What Would Happen Next? Predicting Consequences
from An Event Causality Graph

Abstract

Predicting the consequences based on some
past events has a huge potential in various Nat-
ural Language Processing applications. How-
ever, existing work faces two shortcomings:
(1) Simple modeling scenarios, such as Script
Event Prediction task, which predict subse-
quent events only based on an event chain; (2)
Interpolation scenarios, such as Event Knowl-
edge Graph Completion task, where the pre-
dicted event has already occurred in known
events. In this paper, we propose a new
task named Event Causality Graph Prediction,
which forecast the consequence event based
on an event causality graph constructed from
a document describing complex event scenar-
ios. To that end, we propose two correspond-
ing datasets and an Graph Contrastive Prompt
Learning model(GCPL), which utilize the ben-
efits of graph prompt learning and introduce the
Dual Encoder to integrate node text and graph
structure information. We conduct extensive
experiments on two datasets and our GCPL
achieves state-of-the-art performance among
all competitors.

1 Introduction

What Happens Next? Predicting the potential con-
sequences that may arise by knowing some past
events is of great significance to various Natu-
ral Language Processing applications, e.g. Sen-
timent Analysis (Zhang et al., 2022), Dialogue
Systems (Tang et al., 2021b; Chen et al., 2017),
Planning Decisions (Arnold and Sally, 1997).
Script Event Prediction (SEP) (Zhou et al.,
2022a; Jans et al., 2012), as a classic event pre-
diction task, aims to predict subsequent event from
a set of candidate events, based on a simple event
script! (Granroth-Wilding and Clark, 2016; Huang
et al., 2021). For example, given the script "read
menu — order food — take food — eat foot", the
model is required to predict "pay the food" as the
subsequent event from the candidate set. However,
the task focuses on simple scenarios, just a single
event chain, which fails to fully capture the interac-

'Script refers to a standardized event sequence pattern that
commonly occurs in a particular situation or field. It describes
the relationships and sequential order between events.

tions between events, making this task unsuitable
for complex event modeling.
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Figure 1: An example of Consequence Event Prediction
based on Causality Event Knowledge Graph.

Once event interactions become complex, they
are often represented in the form of graph, known
as event knowledge graph (EKG) (Gottschalk and
Demidova, 2018; Guan et al., 2022). Event Knowl-
edge Graph Completion (EKGC) (Wang et al.,
2022a), similar to event prediction, aims to pre-
dict missing events in instance graphs from the
schema graph?. However, the candidate events for
this task may have already appeared in the schema
graph, meaning that EKGC is an interpolation task.
Furthermore, schema graph needs to be derived
from multiple instance graphs, which is known as
Event Schema Induction task (Chambers, 2013;
Huang et al., 2021; Li et al., 2020), but EKGC
utilizes it solely as prior knowledge to guide the
model to make predictions. It is worth noting that
EKGC is inspired by Knowledge Graph Comple-
tion (KGC) (Lv et al., 2022; Lovelace et al., 2021),
but instead of completing a single entity knowl-
edge graph, EKGC focuses on completing multiple
event instance graphs.

To address the aforementioned shortcomings,
this paper introduces a new task called Causality
Graph Event Prediction (CGEP). As illustrated in
Fig. 1, CGEP aims to forecast the consequence

“Event schema graph serves as a general and abstract rep-
resentation of a particular type of complex event.



event based on an event causality graph, which
is constructed from a document describing com-
plex event scenarios. And the predicted event does
not appear in the known information, such as the
causality graph, indicating that our task involved
extrapolation.

Furthermore, in order to tackle this task, we con-
struct two corresponding datasets, named MAVEN-
GEP and ESG, containing 14667 and 1378 pieces
of data respectively. Simultaneously, we pro-
pose the Graph Contrastive Prompt Learning
model(GCPL), based on graph prompt learning.
Specifically, we introduce the Dual Encoder mod-
ule to integrate node text and graph structure in-
formation effectively. Secondly, we leverage the
benefits of contrastive learning to guide PLM to un-
derstand the potential differences between golden
events and other events. We conducted an exten-
sive experiments on the proposed datasets, and the
results demonstrate that our model achieve state-of-
the-art performance.

Our main contributions can be summarized as
follows:

1. We propose a more challenging but practical
Causality Graph Event Prediction (CGEP)
task, representing the first migration of event
prediction to event causality graphs.

2. We create two suitable datasets and propose
an effective baseline model GCPL, based on
graph prompt learning, for this new task.

3. Extensive experiments on two datasets demon-
strate the superior performance of our model,
indicating that GCPL can serve as a robust
baseline.

2 Event Causality Graph Prediction

2.1 Task Descriptions

The ECGP task is defined as predicting some conse-
quential events that are most likely to happen next,
given some past events and their causal relations.
We construct an event causality graph (ECG)
consisting of past events as nodes and their causal
relations as directed edges. Let G = (V| E) denote
the ECG, where an event node ¢; € V contains
the event mention and (e;,e;) € E is a directed
edge from the event e; to the event e;, indicating
that e; causes ej, i.e. e; — e;. Notice that an
ECG G is a directed acyclic graph. We call a
node e; € G as a tail node, if there does not exist

an edge starting from e; to any other node in the
ECG. We assume to have a candidate set of all
possible consequential events. Let C denote the
candidate set, where ¢ € C is a consequential event
containing its mention word(s). The objective of
the ECGP task is to select the most likely candidate
event c* € C for a tail node e; € G.

Figure 1 illustrates an ECG example, which is
constructed based on the annotated event mentions
(nodes) and annotated events’ causal relations (di-
rected edges) in a document.
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Figure 2: Data Processing Flowchart: The data process-
ing involves transforming an original EKG into multiple
data instances, with each instance specifically predicting
a single leaf event.

2.2 Task Datasets

We construct two ECGP datasets based on the pub-
lic dataset the MAVEN (Wang et al., 2022d) and
Event StoryLine Corpus (ESC v0.9) (Caselli and
Vossen, 2017), in which annotations for events’
mentions and relations are available on a per docu-
ment basis.

Construct an instance ECG Based on the an-
notations, we first construct an original ECG G,
for each document. Notice that some events in a
document have no causal relations to other events,
i.e., they are isolated events. Based on GG, we con-
struct an instance ECG G; by removing all isolated
event nodes in G, and also removing all tail nodes
and their corresponding edges in G,.

Construct a data instance We construct a data
instance containing a prophetic event and its be-
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Event Nodes

Dataset |Topic|Doc.

Causal Temporal Coreference Sub-Event|Leaf Node Isolated Node Branch node

MAVEN-ERE| 90 [4480|57992 1216217 103193 15841 23006* 43032* 18247*

ESC 22 1258|1770 8111 1032 - 1193 2266 1875

Table 1: Statistics of MAVEN-ERE and ESC dataset.
MAVEN-GEP ESG 3 GCPL Model
Train Valid Test Total |Train Valid Test Total

Nodes | 9.8 9.6 99 9.8 |105 8.7 10.3 10.3 Fig. 3 illustrates our GCPL model, including the
Edges | 68 7.1 84 73 |157 33 147 7.0 dual encoder module, the event classification mod-
Sample| 8735 2167 3765 14667| 976 143 259 1378 ule and the event contrast module.

Table 2: Statistics of our processed dataset. ESG takes
fold 1 as an example.

longing instance ECG. Note that a prophetic event
is also a tail node in (G;. Three cases need to be
considered in the original graph G,: (1) One-to-
One: Only one event e; causes e; and e; does not
cause any other tail event, then a data instance is
created with e; as a prophetic event in G;. (2) One-
to-Many: Only one event e; causes e; and e; also
causes other tail event e;;. We only choose one of
such tail nodes for e; to construct a data instance.
(3) Many-to-One: Two or more events {e;} cause
e¢, each of which is as a prophetic event to con-
struct one data instance.

Construct a candidate set We construct a can-
didate set for each prophetic event as follows: We
include the event mention of the corresponding tail
node e; € GG, with e; — e; as a candidate event
(i.e., the ground truth), and randomly select the rest
candidate events from all other tail nodes in all orig-
inal ECGs of the dataset. In particular, we select in
total 512 candidate events from the MAVEN-ERE
and 256 from the EventStoryLine v0.9 (ESC) to
form a candidate set of for each prescient event.

Prevent answer leakage There is a possibility of
answer leakage where the mention of a candidate
event also appears in the contextual sentence. To
deal with answer leakage, we replace the token of a
candidate event mention by a special token [PAD]
in the contextual sentence. For multi-tokens and
discontinuous event mentions, we only replace the
tokens in the corresponding positions.

Dataset statistics We divide all the data instances
into the training, validation, and test set. Table 2
presents the statistics of the constructed ECGP
datasets, namely, the MAVEN-ECGP and ESC-
ECGP dataset.

3.1 Dual Encoder

To enjoy both advantages of event causality graph
structure and document contextual semantic, we
propose a dual encoder to learn a representation for
past events and their causal relations.

Event Text Encoder Given the description text
S = [si}tL:Sl of event e;, where L is the length of
the text and S contains the tokens of e;, to indicate
the location of event mention in the text, we incor-
porate virtual locators <c> and </c> on both sides
of the mention, i.e.

S =[s1,82,..,.<c>,€;,< [c>, ..., 504

Then, we take the sequence S as input to get the
embedding matrix Hr of the text S:
Hr = [hL nl

EIRELZTERE

.| = TEncoder(S)

where TEncoder represents the text encoder and
we take heTZ, as the textual representation of event
€;.

Graph Structure Encoder For a given graph
G = (V,E), it contains only one type of edge,
i.e. (e;,causes,ej) € E. To fully model the di-
rectionality of causality graph, we randomly trans-
form half of edges in E of type "causes" into
edges of type "causedBy", i.e. (e;, causes, e;j) —
(ej, causedBy, e;) . At the same time, we also re-
gard non-causal event pairs as a type of edge, de-
noted as None, i.e. (e;,none, eg).

To construct the graph prompt templates 7', we
employ the three types of edges mentioned above
with the same ratio and random order:

T = [CLS] + e; causedBy e3[SEP| + ...
+ e; none e; [SEP]
+ e. causes [MASK] [SEP].

Once template T exceeds the length limit of PLM,
we will randomly discard a portion of the triples.



In order to integrate text information into graph
structure information, we first input the template 7
into the encoder’s embedding layer:

Hrp,Hpp, Hsp = GEncoder.embedding(T')
G Encoder = DeepCopy (T Encoder)

where Hrg, Hpp, Hsg are the PLM-specific vec-
tor matrix, named Token Embedding, Position Em-
bedding, Segment Embedding(Devlin et al., 2018).
And DeepCopy means that the parameters of GEn-
coder come from the deep copy of TEncoder, that
is, they are trained separately.

Then, we replace the embedding of event e; in
Hpg with hfi to get H:Tp 5> Where hzi is the textual
representation of event e; mentioned above:

H;E - [h[CLS]7 ) hg; h[MASK]7 h[SEP]]
Finally, we use H}E, Hpg, Hgg as subsequent
inputs to obtain the embedding matrix Hgr:

Hgr = GEncoder.encode(( TE,HPE,HSE))

We then use the [MASK] vector h[GMATsx} for subse-
quent prediction.

3.2 Event Classification Module

After the PLM encoding, we utilize the hidden
state h[(f,[ATSK] € RP of the input [MASK] to classify
the entire vocabulary V' and predict the final result.

That is:
P(MASK] = ¢; € VIAGTye)

To address multi-token events in the candidate
set, we replace them with a single virtual token
<A;> before training, and their initial embeddings
are obtained by averaging the vectors of each token
in the event mention. Subsequently, we apply a
softmax layer to normalize the predicted probabili-
ties of the candidate set events:

eXP((Pei))
Z] 1 eXp((pEJ )

Then, we select the event with the highest proba-
bility from the candidates as the final prediction
result.

During the training stage, we utilize cross-
entropy loss to calculate the loss of the module:

Plei € C’h[MASK ) =

N [C]

=—— ZZyZ log(37) + Al16]”

i g=1

where y{ represents the true value of the j-th can-
didate event of the i-th data, and yg’ represents the
corresponding prediction probability of the model.
A and @ are the regularization hyper-parameters.

3.3 Event Contrast Module

Due to the large number of events in the candi-
date set, relying solely on [MASK] for classification
becomes challenging, particularly when the event
graph is sparse and the training data is limited. To
address this issue, we perform semantic compari-
son between the [MASK] vector and the candidate
event vector in the semantic space.

During the training stage, for the event e, € C,
we first utilize the embedding layer of the PLMs to
obtain its embedding vector heci:

he., = Embedding(e,)

To fully consider the semantic information of
the candidate set events, we employ the [MASK]
embedding as the anchor sample, the label event
as a positive sample, and the remaining candidate
events as negative samples for semantic compari-
son:

Dy = Linear(hﬁATSK])
Dy = Linear(he,)
D_ = Linear(he,,), he.. € C/ey

Then, we utilize Supcon(Khosla et al., 2020) to
compute the contrastive loss as follows:

exp(sim(DYy, DY) /T)
Z d;p exp szm(D‘A, i)/ T)

where sim uses cosine similarity and D; =
{Di}yu{D- j }\](::\I1 means the embedding of can-
didate events. 7 is a hyper-parameter used to flatten
the similarity between anchor sample and positive
and negative samples.

3.4 Training Strategy

To jointly train the model, we linearly combine the
losses of the two modules using the hyperparam-
eter . Make the model adapt to this task in both
vocabulary space and semantic space. Then, we
get the final loss as follows:

Liotat = Lp + B * Lo
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Figure 3: Illustration of GCPL. TE, PE, SE means Token Embedding, Position Embedding, Segment Embedding

respectively.

where [ is a weight coefficient utilized to balance
the prompt loss and contrast loss. During the val-
idation and test phases, as the event contrast op-
erates solely on the semantic space, we rely on
the prompt module alone to predict the final conse-
quence event.

4 Experiments

4.1 Experiments Setup

Dataset Setting As the amount of processed ESG
data is limited, we take measures to ensure the
validity of the experimental results. Specifically,
following (Zhao et al., 2021; Liu et al., 2021), we
designate the last two topics as the development set,
while the remaining 20 topics are used for conduct-
ing 5-fold cross-validation experiments. In the case
of MAVEN-GEP, as the original dataset does not
provide test set labels, we designate the validation
set as the test set. Additionally, we allocate 20%
of the data from the train set to create a separate
validation set.

Parameter Setting We implement the overall
model under the pytorch framework of Hugging-
face Transformer (Wolf et al., 2020). We use
RoBERTa-base (Liu et al., 2019) as Dual encoders
while training the entire model on NVIDIA GTX
3090 GPUs. We optimize the entire model using
the AdamW (Loshchilov and Hutter, 2017) opti-
mizer, with a learning rate of 1e-6, Se-6, le-5. We

perform early stop with the loss ratio 3 setting to
0.5 and 7 setting to 1.

4.2 Competitors

We selected four models with the most advanced
performance in KGC and SEP tasks for comparison.
Since the original task models are not designed
to handle graph-structured data, we transform the
instance graph into a one-dimensional sequence as
input, similar to GCPL.

e CSProm-KG (Chen et al., 2023) constructs
soft parameters to fuse the graph structure and text
information for graph completion.

e SIMKG (Wang et al., 2022b) employs three
types of negative examples in contrastive learning
to effectively complete the graph.

¢ BARTbase (Zhu et al., 2023) designs an event-
centered pre-training target to fine-tune PLM, and
then predicts subsequent events.

e MCPredictor (Bai et al., 2021) leverages the
transformer architecture to integrate event-level
and script-level information for script event pre-
diction.

4.3 Overall Results

Table 3 compares the overall performance between
our GCPL and the competitors on the MAVEN-
GEP and ESG datasets.

Text-Enabled : We can first observe that: (1)
GCPL achieved outstanding results in both datasets,



| MAVEN-GEP | ESG
Model
| MRR  Hit@l  Hit@3  Hit@l0 Hit@50 | MRR  Hit@l  Hit@3  Hit@l0  Hit@50
CSProm-KG | 223(54) 17.83.8) 222(4.2)  312(7) 50.9204) | 14.8(142) 9.1(8.6) 14.7(13.9) 28.7(26.2) 44.5(42.1)
SimKG 8(73)  3.6(35)  82(69) 152(132) 324(28.7) | 147(13.1) 77(54) 16.6(147) 25(23.8)  40(38.4)
BARTbase 225(55) 17737  22.1(5)  333(7.9) 525(214) | 145(11.3) 7.9(54) 14.9(11.8) 29.2(24.8) 44.7(41.1)
MCPredictor | 16.1(5.7) 113(2.8) 164(47) 259(113) 43.1(253) | 14.1092) 6.1(3)  15593) 28.120.8) 41.7(37.6)
GCPL (RoBERTa) | 30.3(10.7) 24.58.7) 3L7(10.1) 40.8(13.4) 58.2(26.2) | 20.5(19.3) 15.4(9.6) 24(22.4) 32.8(31.8) 49.1(47.2)

Table 3: Overall results of comparison models on the MAVEN-GEP and ESG dataset. (o) represents the results of

GCPL with and without text settings.

outperforming other baseline models significantly.
We attribute its excellent performance to the Dual
Encoder architecture, avoiding coding conflicts in
PLM adaptation to graph structure and sentence
coding. (2) The performance of CSProm-KG sur-
passes that of SimKG by a significant margin.
This can be attributed to the incorporation of soft
prompt parameters in each layer during the train-
ing process in CSProm-KG. (3) Despite BARTbase
and MCPredictor outperforming CSProm-KG and
SimKG, their performance still falls short of GCPL.
This can be attributed to BARTbase and MCPre-
dictor models’ limited consideration of a single
event script, resulting the valuable information in
the causality graph remaining underutilized.

Text-Disabled : We can observe that: (1) Even
without textual information,GCPL still achieved
optimal performance. We attribute this to the com-
parison of event semantics, which shortens the dis-
tance between [MASK] and the golden event and
distances it from other events in the semantic space.
(2) The SimKG model achieved optimal Hit@50
performance on the MAVEN-GEP. This can be
attributed to the contrastive learning paradigm’s
compatibility with scenarios involving numerous
negative examples and the use of a candidate set
size of 512 in MAVEN-GEP. (3) BARTbase and
MCPredictor perform slightly worse than CSProm-
KG and SimKG due to the limited candidate set
of 5 events in the SEP task, posing challenges for
accurate predictions when faced with hundreds of
candidates.

Finally, as shown in B, our GCPL with all three
PLMs have achieved better performance than the
competitors. We attribute its outstanding perfor-
mance to graph prompt learning that enables PLM
to effectively encode graph structure information,
and it also proves that GCPL can serve as an effec-
tive baseline model for the task.

4.4 Ablation Study

To evaluate the impact of GCPL’s main modules
on experimental performance, we conduct some
ablation experiments on two datasets. As shown in
table 4:

e GCPL W/o Dual Encoder: Based on GCPL
full, remove the Dual Encoder module.

e GCPL W/o Event Contrast: Based on GCPL
full, remove the Event Contrast module.

e GCPL W/ Pearson Correlation Coefficient:
The Pearson Correlation coefficient is a statistic
that measures the linear relationship between two
variables.

e GCPL W/ Euclidean Distance: Euclidean
distance uses the square root of the sum of squared
differences between corresponding positions of
vectors.

e GCPL W/ Manhattan Distance: Manhattan
distance measures vector distance by summing the
absolute differences between them.

Module Ablation: In the first group, we can ob-
serve that Dual-encoder architecture outperforms
the single-encoder architecture, emphasizing its
ability to separate graph structure encoding and
sentence encoding to avoid confusion. Addition-
ally, removing the cosine similarity loss results in
a notable performance decrease, indicating that the
absence of similarity reduces the distance to the
correct label while increasing the distance from the
negative label.

Similarity Ablation: In the second group,
cosine similarity achieves the best performance
among the four similarity losses, while Manhat-
tan similarity performs the worst. This is because
cosine similarity is particularly effective in high-
dimensional vector spaces, as it focuses solely on
the direction of the vectors and disregards their
length. Furthermore, the non-differentiability of
the Manhattan distance function at points other than
the origin prevents the direct use of conventional
gradient descent algorithms for parameter updates.



Model MAVEN-GEP ESG
| MRR Hit@l Hit@3 Hit@10 Hit@50 | MRR Hit@1 Hit@3 Hit@10 Hit@50
GCPL Full 30.3 24.5 31.7 40.8 58.2 20.5 154 24 32.8 49.1
GCPL W/o Dual Encoder 23.1 17.6 23.9 333 53.5 15.7 8.2 15.8 30.1 44.7
GCPL W/o Event Contrast 27.2 22.3 28.1 38.1 55.6 16.6 10.5 17.8 32.6 45.2
GCPL W/ Pearson Correlation Coefficient | 22.3 17.7 223 31.2 49.9 20.7 15.1 23.1 36.8 48.4
GCPL W/ Euclidean Distance 27.3 22.1 28.2 36.1 55.9 18.7 11.8 23 30.1 49.4
GCPL W/ Manhattan Distance 2.7 0.7 1.7 4.6 19.5 2.3 0.5 0.7 3.6 18.9

Table 4: Ablation experiment in text setting. The three block are module ablation and similarity ablation respectively.

4.5 Effect of Loss Ratio

To assess the influence of the two losses on model
performance, we evaluate the performance using
different loss ratio to observe their effects. As
shown in Fig 4, GCPL achieves the best perfor-
mance when the loss ratio is set to 0.5. The model
performance gradually decreases when the ratio
g € [0,0.5) or § € (0.5,1.5]. This is because
the model’s prediction of correct events mainly re-
lies on prompt loss, and contrast loss only allows
the model to distinguish golden events from other
events in the semantic space. When the ratio is set
to 0, it indicates that the model lacks the ability
to pre-differentiate events in the semantic space,
leading to a degradation in performance.

Figure 4: Results on MAVEN-GEP with different loss
ratio 3.

4.6 Few Shot

In real-world scenarios, dataset annotation can be
prohibitively expensive. Following (Sharma et al.,
2023; AlKhamissi et al., 2022), we decided to as-
sess the effectiveness of GCPL in low-resource
scenarios. Figure 5 shows the comparison results
between GCPL under low resources and BARTbase

under full resources. We can observe that GCPL
with 60% of the data achieves comparable perfor-
mance to BARTbase with 100% of the data. Fur-
thermore, when the data volume is reduced from
100% to 40%, GCPL’s Hit@50 only experiences
an 8.5% decrease, while the MRR drops by 7.9%.
This suggests that GCPL significantly reduces the
reliance on the data volume.
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Figure 5: Results on MAVEN-GEP in low-resource
scenarios. The orange and green dashed lines represent
BARTbase’s Hit@50 and MRR respectively in the full
resource scenario.

4.7 Visualization

To fully assess the contrast loss’s efficacy in dis-
tinguishing golden events from other negatives in
the semantic space, we visually display the seman-
tic distances between [MASK] and golden event
representation. As shown in Fig 6, the cosine simi-
larity of the two vectors is significantly higher in
the model with the Event Contrast module com-
pared to the model without it (The first three rows
are brighter than the last three rows). Addition-
ally, we incorporate the module into BARTbase
and CSProm-KG models, and the semantic trend re-
mains the same. This confirms the effectiveness of
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Figure 6: Visualization of semantic cosine similarity
of [MASK] and golden events on MAVEN-GEP and
ESG. We compare GCPL with BARTbase and CSProm-
KG. I-VI respectively represent GCPL W/EC, GCPL
Wo/EC, BART W/EC, BART W/o EC, CSProm W/EC,
CSProm W/o EC. EC means our Event Contrast Module.
Brighter colors indicate higher similarity.

the contrastive loss in distinguishing golden events
from other negatives within the semantic space.

5 Related Work

5.1 Script Event Prediction

Script Event Prediction (Zhou et al., 2022b; Wang
etal., 2021; Huang et al., 2021) focus on predicting
future events based on a narrative event chain with
shared entities. Currently, a common approach is
to utilize the similarity between candidate events
and script events.

For example, Granroth-Wilding and Clark
(2016) use word2vec to obtain event representa-
tions, and then predict subsequent events based on
the similarity between candidate events and script
events. However, this approach does not consider
the temporal relationship between events. To ad-
dress this limitation, some studies (Pichotta and
Mooney, 2016; Wang et al., 2017; Lv et al., 2019)
employ Long Short-Term Memory (LSTM) to
model the temporal dependencies between events.
Du et al. (2022) use BERT to encode event text in-
formation, and use Graph Neural Network (GNN)
to fuse the event graph information into the event
representation. Zhu et al. (2023) employ Prompt
Learning paradigm to train their neural network
model and design a likelihood-based contrastive
loss for fine-tuning.

5.2 Event Knowledge Graph Completion

Event Knowledge Graph Completion (Wang et al.,
2022a) aims to predict whether a candidate event
node from the schema graph (Dror et al., 2022;
Li et al., 2023; Jin et al., 2022; Li et al., 2020) is
missing for the instance graph.

Based on the different completion targets, EKGC
can be categorized into two types of tasks: node
completion and edge completion. Wang et al.
(2022a) match event nodes in the instance graph
to the event schema graph, model neighbor nodes
of candidate nodes to predict missing event nodes.
While Tang et al. (2021a) utilize LSTM and atten-
tion mechanism for the prediction of missing edges
in the graph. Mirtaheri et al. (2023) presents an
incremental training framework for event-centric
KGC that addresses the issue of catastrophic forget-
ting. Certainly, EKG can be deployed for various
downstream tasks as well (Mao et al., 2021; Zhang
and Tang, 2022). Li and Liu (2022) utilize prior
knowledge in the EKG, combine event scene rep-
resentation and calculation of multiple prediction
results to predict events.

Although many works utilize event evolution
graph (Wang et al., 2022c; Gao et al., 2021; Hu
et al., 2021) for event prediction, they typically
treat it as an external knowledge base rather than
directly predicting events within the event graph.
We motivate our work against this aspect and pre-
dict consequence events based on event causality
graphs and construct two corresponding datasets.

6 Conclusion and Future Work

In this paper, we propose the Causality Graph
Event Prediction task that aims to forecast the con-
sequence event based on an event causality graph.
We design two datasets, an evaluation framework,
and several baseline models for the task. And
our model GCPL, based on graph prompt learning,
achieved the best results among all competitors.

We identify a few directions for future work.
First, we hope to be able to build larger and more
complex causality graph datasets. Even MAVEN-
ERE with 4480 documents ended up with only
14667 pieces of data. Secondly, we only consid-
ered event causality. We hope to add other event
relationships in subsequent work while avoiding
redundancy in the event graph. Finally, the baseline
model GCPL we proposed did not fully cope with
the sparsity of the event graph, so there is still a lot
of room for improvement in this task.



7 Limitation

Our GCPL converts the graph structure into a one-
dimensional sequence as the input of PLM. How-
ever, due to the input length limit of PLM, this so-
lution easily loses the graph structure information.
In addition, when designing the ECGP task, we
believe that each piece of data has a consequence
event. However, this is unreasonable. We need to
add a None event, that is, this piece of data will not
have any consequences.
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A Performance Metrics

We use HIT@n and Mean Reciprocal Ranking
(MRR) as evaluation metrics in this task. For the
HIT@n metric, given an input sample (G;, %), if
the model’s top n predictions include e’, then the
model’s prediction is deemed correct. If the total
number of data is N, then the HIT@n calculation
formula is as follows:

N
1
HIT@n = — E%H(Ranki <n)
7=

For the MRR metric, if the predicted ranking of the
i-th sample is denoted as Rank;, then the calcula-
tion formula for the metric is as follows:

1 Y
MRR = —
v

In this task, we use 5 indicators: MRR, HIT@ ],
HIT@3, HIT@]0, and HIT@50 to measure the
excellence of a model.

1
Rank;

B PLM Ablation

GCPL utilizes experimental results from four dif-
ferent PLMs with the node text available.

Model ‘ Text ‘ MAVEN-GEP
| | MRR Hit@1 Hit@3 Hit@10 Hit@50
GCPL (RoBERT2) | v/ | 303 245 317 40.8 58.2
GCPL (BERT) v | 269 207 274 39.7 58.4
GCPL (ERNIE) | v | 266 211 273 37.7 56.3
GCPL (DeBERT2) | ¢ | 242 199  24.1 324 513
Model ‘ Text ‘ ESG
| | MRR Hit@l Hit@3 Hit@10 Hit@50
GCPL (RoBERT2) | ¢ | 205 154 24 328 49.1
GCPL (BERT) v 19 13.9 19 31.2 46.2
GCPL (ERNIE) | v | 196 13 20.7 32 47.1
GCPL (DeBERT2) | ¢ | 202 136 216 29.9 422

Table 5: PLM ablation of our GCPL model on MAVEN-
GEP and ESG datasets.
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