/o

DE) (blue) in five conditions, comparing with the ground truth (pink). (b) Visualization of model ensemble and
model evolution process with EvoEnsemble(w/o DE) (above) and EvoEnsemble (below). (c) Comparisons of
candidate model likelihoods change. (d) Comparisons of decoding performance change. (e) Overall performance
of R2, CC, RMSE in five conditions comparing between four different decoders.

(5) h1
t =


4, 0 < t ≤ 168,

1E-2t + 2.32, 168 < t ≤ 345,

5.77, 345 < t ≤ 517,

−2E-2t + 1.611E1, 517 < t ≤ 650;

h2
t =


5, 0 < t ≤ 168,

−2E-2t + 8.36, 168 < t ≤ 345,

1.46, 345 < t ≤ 517,

1E-2t− 3.71, 517 < t ≤ 650.

Performance of functional tracking. We first evaluate the functional tracking ability of EvoEnsem-
ble with different conditions. Fig. 2 (a) illustrates the ground truth (red lines) and the EvoEnsemble
estimated (yellow lines) function’s parameters h2

t compared with EvoEnsemble without DE-based
model evolution (blue lines). Results demonstrate that EvoEnsemble tracks the changes in functions
closely over time for all five conditions. To further analyze how EvoEnsemble tracks the functional
changes with the evolutionary model pool, we present the internal tracking process within EvoEnsem-
ble in Fig. 2 (b). It shows that the candidate functions in the model pool can effectively follow
changes of the true function ht with the model evolution process, such that the dynamic estimation of
ht is obtained. To quantitively evaluate the functional tracking process, we compute the likelihood
of the functions estimated over time in Fig. 2 (c). EvoEnsemble keeps a high likelihood to the
neural data with different changes, suggesting that EvoEnsemble can effectively capture the changing
functions in time.

Performance of state estimation. Here we evaluate the state estimation performance with different
criteria of correlation coefficient (CC), root mean squared error (RMSE), and determination of
coefficients (R2) between the estimated and ground-truth state sequences. Fig. 2 (d) illustrates the
R2 of the estimated states. Results show that, without the model evolution process, the performance
decreases gradually as the function changes, and the R2 decrease to 0.552, 0, 0.187, 0, and 0.896 with
the five conditions respectively. EvoEnsemble is more robust to functional changes that the R2s are
0.975, 0.759, 0.970, 0.764, and 0.986 for the five conditions, respectively. Fig. 2 (e) further compare
the state estimation performance with different neural decoders. Overall, EvoEnsemble achieves the
superior performance with all the conditions, with stable high R2, CC and low RMSE. Specifically,
EvoEnsemble obtains CCs of 0.894, 0.905, 0.952, 0.895, and 0.997 with the five conditions, which
are 12.6%, 105.2%, 1.7%, 155.0%, and 4.7% higher than Kalman filters (see details in Appendix E).

These results suggest the necessity and importance of functional tracking for robust state estimation
with time-varying functions, and demonstrate that EvoEnsemble can track the changing functions
effectively to improve the accuracy and robustness of state estimation.

Effectiveness of the evolve-at-changes strategy. The evolve-at-changes strategy aims to control
‘when to update’ the model pool to balance the trade-off between efficiency and accuracy: frequently

7



Figure 3: (a) The changes of log-likelihood and decoding R2 in five different model update settings, where
the dashed line represents the update time point. (b) The changes of R2 over time under different update ratio
rup settings, where the asterisks denote the update time point. (c) The maximum log-likelihood of the models
coming from history and from evolution after each update (above) in condition 3 (below). (d) Comparison of
the decoding R2 between EvoEnsemble without history-model-archive strategy and with history-model-archive
strategies (above). The decoding R2 under different historical model preserving ratios rpre (below).

updating the model pool helps track the changes in functions more precisely while requiring more
computational costs. Here we compare the state estimation performance using different model
updating rules with simulation 4. Fig. 3 (a) compares the log-likelihood of models and the state
estimation R2 with five different settings of 1) no updating; 2) updating with a regular time interval;
and 3) updating with the evolve-at-changes strategy. Results demonstrate that with the proposed
strategy, EvoEnsemble achieves a high R2 of 0.741 comparable to 0.764, while reducing 72.2%
of model update costs, which well balances the efficiency and accuracy. Fig. 3 (b) analyzes the
influence of updating ratio rup using R2 together with the update timing (with the asterisks). Results
demonstrate that the decoding performance is relatively stable when the update ratio is 0.4 to 0.9.

Effectiveness of the history-model-archive strategy. History-model-archive is proposed to improve
the stability of state estimation with the information of historical models. Fig. 3 (c) shows the
maximum log-likelihoods of the models from the historical model pool (blue bars) and the current
model pool (red bars) after every update in condition 3, where a non-monotonic functional change is
involved (as shown in the lower panel of Fig. 3 (c)). From time slots 0 to 150 where the function
gradually deviates from the initial, models in the current model pool gradually take the dominant
part to track the changing functions with model evolution. While from time slots 180 to 300 where
the function comes back to the initial, the likelihood of historical models gradually increases. We
further evaluate the decoding performance of R2 with different history preserve ratio rpre. Fig. 3
(d) (above) shows that the history-model-archive strategy improves the decoding performance in all
five conditions. Fig. 3 (d) (below) tests the influence of history preserve ratio (rpre) parameter in the
history-model-archive strategy, which shows that the optimal rpre relies on the conditions of data.
Thus rpre can be selected as a hyper parameter for each dataset.

4.2 Performance with neural signals

We evaluate our EvoEnsemble approach on four datasets with neural signals recorded from a macaque
monkey (Data-M) and a human with tetraplegia (Data-P1/2/3).

Monkey neural datasets. The monkey data is from the open Zenodo dataset [23] where the monkeys
were trained to perform a self-paced reaching task in an 8 ∗ 8 grid (as shown in Fig. 4 (a)). Neural
spike signals are recorded from the M1 area. We use the data segment of indy-2017012401, and we
select 20 channels according to the CC between neural signals and kinematics. The neural data are
smoothed with a window of 3 time slots. The hand velocities are obtained from the position by a
discrete derivative.

8



Figure 4: (a) Illustration of the grid reaching paradigm with a macaque monkey. (b) Illustration of the center-out
paradigm with a human participant. (c) The neural decoding performance R2, CC, RMSE of the four neural
datasets. (d) The tracking performance for four exemplary parameters of Data-M with EvoEnsemble(w/o DE)
and EvoEnsemble.

Clinical neural datasets. The clinical dataset was collected with a human subject, with two 96-
channel Utah arrays implanted in the left primary motor cortex. All the clinical and experimental
procedures were approved by the Medical Ethics Committee. The BCI experiment paradigm is a
center-out 2D cursor control with eight directions (as shown in Fig. 4 (b)). In the online closed-loop
BCI control, there is a calibration phase with two observation blocks and three ortho-impedance
assistant training blocks similar to [24], where the ortho-impedance assistance ratios of the three
blocks are 0.7,0.5, and 0.3 respectively. After the training blocks, a full brain control block where
no ortho-impedance assistance is applied. We use the training blocks for decoder training, and the
sixth block for the test. Neural signals are sorted manually before each day’s experiment. Similar to
Data-M, 20 neurons with top CCs between neural signals and kinematics are selected. Data-P1/2/3
were collected in 20201208/09/14 respectively.

Neural decoding performance. The neural decoding performance with Data-M and Data-P1/2/3
is presented in Table 1 and Fig. 4 (c). Overall, EvoEnsemble outperforms the other decoders in all
the datasets. Compared with the static decoders such as the Kalman filter, EvoEnsemble obtains
CCs of 0.764, 0.547, 0.561 and 0.487 with Data-M and Data-P1/2/3 respectively, which are 7.2%,
39.2%, 26.1% and 43.2% higher than the Kalman filter. The improvement is most significant in the
Data-P datasets with closed-loop BCI control. We think it is partly because that the feedback in the
closed-loop BCI control process may lead to frequent functional changes in neural signals (as shown
in Fig. S1). The functional changes lead to unstable performance with static approaches of particle
filters (PF) and Kalman filters, such that low CCs of 0.337, 0.437, 0.343 (PF) and 0.393, 0.445,
0.340 (KF) are obtained. With the DyEnsemble approach [20] where the neural decoder dynamically
adjusts along with changes in neural signals, the performance increases to 0.513, 0.485, and 0.472
for the three datasets respectively. However, without the model evolution process, the performance
is limited given substantial changes in functions (in Data-P1/2, see Fig. S1). While EvoEnsemble
further improves the performance by 6.6% and 15.7% on Data P1/2 with the functional tracking
ability.

The three adaptive neural decoders of Kalman filter (recalib), DyEnsemble and EvoEnsemble obtain
higher performance compared with static ones. Kalman filter (recalib) recalibrates the neural decoder
every 20 time slots to cope with changes in neural functions [16]; and DyEnsemble increases the
model pool with two strategies of connection dropout and weight perturbation [20]. Compared
with the Kalman filter (recalib), EvoEnsemble improves the CCs by 8.4%, 14.7%, 2.4% and 10.9%
with the four datasets respectively; and the improvement are 4.5%, 6.6%, 15.7% and 3.2% respec-
tively compared with the DyEnsemble approach. The results demonstrate the superior ability of
EvoEnsemble in accurate and robust neural decoding with neural functional changes.

Functional tracking performance. In Fig. 4 (d), we further illustrate the functional tracking
performance of EvoEnsemble with and without the model evolution process. In each subfigure,
the red line indicates the function parameter computed in every temporal time slot given neural
signals and the true movement trajectories, which we regard as the ground truth of the parameter
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Table 1: Decoding performance (CC) of different decoders.

Decoder Data-M Data-P1 Data-P2 Data-P3
Particle filter 0.699 ± 0.004 0.337 ± 0.006 0.437 ± 0.017 0.343 ± 0.005
Kalman filter 0.713 ± 0.000 0.393 ± 0.000 0.445 ± 0.000 0.340 ± 0.000

Kalman filter (recalib) [16] 0.705 ± 0.000 0.477 ± 0.000 0.548 ± 0.000 0.439 ± 0.000
DyEnsemble [20] 0.731 ± 0.001 0.513 ± 0.001 0.485 ± 0.001 0.472 ± 0.001

EvoEnsemble (ours) 0.764 ± 0.007 0.547 ± 0.011 0.561 ± 0.017 0.487 ± 0.011

over time. The yellow lines indicate the estimation of the parameters with both EvoEnsemble (right)
and EvoEnsemble (w/o DE) (left). Results demonstrate that, although EvoEnsemble (w/o DE)
demonstrates its model adaptation ability to a certain extent, the range of functional adjustment is
limited with a fixed model pool. Thus EvoEnsemble (w/o DE) can be effective with slight functional
changes in a certain range, and face difficulties with substantial changes in functions. On the other
hand, the EvoEnsemble model can closely follow the changes in the parameters over time, such that
it improves the functional tracking ability as well as the neural decoding accuracy (see Fig. S2 and
Fig. S3 for more examples).

5 Conclusions

We propose an evolutionary ensemble Bayesian model (EvoEnsemble) for accurate and robust neural
decoding under functional changes in neural signals. It incorporates evolutionary computation in
a Bayesian filter framework which enables the temporal evolution of neural decoder driven by the
model likelihood given incoming neural signals. Experiments with both simulations and neural
signals strongly demonstrate the necessity and importance of the functional tracking for robust state
estimation with time-varying functions. EvoEnsemble can track the changing functions effectively
with both simulation and neural signals to improve the accuracy and robustness in state estimation.
One limitation of our approach is the computational efficiency of the evolution process, since it
requires hundreds of generations for one model pool update process. Our future work may focus on
improving the efficiency of evolutionary computation. The framework of EvoEnsemble is beneficial
to a wide range of problems in the nonstationary signal processing area.
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