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Abstract

Predicting the consequences based on some001
past events has a huge potential in various Nat-002
ural Language Processing applications. How-003
ever, existing work faces two shortcomings:004
(1) Simple modeling scenarios, such as Script005
Event Prediction task, which predict subse-006
quent events only based on an event chain; (2)007
Interpolation scenarios, such as Event Knowl-008
edge Graph Completion task, where the pre-009
dicted event has already occurred in known010
events. In this paper, we propose a new011
task named Event Causality Graph Prediction,012
which forecast the consequence event based013
on an event causality graph constructed from014
a document describing complex event scenar-015
ios. To that end, we propose two correspond-016
ing datasets and an Graph Contrastive Prompt017
Learning model(GCPL), which utilize the ben-018
efits of graph prompt learning and introduce the019
Dual Encoder to integrate node text and graph020
structure information. We conduct extensive021
experiments on two datasets and our GCPL022
achieves state-of-the-art performance among023
all competitors.024

1 Introduction025

What Happens Next? Predicting the potential con-026

sequences that may arise by knowing some past027

events is of great significance to various Natu-028

ral Language Processing applications, e.g. Sen-029

timent Analysis (Zhang et al., 2022), Dialogue030

Systems (Tang et al., 2021b; Chen et al., 2017),031

Planning Decisions (Arnold and Sally, 1997).032

Script Event Prediction (SEP) (Zhou et al.,033

2022a; Jans et al., 2012), as a classic event pre-034

diction task, aims to predict subsequent event from035

a set of candidate events, based on a simple event036

script1 (Granroth-Wilding and Clark, 2016; Huang037

et al., 2021). For example, given the script "read038

menu – order food – take food – eat foot", the039

model is required to predict "pay the food" as the040

subsequent event from the candidate set. However,041

the task focuses on simple scenarios, just a single042

event chain, which fails to fully capture the interac-043

1Script refers to a standardized event sequence pattern that
commonly occurs in a particular situation or field. It describes
the relationships and sequential order between events.

tions between events, making this task unsuitable 044

for complex event modeling. 045

Figure 1: An example of Consequence Event Prediction
based on Causality Event Knowledge Graph.

Once event interactions become complex, they 046

are often represented in the form of graph, known 047

as event knowledge graph (EKG) (Gottschalk and 048

Demidova, 2018; Guan et al., 2022). Event Knowl- 049

edge Graph Completion (EKGC) (Wang et al., 050

2022a), similar to event prediction, aims to pre- 051

dict missing events in instance graphs from the 052

schema graph2. However, the candidate events for 053

this task may have already appeared in the schema 054

graph, meaning that EKGC is an interpolation task. 055

Furthermore, schema graph needs to be derived 056

from multiple instance graphs, which is known as 057

Event Schema Induction task (Chambers, 2013; 058

Huang et al., 2021; Li et al., 2020), but EKGC 059

utilizes it solely as prior knowledge to guide the 060

model to make predictions. It is worth noting that 061

EKGC is inspired by Knowledge Graph Comple- 062

tion (KGC) (Lv et al., 2022; Lovelace et al., 2021), 063

but instead of completing a single entity knowl- 064

edge graph, EKGC focuses on completing multiple 065

event instance graphs. 066

To address the aforementioned shortcomings, 067

this paper introduces a new task called Causality 068

Graph Event Prediction (CGEP). As illustrated in 069

Fig. 1, CGEP aims to forecast the consequence 070

2Event schema graph serves as a general and abstract rep-
resentation of a particular type of complex event.
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event based on an event causality graph, which071

is constructed from a document describing com-072

plex event scenarios. And the predicted event does073

not appear in the known information, such as the074

causality graph, indicating that our task involved075

extrapolation.076

Furthermore, in order to tackle this task, we con-077

struct two corresponding datasets, named MAVEN-078

GEP and ESG, containing 14667 and 1378 pieces079

of data respectively. Simultaneously, we pro-080

pose the Graph Contrastive Prompt Learning081

model(GCPL), based on graph prompt learning.082

Specifically, we introduce the Dual Encoder mod-083

ule to integrate node text and graph structure in-084

formation effectively. Secondly, we leverage the085

benefits of contrastive learning to guide PLM to un-086

derstand the potential differences between golden087

events and other events. We conducted an exten-088

sive experiments on the proposed datasets, and the089

results demonstrate that our model achieve state-of-090

the-art performance.091

Our main contributions can be summarized as092

follows:093

1. We propose a more challenging but practical094

Causality Graph Event Prediction (CGEP)095

task, representing the first migration of event096

prediction to event causality graphs.097

2. We create two suitable datasets and propose098

an effective baseline model GCPL, based on099

graph prompt learning, for this new task.100

3. Extensive experiments on two datasets demon-101

strate the superior performance of our model,102

indicating that GCPL can serve as a robust103

baseline.104

2 Event Causality Graph Prediction105

2.1 Task Descriptions106

The ECGP task is defined as predicting some conse-107

quential events that are most likely to happen next,108

given some past events and their causal relations.109

We construct an event causality graph (ECG)110

consisting of past events as nodes and their causal111

relations as directed edges. Let G = (V,E) denote112

the ECG, where an event node ei ∈ V contains113

the event mention and (ei, ej) ∈ E is a directed114

edge from the event ei to the event ej , indicating115

that ei causes ej , i.e. ei → ej . Notice that an116

ECG G is a directed acyclic graph. We call a117

node et ∈ G as a tail node, if there does not exist118

an edge starting from et to any other node in the 119

ECG. We assume to have a candidate set of all 120

possible consequential events. Let C denote the 121

candidate set, where c ∈ C is a consequential event 122

containing its mention word(s). The objective of 123

the ECGP task is to select the most likely candidate 124

event c∗ ∈ C for a tail node et ∈ G. 125

Figure 1 illustrates an ECG example, which is 126

constructed based on the annotated event mentions 127

(nodes) and annotated events’ causal relations (di- 128

rected edges) in a document. 129

Figure 2: Data Processing Flowchart: The data process-
ing involves transforming an original EKG into multiple
data instances, with each instance specifically predicting
a single leaf event.

2.2 Task Datasets 130

We construct two ECGP datasets based on the pub- 131

lic dataset the MAVEN (Wang et al., 2022d) and 132

Event StoryLine Corpus (ESC v0.9) (Caselli and 133

Vossen, 2017), in which annotations for events’ 134

mentions and relations are available on a per docu- 135

ment basis. 136

Construct an instance ECG Based on the an- 137

notations, we first construct an original ECG Go 138

for each document. Notice that some events in a 139

document have no causal relations to other events, 140

i.e., they are isolated events. Based on Go, we con- 141

struct an instance ECG Gi by removing all isolated 142

event nodes in Go and also removing all tail nodes 143

and their corresponding edges in Go. 144

Construct a data instance We construct a data 145

instance containing a prophetic event and its be- 146
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Dataset Topic Doc. Relation Event Nodes
Causal Temporal Coreference Sub-Event Leaf Node Isolated Node Branch node

MAVEN-ERE 90 4480 57992 1216217 103193 15841 23006∗ 43032∗ 18247∗

ESC 22 258 1770 8111 1032 - 1193 2266 1875

Table 1: Statistics of MAVEN-ERE and ESC dataset.

MAVEN-GEP ESG
Train Valid Test Total Train Valid Test Total

Nodes 9.8 9.6 9.9 9.8 10.5 8.7 10.3 10.3
Edges 6.8 7.1 8.4 7.3 15.7 3.3 14.7 7.0

Sample 8735 2167 3765 14667 976 143 259 1378

Table 2: Statistics of our processed dataset. ESG takes
fold 1 as an example.

longing instance ECG. Note that a prophetic event147

is also a tail node in Gi. Three cases need to be148

considered in the original graph Go: (1) One-to-149

One: Only one event ei causes et and ei does not150

cause any other tail event, then a data instance is151

created with ei as a prophetic event in Gi. (2) One-152

to-Many: Only one event ei causes et and ei also153

causes other tail event et′ . We only choose one of154

such tail nodes for ei to construct a data instance.155

(3) Many-to-One: Two or more events {ei} cause156

et, each of which is as a prophetic event to con-157

struct one data instance.158

Construct a candidate set We construct a can-159

didate set for each prophetic event as follows: We160

include the event mention of the corresponding tail161

node et ∈ Go with ei → et as a candidate event162

(i.e., the ground truth), and randomly select the rest163

candidate events from all other tail nodes in all orig-164

inal ECGs of the dataset. In particular, we select in165

total 512 candidate events from the MAVEN-ERE166

and 256 from the EventStoryLine v0.9 (ESC) to167

form a candidate set of for each prescient event.168

Prevent answer leakage There is a possibility of169

answer leakage where the mention of a candidate170

event also appears in the contextual sentence. To171

deal with answer leakage, we replace the token of a172

candidate event mention by a special token [PAD]173

in the contextual sentence. For multi-tokens and174

discontinuous event mentions, we only replace the175

tokens in the corresponding positions.176

Dataset statistics We divide all the data instances177

into the training, validation, and test set. Table 2178

presents the statistics of the constructed ECGP179

datasets, namely, the MAVEN-ECGP and ESC-180

ECGP dataset.181

3 GCPL Model 182

Fig. 3 illustrates our GCPL model, including the 183

dual encoder module, the event classification mod- 184

ule and the event contrast module. 185

3.1 Dual Encoder 186

To enjoy both advantages of event causality graph 187

structure and document contextual semantic, we 188

propose a dual encoder to learn a representation for 189

past events and their causal relations. 190

Event Text Encoder Given the description text
S = [si]

LS
t=1 of event ei, where LS is the length of

the text and S contains the tokens of ei, to indicate
the location of event mention in the text, we incor-
porate virtual locators <c> and </c> on both sides
of the mention, i.e.

S = [s1, s2, ..., < c >, ei, < /c >, ..., sLS ]

Then, we take the sequence S as input to get the
embedding matrix HT of the text S:

HT = [hTs1 , h
T
s2 , ...] = TEncoder(S)

where TEncoder represents the text encoder and 191

we take hTei as the textual representation of event 192

ei. 193

Graph Structure Encoder For a given graph 194

G = (V,E), it contains only one type of edge, 195

i.e. (ei, causes, ej) ∈ E. To fully model the di- 196

rectionality of causality graph, we randomly trans- 197

form half of edges in E of type "causes" into 198

edges of type "causedBy", i.e. (ei, causes, ej) → 199

(ej , causedBy, ei) . At the same time, we also re- 200

gard non-causal event pairs as a type of edge, de- 201

noted as None, i.e. (ei, none, ek). 202

To construct the graph prompt templates T , we
employ the three types of edges mentioned above
with the same ratio and random order:

T = [CLS] + e1 causedBy e2[SEP] + ...

+ ei none ej [SEP]

+ ec causes [MASK] [SEP].

Once template T exceeds the length limit of PLM, 203

we will randomly discard a portion of the triples. 204
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In order to integrate text information into graph
structure information, we first input the template T
into the encoder’s embedding layer:{
HTE , HPE , HSE = GEncoder.embedding(T )

GEncoder = DeepCopy(TEncoder)

where HTE , HPE , HSE are the PLM-specific vec-205

tor matrix, named Token Embedding, Position Em-206

bedding, Segment Embedding(Devlin et al., 2018).207

And DeepCopy means that the parameters of GEn-208

coder come from the deep copy of TEncoder, that209

is, they are trained separately.210

Then, we replace the embedding of event ei in
HTE with hTei to get H†

TE , where hTei is the textual
representation of event ei mentioned above:

H†
TE = [hTE

[CLS], ...,h
T
ei
, ..., hTE

[MASK], h
TE
[SEP]]

Finally, we use H†
TE , HPE , HSE as subsequent

inputs to obtain the embedding matrix HGT :

HGT = GEncoder.encode((H†
TE , HPE , HSE))

We then use the [MASK] vector hGT
[MASK] for subse-211

quent prediction.212

3.2 Event Classification Module213

After the PLM encoding, we utilize the hidden214

state hGT
[MASK] ∈ RD of the input [MASK] to classify215

the entire vocabulary V and predict the final result.216

That is:217

P ([MASK] = ei ∈ V|hGT
[MASK])218

To address multi-token events in the candidate219

set, we replace them with a single virtual token220

<Ai> before training, and their initial embeddings221

are obtained by averaging the vectors of each token222

in the event mention. Subsequently, we apply a223

softmax layer to normalize the predicted probabili-224

ties of the candidate set events:225

P (ei ∈ C|hGT
[MASK]) =

exp((pei))∑|C|
j=1 exp((pej ))

226

Then, we select the event with the highest proba-227

bility from the candidates as the final prediction228

result.229

During the training stage, we utilize cross-230

entropy loss to calculate the loss of the module:231

LP = − 1

K

N∑
i

|C|∑
j=1

yj
i log(ŷ

j
i ) + λ∥θ∥2232

where yj
i represents the true value of the j-th can- 233

didate event of the i-th data, and ŷj
i represents the 234

corresponding prediction probability of the model. 235

λ and θ are the regularization hyper-parameters. 236

3.3 Event Contrast Module 237

Due to the large number of events in the candi- 238

date set, relying solely on [MASK] for classification 239

becomes challenging, particularly when the event 240

graph is sparse and the training data is limited. To 241

address this issue, we perform semantic compari- 242

son between the [MASK] vector and the candidate 243

event vector in the semantic space. 244

During the training stage, for the event eci ∈ C, 245

we first utilize the embedding layer of the PLMs to 246

obtain its embedding vector heci : 247

heci = Embedding(eci) 248

To fully consider the semantic information of
the candidate set events, we employ the [MASK]
embedding as the anchor sample, the label event
as a positive sample, and the remaining candidate
events as negative samples for semantic compari-
son: 

DA = Linear(hGT
[MASK])

D+ = Linear(heg)

D− = Linear(heci ), heci ∈ C/eg

Then, we utilize Supcon(Khosla et al., 2020) to 249

compute the contrastive loss as follows: 250

LC = − log
N∑
i=1

exp(sim(Di
A, D

i
+)/τ)∑

dj∈Di

exp(sim(Di
A, dj)/τ)

251

where sim uses cosine similarity and Di = 252

{Di
+} ∪ {Di

−j}
|C|−1
j=1 means the embedding of can- 253

didate events. τ is a hyper-parameter used to flatten 254

the similarity between anchor sample and positive 255

and negative samples. 256

3.4 Training Strategy 257

To jointly train the model, we linearly combine the 258

losses of the two modules using the hyperparam- 259

eter β. Make the model adapt to this task in both 260

vocabulary space and semantic space. Then, we 261

get the final loss as follows: 262

Ltotal = LP + β ∗ LC 263
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Figure 3: Illustration of GCPL. TE, PE, SE means Token Embedding, Position Embedding, Segment Embedding
respectively.

where β is a weight coefficient utilized to balance264

the prompt loss and contrast loss. During the val-265

idation and test phases, as the event contrast op-266

erates solely on the semantic space, we rely on267

the prompt module alone to predict the final conse-268

quence event.269

4 Experiments270

4.1 Experiments Setup271

Dataset Setting As the amount of processed ESG272

data is limited, we take measures to ensure the273

validity of the experimental results. Specifically,274

following (Zhao et al., 2021; Liu et al., 2021), we275

designate the last two topics as the development set,276

while the remaining 20 topics are used for conduct-277

ing 5-fold cross-validation experiments. In the case278

of MAVEN-GEP, as the original dataset does not279

provide test set labels, we designate the validation280

set as the test set. Additionally, we allocate 20%281

of the data from the train set to create a separate282

validation set.283

Parameter Setting We implement the overall284

model under the pytorch framework of Hugging-285

face Transformer (Wolf et al., 2020). We use286

RoBERTa-base (Liu et al., 2019) as Dual encoders287

while training the entire model on NVIDIA GTX288

3090 GPUs. We optimize the entire model using289

the AdamW (Loshchilov and Hutter, 2017) opti-290

mizer, with a learning rate of 1e-6, 5e-6, 1e-5. We291

perform early stop with the loss ratio β setting to 292

0.5 and τ setting to 1. 293

4.2 Competitors 294

We selected four models with the most advanced 295

performance in KGC and SEP tasks for comparison. 296

Since the original task models are not designed 297

to handle graph-structured data, we transform the 298

instance graph into a one-dimensional sequence as 299

input, similar to GCPL. 300

• CSProm-KG (Chen et al., 2023) constructs 301

soft parameters to fuse the graph structure and text 302

information for graph completion. 303

• SimKG (Wang et al., 2022b) employs three 304

types of negative examples in contrastive learning 305

to effectively complete the graph. 306

• BARTbase (Zhu et al., 2023) designs an event- 307

centered pre-training target to fine-tune PLM, and 308

then predicts subsequent events. 309

• MCPredictor (Bai et al., 2021) leverages the 310

transformer architecture to integrate event-level 311

and script-level information for script event pre- 312

diction. 313

4.3 Overall Results 314

Table 3 compares the overall performance between 315

our GCPL and the competitors on the MAVEN- 316

GEP and ESG datasets. 317

Text-Enabled : We can first observe that: (1) 318

GCPL achieved outstanding results in both datasets, 319
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Model MAVEN-GEP ESG

MRR Hit@1 Hit@3 Hit@10 Hit@50 MRR Hit@1 Hit@3 Hit@10 Hit@50

CSProm-KG 22.3(5.4) 17.8(3.8) 22.2(4.2) 31.2(7) 50.9(20.4) 14.8(14.2) 9.1(8.6) 14.7(13.9) 28.7(26.2) 44.5(42.1)
SimKG 8(7.3) 3.6(3.5) 8.2(6.9) 15.2(13.2) 32.4(28.7) 14.7(13.1) 7.7(5.4) 16.6(14.7) 25(23.8) 40(38.4)

BARTbase 22.5(5.5) 17.7(3.7) 22.1(5) 33.3(7.9) 52.5(21.4) 14.5(11.3) 7.9(5.4) 14.9(11.8) 29.2(24.8) 44.7(41.1)
MCPredictor 16.1(5.7) 11.3(2.8) 16.4(4.7) 25.9(11.3) 43.1(25.3) 14.1(9.2) 6.1(3) 15.5(9.3) 28.1(20.8) 41.7(37.6)

GCPL (RoBERTa) 30.3(10.7) 24.5(8.7) 31.7(10.1) 40.8(13.4) 58.2(26.2) 20.5(19.3) 15.4(9.6) 24(22.4) 32.8(31.8) 49.1(47.2)

Table 3: Overall results of comparison models on the MAVEN-GEP and ESG dataset. •(◦) represents the results of
GCPL with and without text settings.

outperforming other baseline models significantly.320

We attribute its excellent performance to the Dual321

Encoder architecture, avoiding coding conflicts in322

PLM adaptation to graph structure and sentence323

coding. (2) The performance of CSProm-KG sur-324

passes that of SimKG by a significant margin.325

This can be attributed to the incorporation of soft326

prompt parameters in each layer during the train-327

ing process in CSProm-KG. (3) Despite BARTbase328

and MCPredictor outperforming CSProm-KG and329

SimKG, their performance still falls short of GCPL.330

This can be attributed to BARTbase and MCPre-331

dictor models’ limited consideration of a single332

event script, resulting the valuable information in333

the causality graph remaining underutilized.334

Text-Disabled : We can observe that: (1) Even335

without textual information,GCPL still achieved336

optimal performance. We attribute this to the com-337

parison of event semantics, which shortens the dis-338

tance between [MASK] and the golden event and339

distances it from other events in the semantic space.340

(2) The SimKG model achieved optimal Hit@50341

performance on the MAVEN-GEP. This can be342

attributed to the contrastive learning paradigm’s343

compatibility with scenarios involving numerous344

negative examples and the use of a candidate set345

size of 512 in MAVEN-GEP. (3) BARTbase and346

MCPredictor perform slightly worse than CSProm-347

KG and SimKG due to the limited candidate set348

of 5 events in the SEP task, posing challenges for349

accurate predictions when faced with hundreds of350

candidates.351

Finally, as shown in B, our GCPL with all three352

PLMs have achieved better performance than the353

competitors. We attribute its outstanding perfor-354

mance to graph prompt learning that enables PLM355

to effectively encode graph structure information,356

and it also proves that GCPL can serve as an effec-357

tive baseline model for the task.358

4.4 Ablation Study 359

To evaluate the impact of GCPL’s main modules 360

on experimental performance, we conduct some 361

ablation experiments on two datasets. As shown in 362

table 4: 363

• GCPL W/o Dual Encoder: Based on GCPL 364

full, remove the Dual Encoder module. 365

• GCPL W/o Event Contrast: Based on GCPL 366

full, remove the Event Contrast module. 367

• GCPL W/ Pearson Correlation Coefficient: 368

The Pearson Correlation coefficient is a statistic 369

that measures the linear relationship between two 370

variables. 371

• GCPL W/ Euclidean Distance: Euclidean 372

distance uses the square root of the sum of squared 373

differences between corresponding positions of 374

vectors. 375

• GCPL W/ Manhattan Distance: Manhattan 376

distance measures vector distance by summing the 377

absolute differences between them. 378

Module Ablation: In the first group, we can ob- 379

serve that Dual-encoder architecture outperforms 380

the single-encoder architecture, emphasizing its 381

ability to separate graph structure encoding and 382

sentence encoding to avoid confusion. Addition- 383

ally, removing the cosine similarity loss results in 384

a notable performance decrease, indicating that the 385

absence of similarity reduces the distance to the 386

correct label while increasing the distance from the 387

negative label. 388

Similarity Ablation: In the second group, 389

cosine similarity achieves the best performance 390

among the four similarity losses, while Manhat- 391

tan similarity performs the worst. This is because 392

cosine similarity is particularly effective in high- 393

dimensional vector spaces, as it focuses solely on 394

the direction of the vectors and disregards their 395

length. Furthermore, the non-differentiability of 396

the Manhattan distance function at points other than 397

the origin prevents the direct use of conventional 398

gradient descent algorithms for parameter updates. 399
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Model MAVEN-GEP ESG

MRR Hit@1 Hit@3 Hit@10 Hit@50 MRR Hit@1 Hit@3 Hit@10 Hit@50

GCPL Full 30.3 24.5 31.7 40.8 58.2 20.5 15.4 24 32.8 49.1
GCPL W/o Dual Encoder 23.1 17.6 23.9 33.3 53.5 15.7 8.2 15.8 30.1 44.7
GCPL W/o Event Contrast 27.2 22.3 28.1 38.1 55.6 16.6 10.5 17.8 32.6 45.2

GCPL W/ Pearson Correlation Coefficient 22.3 17.7 22.3 31.2 49.9 20.7 15.1 23.1 36.8 48.4
GCPL W/ Euclidean Distance 27.3 22.1 28.2 36.1 55.9 18.7 11.8 23 30.1 49.4
GCPL W/ Manhattan Distance 2.7 0.7 1.7 4.6 19.5 2.3 0.5 0.7 3.6 18.9

Table 4: Ablation experiment in text setting. The three block are module ablation and similarity ablation respectively.

4.5 Effect of Loss Ratio400

To assess the influence of the two losses on model401

performance, we evaluate the performance using402

different loss ratio to observe their effects. As403

shown in Fig 4, GCPL achieves the best perfor-404

mance when the loss ratio is set to 0.5. The model405

performance gradually decreases when the ratio406

β ∈ [0, 0.5) or β ∈ (0.5, 1.5]. This is because407

the model’s prediction of correct events mainly re-408

lies on prompt loss, and contrast loss only allows409

the model to distinguish golden events from other410

events in the semantic space. When the ratio is set411

to 0, it indicates that the model lacks the ability412

to pre-differentiate events in the semantic space,413

leading to a degradation in performance.414

Figure 4: Results on MAVEN-GEP with different loss
ratio β.

4.6 Few Shot415

In real-world scenarios, dataset annotation can be416

prohibitively expensive. Following (Sharma et al.,417

2023; AlKhamissi et al., 2022), we decided to as-418

sess the effectiveness of GCPL in low-resource419

scenarios. Figure 5 shows the comparison results420

between GCPL under low resources and BARTbase421

under full resources. We can observe that GCPL 422

with 60% of the data achieves comparable perfor- 423

mance to BARTbase with 100% of the data. Fur- 424

thermore, when the data volume is reduced from 425

100% to 40%, GCPL’s Hit@50 only experiences 426

an 8.5% decrease, while the MRR drops by 7.9%. 427

This suggests that GCPL significantly reduces the 428

reliance on the data volume. 429

Figure 5: Results on MAVEN-GEP in low-resource
scenarios. The orange and green dashed lines represent
BARTbase’s Hit@50 and MRR respectively in the full
resource scenario.

4.7 Visualization 430

To fully assess the contrast loss’s efficacy in dis- 431

tinguishing golden events from other negatives in 432

the semantic space, we visually display the seman- 433

tic distances between [MASK] and golden event 434

representation. As shown in Fig 6, the cosine simi- 435

larity of the two vectors is significantly higher in 436

the model with the Event Contrast module com- 437

pared to the model without it (The first three rows 438

are brighter than the last three rows). Addition- 439

ally, we incorporate the module into BARTbase 440

and CSProm-KG models, and the semantic trend re- 441

mains the same. This confirms the effectiveness of 442
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Figure 6: Visualization of semantic cosine similarity
of [MASK] and golden events on MAVEN-GEP and
ESG. We compare GCPL with BARTbase and CSProm-
KG. I-VI respectively represent GCPL W/EC, GCPL
Wo/EC, BART W/EC, BART W/o EC, CSProm W/EC,
CSProm W/o EC. EC means our Event Contrast Module.
Brighter colors indicate higher similarity.

the contrastive loss in distinguishing golden events443

from other negatives within the semantic space.444

5 Related Work445

5.1 Script Event Prediction446

Script Event Prediction (Zhou et al., 2022b; Wang447

et al., 2021; Huang et al., 2021) focus on predicting448

future events based on a narrative event chain with449

shared entities. Currently, a common approach is450

to utilize the similarity between candidate events451

and script events.452

For example, Granroth-Wilding and Clark453

(2016) use word2vec to obtain event representa-454

tions, and then predict subsequent events based on455

the similarity between candidate events and script456

events. However, this approach does not consider457

the temporal relationship between events. To ad-458

dress this limitation, some studies (Pichotta and459

Mooney, 2016; Wang et al., 2017; Lv et al., 2019)460

employ Long Short-Term Memory (LSTM) to461

model the temporal dependencies between events.462

Du et al. (2022) use BERT to encode event text in-463

formation, and use Graph Neural Network (GNN)464

to fuse the event graph information into the event465

representation. Zhu et al. (2023) employ Prompt466

Learning paradigm to train their neural network467

model and design a likelihood-based contrastive468

loss for fine-tuning.469

5.2 Event Knowledge Graph Completion 470

Event Knowledge Graph Completion (Wang et al., 471

2022a) aims to predict whether a candidate event 472

node from the schema graph (Dror et al., 2022; 473

Li et al., 2023; Jin et al., 2022; Li et al., 2020) is 474

missing for the instance graph. 475

Based on the different completion targets, EKGC 476

can be categorized into two types of tasks: node 477

completion and edge completion. Wang et al. 478

(2022a) match event nodes in the instance graph 479

to the event schema graph, model neighbor nodes 480

of candidate nodes to predict missing event nodes. 481

While Tang et al. (2021a) utilize LSTM and atten- 482

tion mechanism for the prediction of missing edges 483

in the graph. Mirtaheri et al. (2023) presents an 484

incremental training framework for event-centric 485

KGC that addresses the issue of catastrophic forget- 486

ting. Certainly, EKG can be deployed for various 487

downstream tasks as well (Mao et al., 2021; Zhang 488

and Tang, 2022). Li and Liu (2022) utilize prior 489

knowledge in the EKG, combine event scene rep- 490

resentation and calculation of multiple prediction 491

results to predict events. 492

Although many works utilize event evolution 493

graph (Wang et al., 2022c; Gao et al., 2021; Hu 494

et al., 2021) for event prediction, they typically 495

treat it as an external knowledge base rather than 496

directly predicting events within the event graph. 497

We motivate our work against this aspect and pre- 498

dict consequence events based on event causality 499

graphs and construct two corresponding datasets. 500

6 Conclusion and Future Work 501

In this paper, we propose the Causality Graph 502

Event Prediction task that aims to forecast the con- 503

sequence event based on an event causality graph. 504

We design two datasets, an evaluation framework, 505

and several baseline models for the task. And 506

our model GCPL, based on graph prompt learning, 507

achieved the best results among all competitors. 508

We identify a few directions for future work. 509

First, we hope to be able to build larger and more 510

complex causality graph datasets. Even MAVEN- 511

ERE with 4480 documents ended up with only 512

14667 pieces of data. Secondly, we only consid- 513

ered event causality. We hope to add other event 514

relationships in subsequent work while avoiding 515

redundancy in the event graph. Finally, the baseline 516

model GCPL we proposed did not fully cope with 517

the sparsity of the event graph, so there is still a lot 518

of room for improvement in this task. 519
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7 Limitation520

Our GCPL converts the graph structure into a one-521

dimensional sequence as the input of PLM. How-522

ever, due to the input length limit of PLM, this so-523

lution easily loses the graph structure information.524

In addition, when designing the ECGP task, we525

believe that each piece of data has a consequence526

event. However, this is unreasonable. We need to527

add a None event, that is, this piece of data will not528

have any consequences.529

Ethics Statement530
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A Performance Metrics 761

We use HIT@n and Mean Reciprocal Ranking
(MRR) as evaluation metrics in this task. For the
HIT@n metric, given an input sample (Gi, e

i
e), if

the model’s top n predictions include eie, then the
model’s prediction is deemed correct. If the total
number of data is N, then the HIT@n calculation
formula is as follows:

HIT@n =
1

N

N∑
i=0

I(Ranki ≤ n)

For the MRR metric, if the predicted ranking of the
i-th sample is denoted as Ranki, then the calcula-
tion formula for the metric is as follows:

MRR =
1

N

N∑
i=0

1

Ranki

In this task, we use 5 indicators: MRR, HIT@1, 762

HIT@3, HIT@10, and HIT@50 to measure the 763

excellence of a model. 764

B PLM Ablation 765

GCPL utilizes experimental results from four dif- 766

ferent PLMs with the node text available.

Model Text MAVEN-GEP

MRR Hit@1 Hit@3 Hit@10 Hit@50

GCPL (RoBERTa) ✔ 30.3 24.5 31.7 40.8 58.2
GCPL (BERT) ✔ 26.9 20.7 27.4 39.7 58.4
GCPL (ERNIE) ✔ 26.6 21.1 27.3 37.7 56.3

GCPL (DeBERTa) ✔ 24.2 19.9 24.1 32.4 51.3

Model Text ESG

MRR Hit@1 Hit@3 Hit@10 Hit@50

GCPL (RoBERTa) ✔ 20.5 15.4 24 32.8 49.1
GCPL (BERT) ✔ 19 13.9 19 31.2 46.2
GCPL (ERNIE) ✔ 19.6 13 20.7 32 47.1

GCPL (DeBERTa) ✔ 20.2 13.6 21.6 29.9 42.2

Table 5: PLM ablation of our GCPL model on MAVEN-
GEP and ESG datasets.
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