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ABSTRACT

What distinguishes robust models from non-robust ones? This question has gained
traction with the appearance of large-scale multimodal models, such as CLIP.
These models have demonstrated unprecedented robustness with respect to nat-
ural distribution shifts. While it has been shown that such differences in robust-
ness can be traced back to differences in training data, so far it is not known what
that translates to in terms of what the model has learned. In this work, we bridge
this gap by probing the representation spaces of 16 robust CLIP models with vari-
ous backbones (ResNets and ViTs) and pretraining sets (OpenAI, LAION-400M,
LAION-2B, YFCC15M, CC12M and DataComp). We find two signatures of ro-
bustness in the representation spaces of these models: (1) Robust models exhibit
outlier features characterized by their activations, with some being several orders
of magnitude above average. These outlier features induce privileged directions
in the model’s representation space; (2) Robust models encode substantially more
concepts in their representation space. While this superposition of concepts al-
lows robust models to store much information, it also results in highly polyse-
mantic features, which makes their interpretation challenging. We also validate
our findings on other robust multimodal models beyond the CLIP-family, namely
on CoCa models.

1 INTRODUCTION

Large pretrained multimodal models, such as CLIP (Radford et al., 2021), have demonstrated un-
precedented robustness to a variety of natural distribution shifts1. In particular, when used as zero-
shot image classifiers, their performance on ImageNet (Deng et al., 2009) translates remarkably well
to performances on natural shifts of ImageNet, such as, e.g., ImageNet-V2 (Recht et al., 2019). This
led to many works analyzing what actually causes this remarkable robustness of CLIP, with Fang
et al. (2022) establishing that the root cause of CLIP’s robustness lies in the quality and diversity of
data it was pretrained on.

While the cause of CLIP’s robustness is known, we set out to establish how exactly robustness
manifests itself in features learned by the model. Finding feature patterns that only appear in ro-
bust models is the first step towards a better understanding of the emergence of robustness. This
understanding is key to diagnosing robustness in times when knowledge about the (pre)training dis-
tribution and/or the distribution shifts cannot be assumed.

To find robustness patterns in robust CLIP models, we leverage the various models provided by
Ilharco et al. (2021) in the OpenCLIP repository. We analyze the visual features in these models
by probing their last layer activation vectors with quantitative interpretability tools, such as kurtosis
analysis of activation vectors (Elhage et al., 2023), singular value decomposition (SVD) of weight
matrices and concept probing of the representation space (Bau et al., 2017). Through this analysis,
we distill a set of distinctive characteristics of robust CLIP model features, which constitute the core
contribution of our work. Interestingly, we find these signatures to also hold for other robust models
that are not CLIP models, such as the multimodal CoCa (Yu et al., 2022) models or the pure vision
NoCLIP (Fang et al., 2022) models (Appendix C).

1Similar to Radford et al. (2021), we use CLIP as a name for the general training technique of unsupervised
language-vision pretraining, not only for the specific models obtained by OpenAI.
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Our contributions. (1) In Section 3, we show that robust CLIP models all have outlier fea-
tures. These features stand out as their activation is typically several orders of magnitude above
the average activation of features in the same layer. Through an SVD analysis, we show that
these outlier features are propagated to the logits of downstream classifiers, which results in
what we call privileged directions that are crucial to model predictions. (2) In Section 4, we
show that robust models all encode a high number of unique concepts in their features. As
a consequence, the features of robust models are highly polysemantic, which means that they
superpose a large set of concepts. (3) Crucially, we show that the predominance of outlier
features, privileged directions and a high number of encoded concepts are signatures that dis-
tinguish robust models from their non-robust counterparts. We discuss the potential of using
these signatures to diagnose robustness of trained models without the need to run inference on
shifted distributions.

2 MEASURING ROBUSTNESS

In this section, we define Effective Robustness (ER), which is the type of robustness we study in this
paper. We then measure the ER for the set of models extracted from OpenCLIP. While most of the
results in this section are disseminated in the literature, we believe it is useful to reproduce them and
present them in a unified way.

Context. ER has emerged as a natural metric to measure how the performance of a model on a
reference distribution (in-distribution) generalizes to natural shifts of this distribution (Fang et al.,
2022). In this work, we focus on ImageNet (Deng et al., 2009) and its natural distribution shifts con-
sidered in Fang et al. (2022), namely ImageNet-V2 (Recht et al., 2019), ImageNet-R (Hendrycks
et al., 2021a), ImageNet-Sketch (Wang et al., 2019), ObjectNet (Barbu et al., 2019) and ImageNet-
A (Hendrycks et al., 2021b). When plotting the in-distribution accuracy (X-axis, logit scaling)
against the average shifted-distribution accuracy (Y-axis, logit scaling) of various architectures
trained on ImageNet, Taori et al. (2020) found that most of the existing models lie on the same
line. They also found that models trained with substantially more data lie above this line, showing a
desirable gain in shifted-distribution accuracy for a fixed in-distribution accuracy. They coined this
vertical lift above the line as Effective Robustness.

Computing ER. To quantify ER, following Taori et al. (2020), one gathers the ImageNet test ac-
curacy ACC(I) and the average accuracy over the ImageNet shifts ACC(S) of a set of reference
models trained on ImageNet and fits a linear model on this pool of accuracies to map logit[ACC(I)]
to logit[ACC(S)], with the logit function logit : [0, 1]→ R defined as x 7→ ln(x)− ln(1− x). The
resulting line can be used to predict what (logit) accuracy we would expect to see on the ImageNet
shifts, given a (logit) accuracy on the original ImageNet. Given a new model that has accuracy
ACC(I) on ImageNet and average accuracy ACC(S) on the canonical ImageNet shifts, ER is com-
puted as:

ER(ACC(S),ACC(I)) := ACC(S)− logit−1 [β1 logit [ACC(I)] + β0] . (1)

By fitting a line on the baseline accuracies collected by Taori et al. (2020), we get a slope of β1 = .76
and an intercept of β0 = −1.49, with a Pearson correlation r = .99. This line, along with the
baseline models, can be observed in Figure 1.

Model pool. We run our analyses across four backbone architectures: ResNet50, ResNet101, ViT-
B-16, ViT-B-32 (He et al., 2015; Dosovitskiy et al., 2020). For each architecture, the OpenCLIP
repository (Ilharco et al., 2021) contains pretrained CLIP models on various pretraining datasets: the
original (unreleased) OpenAI pretraining set (OpenAI, Radford et al. (2021)), YFCC-15M (Thomee
et al., 2016; Radford et al., 2021), CC-12M (Changpinyo et al., 2021), LAION-400M, LAION-2B
(Schuhmann et al., 2022), and DataComp (Cherti et al., 2023). We load the pretrained vision en-
coders of all available combinations of architecture and pretraining dataset from OpenCLIP, and
construct a zero-shot classification model for ImageNet using the same methodology as Radford
et al. (2021). By finetuning each zero-shot model on ImageNet, we obtain classifiers with lower
ER than their zero-shot counterparts (Andreassen et al., 2021; Kumar et al., 2022; Wortsman et al.,
2022a). Lastly, by training models with an identical architecture on ImageNet from scratch, we
obtain models with even lower ER than the finetuned ones (Fang et al., 2022) (details on model
finetuning and training can be found in Appendix G). Note that Fang et al. (2022) also obtain CLIP
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Figure 1: Accuracies of baseline models and CLIP models on ImageNet and its canonical shifts.
The zero-shot CLIP models accuracies are substantially above the baseline fit, i.e., they have high
ER. The finetuned CLIP models are closer to the baseline fit, i.e., they have lower ER.

models with no robustness by training them on ImageNet-Captions, an augmented version of Ima-
geNet where text descriptions of labels have been created from the original labels to allow for CLIP
training. However, none of these models achieve ImageNet accuracies beyond 35%, and therefore
we choose to restrict our analysis to the models that were trained in a supervised way on ImageNet
from scratch when comparing to models with no robustness (rather than CLIP models trained on
ImageNet-Captions).

Results. We compute the ER with Equation (1) for each model and report the results in Table 1.
For each model, we also report the test accuracy they achieve on ImageNet in Appendix A. All of
the zero-shot models show robustness, with their ER ranging from 7% for the YFCC models to 37%
for the ViT-L-14 . For each model, we observe that finetuning leads to a drop in ER. Finally, the
ImageNet supervised models indeed show little to no ER2.

Take-away 1. In agreement with the ER literature, we find that for each architecture and pre-
training set, the zero-shot pretrained CLIP model has the highest ER. This ER is significantly
decreased after finetuning on ImageNet (medium ER). Finally, the same architecture trained
from scratch on ImageNet has the lowest ER of all three models.

3 ROBUST MODELS EXHIBIT OUTLIER FEATURES

In this section, we explain how we identified outlier features reflected in privileged directions in
representation space as a signature of robust models. We first describe our approach, and then
explain how outlier features are surfaced and propagate to class logits in the form of privileged
directions. Finally, we demonstrate the importance of outlier features and privileged directions on
performance by pruning non-privileged directions of the representation space.

Approach. We aim to analyze what models with high ER have learned in comparison to models
with lower ER. To this end, we compare the features, i.e. the representation space spanned by the
activations of the last layer in the encoder, learned by models with different levels of ER. Like Goh
et al. (2021), we focus on the last layer since only the output of this layer is used for downstream
classification by a linear head computing the ImageNet class logits. Interestingly, a central kernel
alignment (CKA) analysis in Appendix B reveals that robust models differ from less robust models
most consistently in this last layer. We use the ImageNet test set to produce activation vectors
h(n) ∈ RdH for each image x(n) ∈ RdX fed to the encoder, where dX , and dH ∈ N+ are respectively
the dimension of the input and representation spaces.

2For the ViT-L-14, we were unable to train a supervised version to convergence from scratch on ImageNet
(Dosovitskiy et al. (2020) and He et al. (2022) comment on the difficulties of training such an overparametrized
model on ImageNet).
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Table 1: ER for the models in our pool, as calculated by Equation (1). We see that for each backbone
and pretraining data, ER decreases from Zero-shot CLIP to Finetuned CLIP and reaches a minimum
for ImageNet supervised.

Backbone Pretraining data Zero-shot CLIP Finetuned CLIP ImageNet supervised

ResNet50
OpenAI 21 % 8 %

< 1 %YFCC-15M 7 % 1 %
CC-12M 14 % 7 %

ResNet101 OpenAI 24 % 11 %
< 1 %YFCC-15M 9 % 3 %

ViT-B-16

OpenAI 31 % 14 %

2 %
LAION-400M 24 % 13 %
LAION-2B 26 % 12 %
DataComp 27 % 15 %

ViT-B-32

OpenAI 24 % 10 %
1 %LAION-400M 24 % 13 %

LAION-2B 27 % 12 %

ViT-L-14

OpenAI 37 % 21 %

N.A.LAION-400M 32 % 20 %
LAION-2B 32 % 21 %
DataComp 37 % 24 %

Preliminary observations. Just by qualitatively observing the distribution of activation vectors, one
thing that immediately stands out is the fact that some components i ∈ [dH ] are much larger than
the average activation: h(n)

i ≫ d−1
H

∑dH

j=1 h
(n)
j . A similar phenomenon has recently been observed

by Dettmers et al. (2022) in large language models (LLMs). Such features, whose activation is
substantially more important than average, were coined as outlier features. Subsequent work by
Elhage et al. (2023) introduced a simple way to surface these outlier features, through a metric
called activation kurtosis. We now use this criterion to quantitatively analyze the features of robust
models.

Activation kurtosis. Following Elhage et al. (2023), we measure the activation kurtosis to quan-
titatively evaluate the presence of outlier features in a model. The activation kurtosis is computed
over all the components of an activation vector h(n), and averaged over N activation vectors:

kurtosis :=
1

N

N∑
n=1

1

dH

dH∑
i=1

[
h
(n)
i − µ

(
h(n)

)
σ
(
h(n)

) ]4

, (2)

where µ(h) := d−1
H

∑dH

i=1 hi and σ2(h) := d−1
H

∑dH

i=1[hi − µ(h)]2. As explained by Elhage et al.
(2023), kurtosis≫ 3 indicates the presence of outlier features in the studied direction (kurtosis = 3
being the kurtosis of an isotropic Gaussian).

We report the average kurtosis over the ImageNet test set in Table 2 for each architecture and across
the various levels of ER. We observe two things. Firstly, all models with high robustness have
outlier features, as indicated by their kurtosis≫ 3. Secondly, the kurtosis, like the ER, drops when
finetuning on ImageNet. The values kurtosis ≈ 3 obtained for finetuned and supervised models
suggests the absence of outlier features in the less robust models.

Privileged directions in representation space. The strong activation of outlier features in robust
models does not necessarily explain the performances of these models. Indeed, it is perfectly pos-
sible that outlier features are ignored by the linear head computing the class logits based on the
activation vectors, e.g. if they are part of kerW , the null space of the weight matrix W of the linear
classification head.

Thus, to assess whether outlier features are of importance, we now introduce the notion of priv-
ileged directions of the representation space RdH , as an instance of a generalized form of outlier
features. While outlier features are studied in the canonical basis {e1, . . . , edH

} (we can write
hi = Projei(h)), they can be generalized to be any set of directions of the representation space that
receive a projection substantially above average (for an illustration, see Appendix E).
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Table 2: Results of the kurtosis analysis showing outlier features present in robust models, but
disappearing as soon as models are finetuned or trained on ImageNet. Values calculated according
to Equation (2) over all ImageNet test examples.

Backbone Pretraining data Zero-shot CLIP Finetuned CLIP ImageNet supervised
Highest ER Medium ER Lowest ER

ResNet50
OpenAI 73.6 4.6

2.9YFCC-15M 8.0 3.9
CC-12M 8.2 4.0

ResNet101 OpenAI 32.1 3.4 2.9YFCC-15M 7.3 3.5

ViT-B-16

OpenAI 81.0 3.4

4.2LAION-400M 10.9 3.4
LAION-2B 25.2 3.7
DataComp 24.3 3.1

ViT-B-32

OpenAI 74.6 3.1
3.9LAION-400M 19.5 3.1

LAION-2B 12.1 3.2

ViT-L-14

OpenAI 60.8 4.6

N.A.LAION-400M 20.3 5.2
LAION-2B 66.2 6.9
DataComp 37.4 4.6

We choose to focus on the directions that are important for the computation of logits by the linear
head W , namely right singular vectors (RSV) of W . These can be identified by performing a
singular value decomposition (SVD) of W , which can be written as:

W =

rank(W )∑
i=1

σi · uiv
⊺
i , (3)

where σi ∈ R+, ui ∈ RdY and vi ∈ RdH respectively correspond to singular values (SV), left
singular vectors (LSV) and RSVs of W . In this decomposition, each RSV vi corresponds to a
direction in representation space that is mapped to the logits encoded in the LSV vi. Since both of
these vectors are normalized ∥ui∥ = ∥vi∥ = 1, the importance of the direction vi for W is reflected
by the SV σi. Note that the SV σi by itself does not refer to the model’s encoder activations. How
can we measure if the direction vi is typically given an important activation by the encoder? To
measure that, we propose to measure the average cosine similarity of activation vectors h(n) with
this direction. We aggregate these two sources of importance in a unified metric:

Importance(i) =
σi∑rank(W )

j=1 σj︸ ︷︷ ︸
Classification head importance

·
N∑

n=1

| cos(vi, h(n))|
N︸ ︷︷ ︸

Encoder importance

. (4)

Note that this metric is defined so that 0 < Importance(i) < 1. With this metric, we can measure
to what extent the presence of outlier features induces privileged directions in representation space.
If such privileged directions exist, we expect some singular directions vi to have an Importance(i)

substantially higher than average, i.e. with Importance(i) ≫ d−1
H

∑dH

j=1 Importance(j). We thus
can identify privileged directions as the RSVs associated to outlier values in the importance scores.

Indeed, in Figure 2 where we plot the distribution of importance scores over all RSVs, we can ob-
serve the existence of such privilege directions. We notice that all the robust zero-shot models have
at least one privileged direction. For the less robust finetuned models, these privileged directions
still exist, but with lower importance score. This indicates that finetuning de-emphasizes privileged
directions. Finally, the importance distributions of non-robust supervised models have no privileged
directions. Interestingly, our privileged directions analysis allows us to distinguish between the
differences in ER of finetuned and supervised models, which is not the case for activation kurtosis.

5



Under review as a conference paper at ICLR 2024

Figure 2: Distribution of importance scores as calculated by Equation (4) over all RSV in the repre-
sentation space. Zero-shot models have longer tails, associated to privileged directions. Finetuned
models still exhibit privileged directions, but with lower importance. Supervised models have no
such privileged directions. Analogous results for remaining models can be found in Appendix D.1

Take-away 2. Robust models exhibit outlier features that induce privileged directions in their
representation spaces. This appears to be a signature of models with high ER.

Note that previous work on LLMs found that outlier features also have positive effects on model
pruning: Sun et al. (2023) found that LLMs with outlier features can be efficiently pruned by retain-
ing features with larger activations. We also found some evidence of this kind when pruning latent
directions (see Appendix F).

4 ROBUST MODELS ENCODE MORE CONCEPTS

In this section, we explain how we found that models with high ER encode more concepts. We first
describe our approach, and then discuss the concepts encoded in the privileged directions identified
in the previous section. We then show that robust models encode more unique concepts. Lastly, we
explain how this leads to polysemanticity.

Approach. With the discovery of privileged directions in the representation spaces of models with
high ER, it is legitimate to ask what type of information these directions encode. More generally,
are there differences in the way robust models encode human concepts? To answer these questions,
we use concept probing. This approach was introduced by Bau et al. (2017), along with the Broden
dataset. This dataset consists of 63, 305 images illustrating C = 1, 197 concepts, including scenes
(e.g. street), objects (e.g. flower), parts (e.g. headboard), textures (e.g. swirly), colors (e.g. pink)
and materials (e.g. metal). Note that several concepts can be present in each image. For each
concept c ∈ [C], we construct a set of positive images Pc (images that contain the concept) and
negative images N c (images that do not contain the concept). In the following, we shall consider
balanced concept sets: |Pc| = |N c|. Concept probing consists in determining if activations in a
given direction of the representation space discriminate between Pc and N c.

Assigning concepts to directions. We are interested in assigning concepts to each RSV vi of the
linear head matrix W . To determine whether a representation space direction enables the identifi-
cation of a concept c ∈ [C], we proceed as follows. For each activation vector h(c,n) associated to
positive images x(c,n) ∈ Pc, we compute the projection Projvi(h

(c,n)) on the RSV. We perform
the same computations for the projections Projvi(h

(¬c,n)) of negative images x(¬c,n) ∈ N c. If the
direction vi discriminates between concept negatives and positives, we expect a separation between
these projections: Projvi(h

(c,n)) ̸= Projvi(h
(¬c,n)). In other words, we expect the projections on

vi to be a good classifier to predict the presence of c. Following Cuadros et al. (2022), we measure
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the average precision APc
i of this classifier to determine whether the concept is encoded in direction

vi. We set a threshold APc
i ≥ 0.9 to establish that the concept c is encoded in vi

3.

Interpreting privileged directions. We look at the concepts with highest AP in the most privileged
direction of each model represented in Figure 2. All the concepts discussed below are encoded
with AP > 0.9. Interestingly, the most privileged direction of both zero-shot OpenAI ViTs encode
the same top-3 concepts: meshed, flecked and perforated. The most privileged direction of the
ResNet50 also encodes concepts related to textures, with the knitted and chequered concepts. The
most privileged direction of the ResNet101 encodes concepts with high colour contrasts, with the
moon bounce, inflatable bounce game and ball pit concepts. We note that all these concepts describe
regular alternating patterns, either through the presence/absence of holes or through the variation of
colours. An interesting parallel can be drawn with the work of Bondarenko et al. (2023), which
found that outlier features in language models assign most of their mass to separator tokens (such as
the end of sentence token).

Let us now discuss the concepts encoded in the privileged directions of finetuned models. It is
striking that finetuning replaces the above texture-related concepts by more concrete concepts. After
finetuning, the concept that are best encoded in the privileged directions are martial art gym for the
ViT-B/16, tennis court for the ViT-B/32, mountain pass for the ResNet50 and flight of stairs for
the ResNet101. All of these concepts are substantially less generic than the ones encoded in the
zero-shot models. We do not discuss supervised models here, as Figure 2 demonstrated that they
have no privileged direction. For completeness, we also report the top-3 concepts for the models not
shown in Figure 2 in Appendix D.3. We note that the above discussion generalizes well to the other
pretraining sets.

Take-away 3. Privileged directions of zero-shot models encode generic texture information.
Finetuning replaces these generic concepts in privileged directions by more concrete concepts.

Number of unique concepts. Let us now discuss the representation spaces of various models
beyond privileged directions. A first way to characterize a representation space as a whole is to
simply count the number of unique concepts they encode. In other words, for the representation
space of each model, we evaluate

Nunique := |{c ∈ [C] | APc
i ≥ 0.9 for some i ∈ [dH ]}| . (5)

We report the number of unique concepts encoded in each type of model from our pool in Table 3.
We notice that zero-shot models encode substantially more concepts than their finetuned and su-
pervised counterparts. To further compare the set of concepts encoded in each model, we produce
their Venn diagrams in Figure 3. In each case, the most significant section of the Venn diagrams is
the overlap between all 3 model types (this ranges from 237 concepts for RN-101 to 516 concepts
for ViT-B/16). This suggests that all 3 models share a large pool of features that are useful for
each respective task the models were trained on. Beyond this strong overlap, we note that the con-
cepts of finetuned models are mostly subsets of the concepts encoded in zero-shot models. This is
somewhat expected, as finetuned models greatly benefit from features of pretrained models, which
explains their medium ER. In agreement with Table 3, we observe that zero-shot models encode
many concepts that are unknown to finetuned and supervised models (this ranges from 77 concepts
for ViT-B/16 to 105 concepts for RN-50). This large addition of concepts make the representation
spaces of zero-shot models richer.

Connection to polysemanticity. A large number of encoded concepts can come at the cost of inter-
pretability. As explained by Olah et al. (2020), superposing many concepts in a given representation
space creates polysemantic features. Those features correspond to directions of the representation
spaces that encode several unrelated concepts, which makes the interpretation of such features chal-
lenging. Polysemantic features are typically identified by using feature visualization to construct
images that maximally activate the unit (neuron / representation space direction) of interest (Olah
et al., 2017). A manual inspection of these images permits to identify that several concepts are
present in the image maximizing the activation of the unit of interest.

Clearly, a manual inspection of feature visualizations for each RSV vi of each model in our pool
would be prohibitively expensive. For this reason, we use a proxy for polysemanticity based on

3All the below conclusions still hold if we change this threshold to e.g. .85.
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Table 3: Results of the unique concept analysis, showing total # of unique Broden concepts encoded
in last layers, as in Equation (5). Zero-shot models encode substantially more concepts.

Backbone Pretraining data Zero-shot CLIP Finetuned CLIP ImageNet supervised
Highest ER Medium ER Lowest ER

ResNet50
OpenAI 507 311

418YFCC-15M 652 602
CC-12M 647 584

ResNet101 OpenAI 489 323 397YFCC-15M 604 568

ViT-B-16

OpenAI 702 555

635LAION-400M 672 574
LAION-2B 733 582
DataComp 701 527

ViT-B-32

OpenAI 689 557
559LAION-400M 676 550

LAION-2B 672 527

ViT-L-14

OpenAI 704 623

N.A.LAION-400M 683 613
LAION-2B 704 633
DataComp 684 619
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Figure 3: Overlap between the concepts encoded in the representation space of different models for
each OpenAI models. Zero-shot models encode many concepts not encoded other models.

the Broden dataset. For each RSV vi, we count the number of concepts encoded in the corre-
sponding direction of the representation space Nconcept(i) := |{c ∈ [C] | APc

i ≥ 0.9}|. The
higher this number is, the more likely it is that the feature corresponding to vi is polysemantic.
As a measure of polysemanticity for the model, we simply average this number over all singu-
lar vectors: polysemanticity := d−1

H

∑dH

i=1 Nconcept(i). By measuring this number of all zero-
shot models, we found that this ranges from polysemanticity = 3 for the OpenAI ResNet 50 to
polysemanticity = 16 for the LAION-2B ViT-B/16. By looking at the complete results in Ap-
pendix D.4, we also note that most zero-shot models are on the higher side of this range, with
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typically more than 10 concepts encoded in one direction on average. Since the Broden dataset has
no duplicate concepts, we deduce that these models are highly polysemantic.

Take-away 4. The increased amount of concepts encoded in zero-shot models is another sig-
nature of ER. The large number of concepts encoded in zero-shot models makes these models
polysemantic.

5 RELATED WORK

Interpretability and CLIP models. A number of works previously studied CLIP from a model-
centric/interpretability perspective. We can broadly divide these works into 2 categories. (1) The
first body of work, like ours, uses interpretability methods to gain a better understanding of CLIP.
For instance, Li et al. (2022) analyze saliency maps of CLIP and found that the model tends to focus
on the background in images. Goh et al. (2021) analyzed CLIP ResNets and found multimodal neu-
rons, that respond to the presence of a concept in many different settings. (2) The second body of
work leverages CLIP to explain other models. For instance, Jain et al. (2022) use CLIP to label hard
examples that are localized as a direction in any model’s representation space. Similarly, Oikarinen
& Weng (2022) use CLIP to label neurons by aligning their activation patterns with concept acti-
vation patterns on a probing set of examples. To the best of our knowledge, our work is the first to
leverage interpretability to better understand robustness of CLIP to natural distribution shifts.

Outlier features in foundation models. Outlier features in foundation models were first discovered
in LLMs by Dettmers et al. (2022). Those features are found to have an adverse effect on the model
quantization. The reason for which outlier features appear in LLMs is yet unknown. Elhage et al.
(2023) investigated several possibles causes (such as layer normalization), but found no conclusive
explanation. They conclude that the emergence of outlier features is most likely a relic of Adam
optimization. Bondarenko et al. (2023) found that outlier features in transformers assign most of
their mass to separator tokens and that modifying the attention mechanism (by clipping the softmax
and using gated attention) decreases the amount of outlier features learned during pretraining. To the
best of our knowledge, our work is the first to discuss outlier features outside of language models.

6 DISCUSSION

With a thorough investigation of the representation spaces of robust CLIP models, we found two sig-
natures that set them apart from other models. (1) Robust CLIP models have outlier features, which
induce privileged directions in these model’s representation spaces. (2) Robust CLIP models en-
code substantially more concepts in their representation space. While this makes the representation
spaces of these models richer, this also induces a high polysemanticity in their features, making their
interpretation challenging. Crucially, these observations distinguish a large range of robust models
with high ER from models with lower ER. In fact, an additional analysis in Appendix I shows that
the kurtosis and the number of unique encoded concepts closely tracks the ER metric when inter-
polating between zero-shot and finetuned CLIP models in weight space. Therefore, we posit that
these two signatures offer good proxies for ER, with the advantage of being easy to compute and
not requiring access the shifted distributions. Interestingly, we can also validate these signatures on
non-CLIP models such as the multimodal CoCa (Yu et al., 2022) models or the pure vision NoCLIP
(Fang et al., 2022) models in Appendix C.

Beyond progressing the understanding of how ER manifests in CLIP models, we believe our work
opens up many interesting research directions. A first one would be to extend the analysis of this
work to dataset shifts beyond the ImageNet family, to see if the signatures are relevant beyond the
much investigated ImageNet shifts. Another interesting research direction would be to further in-
vestigate a potential trade-off between robustness and interpretability. While our results suggest that
all the models with high robustness tend to be polysemantic, it is not clear if these two characteris-
tics can be disentangled. Finally, it would be interesting to extend the scope of investigation to the
pretraining phase of these models, possibly by tracking our signatures.
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A IMAGENET ACCURACIES FOR OUR MODEL POOL

In Table 4 we show the top-1 accuracies the models analysed in the main part of the paper achieve
on the ImageNet test set.

Table 4: ImageNet test set accuracies for the models under investigation

Backbone Pretraining data Zero-shot CLIP Finetuned CLIP ImageNet supervised

ResNet50
OpenAI 60 % 76 %

70 %YFCC-15M 32 % 69 %
CC-12M 36 % 69 %

ResNet101 OpenAI 62 % 78 % 71 %YFCC-15M 34 % 72 %

ViT-B-16

OpenAI 68 % 81 %

80 %
LAION-400M 67 % 80 %
LAION-2B 70 % 81 %
DataComp 63 % 78 %

ViT-B-32

OpenAI 63 % 78 %
75 %LAION-400M 60 % 76 %

LAION-2B 66 % 76 %

ViT-L-14

OpenAI 75 % 85 %

N.A.LAION-400M 73 % 84 %
LAION-2B 74 % 84 %
DataComp 79 % 85 %

B ZERO-SHOT AND FINETUNED MODELS’ DIFFERENCES ARE LOCALIZED

In this appendix, we apply central kernel alignment (CKA) to identify where changes between more
robust and less robust models occur. Kornblith et al. (2019) introduce the CKA metric to quantify the
degree of similarity between the activation patterns of two neural network layers. It takes two batch
of activation vectors a and b, it computes their normalized similarity in terms of the Hilbert-Schmidt
Independence Criterion (HSIC, Gretton et al. (2005)):

CKA(a, b) :=
HSIC(a, b)√

HSIC(a,a)
√

HSIC(b, b)

We use the PyTorch-Model-Compare package (Subramanian, 2021) to compute this metric between
the activation vectors of zero-shot models and their finetuned counterparts for each layer in the back-
bone. The results are shown in Figure 4 and Figure 5. Across architectures and pretraining sets, we
find that there is often a large drop in CKA between zero-shot and finetuned models occurring in the
last layer. This makes the activations in the last layer a particularly interesting layer to analyse when
investigating ER, as finetuned models typically have only half the ER of their zero-shot counterpart
(see Table 1).
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Figure 4: Result of layer by layer CKA comparison between zero-shot CLIP and its counterpart that
was finetuned on ImageNet for various backbones and pretraining sets (Part 1). In orange, CKA
between activation vectors on ImageNet test set. In blue, CKA between activation vectors on shifted
ImageNet sets (average as solid line, standard deviation in shaded blue). Typically, we see large
drops of CKA in the last layer.
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Figure 5: Result of layer by layer CKA comparison between zero-shot CLIP and its counterpart that
was finetuned on ImageNet for various backbones and pretraining sets (Part 2). In orange, CKA
between activation vectors on ImageNet test set. In blue, CKA between activation vectors on shifted
ImageNet sets (average as solid line, standard deviation in shaded blue). Typically, we see large
drops of CKA in the last layer.
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C ROBUSTNESS SIGNATURES IN NON-CLIP MODELS

C.1 COCA MODELS

In addition to the CLIP models investigated in the main paper, we below investigate CoCa models
(Yu et al., 2022) as another set of robust multimodal models which do not fall into the CLIP family.
We see that our findings extend to these non-CLIP multimodal models as well.

First, in Table 5, we confirm that these models have high effective robustness when used as zero-
shot classifiers. As for the other models in the main part of the paper, we observe that finetuning on
ImageNet decreases the effective robustness of these classifiers.

Table 5: ER for the models of the CoCa family, as calculated by Equation (1) (accuracies on Im-
ageNet shown in brackets). We see that also for these models, ER decreases from Zero-shot to
Finetuned.

Backbone Pretraining data CoCa Zero-shot CoCa Finetuned

ViT-B-32 LAION-2B 24% (64%) 14% (76%)

ViT-L-14 LAION-2B 34% (76%) 21% (84%)

Next, in Table 6, we show that all the zero-shot models have high kurtosis, which implies the exis-
tence of outlier features in their representation space. Additionally, we show that finetuning again
decreases the kurtosis.

Table 6: Results of the kurtosis analysis showing outlier features present also in robust models with
ViT-L-14 backbone or of CoCa family, but disappearing as soon as models are finetuned. Values
calculated according to Equation (2) over all ImageNet test examples.

Backbone Pretraining data CoCa Zero-shot CoCa Finetuned

ViT-B-32 LAION-2B 12.0 3.6

ViT-L-14 LAION-2B 15.5 4.6

Finally, in Table 7, we check that zero-shot model encodes more concepts. Again, we see that
finetuning removes some concepts from the model’s representation space.

Table 7: Results of the unique concept analysis, showing total # of unique Broden concepts encoded
in last layers, as in Equation (5). Zero-shot models encode substantially more concepts.

Backbone Pretraining data CoCa Zero-shot CoCa Finetuned

ViT-B-32 LAION-2B 674 530

ViT-L-14 LAION-2B 747 629

C.2 NOCLIP MODELS

Interestingly, our findings on outlier features as a signature of ER do not necessarily only hold
for multimodal models, but can also be found in pure vision models, as the example of NoCLIP
illustrates. NoCLIP was introduced by Fang et al. (2022) as a model that exhibits positive ER without
the multimodal pretraining of CLIP models in their quest to find the reason for CLIPs remarkable ER
(deducing from NoCLIP that the reason does not lie in the multimodality / language supervision).
It was obtained by pretraining a VIT-B-16 model in a SimCLR (Chen et al., 2020) fashion on the
YFCC-15M dataset, and then finetuning it in a supervised way on a subset of YFCC-15M that can
be assigned ImageNet class labels. We load it from OpenCLIP (Ilharco et al., 2021).

As can be seen in Table 8, it achieves 4% ER, which is similar to the ER that a VIT-B-16 CLIP
model achieves when pretrained on YFCC-15M (Fang et al., 2022). While it does not exhibit excess
kurtosis, it does have a fairly high number of unique concepts encoded in its features. Importantly,
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the importance analysis of RSVs in Figure 6 surfaces that it indeed has privileged directions, like
other robust do.

Thus, our finding that outlier features in the form of strong privileged directions in feature represen-
tations space are a signature of robust multimodal models also holds for a pure vision model.

Table 8: Effective Robustness and our metrics for NoCLIP.

Model ImageNet ACC ER Activation kurtosis # unique concepts

NoCLIP SimCLR 35 % 4 % 3.4 621

Figure 6: Comparison of privileged importance distribution between NoCLIP and other robust zero-
shot models. NoCLIP corresponds to the model pretrained on YFCC-15M in this plot.

D FURTHER EXPERIMENT RESULTS

D.1 PRIVILEGED DIRECTION ANALYSIS FOR EACH MODEL

In Figure 7 we show the analysis of privileged directions in representation space from Figure 2 in
the main paper repeated for zero-shot and finetuned models for the OpenAI pretraining set and the
remaining pretraining sets for each of the four backbones. We don’t show the results for ImageNet
Supervised as they are already shown in Figure 2 for each of the backbones.

Qualitatively, our finding from the main paper is confirmed across the remaining models we inves-
tigate: zero-shot models have one strongly privileged direction and finetuned models still exhibit a
privileged direction, but with lower importance. The only exception to this pattern are the YFCC-
15M pretrained ResNets, for which the privileged direction is stronger for the finetuned model. We
suspect that this has to do with the fact that the zero-shot model starts from a very low accuracy on
ImageNet test to begin with (32% and 34%, see Table 4).
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(a) ResNet50 (b) ResNet101

(c) VIT-B-16 (d) VIT-B-32

Figure 7: Distribution of importance over all RSV in the representation space for zero-shot and
finetuned models. Zero-shot models have one strongly privileged direction and sometimes a few
more mildly privileged directions. Finetuned models still exhibit one strong privileged direction, but
with lower importance than the zero-shot models, and sometimes a few mildly privileged directions.

D.2 PRUNING ANALYSIS FOR EACH MODEL

Figure 8 and Figure 9 show the effect of gradually pruning the least important SV of W on ER
and ACC for all models that were not pretrained on the OpenAI pretraining dataset, similar to the
analysis shown in Figure 10 in the main paper for the OpenAI pretrained models.

Qualitatively, our finding from the main paper is confirmed across the remaining models we investi-
gate: A small subset (typically around 20%) of privileged directions in representation space explain
the high ER of zero-shot models. The remaining directions can be pruned without significantly
impacting neither ER nor ACC.
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(a) ER - LAION-400M pretrained (b) ACC - LAION-400M pretrained

(c) ER - LAION-2B pretrained (d) ACC - LAION-2B pretrained

(e) ER - DataComp pretrained (f) ACC - DataComp pretrained

Figure 8: Effect of gradually pruning the least important SV of W on ER and ACC for LAION-400M,
LAION-2B, and DataComp pretrained models.
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(a) ER - YFCC-15M pretrained (b) ACC - YFCC-15M pretrained

(c) ER - CC-12M pretrained (d) ACC - CC-12M pretrained

Figure 9: Effect of gradually pruning the least important SV of W on ER and ACC for YFCC-15M
and CC-12M pretrained models.

D.3 TOP-3 CONCEPTS IN MOST DOMINANT DIRECTION FOR EACH MODEL

We look at the concepts with highest AP in the most privileged direction of each model represented
in Figure 7, similar to what we did in Section 4 for the most privileged direction of each model in
Figure 2. The results are shown in Table 9. Again, we observe that for the majority of cases, the
robust zero-shot models encode concepts related to textures as their top concepts encoded along the
privileged directions (e.g., scaly, meshed, or matted), while the less robust finetuned models encode
more concrete concepts (e.g., carrousel, book stand, or pantry).

Table 9: Top-3 concepts with highest AP encoded in the most privileged direction of each model.
For each concept, the AP is included in brackets.

Top-1 Concept Top-2 Concept Top-3 Concept
Step Finetuned Zeroshot Finetuned Zeroshot Finetuned Zeroshot

Backbone Pretraining

RN-101
OpenAI flight of stairs natural s ( 0.9) moon bounce s ( 0.99) movie theater indoor s ( 0.88) inflatable bounce game ( 0.99) home theater s ( 0.86) ball pit s ( 0.91)
Supervised ImageNet auto mechanics indoor s ( 0.96) N.A. labyrinth ( 0.94) N.A. hay ( 0.94) N.A.
YFCC-15M chapel s ( 1) ice cream parlor s ( 0.99) pantry s ( 0.97) temple ( 0.98) pantry ( 0.97) temple east asia s ( 0.95)

RN-50

CC-12M sacristy s ( 0.98) wheat field s ( 0.98) funeral chapel s ( 0.97) meshed ( 0.98) formal garden s ( 0.96) polka dotted ( 0.96)
OpenAI mountain pass ( 0.99) knitted ( 0.95) butte s ( 0.94) chequered ( 0.91) water mill s ( 0.89) wheat field s ( 0.87)
Supervised ImageNet kiosk indoor s ( 0.95) N.A. vegetable garden s ( 0.88) N.A. sacristy s ( 0.86) N.A.
YFCC-15M liquor store indoor s ( 0.97) polka dotted ( 0.98) book stand ( 0.96) lined ( 0.97) horse drawn carriage ( 0.89) dotted ( 0.97)

ViT-B/16

DataComp carrousel s ( 0.98) jail cell s ( 0.84) banquet hall s ( 0.93) gift shop s ( 0.83) carport freestanding s ( 0.89) manhole s ( 0.82)
LAION-2B flood s ( 0.9) stained ( 0.89) catwalk s ( 0.87) scaly ( 0.86) rubble ( 0.85) cracked ( 0.85)
LAION-400M book stand ( 0.97) temple ( 0.97) bookstore s ( 0.94) courtyard s ( 0.95) rudder ( 0.93) cabana s ( 0.94)
OpenAI martial arts gym s ( 0.95) meshed ( 0.92) jail cell s ( 0.92) flecked ( 0.92) throne room s ( 0.91) perforated ( 0.92)
Supervised ImageNet hot tub outdoor s ( 0.99) N.A. bedchamber s ( 0.98) N.A. stadium baseball s ( 0.97) N.A.
YFCC-15M fountain s ( 0.68) N.A. black c ( 0.67) N.A. air base s ( 0.62) N.A.

ViT-B/32

DataComp zen garden s ( 0.95) ice cream parlor s ( 0.67) dolmen s ( 0.94) bullring ( 0.67) gift shop s ( 0.88) junkyard s ( 0.67)
LAION-2B viaduct ( 0.93) stained ( 0.91) cargo container interior s ( 0.91) scaly ( 0.91) labyrinth ( 0.9) matted ( 0.88)
LAION-400M barnyard s ( 0.86) scaly ( 0.94) subway interior s ( 0.86) jail cell s ( 0.9) bird feeder ( 0.86) manhole s ( 0.9)
OpenAI tennis court ( 1) meshed ( 0.95) batters box s ( 0.98) perforated ( 0.93) kennel indoor s ( 0.93) flecked ( 0.91)
Supervised ImageNet television studio s ( 0.88) N.A. barbecue ( 0.87) N.A. lined ( 0.85) N.A.

D.4 POLYSEMANTICTY FOR EACH MODEL

We report the polysemanticity metric computed as per Section 4 for all zero-shot models in Table 10.
As claimed in the paper, this ranges from polysemanticity = 3 for the OpenAI ResNet 50 to
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Table 10: Polysemanticity of zero-shot models, showing average # of concepts encoded in RSV of
last layer (i.e. with AP > 0.9 on Broden dataset concepts).

Backbone Pretraining data Polysemanticity

ResNet50
OpenAI 3.0
YFCC-15M 6.4
CC-12M 5.3

ResNet101 OpenAI 3.5
YFCC-15M 7.8

ViT-B-16

OpenAI 14.5
LAION-400M 11.9
LAION-2B 16.0
DataComp 14.1

ViT-B-32

OpenAI 14.1
LAION-400M 11.5
LAION-2B 11.1

polysemanticity = 16 for the LAION-2B ViT-B/16, with typically more than 10 concepts encoded
in one direction on average.

E INTUITION BEHIND GENERALIZATION OF OUTLIER FEATURES

Below, we give more details and an intuition why outlier features can be generalized from the canon-
ical basis {e1, . . . , edH

} (we can write hi = Projei(h)) to be any set of directions of the represen-
tation space that receive a projection substantially above average:

Let us assume, for instance, that two of the elements in the canonical basis e1 and e2 correspond to
outlier features. This means that an activation vector h related to an input image x has projections
h1 = Proje1(h) and h2 = Proje2(h) substantially above the average h1, h2 ≫ n−1

∑n
i=1 hi. Now

let us define a new unit vector e′1 = 2−1/2(e1+e2). We deduce that the projection onto this vector is
also substantially higher than average h′

1 = Proje′1(h) = 2−1/2(h1 + h2)≫ n−1
∑n

i=1 hi. Hence,
the unit vector e′1 can be considered as an outlier feature in a new non-canonical basis. In general,
we can extend the notion of outlier features to any vector in the span{e1, . . . , en ∈ Rn}.

F PRUNING RESULTS

Pruning non-privileged directions. Given that we have established that outlier features induce
privileged directions in representation space, it seems interesting to check their role in model per-
formance. To that aim, we gradually prune each RSV vi by increasing order of σi by setting σi ← 0
in the singular value expansion from Equation (3)4. By pruning a variable proportion of the sin-
gular vectors, we obtain the results in Figure 10. We see that the 80% least important RSV of the
representation space can be pruned without a substantial effect on performance, i.e. that the robust
models are low-rank in their last layer where they have privileged directions.

However, when extending the pruning experiment to finetuned CLIP models and supervised models
trained only with ImageNet, we make the two interesting observations from these new results (see
Figure 11):

4Note that sorting the RSV vi by increasing σi is similar to sorting the RSV by increasing Importance(i),
since these two variables are related by a Spearman rank correlation ρ = 96%
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Figure 10: Effect of gradually pruning the least important SV of W on ER and ACC. The least 80%
important SV can be pruned without any substantial effect.
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(b) ResNet101

Figure 11: Extension of pruning results to finetuned and ImageNet supervised models. Zero-shot
models obtained with OpenAI pretraining set.

All models are low-rank. For all the models (zero-shot, finetuned and supervised), the perfor-
mances are not substantially affected if we remove the 80% least important singular directions of
their representation space (compare to Table 4). This shows that many existing models admit good
low-rank approximations. This also demonstrates that the fact that these models are low-rank is not
necessarily a signature of robustness.

Faster drop for supervised models. When the number of ablated singular values ranges between
80%−100%, we see that the ImageNet accuracy of supervised models drop substantially faster than
the accuracy of the finetuned and the zero-shot models. In fact, for the ResNet50, the ImageNet
accuracy curves even cross. This implies that the most important direction of the zero-shot model’s
representation space better discriminate between ImageNet classes than the most important direc-
tions of the supervised model’s representation space. In the former case, these directions correspond
to the zero-shot model’s privileged directions. We believe that this new result further reinforces the
importance of privileged directions to understand the performances of robust models.

G DETAILS ON EXPERIMENTS

G.1 FINETUNED CLIP MODELS

To obtain the finetuned CLIP models, we proceed as follows. We start from building the zero-shot
CLIP models as described in Section 2. As Wortsman et al. (2022b), we then finetune these models
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Table 11: Results of the unique concept analysis, showing total # of unique Broden concepts en-
coded in last layers along the standard unit vectors ei of the representation space. Zero-shot models
encode substantially more concepts.

Backbone Pretraining data Zero-shot CLIP Finetuned CLIP
Highest ER Medium ER

ResNet50 OpenAI 395 331
ResNet101 OpenAI 389 331
ViT-B-16 OpenAI 648 550
ViT-B-32 OpenAI 638 528

for 10 epochs on the ImageNet training set, using a batch size of 256 and a learning rate of 3 · 10−5

with a cosine annealing learning rate scheduler and a warm-up of 500 steps. We use the AdamW
optimizer and set the weight decay to 0.1.

G.2 SUPERVISED IMAGENET MODELS

We note that the ResNets used by Radford et al. (2021) have small modifications, such as the usage
of attention pooling. Unfortunately, we are not aware of any public weights for such modified
architectures trained on ImageNet from scratch. We thus train these modified ResNet models from
scratch for 90 epochs on the ImageNet training set, using a batch size of 1024. We use AdamW,
and a learning rate schedule decaying from 10−3 to 10−4 after 30 epochs and to 10−5 after 60
epochs (with a warm-up period of 5,000 steps). We set weight decay to 10−2. We use the standard
augmentations of horizontal flip with random crop as well as label smoothing.

For the ViT models, loadable checkpoints with identical architectures were available from torchvi-
sion (TorchVision maintainers and contributors, 2016), and we thus use those directly.

H CONCEPT PROBING WITH NEURON EXPERTS

In our concept analysis in Section 4, we assign concepts to the directions in representation space
that are given as the RSVs of the linear head weight matrix W . This was motivated by the fact that
we discovered that some of those directions are privileged directions emerging from outlier features
for robust models, and wanted to understand what information these directions encode.

However, directions defined by another basis of the representation space can in theory also be used
to analyse encoded concepts. In fact, in prior work, individual neurons were used to investigate
the concepts encoded by a model (Cuadros et al., 2022), corresponding to the canonical basis of
standard unit vectors. We thus replicate the quantitative analysis of Table 3 for the OpenAI zero-
shot and finetuned models, but with standard unit vectors ei replacing vi in the analysis (for the
avoidance of doubt, ei is defined as a vectors of 0s, but a 1 in its i-th entry).

The result is shown in Table 11. Again, we see that the more robust zero-shot models encode
substantially more unique concepts than the less robust finetuned models. While we did not have
enough time to repeat the analysis for all remaining (including superised) models, these intial results
make us confident that our concept analysis of Section 4 also holds if the basis of directions encoding
concepts in representation space were changed to individual neuron directions (or any other basis of
RdH probably).

I ANALYSIS OF WISE-FT MODELS

In this appendix, we use the approach of Wise-FT (Wortsman et al., 2022b) to obtain a continuous
spectrum of ER. Given a zero-shot model fθ0 with weights θ0 ∈ Θ and a finetuned model fθ1 with
weights θ1 ∈ Θ, Wortsman et al. (2022b) propose to interpolate between the two models in weight
space. This is done by taking a combination θα := (1 − α) · θ0 + α · θ1 for some interpolation
parameter α ∈ [0, 1]. One then defines a new model fθα based on the interpolated weights.

Surprisingly, interpolating between zero-shot CLIP models and finetuned CLIP models produce
models with good performances. To illustrate that, we perform the Wise-FT interpolation with all

23



Under review as a conference paper at ICLR 2024

the models from our pool. We report the ImageNet & shift accuracies of these models in Figures 12
and 13. For the OpenAI and LAION models in Figure 12, we observe that the shift accuracy of
interpolated models often surpass both the zero-shot and the finetuned models. The YFCC-15M and
CC-12M models in Figure 13 exhibit a different trend: both ImageNet & shift accuracies increase
monotonically as α sweeps from zero-shot to finetuned. This is likely due to the low accuracy of the
corresponding zero-shot models.

By analyzing the ER of interpolated OpenAI and LAION models in Figure 14, we see that the
ER gradually degrades as α sweeps between the zero-shot and the finetuned models. Interestingly,
the ER of YFCC-15M and CC-12M models in Figure 15 peaks at α = .4 and then decreases
monotonically.

Let us now look at how our ER signatures evolve as we sweep α between zero-shot and finetuned
models. Ideally, if these signatures are good ER proxies, they should exhibit similar trends as the
ones described in the previous paragraph. For the OpenAI and LAION models, we indeed observe in
Figures 16 and 18 that the kurtosis and the number of unique encoded concepts gradually decrease
as α sweeps from zero-shot to finetuned models. Similarly, we observe in Figures 17 and 19 that
these two metrics start to substantially after α = 0.4 for the YFCC-15M and CC-12M models.
This suggests that these two metrics constitute a good proxy to track how the ER of a given model
evolves.

Note that the Wise-FT idea has since been generalized to a combination of several finetuned models
by Wortsman et al. (2022a) with model soups. We leave the investigations of model soups for future
work.

J FURTHER LITERATURE

Defining CLIP ER. The definition of ER crucially relies on the observation in multiple works that
the model performance on natural shifts is linearly related to its performance in-distribution when
both quantities are plotted with a logit scaling (Recht et al., 2018; 2019; Miller et al., 2020). We note
though that there are known exceptions to this, e.g. considering out-of-distribution generalization
on real-world datasets that substantially differ from the in-distribution dataset (Fang et al., 2023).

Explaining CLIP ER. A first intuitive explanation for the surprisingly high effective robustness of
CLIP might be the fact that the learned embeddings are endowed with semantic grounding through
pretraining with text data. This hypothesis was refuted by Devillers et al. (2021), who demonstrated
that the embeddings in CLIP do not offer gains in unsupervised clustering, few-shot learning, trans-
fer learning and adversarial robustness as compared to vision-only models. In a subsequent work,
Fang et al. (2022) demonstrated that the high robustness of these models rather emerges from the
high diversity of data present in their training set. This was achieved by showing that pretraining
SimCLR models Chen et al. (2020) on larger datasets, such as the YFCC dataset by Radford et al.
(2021), without any language supervision matches the effective robustness of CLIP. Shi et al. (2023)
reinforced this data-centric explanation by showing that the performance on the pretraining set also
correlates linearly with the out-of-distribution performance. To put the emphasis on the importance
of data-quality for effective robustness, Nguyen et al. (2022) showed that increasing the pretraining
set size does not necessarily improve the effective robustness of the resulting model. Rather, it sug-
gests that it is preferable to filter data to keep salient examples, as was done, e.g., to assemble the
LAION dataset (Schuhmann et al., 2022).

Other signatures of ER. By comparing pretrained models with models trained from scratch,
Neyshabur et al. (2020) demonstrated that these models exhibit interesting differences, such as their
reliance on high-level statistics of their input features and the fact that they tend to be separated by
performance barriers in parameter space. Guillory et al. (2021) found observable model behaviours
that are predictive of effective robustness. In particular, the difference of model’s average confidence
between the in and out-of-distribution correlates with out-of-distribution performance.

Polysemanticity in foundation models. Polysemantic neurons were coined by Olah et al. (2020)
in the context vision model interpretability. These neurons get activated in the presence of several
unrelated concepts. For instance, the InceptionV1 model has a neurons that fires when either cats or
cars appear in the image. These neurons render the interpretation of the model substantially more
complicated, as they prevent to attach unambiguous labels to all the neurons in a model. This will
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Figure 12: Accuracies on ImageNet & shifts for Wise-FT models (1/2).
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Figure 13: Accuracies on ImageNet & shifts for Wise-FT models (2/2).

limit the insights gained by traditional interpretability techniques. For example, producing saliency
maps for a polysemantic neuron could highlight many unrelated parts of an image, corresponding
to the unrelated concepts this neuron is sensitive to. A qualitative analysis of the neurons in CLIP
by Goh et al. (2021) showed that a CLIP ResNet has a substantial amount of polysemantic neurons.
The emergence of polysemantic neurons is a complex phenomenon. It is not yet well-understood
for models at scale. The latest works on the subject mostly focus on toy models, see e.g. the works
of Elhage et al. (2022) and Scherlis et al. (2022). To the best of our knowledge, our work is the
first to explicitly discusses the link that exists between polysemanticity and robustness to natural
distribution shifts.
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Figure 14: ER for Wise-FT models (1/2).
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Figure 15: ER for Wise-FT models (2/2).
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Figure 16: Activation kurtosis for Wise-FT models (1/2). The activation kurtosis is computed for
both ImageNet tests and ImageNet shifts.
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Figure 17: Activation kurtosis for Wise-FT models (2/2). The activation kurtosis is computed for
both ImageNet tests and ImageNet shifts.
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Figure 18: Number of unique concepts encoded in Wise-FT models (1/2).
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Figure 19: Number of unique concepts encoded in Wise-FT models (2/2).
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