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Abstract

Mental health, despite its global importance, lacks a large-scale, multimodal,
open dataset. We propose the Mental Health Phenome: an openly shareable
collection of longitudinal smartphone behavior, wearable physiology, social media
activity, and mental health measures. Enabling foundation models for predictive,
interpretable, and personalized discovery across psychiatry, public health, and
digital well-being. Starting with deeply phenotyped cohorts, the Mental Health
Phenome is designed to scale to broader populations, combining mechanistic
insights with global applicability.
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1 Al Task Definition

Mental health remains uniquely challenging to quantify
compared to physical health. Unlike physical health, routinely Mental Health
measured via observable phenotypes like weight or blood e
pressure, mental health relies on sparse, episodic clinical —
data. In the absence of frequent longitudinal touch points, Behavior /

there is much room for discovery in the mental health space: qp

spotting early signs of depressive relapse, tracking mood S edin

fluctuations via passive data streams (sleep, mobility patterns), 89&")”90

or detecting new behavioral markers of well-being from digital 000

interactions and daily routines. Therefore, accurate diagnosis 000 —

and effective long-term management, particularly for complex \

or severe conditions, requires individualized, person-centered
N’

care, enabling study of the effects of digital behavior on mental

health. Physical Health
Our Mental Health Phenome (MHP) dataset (Figure [T) will Figure 1: Mental Health

address this gap by enabling and promoting the following Al Phenome: thaviors captured via
tasks. These tasks are designed for the individual participants, smartphones influence mental and
with clinicians and researchers as secondary users. Prediction: physical health.
Forecast mental health risks and disease trajectory (e.g., anxiety,
depression, manic episodes) from longitudinal digital behaviors.
Representation learning: Build foundation models linking digital behavior to mental health.
Interpretability: Provide human-centered explanations of why specific digital behaviors correlate
with both mental and physical health outcomes. Formally, the dataset will enable learning functions
of the form:

Mental State ~ f(digital behaviors, physiology, social context).

2 Dataset Rationale

Prior Work and Feasibility: Existing resources are fragmented (sub-1,000 users, short follow-up,
narrow demographic coverage) and fail to integrate multimodal behavioral, physiological, and clinical
data at scale. GLOBEM [l1]] pioneered multi-year mobile and wearable sensing but is confined to
short 10-week undergraduate cohorts with shallow clinical measures. ABCD [2] provides large-scale
information in adolescents, but offers shallow wearable data and broad symptom checklists. AMP
SCZ [3] is the closest precedent, integrating clinical, imaging, and digital health in schizophrenia and
psychosis risk cohorts, but remains constrained by narrow scope, intensive protocols, and limited
scalability. Collectively, these efforts demonstrate the promise of large-scale digital health resources
but leave critical gaps: (i) limited multimodal integration, (ii) narrow populations, (iii) absence of
cross-condition, clinically rich data, and (iv) use-cases that are primarily research-driven with few
approaches that are amenable to "personalization".

To address this, the MHP begins with a deeply phenotyped cohort (e.g. bipolar disorder) and scales via
widely deployed APIs, overcoming prior challenges of retention and scalability. For example, pilot
studies on bipolar disorder (BD) suggest that it is often associated with changes in communication and
irregular online behaviors [4]. From a deep phenotyping perspective, linking these behavioral patterns
to physiological markers, such as heart rate variability, offers a promising avenue for uncovering the
underpinnings of BD (see Appendix [A.T).

Data types: As illustrated in Figure[2] MHP integrates active inputs (surveys, journaling) with passive
streams (wearables, app usage, social media), plus demographic and clinical metadata (e.g. age, sex,
ethnicity, geographic region, self-reported mental health, clinical indicators and assessments). Active
features such as questionnaires and surveys will enable researchers to collect information about mood,
thought patterns, medication history, and demographic information. Passive features from APIs such
as phone logs (notifications, app use, screentime), social media engagement, and activity wearable
signals (e.g. heart rate, sleep, steps) provide high-frequency multimodal time series.

Scale and resolution: To infer behavior-health links, thousands of users with high-frequency
longitudinal measures are needed. Resolution spans coarse aggregates (daily screentime) to
fine-grained behaviors and engagement (content type, time-of-day, scrolling behavior). Where



possible, we aim to achieve a high degree of specificity in our dataset either through APIs or direct
partnerships (Section ) as opposed to more generic data on screen time use.

3 Acceleration Potential

Recent work shows foundation models trained on behavioral wearable data can improve health
prediction [5]], but current datasets lack multimodal scale and clinical depth required with mental
health conditions. MHP would unlock a new class of foundation models for mental health: multimodal
embeddings that link digital behavior (e.g., phone use, activity, sleep, social media) with clinical
outcomes. Such models could power early detection of relapse, personalized interventions, and
digital mental health coaching. Beyond psychiatry, applications extend to public health, workplace
well-being, and education. These data would become a commons for accelerating mental health
research and public benefit (see Appendix [A.72).
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Figure 2: Proposed data pipeline integrating Apple APIs (HealthKit, SensorKit, ResearchKit) and
Instagram Graph API, with informed consent and de-identification safeguards.

4 Data Creation Pathway

We leverage existing, widely deployed APIs such as Apple HealthKit, SensorKit, and ResearchKit
[6][71[8] to provide continuous signals (heart rate, sleep, mobility, journaling, app usage). Instagram
Graph API enables collection of consented digital social data [9], while the COS—Meta partnership
demonstrates precedent for deeper, privacy-preserving access to Instagram behavioral data at research
scale [10].

Standardized surveys will complement these digital measures with validated mental health instruments.
All data will be collected under informed consent and IRB approval, with strict de-identification and
secure storage. For sensitive modalities, federated learning pipelines [[11] [12]] will be explored to
enable large-scale integration without centralizing raw data. For benchmarking and reproducibility,
de-identified datasets will be available under controlled centralized access, while federated learning
provides an additional privacy-preserving pathway for scaling to larger, real-world deployments.
Further details on API usage and federated learning are provided in Appendix[A.3]and Appendix [A.4]

5 Cost and Scalability

The dataset is cost-feasible at scale (see Appendix[A.5). A pilot cohort of 1,000-5,000 users can
be launched for under $250K (server/API costs plus recruitment). Scaling to tens of thousands is
achievable through academic consortia (e.g., ABCD, All of Us) and partnerships with platform
providers. Because the data pipeline leverages existing devices and APIs, marginal costs per
participant are low. Cloud-based, privacy-preserving infrastructure ensures that the dataset can
grow sustainably without prohibitive overhead.

6 Vision

The Mental Health Phenome (MHP) is uniquely designed to balance depth and breadth: starting
with condition-specific cohorts, scaling via widely deployed APIs, and embedding privacy and
governance through design features, ensuring ethical scalability beyond psychiatry into public health,
workplace well-being, and education. MHP will also establish foundation-model-ready benchmarks
with standardized tasks, splits, and evaluation metrics. This combination of deep clinical grounding,
scalable multimodal design, benchmark creation, and ethical governance sets MHP apart as the first
truly foundational dataset for Al in mental health.
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A Technical Appendices and Supplementary Material

A.1 Deep Phenotype Model

As our proposed MHP intends to collect a vast quantity of data, we propose a deeply phenotyped
cohort to rigorously assess how digital behaviors, physiology, and social context map to a "known"
mental state. As an example of this in the physical health space, the AI-READI (Artificial
Intelligence-Ready and Exploratory Atlas for Diabetes Insights) project consists of a dataset of
4,000 individuals for type 2 diabetes research. Participants completed both on-site assessments and
at-home monitoring for approximately 10 days, where at-home data consisted of continuous glucose
monitoring (CGM), physical activity monitoring, and in-home environmental sensor data [[13]]. The
resulting dataset is ripe to train/test Al models on diabetes-related outcomes and empower precision
care.

Using datasets such as AI-READI as inspiration, our deep phenotyped approach will select for one
mental health-related disorder (e.g., bipolar disorder), and aim to provide a complete dataset ripe for
discovery. This can both enable discovery as in the AI-READI dataset, and also provide valuable
information on artifacts, noise, and signals that are relatively unimportant to map to mental health.
Creating several of these cohorts can individually propel the field and enable valuable discovery.

Eventually, we hope to undertake a complete MHP that is analogous to the Human Phenotype Project
(HPP), a deeply phenotyped longitudinal cohort with 28,000 enrolled participants. For this dataset,
digital data streams included continuous glucose monitoring (CGM), sleep tracking, lifestyle, and
nutrition logging over several weeks to untangle lifestyle data and general physical health outcomes.
After collecting these data, the researchers designed foundation models for prediction and disease
forecasting. We anticipate undertaking a similar yet more expansive approach for many mental health
disorders as the subsequent step to our deep phenotyped datasets [[14].

A.2 Model Acceleration

The acceleration potential of the MHP is marked by recent advances in foundation models for
wearable sensor data. Whereas early work emphasized modeling raw sensor streams at second
resolution, recent studies show that thoughtfully summarized physiological metrics, aggregated
over days or weeks, can yield more accurate and interpretable predictions of disease outcomes
and medication usage [5]. Utilizing the Mamba?2 architecture [15]], these derived metrics not only
achieved strong performance but also reduced training complexity by lowering dimensionality and
noise, underscoring that the design of informative behavioral summaries from raw signals is critical.
In the MHP, such metrics will be systematically engineered to accelerate model training, reduce data
requirements, and improve generalization across diverse clinical endpoints.

Complementarily, sensor-language alignment links time-series data with natural language, producing
interpretable embeddings that connect digital behaviors to human-readable concepts [16]]. By
aligning time-series sensor data with language representations, such models facilitate the creation of
embeddings that bridge digital behaviors and clinical concepts. In MHP, where sensor, smartphone,
and validated clinical labels are co-located longitudinally, such alignment could enable zero-/few-shot
symptom tagging, text-sensor retrieval, and clinician-facing summaries accelerating the translational
potential of foundation models trained on MHP.

A.3 Details and Limitations of Proposed APIs

An important aspect of the proposed model suggests the use of existing APIs, such as Apple
HealthKit, SensorKit, and ResearchKit. Herein, we will discuss the specific features that each API
provides, as well as potential limitations associated with their use.

Apple’s HealthKit API organizes data through an HKObjectType hierarchy, which provides a
standardized way to integrate multi-modal health data across different applications and devices. Each
health record is represented as a type of “sample” with subclasses that define how the data is stored
and interpreted.



* Quantity Samples (HKQuantitySample) capture numeric values paired with units. These
are used for continuous or countable measures such as height, weight, body mass index
(BMI), step count, distance walked, calories burned, and heart rate.

» Category Samples (HKCategorySample) represent discrete states or events. For example,
they can record phases of sleep (e.g., in-bed, asleep, awake), menstrual flow categories, or
the presence of a symptom like a headache.

» Workout Objects (HKWorkout) bundle together data from exercise sessions, such as start
and end times, activity type, total energy burned, distance, and associated heart rate samples.

 Correlation Objects (HKCorrelation) allow grouping of related samples into a single event,
such as combining blood pressure systolic and diastolic measurements or food intake details.

* Clinical Records (HKClinicalRecord) enable integration of structured health records (e.g.,
lab results, immunizations, medications) from electronic health record (EHR) systems.

* Electrocardiograms (HKElectrocardiogram) and other specialized types capture data
generated by Apple Watch sensors, such as ECG waveforms, heart rate variability, and VO2
max estimates [[17].

Every sample in HealthKit also includes metadata such as the start and end date, source (app or
device), and optional contextual information. In practice, this structure enables apps to both read and
write to HealthKit, and for our MHP will allow for ease of use for interpretation by researchers. Of
note, Google’s Health Connect (the Android comparative) works using a very similar model, and can
be incorporated or substituted as desired for wider use [18].

Meanwhile, SensorKit is focused on behavioral and environmental data streams. Some
examples of data classes include:

* SRAmbientLightSample — brightness level.
* SRDeviceUsageReport — app usage time, notifications.

* SRAudiolnputDeviceSample — microphone input info (not raw audio, but characteristics
like power levels)

* SRMessagesUsageReport — messaging events (counts, not content).

SRPhoneUsageReport — calls made, duration, etc.

* SRTouchEvent — taps, swipe gestures, typing cadence.

As before, each record includes the time window, sensor-specific fields (e.g. app name, battery), and
metadata [8]].

Finally, Apple Research Kit is an open-sourced framework deployed by researchers to build iOS
apps for clinical studies. Embedded with it are a number of helpful features including:

* Built-in survey modules let you ask about mood, stress, sleep quality, symptoms at regular
intervals.

* ResearchKit includes tasks like reaction time, tapping, spatial memory, Stroop tests.

* Ability to synthesize self-reports (mood surveys) with passive data (sleep, activity, heart rate
from HealthKit; phone usage/typing cadence from SensorKit) [7].

Android’s ResearchStack [19]] is analogous to Apple Research Kit, and Android Sensor Manager is
comparable to SensorKit [20].

When building an integrated dataset across HealthKit, SensorKit, and ResearchKit, limitations stem
from differences in structure, timing, access, and completeness. Each framework produces different
data types: continuous physiological time series from HealthKit, aggregated behavioral metadata
from SensorKit, and discrete survey or task results from ResearchKit. Synchronizing data is also
challenging since sampling frequencies and time may not be in line.



However, a useful solution to explore is mapping data into a shared common model in a way that is
similar to the way in which the UK Biobank (UKB) [21] integrated multi-modal data. In the UKB, raw
data come in many different formats: ICD codes (EHR), DICOMs imaging, Fitbit-like accelerometry,
self-report survey fields. These are then harmonized into standardized fields (coding files, field IDs,
controlled vocabularies). This is analogous to mapping HealthKit/SensorKit/ResearchKit into a
common model like OMOP [22]] or FHIR [23]].

A.4 Data Privacy and Model Architecture

We will employ federated learning (FL) to ensure privacy-preserving Al development in the Mental
Health Phenome dataset. FL keeps sensitive health and behavioral data on participants’ devices while
transmitting only model updates to a central server [[11]. This approach minimizes privacy risks while
enabling training across multiple individuals.

To strengthen privacy in FL, we will explore the following methods:

* Secure Aggregation: Ensures the server only observes the aggregate of client updates,
preventing inference about any single participant’s data [24].

¢ Vertical Federated Learning (VFL): Enables collaboration across institutions holding
different features for the same individuals without sharing raw data [25].

* Differential Privacy (DP): Adds calibrated noise to training (e.g., DP-SGD [26], PATE
[27]]) to provide formal guarantees against membership and attribute inference.

* Split Learning (SplitNN): Clients transmit intermediate activations instead of raw data or
gradients, with labels retained locally to enhance privacy [28].

* Personalized Federated Learning: Recent work such as FedTP trains personalized
self-attention layers in Transformers under FL objectives, improving performance in
heterogeneous (non-I1ID) data settings [29]].

A.5 Cost and Scalability

The main costs of a pilot cohort derive from participant recruitment and incentives, together with
cloud storage and secure data infrastructure. By leveraging participants’ own smartphones and
wearables through widely deployed APIs (e.g., HealthKit, ResearchKit, Instagram Graph API), the
Mental Health Phenome minimizes device costs and achieves low marginal cost per participant.
Based on precedents from digital phenotyping and population health cohorts, a pilot of 1,000-5,000
participants can be launched for under $250K, with scalability to tens of thousands enabled by
academic consortia and platform partnerships (Table [I).



Table 1: Estimated pilot costs for 1,000-5,000 participants.

Category  Description Unit Cost Total Total Relevant
(per user) (1,000 users) (5,000 users) References

Recruitment Participant $40-100 $40-100K $200-500K GLOBEM,
& Compensation BEIWE,
Incentives  and DELOITTE

Outreach
Participant ~ Communications ~ $10-20 $10-20K $50-100K BEIWE,
Support and Tech DELOITTE

Support
Server & Data $5-15 $5-15K $25-75K GLOBEM,
Cloud ingestion, DELOITTE
Infrastructure storage,

backups,

secure

cloud
API/App Integration Fixed $ 30-50K $30-50K $30-50K GLOBEM,
Development of Apple BEIWE

APIs,

Instagram

API, survey

platform
Data Encryption,  Fixed $ 10-20K $10-20K $10-20K AMP-SCZ,
Privacy &  IRB-required ALLOFUS
Security de-identification,

monitoring
Regulatory  Protocol Fixed $ 10K $ 10K $ 10K AMP-SCZ,
& IRB prep, ALLOFUS

renewals,

legal

review
Total — — $105-215K $325-755K —
Estimate

Acronyms. ALLOFUS = NIH All of Us Research Program [30]; AMP-SCZ = Wigman et al. 2025 [3]; BEIWE
= Torous et al. 2016 [31]; DELOITTE = Deloitte Digital Health Survey [32]]; GLOBEM = Xu et al. 2022 [1].
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