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Abstract

Graph Retrieval-Augmented Generation (GraphRAG) has recently emerged as a1

task paradigm for injecting graph-structured knowledge into large language models2

(LLMs), yet most existing approaches still rely on flat, similarity-based retrieval that3

ignores topology and uses static encoders, producing redundant or structurally inco-4

herent evidence. In this paper, we propose GraphPack, a query-aware GraphRAG5

framework that overcomes these limitations by casting subgraph selection as a 0–16

knapsack optimization. For every natural language query, GraphPack packs the7

most informative subgraph under a size budget by jointly maximizing semantic8

relevance and minimizing structural redundancy. The selected subgraph is then9

encoded by a query-aware graph encoder whose parameters are conditioned on the10

query, allowing node representations to adapt dynamically to user intent. Extensive11

experiments on multiple knowledge-intensive graph benchmarks demonstrate that12

GraphPack achieves state-of-the-art performance, showcasing its strong capabil-13

ity in addressing structural and contextual challenges under supervised learning,14

cross-domain settings, and zero-shot scenarios.15

1 Introduction16

Graph-structured data plays a central role in real-world applications such as recommendation systems17

[He et al., 2020], social network analysis [Huang et al., 2024], and knowledge-intensive reasoning18

tasks [Fu et al., 2020, Lan et al., 2021]. Large language models (LLMs) have demonstrated impressive19

capabilities in natural language understanding and generation. However, their ability to effectively20

integrate structured knowledge and user intent remains limited, leading to suboptimal performance21

on tasks such as query-focused summarization (QFS). A key challenge lies in retrieving and encoding22

task-relevant entities from large-scale textual graphs in a manner that aligns with the user’s intent.23

Graph Retrieval-Augmented Generation (GraphRAG) [Edge et al., 2025] has emerged as an innovative24

solution to address the challenges of integrating structured knowledge into LLMs. Unlike traditional25

retrieval-augmented generation (RAG) [Lewis et al., 2020, Guu et al., 2020, Ram et al., 2023, Izacard26

et al., 2022], which primarily operates over flat textual corpora, GraphRAG retrieves graph elements27

— such as nodes, triples, paths, or subgraphs — that are semantically relevant to a given query28

from a pre-constructed graph database. These retrieved elements provide rich relational knowledge29

that enhances both the depth and accuracy of LLM-based reasoning. By retrieving subgraphs or30

graph communities, GraphRAG enables comprehensive understanding of the underlying knowledge31

structure, making it particularly effective in tasks such as query-focused summarization, where32

concise yet informative responses must align closely with user intent.33
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Description: 

Question: What category does the following paper belong to?

Description: 
Attention Is All You Need \n Abstract: The dominant sequence 

transduction models are based on complex recurrent or

convolutional neural networks that include an encoder and a 

decoder. The best performing models also connect the encoder 

and decoder through an attention mechanism. We propose a 

new simple network architecture, the Transformer, based solely 

on attention mechanisms, dispensing with recurrence and 

convolutions entirely.

…

Attention Is All 
You NeedSegment anything

The llama 3 herd 
of models

Gemini: A Family of Highly 
Capable Multimodal ModelsMamba: Linear-Time Sequence 

Modeling with Selective State Spaces

LLMs

Answer: The paper "Attention Is All You Need" is 
primarily categorized under Computation and Language 
(cs.CL) due to its core contribution to the field of Natural 
Language Processing through the introduction of the 
Transformer architecture.

Citation graph:

Question: Where does fabio capello come from?

Description: 

LLMs

Answer: Based on the provided knowledge graph, fabio
capello come from San Canzian d'Isonzo. a town in the 
province of Gorizia, located in the Friuli Venezia Giulia 
region of northeastern Italy.

Knowledge graph:

Question: What‘s the deal between Ronaldo and Real Madrid?

LLMs

Answer: Ronaldo is a former Real Madrid player. He 
joined the club from Inter Milan in 2002 and played there 
for five seasons (2002–2007).

Knowledge graph:

0,football \n3,male \n4,football player \n8,catholicism

\n10,san canzian d‘isonzo \n20,italy \n22,fabio capello

…
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Figure 1: Generative knowledge-intensive graph tasks require combining textual information, knowl-
edge graphs, and language models to perform reasoning and answer user questions.

A key challenge in applying LLMs to graph-structured data lies in designing retrieval mechanisms34

that are not only semantically informative but also adaptable across diverse graph tasks. As shown in35

figure 1, Knowledge-intensive tasks such as multi-hop question answering require global structural36

reasoning, demanding the model to identify and integrate information from semantically related,37

yet topologically distant entities. A major limitation of current graph-augmented LLMs lies in their38

reliance on similarity-based retrieval mechanisms, which often neglect the rich topological structure39

embedded in the graph. For example, GRAG [Hu et al., 2025] re-ranks candidate subgraphs based40

on both their relational alignment with the query and fine-grained concept-level similarity. KELP41

[Liu et al., 2024] trains a pretrained language model to score the relevance between retrieved paths42

and input queries. While these methods perform well at identifying nodes or subgraphs that are43

semantically close to a given query, they tend to treat the graph as a flat collection of textual elements,44

neglecting the relational patterns that define its underlying structure.45

To address this issue, we propose GraphPack, a novel framework for query-aware graph retrieval-46

augmented generation. Specifically, we formulate subgraph packing as a 0-1 knapsack problem,47

allowing the model to dynamically identify query-relevant regions of the graph by jointly considering48

semantic relevance and structural cost. We further introduce Query-LM, a graph encoder with49

query-aware capabilities that enhances node representations through conditional linear modulation50

modules. This enables the model to adaptively adjust node embeddings based on the input query,51

leading to more accurate and context-sensitive graph encoding. Additionally, we design an auxil-52

iary graph-to-text reconstruction objective. This training signal improves the expressiveness and53

interpretability of graph embeddings without requiring any architectural changes — making our54

approach both general and practical. Our method goes beyond traditional GraphRAG frameworks55

by explicitly modeling what the user is asking and how the graph structure should respond. This56

leads to a more principled integration of structured knowledge into the language generation process.57

Extensive experiments demonstrate that GraphLLM achieves strong performance across multiple58

graph benchmarks, highlighting its effectiveness in bridging structured knowledge with LLMs for59

downstream applications.60

2 Method61

2.1 Large Language Model for Graph62

GraphLLM aims to effectively incorporate graph-structured contextual information into both the63

retrieval and generation stages, thereby enhancing the relevance between the generated outputs and the64

textual graph knowledge. Specifically, given a user query xq and a textual graph G = (V, E ,Xv,Xe),65

we expect GraphLLM to generate answers that are aligned with the intended semantics of the query.66
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Figure 2: Overview of the GraphPack Workflow. A natural-language query retrieves anchor nodes,
their neighbourhood is expanded into a candidate subgraph, a 0-1 knapsack optimiser packs the most
relevant portion under a size budget, and the packed subgraph is encoded by a query-aware graph
encoder before being fed—together with the query—to an LLM for answer generation.

However, real-world graphs can be large in scale and contain substantial amounts of irrelevant or67

redundant information. Directly feeding the entire graph into the model is not only computationally68

expensive but may also lead to generated outputs that deviate from the user’s actual intent. To69

address this challenge, we emphasize the integration of a subgraph retrieval mechanism in the design70

of GraphLLM, ensuring that the model can leverage the rich semantic information present in the71

graph while remaining highly sensitive to the specific query intent during the generation process. we72

formally define the generation process of GraphLLM under the graph-augmented retrieval mechanism.73

Given a user query xq and the original textual graph G, the model first retrieves the most relevant74

subgraph G∗ with respect to the query through a retrieval mechanism:75

G∗ = Retrieval(xq,G) (1)

We model GraphLLM with graph-retrieval-augmented generation as a likelihood-based model that76

defines the probability of generating a query-related answer y:77

p(y | xq,G∗) =
L∏

l=1

p(yl | y<l, xq,G∗) (2)

where yl denotes the l-th element in the output sequence, and y<l represents the first l-1 generated78

words. G∗ contains both the structural and textual information of the graph, which assists the model79

in generating y. This modeling approach not only preserves the topological information of the graph80

structure but also enables joint modeling of context and query intent, encouraging the model to81

develop strong capabilities in understanding and utilizing graph-structured knowledge.82

2.2 Semantic-Aware Subgraph Retrieval via Knapsack Optimization83

Graph Indexing We adopt a retrieval approach similar to RAG to efficiently retrieve subgraphs84

relevant to user needs from large textual graphs. Specifically, we use a frozen text encoder such as85

sentence-bert [Reimers and Gurevych, 2019] to map various types of text into a unified vector space:86

zv = TextEncoder(xv) ∈ RdLM , ze = TextEncoder(xe) ∈ RdLM (3)

Here, zv and ze denote the embeddings of the node and edge. dLM represents the dimension of the87

pretrained language model. To enable efficient graph retrieval, we precompute the textual embeddings88

of the graph for subsequent use.89
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Anchor Node Identification Traditional graph retrieval methods often struggle to balance semantic90

relevance with structural coherence, especially in large and complex graphs. A promising approach is91

to first identify a small set of semantically relevant nodes as anchor point and then expand the search92

within their local neighborhoods. This two-step strategy not only addresses computational challenges93

but also introduces a novel way to harmonize semantic alignment with topological connectivity. We94

process the user’s question in the same manner as the textual information of the graph to obtain the95

embedding zq .96

Vanchor = argtopkn∈V cos(zq, zn) (4)
We use the cosine similarity function cos(·, ·) to measure the similarity between the question rep-97

resentation and the node representations. The argtopk operation retrieves the top-k nodes with the98

highest similarity scores, which are then selected as anchor nodes.99

Knapsack Optimization We model subgraph packing as a 0-1 knapsack problem [Freville, 2004],100

integrating both semantic relevance and structural redundancy into the subgraph retrieval frame-101

work. Our method dynamically balances the value of each graph element (node or edge) against102

its construction cost, aiming to achieve a trade-off between accuracy and efficiency in subgraph103

construction.104

Formally, we model the subgraph retrieval task as a 0-1 knapsack problem. For an n-hop subgraph105

gin = (V ′, E ′) rooted at an anchor node via ∈ Vanchor, each graph element is treated as an element e106

in the knapsack formulation. A value function value(e) measures the semantic relevance of e, while a107

weight function weight(e) quantifies its structural cost. The goal is to maximize the total value of108

selected items under a capacity constraint C:109

arg max
∑
e∈S

value(e), s.t.
∑
e∈S

weight(e) ≤ C, S ⊆ V ′ ∪ E ′ (5)

Rank-Based Value Assignment To evaluate semantic relevance, we introduce a ranking-based110

decaying value mechanism. We first sort all elements in descending order based on their semantic111

relevance scores and assign each element a rank(e). The value of each element is then computed as112

followed:113

value(e) = max_score− rank(e) (6)
This design ensures that elements with higher semantic relevance within the local subgraph re-114

ceive higher value scores, and are therefore prioritized for inclusion in the final subgraph.115

Algorithm 1 Dynamic Programming for 0-1 Knapsack Prob-
lem
Input: Values v[1..n], Weights w[1..n], Capacity C
Output: Selected items maximizing total value within C
Initialize A← array of (n+ 1)× (C + 1) with 0
Initialize keep← boolean array of (n+ 1)× (C + 1) with
False

for i = 1 to n do
for c = 0 to C do

if w[i] ≤ c and v[i]+A[i−1][c−w[i]] > A[i−1][c]
then

A[i][c]← v[i] +A[i− 1][c− w[i]]
keep[i][c]← True

else
A[i][c]← A[i− 1][c]

Initialize S ← [], c← C
for i = n downto 1 do

if keep[i][c] then
Append i to S
c← c− w[i]

return S

116

Structure-Aware Weight Assign-117

ment In terms of measuring struc-118

tural cost, we adopt a structure-aware119

weighting mechanism to suppress re-120

dundancy. For each element e, the121

weight is determined by the smallest122

n-hop subgraph in which it appears123

— in other words, the minimum hop124

level at which the element is first en-125

countered:126

weight(e) = min{n | e ∈ gin} (7)
This means that nearby elements (e.g.,127

those within 1-hop) are assigned lower128

weights, while incorporating distant129

elements (e.g., those beyond 3-hops)130

incurs a higher cost. In this way, the131

inclusion of remote and potentially re-132

dundant elements — which may con-133

tribute little semantic value but sig-134

nificantly increase structural complex-135

ity — is effectively discouraged. This136

leads to the construction of more com-137

pact and effective subgraphs. We use an efficient dynamic programming Algorithm 1 to solve the138

subgraph optimization problem. Finally, we use the query embedding as a prompt node to connect139

all retrieved elements and construct a coherent subgraph. We present discussions on the algorithm140

implementation in Appendix A.141
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2.3 Query-aware Graph Encoder142

We employ a graph neural network to encode the topological structure of the retrieved subgraph.143

However, traditional GNNs rely solely on local neighborhood topology and edge attributes for144

message passing and feature aggregation. As a result, they lack the ability to dynamically adjust their145

modeling focus based on the input query — a critical limitation in knowledge-intensive question146

answering tasks that require identifying task-specific paths or substructures.147

To address this issue, we propose a query-aware graph encoder, which introduces conditional148

modulation into the GNN architecture through FiLM-style transformations. we perform multi-layer149

GNN message passing over the retrieved subgraph G∗. At each layer, node representations are150

updated by aggregating information from their neighbors, preserving contextual relationships within151

the graph structure. Formally, the output of the l-th GNN layer is given by:152

h̃(l)
v = GNN(l)

(
h(l−1)
v ,

{(
h(l−1)
u , euv

)
| u ∈ N (v)

})
(8)

where N (v) denotes the neighborhood of node v in the retrieved subgraph. To overcome the153

limitations of traditional GNNs in static modeling, inspired by the FiLM [Perez et al., 2017], we154

introduce the Query-aware Linear Modulation (Query-LM), which serves as a conditional control155

mechanism within the GNN message passing process. Specifically, we encode the natural language156

question into a vector representation:157

hq = Pooling (LLMEmbedded(xq)) (9)

which serves as a guiding signal for the subsequent graph encoding process. This allows the model to158

adaptively steer feature learning according to the specific requirements of the given task. We then159

define the Query-FiLM module at each layer as follows:160

γ
(l)
j = σ

(
W(l)

γ1
· hq + b(l)

γ1

)
, β

(l)
j = σ

(
W

(l)
β1
· hq + b

(l)
β1

)
(10)

161

h(l)
v = γ(l)

v ⊙ h̃(l)
v + β(l)

v (11)
where ⊙ denotes the Hadamard product, and σ represents an activation function. Query-FiLM uses162

the query embedding hq to generate the affine transformation parameters γ(l)
j and β

(l)
j , which are163

then applied to scale and shift the intermediate node representations h̃(l)
v output by the GNN in a164

channel-wise manner, resulting in the updated node representations h(l)
v . Through the Query-FiLM,165

the model translates the semantics of the natural language query into explicit modulation signals166

over the GNN feature space, enabling the acquisition of query-aware graph representations while167

preserving the original capability to model graph structure.168

Then we use a graph readout method based on node-level nonlinear transformations. We obtain the169

final graph-level representation by applying average pooling to the transformed embeddings of all170

nodes:171

hg =
1

|V|
∑
v∈V

σ(W1h
(L)
v + b1)W2 + b2 (12)

Here, W1, W2 and b1, b2 denote the learnable weight matrices and bias terms. Before the node172

embeddings are pooled into a graph-level representation, they are first mapped through independent173

nonlinear transformations. This enhances the expressive power of each node embedding while174

maintaining geometric consistency with the LLM’s textual semantic space.175

2.4 LLMs Supervised Fine-Tuning176

During the supervised fine-tuning (SFT) phase, we use the original user query xq and the textual177

description of the subgraph xg as the initial input to the decoder. The graph representation hg is178

concatenated with the embeddings of the input text to form the contextual representation for the179

language model. For the target answer sequence y corresponding to the query, we optimize the180

model parameters by maximizing the standard log-likelihood of the output sequence. This process181

effectively learns the conditional probability distribution defined in Equation 1, enabling the model to182

generate accurate and semantically coherent answers.183

However, a challenge arises as the input length increases – the attention weights allocated to the184

graph embedding inevitably decrease, leading to a potential loss of structural information [Ma et al.,185
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2024, Kong et al., 2025]. To address this issue, we design an auxiliary graph-to-text reconstruction186

task . Specifically, we train the model to answer the user query only based on the abstracted graph187

embedding, by maximizing the standard log-likelihood of the target answer sequence y.188

The purpose of this auxiliary task is to enhance the invertibility and interpretability of the graph189

embedding, ensuring that it not only captures the underlying graph structure effectively but also can190

independently guide high-quality answer generation within the language model. Importantly, this191

strategy does not require any modification to the model architecture itself; instead, it improves the192

representational power of the graph embeddings purely through adjustments to the training objective,193

making it both general and practical.194

3 Related works195

Here, we mainly introduce the generation-based GraphLLM [Ren et al., 2024] and GRAG [Peng196

et al., 2024]. The classification-based GraphLLM and its connection to graph neural networks will be197

discussed in the Appendix B.198

3.1 LLMs with Graphs199

Recent research has explored how to apply LLMs to tasks involving graph-structured data. One200

intuitive approach is to serialize the textual graph into structured descriptions, which are then directly201

fed into the LLMs for fine-tuning [Wang et al., 2024, Ye et al., 2024, Zhao et al., 2023, Fatemi et al.,202

2023, Tan et al., 2024]. These methods can leverage LLMs to improve the generalization of tasks,203

but they fail to model the unique structural information of graph data, leading to suboptimal results.204

Subsequent works use specialized graph encoders to handle structural information [Tang et al., 2024a,205

Chen et al., 2024, Kong et al., 2025, Tian et al., 2024, He et al., 2025, Tang et al., 2024b, Zhang et al.,206

2024]. GraphGPT [Tang et al., 2024a] trains a graph encoder by aligning structural and semantic207

information using CLIP [Radford et al., 2021]. LLaGA [Chen et al., 2024] uses Laplacian embeddings208

as the structural encoder to help the model recognize graph-structured knowledge. GOFA [Kong209

et al., 2025] incorporates the embeddings of LLMs into the GNN message passing process to allow210

interaction between the graph encoder and LLMs. Despite these efforts, most existing approaches211

either treat the graph as static input or fail to dynamically adapt to user queries. This significantly212

limits their ability to perform complex reasoning over large-scale graphs. In contrast, GraphPack213

explicitly models the interplay between query intent and graph structure through a semantic-aware214

subgraph retrieval mechanism , enabling more effective and targeted reasoning.215

3.2 Retrieval on Graphs216

In GraphRAG, various retrieval methods exhibit distinct advantages when addressing different aspects217

of the retrieval task. We categorize them into two main types: Parameter-free Retrievers and Model-218

based Retrievers. Parameter-free Retrievers do not rely on deep learning models, enabling efficient219

and scalable retrieval. For instance, QA-GNN [Yasunaga et al., 2022] connect the QA context and KG220

to form a joint graph. OpenCSR [Han et al., 2023] constructs a question-dependent open knowledge221

graph based on retrieved supporting facts. GraphRAG [Edge et al., 2025] structures the corpus to222

enable query-centric retrieval. GRAG [Hu et al., 2025] retrieves subgraphs based on the similarity223

between the query and entities. G-Retriever [He et al., 2024] extracts relevant subgraphs using224

Prize-Collecting Steiner Tree optimization. Model-based Retrievers train specialized models to225

extract relevant entities or subgraphs, achieving higher accuracy at the cost of increased computational226

overhead. Some studies [Mavromatis and Karypis, 2024, Han et al., 2023] employs GNN to identify227

entities from the knowledge graph. Subgraph Retriever[Zhang et al., 2022] uses RoBERTa [Liu et al.,228

2019] to expand from the topic entity and retrieves the relevant paths in a sequential decision process.229

Unlike previous methods, GraphPack formulates subgraph retrieval as an optimization problem akin230

to the knapsack problem, ensuring that the selected subgraphs are both highly relevant and minimally231

noisy. Moreover, our approach can adapt to new tasks without requiring retraining, making it more232

practical and versatile than existing model-based retrievers.233
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Table 1: Results on supervised learning (first). The best results are displayed in bold, while the
second-best results are marked with underlines.

Model Cora Citeseer Wikics Instagram ogbn-arxiv

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

OFA 75.24 74.20 73.04 68.98 77.34 74.97 60.85 55.44 73.23 57.38
InstructGLM 69.10 65.74 51.87 50.65 45.73 42.70 57.94 54.87 39.09 24.65
GraphText 76.21 74.51 59.43 56.43 67.35 64.55 62.64 54.00 49.47 24.76
GraphAdapter 72.85 70.66 69.57 66.21 70.85 66.49 67.40 58.40 74.45 56.04
LLaGA 74.42 72.50 55.73 54.83 73.88 70.90 62.94 54.62 72.78 53.86

GraphPack 76.40 75.45 69.95 67.59 79.59 77.18 66.40 59.34 75.01 58.51

Table 2: Results on supervised learning (sec-
ond). The best results are displayed in bold,
while the second-best results are marked with
underlines.

Model WebQSP CWQ

F1 Hit@1 F1 Hit@1

Llama-2-7B 42.95 61.86 32.29 36.92
Mistral-7B 43.11 62.52 32.87 36.46

G-Retriever 50.23 70.16 39.89 47.75
GRAG 50.41 72.75 39.62 47.43

GraphPack 51.79 73.01 41.03 48.50
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Figure 3: Analysis of knapsack capacity and
average subgraph size.

4 Experiments234

We conducted comprehensive experiments to validate the effectiveness of our framework under235

various settings, aiming to address the following key research questions:236

RQ1. How does GraphPack perform overall on different graph tasks?237

RQ2. How does GraphPack affect the reasoning of LLMs?238

RQ3. How well does GraphPack generalize across different tasks under the zero-shot setting?239

RQ4. What is the role of query-aware modeling in GraphPack?240

4.1 Experimental Settings241

Datasets. The datasets and tasks used in our evaluation represent knowledge-intensive graph242

reasoning , where successful performance requires not only semantic understanding but also the243

ability to integrate complex relational structures. These tasks span multiple domains and reasoning244

paradigms, including citation graphs, social networks, and knowledge graphs, etc. We present the245

details of the datasets we used in Appendix C.1.246

Implement Details. To ensure a fair comparison, we employ the Llama-2-7b1 base model as the247

baseline. Additionally, we select Sentence-BERT [Reimers and Gurevych, 2019] as the text encoder248

and GraphTransformer [Shi et al., 2021] as the graph encoder. All training and experiment details,249

including baseline, hyperparameters and templates, are provided in the Appendix C.250

4.2 Overall Performance on Supervised Learning (RQ1)251

As shown in Table 1 and Table 2, Across a range of benchmark tests, our framework demonstrates252

significantly improved performance compared to traditional baseline models. Notably, the methods253

1https://huggingface.co/meta-llama/Llama-2-7b-hf
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Table 3: Comparison of Prediction Results Between ChatGPT and GraphPack on the WebQSP
Dataset. Predictions with a ★ symbol match the ground truth.

Question: What are some inventions that leonardo da vinci invented?
Ground Truth: Diving suit | Triple barrel canon | Viola organista | Double hull | Aerial screw |
Anemometer | 33-barreled organ | Armored car | Parachute | Ornithopter

ChatGPT: Flying Machine, Anemometer★, Diving Suit★, Ball Bearings, Helicopter

GraphPack: Anemometer★, Triple barrel canon★, Aerial screw★, 33-barreled organ★,
Double hull★

Question: What languages do they speak in costa rica?
Ground Truth: Bribri language | Spanish language | Limonese creole | Jamaican creole english
language

ChatGPT: In Costa Rica, the official language is Spanish★. Additionally, English is also com-
monly spoken

GraphPack: Spanish language★ | Limonese creole★ | Bribri language★ | Jamaican creole
english language★

employed in the baseline model are not well-suited for various types of graph tasks, whereas254

GraphPack highlights its versatility and outstanding effectiveness in tackling diverse graph-related255

challenges. Furthermore, as task size and complexity grow, GraphPack consistently maintains robust256

and efficient performance, offering a universal and powerful solution for a broader spectrum of graph257

tasks. Further performance reports on more graph benchmark tasks and knowledge-intensive tasks258

are presented in Appendix D.1.259

4.3 Subgraph Retrieval Strategy (RQ2)260

To verify the effectiveness of GraphPack’s graph-enhanced retrieval strategy, we evaluate its impact on261

LLMs without fine-tuning. Table 4 demonstrates the performance improvements achieved by different262

strategies during the inference of LLMs without any fine-tuning. It is noteworthy that GraphPack263

achieves a 18.61% increase in F1 Score compared to the baseline model. This is particularly important264

in real-world question answering scenarios, as it can provide users with more correct candidate entities265

to choose from. Furthermore, As shown in Table 3, we analyze the performance of ChatGPT and266

GraphPack when addressing questions involving multiple entities within labels. The results reveal267

that ChatGPT exhibit false detection issues, whereas GraphPack demonstrates higher reliability in268

handling multi-entity problems. This validates the perspective raised in RQ2: GraphPack significantly269

enhances the practicality of the model in graph-based question-answering scenarios by offering users270

more accurate and diverse candidate entities. We present a comparison of subgraph retrieval time and271

efficiency between GraphPack and other methods in Appendix D.2. Notably, GraphPack retrieves the272

optimal subgraph in less than 0.25 seconds — even in graphs containing millions of nodes. These273

advantages make the GraphPack strategy significantly valuable in practical applications.274

Furthermore, We conduct an ablation study over a range of knapsack capacities C to examine the275

impact of subgraph size on retrieval effectiveness and computational efficiency. As shown in Figure 3,276

increasing C allows the model to retrieve more nodes on average — from 8.34 nodes at C=10 to 17.96277

nodes at C=30 — suggesting improved coverage of the graph structure. However, this increase in278

coverage does not translate into consistent gains in performance. On the WebQSP dataset, the best279

result (41.03 F1 score) is achieved at C=20. Further increasing C to 30 leads to a drop in performance280

(40.72 F1 score), likely due to the inclusion of noisy or irrelevant entities that distract the LLM during281

generation. This trend highlights a key insight: the optimal setting strikes a balance between semantic282

richness and structural compactness, ensuring both high-quality retrieval and efficient reasoning.283

4.4 Zero-Shot Adaptation and Transfer Performance (RQ3)284

Zero-shot learning involves training the model on a specific dataset and then evaluating it on un-285

seen datasets or tasks. This approach is crucial for assessing the generalization capability of the286
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Table 4: Impact of different retrieval strate-
gies.

Model WebQSP

F1 Hit@1 Recall

Llama2-7B 0.2555 0.4148 0.2920
G-Retriever 0.2571 0.4760 0.2954
GraphPack 0.3023 0.4732 0.3061

Mistral-7B 0.2589 0.4213 0.2967
G-Retriever 0.2634 0.4832 0.2981
GraphPack 0.3071 0.4878 0.3088

Table 5: Cross-domain zero-shot experi-
ments.

Train → Test Model Acc F1

Cora→Wikics Llama2-7B 0.4115 0.3772
GraphPack 0.5589 0.5367

Cora→Instagram Llama2-7B 0.4078 0.4369
GraphPack 0.4543 0.4698

CWQ→Wikics Llama2-7B 0.1534 0.1802
GraphPack 0.4279 0.4167

CWQ→Instagram Llama2-7B 0.1679 0.2421
GraphPack 0.39.87 0.4021

model. Specifically, we design two experimental settings to evaluate different aspects of zero-shot287

performance. The first setting focuses on cross-domain generalization , where the model is trained288

on citation graph datasets and evaluated on social network graphs. The second setting examines289

cross-task generalization , involving different textual description templates of the graph and varying290

user intents. As shown in Table 5, we compare the zero-shot performance of LLMs and GraphPack291

under various settings. The results indicate that GraphPack consistently outperforms the fine-tuned292

LLM in all conditions. In particular, when evaluated on cross-task scenarios, the fine-tuned LLM293

struggles to answer domain-specific questions, whereas GraphPack maintains strong zero-shot perfor-294

mance. This suggests that the structural knowledge encoded through our retrieval and modulation295

framework transfers well across domains and task formulations, even without access to target-domain296

supervision. Furthermore, in more complex and resource-constrained settings — such as when only297

partial graph structures are available or when the target domain exhibits significant divergence —298

GraphPack still demonstrates robust performance. Additional experiments presented in Appendix299

D.3 explore these challenging zero-shot and few-shot scenarios.300

4.5 Effectiveness of Query-Aware Modeling (RQ4)301

We conduct ablation studies by systematically removing different components of the query-aware302

modeling framework and evaluating their impact on performance. In one variant, we remove the303

ranking-based value assignment for both nodes and edges, thereby eliminating the model’s ability to304

prioritize semantically meaningful connections during subgraph selection. Additionally, we evaluate305

the effect of excluding the Query-LM module from the graph encoder, effectively replacing the306

conditional modulation mechanism with a standard static aggregation scheme commonly used in307

traditional GNNs. Experimental results in Appendix D.4 demonstrate that the removal of any of these308

query-aware components leads to consistent performance degradation across a range of knowledge-309

intensive tasks. This highlights the importance of integrating explicit query signals into both the310

retrieval and encoding stages, as doing so enables the model to dynamically align its focus with user311

intent while preserving structural coherence.312

5 Conclusion, Limitations, and Future Works313

In this paper, we propose GraphPack, a query-aware framework for Graph Retrieval-Augmented314

Generation. Its core idea is to cast subgraph selection as a 0-1 knapsack optimisation that simultane-315

ously maximises semantic relevance and minimises topological redundancy, then encode the chosen316

subgraph with a query-aware graph encoder whose parameters adapt to the user’s intent. Extensive317

experiments on citation, social-network and knowledge-graph benchmarks demonstrate that Graph-318

Pack consistently outperforms strong GraphRAG baselines in supervised, cross-domain and zero-shot319

settings. Two practical limitations remain: the framework’s dependence on high-quality semantic320

embeddings means noisy or sparse signals can degrade anchor node identification. Additionally,321

GraphPack depends on downstream task fine-tuning, restricting its potential to become a general322

graph foundation model. Addressing these challenges, by improving robustness to noisy semantics323

and developing GFM—forms promising directions for future work.324
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paper’s contributions and scope?460

Answer: [Yes]461

Justification: Yes, the main claims made in the abstract and introduction accurately reflect462

the paper’s contributions and scope.463

Guidelines:464

• The answer NA means that the abstract and introduction do not include the claims465

made in the paper.466

• The abstract and/or introduction should clearly state the claims made, including the467

contributions made in the paper and important assumptions and limitations. A No or468

NA answer to this question will not be perceived well by the reviewers.469

• The claims made should match theoretical and experimental results, and reflect how470

much the results can be expected to generalize to other settings.471

• It is fine to include aspirational goals as motivation as long as it is clear that these goals472

are not attained by the paper.473

2. Limitations474

Question: Does the paper discuss the limitations of the work performed by the authors?475

Answer: [Yes]476

Justification: Check Section 5.477

Guidelines:478

• The answer NA means that the paper has no limitation while the answer No means that479

the paper has limitations, but those are not discussed in the paper.480

• The authors are encouraged to create a separate "Limitations" section in their paper.481

• The paper should point out any strong assumptions and how robust the results are to482

violations of these assumptions (e.g., independence assumptions, noiseless settings,483

model well-specification, asymptotic approximations only holding locally). The authors484

should reflect on how these assumptions might be violated in practice and what the485

implications would be.486

• The authors should reflect on the scope of the claims made, e.g., if the approach was487

only tested on a few datasets or with a few runs. In general, empirical results often488

depend on implicit assumptions, which should be articulated.489

• The authors should reflect on the factors that influence the performance of the approach.490

For example, a facial recognition algorithm may perform poorly when image resolution491

is low or images are taken in low lighting. Or a speech-to-text system might not be492

used reliably to provide closed captions for online lectures because it fails to handle493

technical jargon.494

• The authors should discuss the computational efficiency of the proposed algorithms495

and how they scale with dataset size.496

• If applicable, the authors should discuss possible limitations of their approach to497
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reviewers as grounds for rejection, a worse outcome might be that reviewers discover500

limitations that aren’t acknowledged in the paper. The authors should use their best501

judgment and recognize that individual actions in favor of transparency play an impor-502

tant role in developing norms that preserve the integrity of the community. Reviewers503

will be specifically instructed to not penalize honesty concerning limitations.504

3. Theory assumptions and proofs505

Question: For each theoretical result, does the paper provide the full set of assumptions and506

a complete (and correct) proof?507

Answer: [Yes]508
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Justification:509

Guidelines:510

• The answer NA means that the paper does not include theoretical results.511

• All the theorems, formulas, and proofs in the paper should be numbered and cross-512

referenced.513

• All assumptions should be clearly stated or referenced in the statement of any theorems.514

• The proofs can either appear in the main paper or the supplemental material, but if515

they appear in the supplemental material, the authors are encouraged to provide a short516

proof sketch to provide intuition.517

• Inversely, any informal proof provided in the core of the paper should be complemented518

by formal proofs provided in appendix or supplemental material.519

• Theorems and Lemmas that the proof relies upon should be properly referenced.520

4. Experimental result reproducibility521

Question: Does the paper fully disclose all the information needed to reproduce the main ex-522

perimental results of the paper to the extent that it affects the main claims and/or conclusions523

of the paper (regardless of whether the code and data are provided or not)?524

Answer: [Yes]525

Justification: The paper fully discloses all the information needed to reproduce the main526

experimental results as they pertain to the paper’s main claims and conclusions. The code is527

provided in the supplementary materials.528
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• The answer NA means that the paper does not include experiments.530

• If the paper includes experiments, a No answer to this question will not be perceived531

well by the reviewers: Making the paper reproducible is important, regardless of532

whether the code and data are provided or not.533

• If the contribution is a dataset and/or model, the authors should describe the steps taken534

to make their results reproducible or verifiable.535

• Depending on the contribution, reproducibility can be accomplished in various ways.536

For example, if the contribution is a novel architecture, describing the architecture fully537

might suffice, or if the contribution is a specific model and empirical evaluation, it may538

be necessary to either make it possible for others to replicate the model with the same539

dataset, or provide access to the model. In general. releasing code and data is often540

one good way to accomplish this, but reproducibility can also be provided via detailed541

instructions for how to replicate the results, access to a hosted model (e.g., in the case542

of a large language model), releasing of a model checkpoint, or other means that are543

appropriate to the research performed.544

• While NeurIPS does not require releasing code, the conference does require all submis-545

sions to provide some reasonable avenue for reproducibility, which may depend on the546

nature of the contribution. For example547

(a) If the contribution is primarily a new algorithm, the paper should make it clear how548

to reproduce that algorithm.549

(b) If the contribution is primarily a new model architecture, the paper should describe550

the architecture clearly and fully.551

(c) If the contribution is a new model (e.g., a large language model), then there should552

either be a way to access this model for reproducing the results or a way to reproduce553

the model (e.g., with an open-source dataset or instructions for how to construct554

the dataset).555

(d) We recognize that reproducibility may be tricky in some cases, in which case556

authors are welcome to describe the particular way they provide for reproducibility.557

In the case of closed-source models, it may be that access to the model is limited in558

some way (e.g., to registered users), but it should be possible for other researchers559

to have some path to reproducing or verifying the results.560

5. Open access to data and code561
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Question: Does the paper provide open access to the data and code, with sufficient instruc-562

tions to faithfully reproduce the main experimental results, as described in supplemental563

material?564

Answer: [Yes]565

Justification: The paper provides open access to the data and code, along with sufficient566

instructions in the supplemental material to faithfully reproduce the main experimental567

results.568

Guidelines:569

• The answer NA means that paper does not include experiments requiring code.570

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/571

public/guides/CodeSubmissionPolicy) for more details.572

• While we encourage the release of code and data, we understand that this might not be573

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not574

including code, unless this is central to the contribution (e.g., for a new open-source575

benchmark).576

• The instructions should contain the exact command and environment needed to run to577

reproduce the results. See the NeurIPS code and data submission guidelines (https:578

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.579

• The authors should provide instructions on data access and preparation, including how580

to access the raw data, preprocessed data, intermediate data, and generated data, etc.581

• The authors should provide scripts to reproduce all experimental results for the new582

proposed method and baselines. If only a subset of experiments are reproducible, they583

should state which ones are omitted from the script and why.584

• At submission time, to preserve anonymity, the authors should release anonymized585

versions (if applicable).586

• Providing as much information as possible in supplemental material (appended to the587

paper) is recommended, but including URLs to data and code is permitted.588

6. Experimental setting/details589

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-590

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the591

results?592

Answer: [Yes]593

Justification: The paper specifies all the training and test details necessary to understand the594

results, including data splits, hyperparameter settings, optimizer types, and how these were595

chosen. These details are provided in the Appendix C.596

Guidelines:597

• The answer NA means that the paper does not include experiments.598

• The experimental setting should be presented in the core of the paper to a level of detail599

that is necessary to appreciate the results and make sense of them.600

• The full details can be provided either with the code, in appendix, or as supplemental601

material.602

7. Experiment statistical significance603

Question: Does the paper report error bars suitably and correctly defined or other appropriate604

information about the statistical significance of the experiments?605

Answer: [Yes]606

Justification: The paper reports the average results across all experiments based on five runs607

of training and testing, which is sufficient to demonstrate the consistency and reliability of608

the experimental outcomes.609

Guidelines:610

• The answer NA means that the paper does not include experiments.611

• The authors should answer "Yes" if the results are accompanied by error bars, confi-612

dence intervals, or statistical significance tests, at least for the experiments that support613

the main claims of the paper.614
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• The factors of variability that the error bars are capturing should be clearly stated (for615

example, train/test split, initialization, random drawing of some parameter, or overall616

run with given experimental conditions).617

• The method for calculating the error bars should be explained (closed form formula,618

call to a library function, bootstrap, etc.)619

• The assumptions made should be given (e.g., Normally distributed errors).620

• It should be clear whether the error bar is the standard deviation or the standard error621

of the mean.622

• It is OK to report 1-sigma error bars, but one should state it. The authors should623

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis624

of Normality of errors is not verified.625

• For asymmetric distributions, the authors should be careful not to show in tables or626

figures symmetric error bars that would yield results that are out of range (e.g. negative627

error rates).628

• If error bars are reported in tables or plots, The authors should explain in the text how629

they were calculated and reference the corresponding figures or tables in the text.630

8. Experiments compute resources631

Question: For each experiment, does the paper provide sufficient information on the com-632

puter resources (type of compute workers, memory, time of execution) needed to reproduce633

the experiments?634

Answer: [Yes]635

Justification: The paper provides sufficient information on the computer resources required to636

reproduce each experiment, including the type of compute workers, memory, and execution637

time. This information can be found in Appendix C.638

Guidelines:639

• The answer NA means that the paper does not include experiments.640

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,641

or cloud provider, including relevant memory and storage.642

• The paper should provide the amount of compute required for each of the individual643

experimental runs as well as estimate the total compute.644

• The paper should disclose whether the full research project required more compute645

than the experiments reported in the paper (e.g., preliminary or failed experiments that646

didn’t make it into the paper).647

9. Code of ethics648

Question: Does the research conducted in the paper conform, in every respect, with the649

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?650

Answer: [Yes]651

Justification: The research conducted in the paper conforms with the NeurIPS Code of652

Ethics in every respect.653

Guidelines:654

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.655

• If the authors answer No, they should explain the special circumstances that require a656

deviation from the Code of Ethics.657

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-658

eration due to laws or regulations in their jurisdiction).659

10. Broader impacts660

Question: Does the paper discuss both potential positive societal impacts and negative661

societal impacts of the work performed?662

Answer: [NA]663

Justification: The paper does no discuss both potential positive and negative societal impacts664

of the proposed method.665
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Guidelines:666

• The answer NA means that there is no societal impact of the work performed.667

• If the authors answer NA or No, they should explain why their work has no societal668

impact or why the paper does not address societal impact.669

• Examples of negative societal impacts include potential malicious or unintended uses670

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations671

(e.g., deployment of technologies that could make decisions that unfairly impact specific672

groups), privacy considerations, and security considerations.673

• The conference expects that many papers will be foundational research and not tied674

to particular applications, let alone deployments. However, if there is a direct path to675

any negative applications, the authors should point it out. For example, it is legitimate676

to point out that an improvement in the quality of generative models could be used to677

generate deepfakes for disinformation. On the other hand, it is not needed to point out678

that a generic algorithm for optimizing neural networks could enable people to train679

models that generate Deepfakes faster.680

• The authors should consider possible harms that could arise when the technology is681

being used as intended and functioning correctly, harms that could arise when the682

technology is being used as intended but gives incorrect results, and harms following683

from (intentional or unintentional) misuse of the technology.684

• If there are negative societal impacts, the authors could also discuss possible mitigation685

strategies (e.g., gated release of models, providing defenses in addition to attacks,686

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from687

feedback over time, improving the efficiency and accessibility of ML).688

11. Safeguards689

Question: Does the paper describe safeguards that have been put in place for responsible690

release of data or models that have a high risk for misuse (e.g., pretrained language models,691

image generators, or scraped datasets)?692

Answer: [NA]693

Justification:694

Guidelines:695

• The answer NA means that the paper poses no such risks.696

• Released models that have a high risk for misuse or dual-use should be released with697

necessary safeguards to allow for controlled use of the model, for example by requiring698

that users adhere to usage guidelines or restrictions to access the model or implementing699

safety filters.700

• Datasets that have been scraped from the Internet could pose safety risks. The authors701

should describe how they avoided releasing unsafe images.702

• We recognize that providing effective safeguards is challenging, and many papers do703

not require this, but we encourage authors to take this into account and make a best704

faith effort.705

12. Licenses for existing assets706

Question: Are the creators or original owners of assets (e.g., code, data, models), used in707

the paper, properly credited and are the license and terms of use explicitly mentioned and708

properly respected?709

Answer: [Yes]710

Justification:711

Guidelines:712

• The answer NA means that the paper does not use existing assets.713

• The authors should cite the original paper that produced the code package or dataset.714

• The authors should state which version of the asset is used and, if possible, include a715

URL.716

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.717
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• For scraped data from a particular source (e.g., website), the copyright and terms of718

service of that source should be provided.719

• If assets are released, the license, copyright information, and terms of use in the720

package should be provided. For popular datasets, paperswithcode.com/datasets721

has curated licenses for some datasets. Their licensing guide can help determine the722

license of a dataset.723

• For existing datasets that are re-packaged, both the original license and the license of724

the derived asset (if it has changed) should be provided.725

• If this information is not available online, the authors are encouraged to reach out to726

the asset’s creators.727

13. New assets728

Question: Are new assets introduced in the paper well documented and is the documentation729

provided alongside the assets?730

Answer: [Yes]731

Justification: Yes, any new assets introduced in the paper are well documented, and the732

documentation is provided alongside the assets in the appendix.733

Guidelines:734

• The answer NA means that the paper does not release new assets.735

• Researchers should communicate the details of the dataset/code/model as part of their736

submissions via structured templates. This includes details about training, license,737

limitations, etc.738

• The paper should discuss whether and how consent was obtained from people whose739

asset is used.740

• At submission time, remember to anonymize your assets (if applicable). You can either741

create an anonymized URL or include an anonymized zip file.742

14. Crowdsourcing and research with human subjects743

Question: For crowdsourcing experiments and research with human subjects, does the paper744

include the full text of instructions given to participants and screenshots, if applicable, as745

well as details about compensation (if any)?746

Answer: [NA]747

Justification:748

Guidelines:749

• The answer NA means that the paper does not involve crowdsourcing nor research with750

human subjects.751

• Including this information in the supplemental material is fine, but if the main contribu-752

tion of the paper involves human subjects, then as much detail as possible should be753

included in the main paper.754

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,755

or other labor should be paid at least the minimum wage in the country of the data756

collector.757

15. Institutional review board (IRB) approvals or equivalent for research with human758

subjects759

Question: Does the paper describe potential risks incurred by study participants, whether760

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)761

approvals (or an equivalent approval/review based on the requirements of your country or762

institution) were obtained?763

Answer: [NA]764

Justification:765

Guidelines:766

• The answer NA means that the paper does not involve crowdsourcing nor research with767

human subjects.768
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• Depending on the country in which research is conducted, IRB approval (or equivalent)769

may be required for any human subjects research. If you obtained IRB approval, you770

should clearly state this in the paper.771

• We recognize that the procedures for this may vary significantly between institutions772

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the773

guidelines for their institution.774

• For initial submissions, do not include any information that would break anonymity (if775

applicable), such as the institution conducting the review.776

16. Declaration of LLM usage777

Question: Does the paper describe the usage of LLMs if it is an important, original, or778

non-standard component of the core methods in this research? Note that if the LLM is used779

only for writing, editing, or formatting purposes and does not impact the core methodology,780

scientific rigorousness, or originality of the research, declaration is not required.781

Answer: [Yes]782

Justification: The paper describes the use of LLMs as a pre-trained model in the research,783

Guidelines:784

• The answer NA means that the core method development in this research does not785

involve LLMs as any important, original, or non-standard components.786

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)787

for what should or should not be described.788

19

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Method
	Large Language Model for Graph
	Semantic-Aware Subgraph Retrieval via Knapsack Optimization
	Query-aware Graph Encoder
	LLMs Supervised Fine-Tuning

	Related works
	LLMs with Graphs
	Retrieval on Graphs

	Experiments
	Experimental Settings
	Overall Performance on Supervised Learning (RQ1)
	Subgraph Retrieval Strategy (RQ2)
	Zero-Shot Adaptation and Transfer Performance (RQ3)
	Effectiveness of Query-Aware Modeling (RQ4)

	Conclusion, Limitations, and Future Works

