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Abstract

Graph Retrieval-Augmented Generation (GraphRAG) has recently emerged as a
task paradigm for injecting graph-structured knowledge into large language models
(LLMs), yet most existing approaches still rely on flat, similarity-based retrieval that
ignores topology and uses static encoders, producing redundant or structurally inco-
herent evidence. In this paper, we propose GraphPack, a query-aware GraphRAG
framework that overcomes these limitations by casting subgraph selection as a 0—1
knapsack optimization. For every natural language query, GraphPack packs the
most informative subgraph under a size budget by jointly maximizing semantic
relevance and minimizing structural redundancy. The selected subgraph is then
encoded by a query-aware graph encoder whose parameters are conditioned on the
query, allowing node representations to adapt dynamically to user intent. Extensive
experiments on multiple knowledge-intensive graph benchmarks demonstrate that
GraphPack achieves state-of-the-art performance, showcasing its strong capabil-
ity in addressing structural and contextual challenges under supervised learning,
cross-domain settings, and zero-shot scenarios.

1 Introduction

Graph-structured data plays a central role in real-world applications such as recommendation systems
[He et al., [2020]], social network analysis [Huang et al., 2024, and knowledge-intensive reasoning
tasks [Fu et al.} 2020} [Lan et al.| |2021]]. Large language models (LLMs) have demonstrated impressive
capabilities in natural language understanding and generation. However, their ability to effectively
integrate structured knowledge and user intent remains limited, leading to suboptimal performance
on tasks such as query-focused summarization (QFS). A key challenge lies in retrieving and encoding
task-relevant entities from large-scale textual graphs in a manner that aligns with the user’s intent.

Graph Retrieval-Augmented Generation (GraphRAG) [Edge et al.| 2025] has emerged as an innovative
solution to address the challenges of integrating structured knowledge into LLMs. Unlike traditional
retrieval-augmented generation (RAG) [Lewis et al.l 2020} |Guu et al.| 2020, [Ram et al.,|2023| [Izacard
et al.| [2022], which primarily operates over flat textual corpora, GraphRAG retrieves graph elements
— such as nodes, triples, paths, or subgraphs — that are semantically relevant to a given query
from a pre-constructed graph database. These retrieved elements provide rich relational knowledge
that enhances both the depth and accuracy of LLM-based reasoning. By retrieving subgraphs or
graph communities, GraphRAG enables comprehensive understanding of the underlying knowledge
structure, making it particularly effective in tasks such as query-focused summarization, where
concise yet informative responses must align closely with user intent.
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{ Question: What category does the following paper belong to? | | Question: Where does fabio capello come from?

i { Question: What's the deal between Ronaldo and Real Madrid? |

Description:

Attention Is All You Need \n Abstract: The dominant sequence
transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a
decoder. The best performing models also connect the encoder
and decoder through an attention mechanism. We propose a
new simple network architecture, the Transformer, based solely
on attention mechanisms, dispensing with recurrence and
convolutions entirely.

Citation graph:
Gemini: A Family of Highly

Mamba: Linear-Time Sequence Capable Multimodal Models

Modeling with Selective State Spaces

Attention Is All
You Need
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Segment anything of models

Description:
0,football \n3,male \n4,football player \n8,catholicism
\n10,san canzian d*isonzo \n20,italy \n22,fabio capello

22,common.topic.notable_types,4
10,location.location.people_born_here,22
22,sports.sports_team_coach.sports_coached,0
22, people.person.nationality,20

Knowledge graph: football player football
\ s

notable_types  sports_coached
s

san canzian

X — people bom — fabio capello = person eigion
d'isonzo here N\

= catholicism
erson.na erson.gender
containcdby  Person.nationality  PeTSOn &
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Description:
Ronaldo Luis Nazario de Lima
description: Brazilian footballer

Real Madrid Club
description: Spanish association football club

Knowledge graph:

& football_player —

team Ronaldo

Real Madrid

Answer: The paper "Attention Is All You Need" is
primarily categorized under Computation and Language
(cs.CL) due to its core contribution to the field of Natural
Language Processing through the introduction of the

Answer: Based on the provided knowledge graph, fabio
capello come from San Canzian d'Isonzo. a town in the
province of Gorizia, located in the Friuli Venezia Giulia
region of northeastern Italy.

Answer: Ronaldo is a former Real Madrid player. He
joined the club from Inter Milan in 2002 and played there
for five seasons (2002-2007).

Transformer architecture.

Figure 1: Generative knowledge-intensive graph tasks require combining textual information, knowl-
edge graphs, and language models to perform reasoning and answer user questions.

A key challenge in applying LLMs to graph-structured data lies in designing retrieval mechanisms
that are not only semantically informative but also adaptable across diverse graph tasks. As shown in
figure[T] Knowledge-intensive tasks such as multi-hop question answering require global structural
reasoning, demanding the model to identify and integrate information from semantically related,
yet topologically distant entities. A major limitation of current graph-augmented LLMs lies in their
reliance on similarity-based retrieval mechanisms, which often neglect the rich topological structure
embedded in the graph. For example, GRAG [Hu et al.| |2025]] re-ranks candidate subgraphs based
on both their relational alignment with the query and fine-grained concept-level similarity. KELP
[Liu et al.,|2024] trains a pretrained language model to score the relevance between retrieved paths
and input queries. While these methods perform well at identifying nodes or subgraphs that are
semantically close to a given query, they tend to treat the graph as a flat collection of textual elements,
neglecting the relational patterns that define its underlying structure.

To address this issue, we propose GraphPack, a novel framework for query-aware graph retrieval-
augmented generation. Specifically, we formulate subgraph packing as a 0-1 knapsack problem,
allowing the model to dynamically identify query-relevant regions of the graph by jointly considering
semantic relevance and structural cost. We further introduce Query-LM, a graph encoder with
query-aware capabilities that enhances node representations through conditional linear modulation
modules. This enables the model to adaptively adjust node embeddings based on the input query,
leading to more accurate and context-sensitive graph encoding. Additionally, we design an auxil-
iary graph-to-text reconstruction objective. This training signal improves the expressiveness and
interpretability of graph embeddings without requiring any architectural changes — making our
approach both general and practical. Our method goes beyond traditional GraphRAG frameworks
by explicitly modeling what the user is asking and how the graph structure should respond. This
leads to a more principled integration of structured knowledge into the language generation process.
Extensive experiments demonstrate that GraphLLM achieves strong performance across multiple
graph benchmarks, highlighting its effectiveness in bridging structured knowledge with LLMs for
downstream applications.

2 Method

2.1 Large Language Model for Graph

GraphLLM aims to effectively incorporate graph-structured contextual information into both the
retrieval and generation stages, thereby enhancing the relevance between the generated outputs and the
textual graph knowledge. Specifically, given a user query =, and a textual graph G = (V, &, X, Xe),
we expect GraphLLM to generate answers that are aligned with the intended semantics of the query.
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Figure 2: Overview of the GraphPack Workflow. A natural-language query retrieves anchor nodes,
their neighbourhood is expanded into a candidate subgraph, a 0-1 knapsack optimiser packs the most
relevant portion under a size budget, and the packed subgraph is encoded by a query-aware graph

encoder before being fed—together with the query—to an LLM for answer generation.

However, real-world graphs can be large in scale and contain substantial amounts of irrelevant or
redundant information. Directly feeding the entire graph into the model is not only computationally
expensive but may also lead to generated outputs that deviate from the user’s actual intent. To
address this challenge, we emphasize the integration of a subgraph retrieval mechanism in the design
of GraphLLM, ensuring that the model can leverage the rich semantic information present in the
graph while remaining highly sensitive to the specific query intent during the generation process. we
formally define the generation process of GraphLLM under the graph-augmented retrieval mechanism.
Given a user query x4, and the original textual graph G, the model first retrieves the most relevant
subgraph G* with respect to the query through a retrieval mechanism:

G* = Retrieval(z,, G)

ey

We model GraphLLLM with graph-retrieval-augmented generation as a likelihood-based model that
defines the probability of generating a query-related answer y:

L
p(y | qu,g*) = Hp(yl | y<[,$q,g*)

=1

@

where y; denotes the [-th element in the output sequence, and y; represents the first /-1 generated
words. G* contains both the structural and textual information of the graph, which assists the model
in generating y. This modeling approach not only preserves the topological information of the graph
structure but also enables joint modeling of context and query intent, encouraging the model to
develop strong capabilities in understanding and utilizing graph-structured knowledge.

2.2 Semantic-Aware Subgraph Retrieval via Knapsack Optimization

Graph Indexing We adopt a retrieval approach similar to RAG to efficiently retrieve subgraphs
relevant to user needs from large textual graphs. Specifically, we use a frozen text encoder such as
sentence-bert [Reimers and Gurevych, [2019] to map various types of text into a unified vector space:

z, = TextEncoder(z,) € R4M 2, = TextEncoder(z,) € R4M

3

Here, z, and z. denote the embeddings of the node and edge. dy\; represents the dimension of the
pretrained language model. To enable efficient graph retrieval, we precompute the textual embeddings

of the graph for subsequent use.
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Anchor Node Identification Traditional graph retrieval methods often struggle to balance semantic
relevance with structural coherence, especially in large and complex graphs. A promising approach is
to first identify a small set of semantically relevant nodes as anchor point and then expand the search
within their local neighborhoods. This two-step strategy not only addresses computational challenges
but also introduces a novel way to harmonize semantic alignment with topological connectivity. We
process the user’s question in the same manner as the textual information of the graph to obtain the
embedding z,.

Vanchor = al"gtOPknev COS(qu Zn) @
We use the cosine similarity function cos(-, -) to measure the similarity between the question rep-
resentation and the node representations. The argtopk operation retrieves the top-k nodes with the
highest similarity scores, which are then selected as anchor nodes.

Knapsack Optimization We model subgraph packing as a 0-1 knapsack problem [Freville, 2004],
integrating both semantic relevance and structural redundancy into the subgraph retrieval frame-
work. Our method dynamically balances the value of each graph element (node or edge) against
its construction cost, aiming to achieve a trade-off between accuracy and efficiency in subgraph
construction.

Formally, we model the subgraph retrieval task as a 0-1 knapsack problem. For an n-hop subgraph
gil = (V', &’) rooted at an anchor node vé € Vanchor, €ach graph element is treated as an element e
in the knapsack formulation. A value function value(e) measures the semantic relevance of e, while a
weight function weight(e) quantifies its structural cost. The goal is to maximize the total value of
selected items under a capacity constraint C:

arg max Z value(e), s.t. Z weight(e) < C,S CV' U&’ Q)
ecS ecsS

Rank-Based Value Assignment To evaluate semantic relevance, we introduce a ranking-based
decaying value mechanism. We first sort all elements in descending order based on their semantic
relevance scores and assign each element a rank(e). The value of each element is then computed as
followed:

value(e) = max_score — rank(e) (6)
This design ensures that elements with higher semantic relevance within the local subgraph re-
ceive higher value scores, and are therefore prioritized for inclusion in the final subgraph.
Structure-Aware Weight Assign-
ment In terms of measuring struc-
tural cost, we adopt a structure-aware
weighting mechanism to suppress re-
dundancy. For each element e, the
weight is determined by the smallest
n-hop subgraph in which it appears
— in other words, the minimum hop
level at which the element is first en-

Algorithm 1 Dynamic Programming for 0-1 Knapsack Prob-

lem

Input: Values v[1..n], Weights w(1..n], Capacity C

Output: Selected items maximizing total value within C

Initialize A < array of (n + 1) x (C' + 1) with 0

Initialize keep < boolean array of (n + 1) x (C + 1) with
False

fori =1tondo

countered:
. ) ; forc=0toCdo

weight(e) = min{n [ e € g;,} (7) it w[i] < cand v[i]+ Ali—1][c—wli] > Ali—1]]
This means that nearby elements (e.g., then
those within 1-hop) are assigned lower Alil[e] + v[i] + Afi — 1][e — w]i]]
weights, while incorporating distant keepli][c] < True
elements (e.g., those beyond 3-hops) else
incurs a higher cost. In this way, the | Ali][c] + Ali — 1][¢]

inclusion of remote and potentially re- Initialize S «+ [], ¢ < C
dundant elements — which may con- for ¢ = n downto 1 do

tribute little semantic value but sig- if keepli][c] then
nificantly increase structural complex- Append i to S
ity — is effectively discouraged. This ¢+ ¢ — wli]

leads to the construction of more com- return S

pact and effective subgraphs. We use an efficient dynamic programming Algorithm [I]to solve the
subgraph optimization problem. Finally, we use the query embedding as a prompt node to connect
all retrieved elements and construct a coherent subgraph. We present discussions on the algorithm
implementation in Appendix A.
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2.3 Query-aware Graph Encoder

We employ a graph neural network to encode the topological structure of the retrieved subgraph.
However, traditional GNNs rely solely on local neighborhood topology and edge attributes for
message passing and feature aggregation. As a result, they lack the ability to dynamically adjust their
modeling focus based on the input query — a critical limitation in knowledge-intensive question
answering tasks that require identifying task-specific paths or substructures.

To address this issue, we propose a query-aware graph encoder, which introduces conditional
modulation into the GNN architecture through FiILM-style transformations. we perform multi-layer
GNN message passing over the retrieved subgraph G*. At each layer, node representations are
updated by aggregating information from their neighbors, preserving contextual relationships within
the graph structure. Formally, the output of the 1-th GNN layer is given by:

A = GNNO (hﬂ*”, {(hgj*), em,) lue N (v)}) ®)

where A (v) denotes the neighborhood of node v in the retrieved subgraph. To overcome the
limitations of traditional GNNs in static modeling, inspired by the FiLM [Perez et al., 2017]], we
introduce the Query-aware Linear Modulation (Query-LM), which serves as a conditional control
mechanism within the GNN message passing process. Specifically, we encode the natural language
question into a vector representation:

hy = Pooling (LLMEmbedded(z,)) ©)

which serves as a guiding signal for the subsequent graph encoding process. This allows the model to
adaptively steer feature learning according to the specific requirements of the given task. We then
define the Query-FiLM module at each layer as follows:

W= (Wl ng+b0), 80 =0 (W) ny+bf)) (10)
h =+ o b + B (1n

where ® denotes the Hadamard product, and o represents an activation function. Query-FiLM uses

the query embedding h, to generate the affine transformation parameters %(_l) and (-l), which are

then applied to scale and shift the intermediate node representations iiff) output by the GNN in a

channel-wise manner, resulting in the updated node representations hg). Through the Query-FiLM,
the model translates the semantics of the natural language query into explicit modulation signals
over the GNN feature space, enabling the acquisition of query-aware graph representations while
preserving the original capability to model graph structure.

Then we use a graph readout method based on node-level nonlinear transformations. We obtain the
final graph-level representation by applying average pooling to the transformed embeddings of all
nodes: 1

ho = 11 S o(WihlP) + b1)Wa + by (12)

veY

Here, W1, W3 and by, b, denote the learnable weight matrices and bias terms. Before the node
embeddings are pooled into a graph-level representation, they are first mapped through independent
nonlinear transformations. This enhances the expressive power of each node embedding while
maintaining geometric consistency with the LLM’s textual semantic space.

2.4 LLMs Supervised Fine-Tuning

During the supervised fine-tuning (SFT) phase, we use the original user query z, and the textual
description of the subgraph x4 as the initial input to the decoder. The graph representation b is
concatenated with the embeddings of the input text to form the contextual representation for the
language model. For the target answer sequence y corresponding to the query, we optimize the
model parameters by maximizing the standard log-likelihood of the output sequence. This process
effectively learns the conditional probability distribution defined in Equation|[T} enabling the model to
generate accurate and semantically coherent answers.

However, a challenge arises as the input length increases — the attention weights allocated to the
graph embedding inevitably decrease, leading to a potential loss of structural information [Ma et al.,
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2024, |[Kong et al.| 2025]]. To address this issue, we design an auxiliary graph-to-text reconstruction
task . Specifically, we train the model to answer the user query only based on the abstracted graph
embedding, by maximizing the standard log-likelihood of the target answer sequence y.

The purpose of this auxiliary task is to enhance the invertibility and interpretability of the graph
embedding, ensuring that it not only captures the underlying graph structure effectively but also can
independently guide high-quality answer generation within the language model. Importantly, this
strategy does not require any modification to the model architecture itself; instead, it improves the
representational power of the graph embeddings purely through adjustments to the training objective,
making it both general and practical.

3 Related works

Here, we mainly introduce the generation-based GraphLLM [Ren et al.| 2024]] and GRAG [Peng
et al.,2024]). The classification-based GraphLLM and its connection to graph neural networks will be
discussed in the Appendix B.

3.1 LLMs with Graphs

Recent research has explored how to apply LLMs to tasks involving graph-structured data. One
intuitive approach is to serialize the textual graph into structured descriptions, which are then directly
fed into the LLMs for fine-tuning [Wang et al., 2024} |Ye et al., 2024, [Zhao et al., 2023} [Fatemi et al.,
2023 Tan et al.| [2024]. These methods can leverage LLMs to improve the generalization of tasks,
but they fail to model the unique structural information of graph data, leading to suboptimal results.
Subsequent works use specialized graph encoders to handle structural information [Tang et al.,[2024a]
Chen et al., [2024, [Kong et al., [2025, |Tian et al., 2024, |He et al., 2025| [Tang et al., 2024b, |Zhang et al.,
2024]]. GraphGPT [Tang et al., 20244 trains a graph encoder by aligning structural and semantic
information using CLIP [Radford et al.,[2021]]. LLaGA [Chen et al.| 2024 uses Laplacian embeddings
as the structural encoder to help the model recognize graph-structured knowledge. GOFA [Kong
et al.| 2025]] incorporates the embeddings of LLMs into the GNN message passing process to allow
interaction between the graph encoder and LLMs. Despite these efforts, most existing approaches
either treat the graph as static input or fail to dynamically adapt to user queries. This significantly
limits their ability to perform complex reasoning over large-scale graphs. In contrast, GraphPack
explicitly models the interplay between query intent and graph structure through a semantic-aware
subgraph retrieval mechanism , enabling more effective and targeted reasoning.

3.2 Retrieval on Graphs

In GraphRAG, various retrieval methods exhibit distinct advantages when addressing different aspects
of the retrieval task. We categorize them into two main types: Parameter-free Retrievers and Model-
based Retrievers. Parameter-free Retrievers do not rely on deep learning models, enabling efficient
and scalable retrieval. For instance, QA-GNN [Yasunaga et al., 2022] connect the QA context and KG
to form a joint graph. OpenCSR [Han et al., 2023|| constructs a question-dependent open knowledge
graph based on retrieved supporting facts. GraphRAG [Edge et al.l 2025] structures the corpus to
enable query-centric retrieval. GRAG [Hu et al., [2025]] retrieves subgraphs based on the similarity
between the query and entities. G-Retriever [He et al.| 2024] extracts relevant subgraphs using
Prize-Collecting Steiner Tree optimization. Model-based Retrievers train specialized models to
extract relevant entities or subgraphs, achieving higher accuracy at the cost of increased computational
overhead. Some studies [Mavromatis and Karypis, [2024, Han et al., 2023|] employs GNN to identify
entities from the knowledge graph. Subgraph Retriever[Zhang et al.l 2022] uses RoOBERTa [Liu et al.|
2019] to expand from the topic entity and retrieves the relevant paths in a sequential decision process.
Unlike previous methods, GraphPack formulates subgraph retrieval as an optimization problem akin
to the knapsack problem, ensuring that the selected subgraphs are both highly relevant and minimally
noisy. Moreover, our approach can adapt to new tasks without requiring retraining, making it more
practical and versatile than existing model-based retrievers.
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Table 1: Results on supervised learning (first). The best results are displayed in bold, while the
second-best results are marked with underlines.

Model Cora Citeseer Wikics Instagram ogbn-arxiv
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
OFA 7524 7420 73.04 6898 77.34 7497 60.85 5544 7323 57.38
InstructGLM 69.10 65.74 51.87 50.65 4573 4270 57.94 5487 39.09 24.65
GraphText 76.21 7451 5943 5643 67.35 64.55 62.64 5400 4947 24.76
GraphAdapter 72.85 70.66 69.57 6621 70.85 6649 67.40 58.40 7445 56.04
LLaGA 7442 7250 5573 5483 73.88 7090 6294 54.62 72778 53.86

GraphPack 7640 7545 69.95 67.59 7959 7718 6640 59.34 75.01 58.51

Table 2: Results on supervised learning (sec- O FlScore e Avg. Node
ond). The best results are displayed in bold, 41.5 ‘ ‘ ‘ 20
while the second-best results are marked with . ,®
underlines. ) a1l 7 15 3
=}
: . z
Model WebQSP cwe A 40.5 |- o <10 gb
FI  Hit@l Fl Hit@l — H 2
Llama-2-7B 4295 61.86 3229 36.92 40 5
Mistral-7B 43.11 6252  32.87 36.46 10 20 30
G-Retriever  50.23  70.16  39.89 47.75 Capacity
GRAG 5041 7275 39.62 4743

Figure 3: Analysis of knapsack capacity and
GraphPack 5179  73.01 4103 4850  ,icroc subgraph size.

4 Experiments

We conducted comprehensive experiments to validate the effectiveness of our framework under
various settings, aiming to address the following key research questions:

RQ1. How does GraphPack perform overall on different graph tasks?

RQ2. How does GraphPack affect the reasoning of LLMs?

RQ3. How well does GraphPack generalize across different tasks under the zero-shot setting?
RQ4. What is the role of query-aware modeling in GraphPack?

4.1 Experimental Settings

Datasets. The datasets and tasks used in our evaluation represent knowledge-intensive graph
reasoning , where successful performance requires not only semantic understanding but also the
ability to integrate complex relational structures. These tasks span multiple domains and reasoning
paradigms, including citation graphs, social networks, and knowledge graphs, etc. We present the
details of the datasets we used in Appendix C.1.

Implement Details. To ensure a fair comparison, we employ the Llama—2—7lﬂ base model as the
baseline. Additionally, we select Sentence-BERT [Reimers and Gurevych,2019] as the text encoder
and GraphTransformer [Shi et al., [2021] as the graph encoder. All training and experiment details,
including baseline, hyperparameters and templates, are provided in the Appendix C.

4.2 Overall Performance on Supervised Learning (RQ1)

As shown in Table [T and Table[2] Across a range of benchmark tests, our framework demonstrates
significantly improved performance compared to traditional baseline models. Notably, the methods

"https://huggingface.co/meta-1lama/Llama-2-7b-hf
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Table 3: Comparison of Prediction Results Between ChatGPT and GraphPack on the WebQSP
Dataset. Predictions with a % symbol match the ground truth.

Question: What are some inventions that leonardo da vinci invented?
Ground Truth: Diving suit | Triple barrel canon | Viola organista | Double hull | Aerial screw |
Anemometer | 33-barreled organ | Armored car | Parachute | Ornithopter

@ : Flying Machine, Anemometer, Diving Suit, Ball Bearings, Helicopter

v {}z GraphPack: Anemometerx, Triple barrel canon, Aerial screwx, 33-barreled organx,
Double hull%

Question: What languages do they speak in costa rica?
Ground Truth: Bribri language | Spanish language | Limonese creole | Jamaican creole english
language

@ : In Costa Rica, the official language is Spanish. Additionally, English is also com-
monly spoken

i @ GraphPack: Spanish language | Limonese creole | Bribri language | Jamaican creole
english languagex

employed in the baseline model are not well-suited for various types of graph tasks, whereas
GraphPack highlights its versatility and outstanding effectiveness in tackling diverse graph-related
challenges. Furthermore, as task size and complexity grow, GraphPack consistently maintains robust
and efficient performance, offering a universal and powerful solution for a broader spectrum of graph
tasks. Further performance reports on more graph benchmark tasks and knowledge-intensive tasks
are presented in Appendix D.1.

4.3 Subgraph Retrieval Strategy (RQ2)

To verify the effectiveness of GraphPack’s graph-enhanced retrieval strategy, we evaluate its impact on
LLMs without fine-tuning. Table]demonstrates the performance improvements achieved by different
strategies during the inference of LLMs without any fine-tuning. It is noteworthy that GraphPack
achieves a 18.61% increase in F1 Score compared to the baseline model. This is particularly important
in real-world question answering scenarios, as it can provide users with more correct candidate entities
to choose from. Furthermore, As shown in Table 3] we analyze the performance of ChatGPT and
GraphPack when addressing questions involving multiple entities within labels. The results reveal
that ChatGPT exhibit false detection issues, whereas GraphPack demonstrates higher reliability in
handling multi-entity problems. This validates the perspective raised in RQ2: GraphPack significantly
enhances the practicality of the model in graph-based question-answering scenarios by offering users
more accurate and diverse candidate entities. We present a comparison of subgraph retrieval time and
efficiency between GraphPack and other methods in Appendix D.2. Notably, GraphPack retrieves the
optimal subgraph in less than 0.25 seconds — even in graphs containing millions of nodes. These
advantages make the GraphPack strategy significantly valuable in practical applications.

Furthermore, We conduct an ablation study over a range of knapsack capacities C to examine the
impact of subgraph size on retrieval effectiveness and computational efficiency. As shown in Figure
increasing C allows the model to retrieve more nodes on average — from 8.34 nodes at C=10 to 17.96
nodes at C=30 — suggesting improved coverage of the graph structure. However, this increase in
coverage does not translate into consistent gains in performance. On the WebQSP dataset, the best
result (41.03 F1 score) is achieved at C=20. Further increasing C to 30 leads to a drop in performance
(40.72 F1 score), likely due to the inclusion of noisy or irrelevant entities that distract the LLM during
generation. This trend highlights a key insight: the optimal setting strikes a balance between semantic
richness and structural compactness, ensuring both high-quality retrieval and efficient reasoning.

4.4 Zero-Shot Adaptation and Transfer Performance (RQ3)

Zero-shot learning involves training the model on a specific dataset and then evaluating it on un-
seen datasets or tasks. This approach is crucial for assessing the generalization capability of the
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¢ ments.
gies. -
Train — Test Model Acc F1
Model WebQSP
ode : CorasWikics  Llama2-7B 04115 0.3772
FI  Hit@l  Recall GraphPack  0.5589  0.5367
Llama2-7B 0.2555 0.4148 0.2920 CorasInstagram Llama2-7B  0.4078  0.4369
G-Retriever 0.2571 0.4760 0.2954 g GraphPack 0.4543 0.4698
GraphPack 03023 04732  0.3061
L Llama2-7B  0.1534  0.1802
Mistral-7B 02589 0.4213  0.2967 CWQ-Wikics G phPack 04279 0.4167
G-Retriever 0.2634 0.4832 0.2981
GraphPack 03071 0.4878  0.3088 CWQ—Instagram ~ L1ama2-7B  0.1679 = 0.2421

GraphPack  0.39.87 0.4021

model. Specifically, we design two experimental settings to evaluate different aspects of zero-shot
performance. The first setting focuses on cross-domain generalization , where the model is trained
on citation graph datasets and evaluated on social network graphs. The second setting examines
cross-task generalization , involving different textual description templates of the graph and varying
user intents. As shown in Table[5] we compare the zero-shot performance of LLMs and GraphPack
under various settings. The results indicate that GraphPack consistently outperforms the fine-tuned
LLM in all conditions. In particular, when evaluated on cross-task scenarios, the fine-tuned LLM
struggles to answer domain-specific questions, whereas GraphPack maintains strong zero-shot perfor-
mance. This suggests that the structural knowledge encoded through our retrieval and modulation
framework transfers well across domains and task formulations, even without access to target-domain
supervision. Furthermore, in more complex and resource-constrained settings — such as when only
partial graph structures are available or when the target domain exhibits significant divergence —
GraphPack still demonstrates robust performance. Additional experiments presented in Appendix
D.3 explore these challenging zero-shot and few-shot scenarios.

4.5 Effectiveness of Query-Aware Modeling (RQ4)

We conduct ablation studies by systematically removing different components of the query-aware
modeling framework and evaluating their impact on performance. In one variant, we remove the
ranking-based value assignment for both nodes and edges, thereby eliminating the model’s ability to
prioritize semantically meaningful connections during subgraph selection. Additionally, we evaluate
the effect of excluding the Query-LM module from the graph encoder, effectively replacing the
conditional modulation mechanism with a standard static aggregation scheme commonly used in
traditional GNNs. Experimental results in Appendix D.4 demonstrate that the removal of any of these
query-aware components leads to consistent performance degradation across a range of knowledge-
intensive tasks. This highlights the importance of integrating explicit query signals into both the
retrieval and encoding stages, as doing so enables the model to dynamically align its focus with user
intent while preserving structural coherence.

5 Conclusion, Limitations, and Future Works

In this paper, we propose GraphPack, a query-aware framework for Graph Retrieval-Augmented
Generation. Its core idea is to cast subgraph selection as a 0-1 knapsack optimisation that simultane-
ously maximises semantic relevance and minimises topological redundancy, then encode the chosen
subgraph with a query-aware graph encoder whose parameters adapt to the user’s intent. Extensive
experiments on citation, social-network and knowledge-graph benchmarks demonstrate that Graph-
Pack consistently outperforms strong GraphRAG baselines in supervised, cross-domain and zero-shot
settings. Two practical limitations remain: the framework’s dependence on high-quality semantic
embeddings means noisy or sparse signals can degrade anchor node identification. Additionally,
GraphPack depends on downstream task fine-tuning, restricting its potential to become a general
graph foundation model. Addressing these challenges, by improving robustness to noisy semantics
and developing GFM—forms promising directions for future work.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, the main claims made in the abstract and introduction accurately reflect
the paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Check Section[3

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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511 * The answer NA means that the paper does not include theoretical results.

512  All the theorems, formulas, and proofs in the paper should be numbered and cross-
513 referenced.

514 * All assumptions should be clearly stated or referenced in the statement of any theorems.
515 * The proofs can either appear in the main paper or the supplemental material, but if
516 they appear in the supplemental material, the authors are encouraged to provide a short
517 proof sketch to provide intuition.

518 * Inversely, any informal proof provided in the core of the paper should be complemented
519 by formal proofs provided in appendix or supplemental material.

520 * Theorems and Lemmas that the proof relies upon should be properly referenced.

521 4. Experimental result reproducibility

522 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
523 perimental results of the paper to the extent that it affects the main claims and/or conclusions
524 of the paper (regardless of whether the code and data are provided or not)?

525 Answer: [Yes]

526 Justification: The paper fully discloses all the information needed to reproduce the main
527 experimental results as they pertain to the paper’s main claims and conclusions. The code is
528 provided in the supplementary materials.

529 Guidelines:

530 * The answer NA means that the paper does not include experiments.

531 * If the paper includes experiments, a No answer to this question will not be perceived
532 well by the reviewers: Making the paper reproducible is important, regardless of
533 whether the code and data are provided or not.

534 * If the contribution is a dataset and/or model, the authors should describe the steps taken
535 to make their results reproducible or verifiable.

536 * Depending on the contribution, reproducibility can be accomplished in various ways.
537 For example, if the contribution is a novel architecture, describing the architecture fully
538 might suffice, or if the contribution is a specific model and empirical evaluation, it may
539 be necessary to either make it possible for others to replicate the model with the same
540 dataset, or provide access to the model. In general. releasing code and data is often
541 one good way to accomplish this, but reproducibility can also be provided via detailed
542 instructions for how to replicate the results, access to a hosted model (e.g., in the case
543 of a large language model), releasing of a model checkpoint, or other means that are
544 appropriate to the research performed.

545 * While NeurIPS does not require releasing code, the conference does require all submis-
546 sions to provide some reasonable avenue for reproducibility, which may depend on the
547 nature of the contribution. For example

548 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
549 to reproduce that algorithm.

550 (b) If the contribution is primarily a new model architecture, the paper should describe
551 the architecture clearly and fully.

552 (c) If the contribution is a new model (e.g., a large language model), then there should
553 either be a way to access this model for reproducing the results or a way to reproduce
554 the model (e.g., with an open-source dataset or instructions for how to construct
555 the dataset).

556 (d) We recognize that reproducibility may be tricky in some cases, in which case
557 authors are welcome to describe the particular way they provide for reproducibility.
558 In the case of closed-source models, it may be that access to the model is limited in
559 some way (e.g., to registered users), but it should be possible for other researchers
560 to have some path to reproducing or verifying the results.

561 5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides open access to the data and code, along with sufficient
instructions in the supplemental material to faithfully reproduce the main experimental
results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all the training and test details necessary to understand the
results, including data splits, hyperparameter settings, optimizer types, and how these were
chosen. These details are provided in the Appendix C.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports the average results across all experiments based on five runs
of training and testing, which is sufficient to demonstrate the consistency and reliability of
the experimental outcomes.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides sufficient information on the computer resources required to
reproduce each experiment, including the type of compute workers, memory, and execution
time. This information can be found in Appendix C.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics in every respect.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper does no discuss both potential positive and negative societal impacts
of the proposed method.
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11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification:
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, any new assets introduced in the paper are well documented, and the
documentation is provided alongside the assets in the appendix.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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769 * Depending on the country in which research is conducted, IRB approval (or equivalent)

770 may be required for any human subjects research. If you obtained IRB approval, you
771 should clearly state this in the paper.

772 * We recognize that the procedures for this may vary significantly between institutions
773 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
774 guidelines for their institution.

775 * For initial submissions, do not include any information that would break anonymity (if
776 applicable), such as the institution conducting the review.

777 16. Declaration of LLLM usage

778 Question: Does the paper describe the usage of LLMs if it is an important, original, or
779 non-standard component of the core methods in this research? Note that if the LLM is used
780 only for writing, editing, or formatting purposes and does not impact the core methodology,
781 scientific rigorousness, or originality of the research, declaration is not required.

782 Answer: [Yes]

783 Justification: The paper describes the use of LLMs as a pre-trained model in the research,
784 Guidelines:

785 * The answer NA means that the core method development in this research does not
786 involve LLMs as any important, original, or non-standard components.

787 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
788 for what should or should not be described.
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