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Abstract

There has been recent interest in graph-based nearest neighbor search methods,
many of which are centered on the construction of (approximately) navigable
graphs over high-dimensional point sets. A graph is navigable if we can successfully
move from any starting node to any target node using a greedy routing strategy
where we always move to the neighbor that is closest to the destination according
to the given distance function. The complete graph is obviously navigable for
any point set, but the important question for applications is if sparser graphs can
be constructed. While this question is fairly well understood in low-dimensions,
we establish some of the first upper and lower bounds for high-dimensional point
sets. First, we give a simple and efficient way to construct a navigable graph with
average degree O(

√
n log n) for any set of n points, in any dimension, for any

distance function. We compliment this result with a nearly matching lower bound:
even under the Euclidean metric in O(log n) dimensions, a random point set has
no navigable graph with average degree O(nα) for any α < 1/2. Our lower bound
relies on sharp anti-concentration bounds for binomial random variables, which we
use to show that the near-neighborhoods of a set of random points do not overlap
significantly, forcing any navigable graph to have many edges.

1 Introduction

The concept of a navigable graph has arisen repeatedly over the decades, perhaps most famously in
Kleinberg’s work on understanding Milgram’s “Small World” experiments from the 1960s [Kleinberg,
2000a,b, Milgram, 1967]. Concretely, suppose we are given n points x1, . . . , xn ∈ X in some input
domain X , a distance function D : X × X → R≥0, and a directed graph G = (V,E), where each
vertex in V = {1, . . . , n} is associated with one of our points. G is said to be navigable if the
standard greedy routing algorithm successfully finds a path between any starting vertex s ∈ V and
any target vertex t ∈ V .1 In particular, letting N (s) denote the out-neighbors of s, this algorithm
first navigates to r ∈ N (s) which minimizes D(xr, xt). At each subsequent step, we navigate to the
out-neighbor of the current node that minimizes the distance to xt, terminating once we reach xt, or
if no neighbor has an associated point that is closer to xt than the current node.

It has been observed that many real-world networks (the internet, airport networks, social networks,
etc.) are either navigable or almost navigable, where xi plays the role of, e.g., the physical coordinates
of a server or individual and D is the standard Euclidean distance or some other metric [Boguñá et al.,

1G is further considered “small-world” if greedy routing always terminates in a small number of steps.
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2009]. Moreover, there has been interest in showing that natural generative models for networks
produce navigable graphs with good probability [Kleinberg, 2000a, Watts and Strogatz, 1998].

1.1 Constructing Sparse Navigable Graphs

More recently, significant work has studied the problem of constructing navigable or “approximately”
navigable graphs given a point set x1, . . . , xn ∈ X and distance function D. For any D and any point
set, the complete graph is navigable, so more concretely, the goal is to construct a navigable graph
that is as sparse as possible. At a high-level, this objective underlies many recently developed graph-
based approximate nearest neighbor search methods such as DiskANN [Subramanya et al., 2019], the
Hierarchical Navigable Small World (HNSW) method [Malkov and Yashunin, 2020, Malkov et al.,
2014], and the Navigating Spreading-out Graph (NSG) method [Fu et al., 2019].2 Such methods have
shown remarkable empirical performance, outperforming state-of-the-art implementations of popular
approximate nearest neighbor search algorithms such as product-quantization and locality-sensitive
hashing [Johnson et al., 2021, Jégou et al., 2011, Indyk and Motwani, 1998, Andoni et al., 2015].
The computational efficiency of the graph-based methods is governed by the number of edges in the
graph being searched, motivating the need for sparse navigable graphs.

Despite this recent interest, there has been relatively little theoretical work on the problem of
constructing navigable graphs. When the input points lie in Rd and D is the Euclidean distance
function, it is not hard to check that the Delaunay graph is navigable.3 While the Delaunay graph
has average degree O(1) in dimension d = 2 (since it is planar) it can have average degree O(n) in
dimension d = 3 or higher [Klee, 1980]. A better bound can be obtained via the so-called sparse
neighborhood graphs of [Arya and Mount, 1993], which are shown to be navigable for any point set
in Rd under the Euclidean distance and have average degree 2O(d).4 While this results in a sparse
navigable graph for small values of d, the degree bound is no better than that of the complete graph
for d = Ω(log n). Given that modern applications of nearest neighbor search often involve high
dimensional data points, it is natural to ask if anything better can be done in high dimensions.

1.2 Our Results

The main contribution of this work is to provide tight upper and lower bounds on the sparsity required
to construct navigable graphs for high-dimensional point sets. In particular, we prove two main
results. The first is a strong upper bound that follows from a straight-forward graph construction:
Theorem 1. For any input domain X , point set x1, . . . , xn ∈ X , and distance function D : X ×X →
R≥0 such that D(xi, xi) = 0 for all i and D(xi, xj) > 0 for xj ̸= xi, it is possible to efficiently
construct a directed navigable graph with average degree at most 2

√
n lnn. Moreover, the graph has

the additional “small world” property: greedy routing always succeeds in at most 2 steps.

Theorem 1 establishes that, even in arbitrarily high dimension, it is possible to beat the naive complete-
graph solution, which has O(n2) edges (average degree n). The result is proven in Section 3. It is
based on an simple construction, reminiscent of existing techniques for building nearest neighbor
search graphs: we take the union of a O(

√
n log n)-nearest neighbor graph, and a random graph with

average degree O(
√
n log n) [Malkov et al., 2014, Kleinberg, 2000b, Subramanya et al., 2019].

Surprisingly, Theorem 1 holds for essentially any distance function, even if it is not a metric. Moreover,
the construction is efficient: the navigable graph can be computed in O(n2(T + log n)) time, where
T is a bound on the cost of computing D(xi, xj) for any i, j. Given the generality of Theorem 1,
we might expect that navigable graphs with even fewer edges could be constructed under additional
assumptions – e.g., if we considered only the special case where the input domain is Rd and D is the
Euclidean distance. Our next result rules this out when d = Ω(log n). In particular, we show:
Theorem 2. Let x1, . . . , xn ∈ Rd be vectors with i.i.d. random ±1 entries, and let D(xi, xj) =
∥xi−xj∥2 be the Euclidean distance. For any parameter δ > 0, if d ≥ c

δ2 log n for a fixed constant c,
then with high probability, any navigable graph for x1, . . . , xn requires average degree Ω(n1/2−δ).

2Note that none of these methods actually claim to construct sparse graphs that are navigable in the worst-case.
They use heuristics to build graphs that are “approximately navigable”, meaning that, empirically, greedy search
tends to find good approximate nearest neighbors when run on the graphs.

3The Delaunay graph connects i, j if xi and xj have adjacent cells in a Voronoi diagram for x1, . . . , xn.
4Such graphs are closely related to but not the same as “relative neighborhood graphs” [Toussaint, 1980].
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Theorem 2 is proven in Section 4. It is a corollary of our more general Theorem 4, which also implies
a lower bound of Ω(n1/2/ log n) average degree when d = Ω(log3 n). The proof starts with a straight
forward observation: in order for greedy routing to make progress towards a destination node xi, any
node within the k-nearest neighbor set of xi, for any k, must include an edge to some other node in
that set (possibly xi itself). Using sharp anti-concentration bounds for binomial random variables
[Ahle, 2017, Cramér, 2022], we argue that, when k = O(

√
n) and when x1, . . . , xn ∈ {−1, 1}d are

random for large enough d, the nearest neighbor sets for different destination nodes have very small
pairwise intersections. Intuitively, they are nearly independent random sets of size O(

√
n), and thus

have expected overlap close to 1. This small overlap means that few edges can be used to ‘cover’ the
required connections within different nearest neighborhoods, giving a lower bound on the average
degree of any navigable graph.

We remark that Theorem 2 cannot be improved significantly in its bound on the dimension d. As
mentioned, for the Euclidean distance over Rd, it is possible to construct navigable graphs with 2O(d)

edges for any d dimensional point set using the sparse neighborhood graphs of [Arya and Mount,
1993]. This leads to average degree less than n1/2 when d = c log n for a small enough constant c.

1.3 Outlook

Together, Theorems 1 and 2 help complete the picture of what level of sparsity is achievable when
constructing navigable graphs in high-dimensions. However, these bounds are not the end of the
story. For one, there are many variations on simple greedy search that would lead to other notions of
navigability. For example, in nearest neighbor search applications, a version of greedy search called
beam search, which explores multiple greedy paths, is often preferred [Subramanya et al., 2019].

Beyond the average degree, which we focus on in this work, the maximum degree of a navigable
graph is also a natural metric, governing the maximum complexity of each iteration of greedy search.
Unfortunately, for the navigability problem we study, we show in Section 4.3 that there are point sets
for which every navigable graph must have maximum degree n. It would be interesting if relaxations
of the problem or a more flexible search method can avoid this limitation.

Finally, an important direction for future work is to prove end-to-end approximation guarantees
for graph-based nearest neighbor search algorithms. Since finding exact nearest neighbors in high
dimensions suffers from challenges related to the curse of dimensionality, a reasonable goal would
be to prove that greedily routing towards any query q ∈ X converges on an α-approximate nearest
neighbor xj satisfying D(q, xj) ≤ α·mini D(q, xi) for some α ≥ 1. This is the sort of guarantee that
locality sensitive hashing and other methods can achieve with query time that is provably sublinear in
n, i.e., without needing to directly compare q to all vectors x1, . . . , xn [Kleinberg, 1997, Kushilevitz
et al., 1998, Indyk and Motwani, 1998, Har-Peled, 2001]. Importantly, if regular greedy search is
applied from an arbitrary starting node, navigability is a necessary condition for α-approximate
nearest-neighbor search. In particular, for any finite α, if q ∈ {x1, . . . , xn}, mini D(q, xi) = 0, so
we must return q exactly. However, navigability is not a sufficient condition for greedy search to
succeed, as it does not guarantee any level of approximation for queries q that are not in {x1, . . . , xn}.
For some initial work on this more challenging problem, we refer to the reader to Laarhoven [2018],
Prokhorenkova and Shekhovtsov [2020], and Indyk and Xu [2023].

2 Preliminaries

Notation. Throughout, we consider a set of n distinct points x1, . . . , xn ∈ X for some input domain
X and a distance function D : X × X → R≥0. D(xi, xj) denotes the distance from point j to point
i. We assume only that D(xi, xi) = 0 for all i and that D(xi, xj) > 0 for xj ̸= xi.5 Our main upper
bound, Theorem 1, does not require D to be a metric, or even to be symmetric. Our main lower
bound, Theorem 2, holds against the standard Euclidean distance D(xi, xj) = ∥xi − xj∥2.

We aim to construct a directed graph G = (V,E), where each vertex in V = {1, . . . , n} is associated
with one of our input points. Each edge e ∈ E is an ordered pair (i, j), indicating that there is an

5Even these assumptions are not needed, but they make our definition of “navigable” more natural. Otherwise,
we must allow for greedy routing to navigate to any vertex xj ∈ argminx1,...,xn

D(xj , xt) given target xt.
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edge from node i to node j. Throughout, we let lnn denote the natural base-e logarithm of n, and
log n denote the base-2 logarithm of n.

Algorithm 1 Greedy Search

1: Input: Graph G over nodes {1, . . . , n}, starting node s, query point x̄.
2: Output: A point xj that is ideally close to x̄ with respect to distance function D.
3: j ← s, Done← False
4: while Done == False do
5: if N (j) = ∅ then
6: Done← True.
7: else
8: h← argmini∈N (j) D(x̄, xi), where ties are broken to prefer nodes with the lowest id.6

9: if D(x̄, xh) < D(x̄, xj) then
10: j ← h.
11: else if D(x̄, xh) = D(x̄, xj) and h < j then ▷ Tie-breaking on node id.
12: j ← h.
13: else
14: Done← True.
15: Return xj

Distance-Based Permutations. We let N (i) denote the out-neighbors of node i in the graph; i.e.,
j ∈ N (i) if and only if (i, j) ∈ E. We use the notation N1(i), . . . , Nn(i) to index the list of nodes in
the graph ordered in non-decreasing order by their distances from i; i.e., for k < ℓ, D(xi, xNk(i)) ≤
D(xi, xNℓ(i)). Ties are broken by node id. Specifically, whenever D(xi, xNk(i)) = D(xi, xNℓ(i))
and k < ℓ, then Nk(i) < Nℓ(i). This choice is arbitrary, but a consistent way of breaking ties
will simplify our exposition. For most applications, we will not have distances repeat exactly in the
dataset, so tie breaking is never invoked. Note that since we assume x1, . . . , xn are distinct and that
D(xi, xi) = 0 for all i and D(xi, xj) > 0 for all j ̸= i, we always have that N1(i) = i.

Greedy Search and Navigability. We study a notion of navigability that is tied to the standard
greedy graph search algorithm for nearest neighbors, which is detailed in Algorithm 1. It can be
checked that the algorithm always terminates in at most n iterations since j can only be equal to
every node in the graph at most once. Additionally, we note that Line 11 and 12 are unnecessary in
the case when distances are assumed to be unique. When this is not the case, these lines implement
our arbitrary tie-breaking rule, which is to prefer nodes with lower id when distances are equal.

Given Algorithm 1, we define navigability formally as follows:

Definition 3 (Navigable Graph). A graph G is navigable for point set x1, . . . , xn under distance
function D if, for all s, t ∈ {1, . . . , n}, when Algorithm 1 is run with starting node s and query
x̄ = xt, then the algorithm returns xt. I.e., when the query x̄ exactly matches a point in the dataset,
the algorithm finds that point. We further say that G is “small world” with parameter S if the
algorithm always terminates after at most S calls to the while loop.

It will be useful to think about navigability as a property of the distance-based node permutations
defined earlier. In particular, navigability is implied by the following property:

For all t and all ℓ > 1, there is an edge from Nℓ(t) to Nk(t) for at least one k < ℓ. (1)

In particular, when given a query xt ∈ {x1, . . . , xn}, Algorithm 1 will only move from nodes Nℓ(t)
to Nk(t) for which k < ℓ. Moreover, as long as there is such a k in the out-neighborhood of Nℓ(t),
then the algorithm will not terminate at Nℓ(t). It follows that, if (1) holds, the algorithm is guaranteed
to terminate at N1(t) = t and return xt, as desired. We remark that, if all distances between nodes
are distinct, (1) is equivalent to the navigability property of Definition 3, although we will not require
this fact. To better illustrate the connection between (1) and Definition 3, we include an example of a
navigable graph in Figure 1 and the corresponding list of distance-based permutations in Figure 2.

6Formally, h← min
(
{argmini∈N (j) D(x̄, xi)}

)
, where argmint f(t) returns the set of minimizers of f .
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3 Upper Bound

We begin by proving our main positive result, which we restate below:
Theorem 1. For any input domain X , point set x1, . . . , xn ∈ X , and distance function D : X ×X →
R≥0 such that D(xi, xi) = 0 for all i and D(xi, xj) > 0 for xj ̸= xi, it is possible to efficiently
construct a directed navigable graph with average degree at most 2

√
n lnn. Moreover, the graph has

the additional “small world” property: greedy routing always succeeds in at most 2 steps.

4

3

1

2

5

(a)

Vertex Coordinates
1 (4,−2)
2 (6,−1)
3 (2, 1)
4 (0, 0)
5 (1,−2)

(b)

Figure 1: Example of a navigable graph G = (V,E) on 5 nodes. A double arrow indicates that both
(i, j) ∈ E and (j, i) ∈ E. We can check that G is navigable by referring to Figure 2.

1 2 5 3 4

(a) Permutation for 1.

2 1 3 5 4

(b) Permutation for 2.

3 4 5 1 2

(c) Permutation for 3.

4 5 3 1 2

(d) Permutation for 4.

5 4 1 3 2

(e) Permutation for 5.

Figure 2: Distance-based permutations for the data set in Figure 1. As an example, in the plot above,
we have N1(1) = 1, N2(1) = 2, N3(1) = 5, N4(1) = 4, N5(1) = 3, we have N1(2) = 2, N2(2) =
1, N3(2) = 3, N4(2) = 5, N5(2) = 4, etc. For the permutations, we draw all edges in the graph G
from Figure 1 that point “left” in the permutation. In particular, we show edges that connect any
Nℓ(t) to Nk(t) with k < ℓ. We can check that property (1) holds, so the graph is navigable.

Proof. We give two different constructions that establish the theorem. The first is randomized, and
succeeds with high probability. The second is deterministic. Both require O(n2(T + log n)) time to
construct, where T is the time to evaluate the distance function D for any two input points.

Construction 1: Randomized. Let m be an integer between 1 and n, to be chosen later. Our first
construction is as follows:

• For all i ∈ {1, . . . , n} and all 1 < ℓ ≤ m, add an edge from Nℓ(i) to N1(i) = i.

• For all i ∈ {1, . . . , n}, add an edge from i to ⌈ 3n lnn
m ⌉ nodes chosen uniformly at random

from {1, . . . , n} \ {i}.

To prove that this construction leads to a navigable graph, we need to prove the (1) holds with high
probability. To do so, consider the permutation N1(i), . . . , Nn(i) for a fixed node i. The property
trivially holds for all ℓ ≤ m since we connected Nℓ(i) to N1(i) in step one of the construction. So,
we only have to consider ℓ > m.

For any ℓ > m, the chance that any one random edge from the second step of the construction
connects to some Nk(i) for k ≤ m is m

n . So, the chance that none of the random edges connect Nℓ(i)

to some Nk(i) for k ≤ m is at most
(
1− m

n

)⌈ 3n lnn
m ⌉ ≤ 1

e3 lnn ≤ 1
n3 . By a union bound, it follows
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that with probability at least 1− 1
n , for all i and all ℓ > m, Nℓ(i) has an edge to some Nk(i) with

k ≤ m < ℓ. Thus property (1) holds, and we conclude that the graph we constructed is navigable.

It is left to set m. The graph we constructed has at most (m− 1)n+ n · ⌈ 3n lnn
m ⌉ ≤ mn+ n · 3n lnn

m

edges. Balancing terms, if we choose m =
√
3n lnn, the graph has ≤ 2

√
3n1.5

√
lnn edges.

Finally, we observe that constructing the graph requires computing and sorting all n distance-based
permutations, which takes O(n2(T + log n)) time. Moreover, we can see that the constructed graph
is small-world with parameter C = 2. In the first iteration of Algorithm 1, we are guaranteed to
choose a node h that is one of the m closest neighbors of the input x̄ = xi. Then, at the second
iteration, h has an edge to i itself and so we terminate.

Construction 2: Deterministic. Our randomized construction can be derandomized relatively
directly. We construct the same n(m− 1) edges from Nℓ(i) to N1(i) for all i and 1 < ℓ ≤ m. The
goal in constructing random edges was to ensure that, for ℓ > m, Nℓ(i) always has an edge to some
node in {N1(i), . . . , Nm(i)}, which we will call i’s “near-neighborhood”, and denote by Nm(i). We
can instead ensure that each Nℓ(i) has an edge into Nm(i) via a greedy set cover approach.

In particular, we claim that there is a set of g ≤ 1 + n lnn
m nodes k1, . . . , kg such that every near-

neighborhood Nm(i) contains at least one of k1, . . . , kg . To ensure property (1) for values of ℓ > m,
we only have to connect all nodes in our graph to this set. We construct this set greedily. Let
B1 = {1, . . . , n} and, for i > 1, let Bi denote the set of all i for which none of k1, . . . , ki−1 is in
Nm(i). We have that |B1| = n and our goal is to show that |Bg+1| < 1. By a counting argument,
there must be at least one node that appears inNm(i) for at least m different values of i ∈ B1. Select
this node to be k1, which ensures that:

|B2| ≤
(
1− m

n

)
|B1| =

(
1− m

n

)
n.

Again by a counting argument, there must be one node that appears in Nm(i) for at least |B2|·m
n

values of i ∈ B1. Select this node to be k2, which ensures that:

|B3| ≤ |B2| −
|B2| ·m

n
=
(
1− m

n

)
|B2| ≤

(
1− m

n

)2
n.

Continuing in this way, we conclude that |Bg+1| ≤
(
1− m

n

)g
n, which is less than 1 as long as

g > n lnn
m . We conclude that, as long as we connect every node to k1, . . . , kg, (1) is satisfied for all

Nℓ(i) where ℓ > m, so our constructed graph is navigable.

In total, our deterministic graph has at most (m − 1)n + n ·
(
n
m lnn + 1

)
edges. Choosing m =√

n lnn we get a graph with at most 2n1.5
√
lnn edges. Again, the cost of the algorithm is dominated

by the O(n2(T + log n)) time required to compute and sort all n distance-based permutations.

We remark that, while it may be possible to improve our upper bound from O(
√
n log n) to O(

√
n)

average degree, we do not believe our analysis can be directly tightened. For random points in
high-dimensional space under the Euclidean metric, we roughly expect each near-neighborhood
Nm(i) to look like a uniformly random subset of {1, . . . , n}. If the neighborhoods were truly random,
then existing results on random set cover problems imply that it is not possible to find k1, . . . , kg
covering all near-neighborhoods unless g = Ω

(
n lnn
m

)
[Vercellis, 1984, Arpino et al., 2024].

4 Lower Bounds

In this section, we prove Theorem 2, which shows that even for a random point set in Rd for
d = O(log n) under the Euclidean metric, Theorem 1 cannot be improved significantly: with high
probability, any navigable graph G must have average degree Ω(n1/2−δ) for any fixed constant δ.
Theorem 2 is a corollary of our more general Theorem 4, which we state below:

Theorem 4. Let x1, . . . , xn ∈ {−1, 1}d be distributed independently and uniformly in {−1, 1}d.
With probability > 9

10 , any navigable graph for x1, . . . , xn under the Euclidean metric requires

Ω(n3/2−ϵ) edges, for ϵ = max

(
log logn
logn , c

√
logn
d

)
for a universal constant c.
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The Ω(n3/2−δ) lower bound of Theorem 2 follows immediately from Theorem 4 by taking d =
c2

δ2 log n. Alternatively, if we take d = c2 log3 n we have a lower bound of Ω(n3/2/ log n), which
matches Theorem 1 up to a O(log3/2 n) factor.

4.1 Average Degree Lower Bound

We introduce a few intermediate results before giving the proof of Theorem 4. First, we observe
that the point set of Theorem 4 does not have any duplicate points with high probability. Doing so
simplifies our analysis as no “tie-breaking” will be needed when Algorithm 1 is run on an input xj .
Claim 5 (No Repeated Points). Let x1, . . . , xn be distributed as in Theorem 4. As long as d ≥ c1 log n
for a universal constant c1, then with probability at least 99/100, all vectors in this set are distinct.

The claim follows from a simple probability calculation and union bound – see Appendix A.

We next define a notion of a neighborhood of a point, which includes all points within a certain radius.
Definition 6 (Fixed Radius Near-Neighborhood). Consider the setting of Theorem 4. Let Oj be the
subset of vectors in x1, . . . , xn (including xj itself) with ⟨xi, xj⟩ ≥ ch

√
d log n where ch ∈ [1/3, 1]

is some value (that may depend on n) which we will specify later.

Note that, for any xi, xj ∈ {−1, 1}d, ∥xi − xj∥22 = d − 2⟨xi, xj⟩, so Oj contains a set of nearest
neighbors to j in the Euclidean distance. Importantly, however, the definition used in this section is
different from the Nm(j) notation used in the previous section, since Oj is not of a fixed size.

Using the distance-based permutation characterization of navigability given in (1), we can observe that,
in order for greedy routing to make progress towards target xj , every node in the near-neighborhood
Oj needs an edge to another node in the near-neighborhood, closer to xj . Formally:
Claim 7 (Required Connections Within Neighborhoods). Consider the setting of Theorem 4 and
assume that x1, . . . , xn ∈ {−1, 1}d are distinct. Any navigable graph G for x1, . . . , xn requires
|Oj | − 1 edges in Oj ×Oj for each j.

Proof. For G to be navigable, for any i ∈ Oj \ {j}, there must be an edge from i to some node that
is closer j, and thus is also in Oj . Thus, there are at least |Oj | − 1 edges in Oj ×Oj .

We next make two claims about the near neighborhoods of Definition 6 when x1, . . . , xn are random
points in {−1, 1}d: that 1) they are large with high probability and 2) that they have low overlap
with high probability. Together with Claim 7, these imply that any navigable graph G for x1, . . . , xn

requires a large number of edges, proving Theorem 4. We first formally state the claims and prove
Theorem 4 using them. We then prove the claims in Section 4.2.
Claim 8 (Neighborhoods are Large). Let x1, . . . , xn be as distributed as in Theorem 4 and let Oj

be as in Definition 6. As long as d ≥ c1 log n for a universal constant c1, with probability at least
99/100, for all j, |Oj | ≥

√
n/6.

Claim 9 (Neighborhood Intersections are Small). Let x1, . . . , xn be distributed as in Theorem 4 and
let Oj be as in Definition 6. As long as d ≥ c1 log n for a universal constant c1, with probability at

least 99/100, for all i ̸= j, |Oi ∩ Oj | ≤ 10max
(
log n, nc

√
log n

d

)
for some universal constant c.

Claim 8 establishes that Oj contains the Θ(
√
n) nearest neighbors to xj , which is a consequence of

our choice of radius in Def. 6. If eachOj were just an independent random set of Θ(
√
n) nodes, then

we would expect that for any i ̸= j, |Oi ∩ Oj | = Θ(1). I.e., our neighborhoods would have small
overlap, which is the key property we need to prove a lower bound. An overlap of O(1) would imply
that O(n3/2) edges are needed to satisfy the requirements of Claim 7. Of course, each Oj is not an
independent random set in reality. Specifically, if xi and xj have large inner product, Oi and Oj will
be correlated, so we expect that |Oi ∩Oj | will be larger. Claim 9 shows that for large enough d, such
strong correlations are unlikely to happen and thus we still expect |Oi ∩ Oj | to be fairly small.

Proof of Theorem 4. First note that we can assume that d ≥ c1 log n for some large constant c1, as
otherwise we will have ϵ > 3/2 and the lower bound becomes vacuous. Accordingly, the conclusions
of Claims 5, 8 and 9 all hold for x1, . . . , xn with probability > 9/10 by a union bound.
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We will use these claims to show that any navigable graph for x1, . . . , xn requires Ω(n3/2−ϵ) edges.
Consider any navigable graph G = (V,E). For any edge (u, v) ∈ E, let wu,v = |{j : u, v ∈ Oj}|
be the number of near neighborhoods that u and v both belong to. I.e., wu,v is the number of nodes j
for which (u, v) ∈ Oj ×Oj . By Claims 7 and 8, we must have

∑
(u,v)∈E

wu,v ≥
n∑

j=1

|Oj | − 1 ≥ n3/2

6
− n ≥ n3/2

12
, (2)

where we use in the last step that n ≤ n3/2/12 for large enough n.

Further, wu,v = |Ou ∩Ov| since u and v both lie inOj exactly when j lies in both Ou andOv . Thus,

by Claim 9, wu,v ≤ 10max(log n, nc
√

logn/d) for all u, v. Combined with (2) this gives:

|E| ≥ n3/2/12

10max(log n, nc
√

logn/d)
= Ω(n3/2−ϵ),

for ϵ = max( log logn
logn , c

√
log n/d). This proves the theorem.

4.2 Probabilistic Claims about Near Neighborhoods

We now prove Claims 8 and 9. We will use a very sharp bound on the CDF of a binomial distribution,
given by Ahle [2017] and attributed to Cramer [Cramér, 2022]. This is a quantitative version of the
central limit theorem, saying that the binomial CDF is close to the normal CDF, up to some small
error. It is tighter than more general bounds like the Berry-Esseen theorem. We give a proof of our
exact statement of the bound in Appendix A.

Fact 10 (Binomial CDF Bound, 2.20 of [Ahle, 2017]). Let Ft(·) be the CDF of a mean centered
binomial random variable with t trials and success probability 1/2. There are universal constants
c1, c2 such that, for any x satisfying c1 ≤ x ≤

√
t/c1,

1

3x
e
− x2

2 ·
(
1+

c2x2

t

)
≤ Ft(−x ·

√
t/2) ≤ 1

x
e
− x2

2 ·
(
1− c2x2

t

)
.

We will also use that, with high probability, no pair of our random vectors has too high of an inner
product. This will be required to prove Claim 9, i.e., that all near neighborhoods have small overlap.
The claim follows directly from a standard Chernoff bound and a union bound over all pairs i, j.

Claim 11 (Vectors are Not Too Similar). Let x1, . . . , xn be distributed as in Theorem 4. As long as
d ≥ c1 log n for a universal constant c1, with probability at least 99/100, for all i ̸= j, ⟨xi, xj⟩ ≤
cu
√
d log n for some fixed constant cu.

Finally, we require the following technical claim, which we will use to set ch in Definition 6. Our goal
is to ensure that the probability of a vector being in the near neighborhood of another is Θ(1/

√
n).

Claim 12. For any large enough n, there is some value of c ∈ [1/3, 1] such that

1√
lnn
· exp(−c2 · lnn) = 1√

n.

Proof. Observe that if we set c = 1, then

1√
lnn
· exp(−c2 · lnn) = 1

n
√
lnn

<
1√
n
.

Further, if we set c = 1/3, we have for large enough n,

1√
lnn
· exp(−c2 · lnn) = 1√

lnn
exp(−1/9 lnn) = 1√

lnn · n1/9
>

1√
n
.

Thus, for some setting of c ∈ [1/3, 1] the claim holds.
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Proof of Claim 8. Fix some xj . Then for any i ̸= j, the event that i ∈ Oj is exactly the event that a
binomial random variable Bin(d, 1/2) exceeds its mean by ≥ ch

√
d lnn/2. I.e., letting Fd(·) be the

CDF of the mean centered binomial random variable, we have

Pr(xi ∈ Oj) = Fd(−ch
√
d lnn/2). (3)

Plugging in the lower bound of Fact 10, we have for some constant c2:

Pr(xi ∈ Oj) ≥
1

3 · ch
√
lnn
· exp

(
−c2h

2
· lnn ·

(
1 +

c2c
2
h lnn

d

))
.

Using that d ≥ c1 lnn for some sufficiently large constant c1, 1 + c2c
2
h lnn
d ∈ [1, 2]. Then, by Claim

12, we can set ch to some value in [1/3, 1] to obtain:

Pr(xi ∈ Oj) ≥
1

3ch
√
n
≥ 1

3
√
n
. (4)

From (4), the claim follows by noting that the events i ∈ Oj are independent and each happens with
probability at least 1

3
√
n

, so E [|Oj |] ≥
√
n/3. Thus, by a Chernoff bound, with probability at least

1− 2Ω(
√
n), |Oj | ≥

√
n/6. Taking a union bound over all j then gives that, for sufficiently large n,

|Oj | ≥
√
n/6 for all j with probability at least 99/100, giving the claim.

Proof of Claim 9. Fix i ̸= j and consider some k which is not equal to either i or j. Let z be the
number of positions in which xi and xj take the same value. Note that, assuming the event of Claim
11 holds, z ≤ d/2 + cu

√
d log n/2. Denote d/2 + cu

√
d log n/2 by µ.

By Definition 6, to have xk ∈ Oi ∩ Oj we need min(⟨xk, xi⟩, ⟨xk, xj⟩) ≥ ch
√
d log n. That is, we

need xk to match each of xi and xj in at least d/2+ ch/2 ·
√
d log n positions. On the d− z positions

where xi and xj differ, the best case scenario (i.e., the scenario maximizing min(⟨xk, xi⟩, ⟨xk, xj⟩))
is when xk matches exactly half of these positions for each of xi, xj (i.e., matches d−z

2 positions).

Assuming this case, to have xk ∈ Oi ∩ Oj , on the z positions where xi and xj are identical, xk

must match z/2 + ch/2 ·
√
d log n positions. The probability of this happening is equivalent to the

probability that a binomial random variable with z trials exceeds its mean by ≥ ch/2 ·
√
d log n.

Since z ≤ µ, we can upper bound this probability by the probability that a binomial random variable
with µ trials exceeds its mean by ch/2 ·

√
d log n. We rewrite the upper bound as:

ch/2 ·
√
d log n = ch/2 ·

√
d/µ ·

√
µ log n =

ch√
2
·
√√√√ 1

1 + cu

√
logn
d

·
√
µ log n,

where we use d/2
µ = 1

1+cu
√

log n
d

. Via Fact 10, we now upper bound our probability of interest by:

Pr(xk ∈ Oi ∩ Oj) ≤

√
1 + cu

√
logn
d

√
2ch
√
log n

· exp

− c2h log n

1 + cu

√
logn
d

·

1− 2c2c
2
h · log n

(1 + cu

√
logn
d ) · µ

 .

Observe that since in the claim we require d ≥ c1 log n for a large constant c1, we have that

1 ≤ 1 + cu

√
logn
d ≤ 2. So, we can simplify the above to:

Pr(xk ∈ Oi ∩ Oj) ≤
√
2

ch
√
log n

· exp

− c2h log n

1 + cu

√
logn
d

·
(
1− 2c2c

2
h · log n
µ

)

=

√
2

ch
√
log n

· exp

−c2h log n · (1 + c2c
2
h log n

d

)
·

(
1− 2c2c

2
h·logn
µ

)
(
1 +

c2c2h logn

d

)
·
(
1 + cu

√
logn
d

)
 .
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Now, since we set d ≥ c1 log n for a large constant c1, we can ensure that have that logn
d ≤ c3

√
log√
d

for any small constant c3. Using this fact, along with the fact that µ ≥ d/2, we have:(
1− 2c2c

2
h·logn
µ

)
(
1 +

c2c2h logn

d

)
·
(
1 + cu

√
logn
d

) ≥
(
1− .5cu

√
logn
d

)
(
1 + .5cu

√
logn
d

)
·
(
1 + cu

√
logn
d

) ≥ 1− 2cu ·
√

log n

d
.

For the second inequality, we used the fact that (1−.5x)
(1+.5x)(1+x) ≥ 1 − 2x for all x. Next, setting

ch ∈ [1/3, 1] exactly as in (4) so that 1√
logn

· exp
(
− c2h

2 log n ·
(
1 +

c2c
2
h logn
d

))
= 1√

n
, we have:

Pr(xk ∈ Oi ∩ Oj) ≤
√
2

ch
√
log n

· exp

(
−c2h log n ·

(
1 +

c2c
2
h log n

d

)
·

(
1− 2cu

√
log n

d

))

≤
√
2

chn
· exp

(
2c2hcu log n ·

(
1 +

c2c
2
h log n

d

)
·
√

log n

d

)

≤ 4
√
2

n
· exp

(
c log3/2 n

d

)
=

4
√
2

n
· nc
√

log n
d ,

for some constant c. Finally, observe that, conditioned on xi and xj sharing z entries, the event
xk ∈ Oi ∩ Oj is independent for each xk. Thus, by a standard Chernoff bound, with probability at

least 1 − 1/nc′ , we have |Oi ∩ Oj | ≤ 10max(log n, nc
√

log n
d ) for some large constant c′. Union

bounding over all O(n2) pairs i ̸= j then gives the claim.

4.3 Maximum Degree Lower Bound

In Theorems 1 and 2, we focus on the average degree of navigable graphs. While a reasonable metric,
we might also be interested in the maximum degree, which governs the worst-case complexity of a
single step of the greedy algorithms. Here we give a simple argument showing that unfortunately, on
a worst-case input instance, it is not possible to achieve maximum degree better than the trivial n− 1
given by the complete graph.

Theorem 13. There exists a set of points x1, . . . , xn ∈ Rd for d = O(log n) such that any navigable
graph for these points under the Euclidean metric has maximum out-degree d− 1.

Proof. First we prove the bound for a high dimensional point set. For all i < n, let xi be a standard
basis vector with a 1 in position i. Let xn be the all zeros vector. As we can see, xn has Euclidean
distance 1 from x1, . . . , xn−1. On the other hand, for all i ̸= j where i, j ̸= n, ∥xi − x∥2 =

√
2. In

other words, xn is the closest neighbor to each of x1, . . . , xn−1. It follows that any navigable graph
must contain an edge from x1 to each of these points, resulting in maximum degree n.

To extend the construction to low dimensions, we simply use the Johnson-Lindenstrauss Lemma to
embed the point set above into c log n dimensions. As long as the constant c is sufficiently large, all
distances will be preserved to within error, say, ±0.1. So, xn will still be the nearest neighbor of all
other points, and we will still require it to have out-degree n− 1.
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A Omitted Proofs

Below we gives the proofs of some simple technical claims required to prove our main lower bound,
Theorem 4. First, we prove Claim 5, which establishes that, with high probability, the hard input
distribution of Theorem 4 produces a set of distinct points..
Claim 5 (No Repeated Points). Let x1, . . . , xn be distributed as in Theorem 4. As long as d ≥ c1 log n
for a universal constant c1, then with probability at least 99/100, all vectors in this set are distinct.

Proof. Consider two points xi, xj . The probability that these points are identical equals 1
2

d ≤ 1
nc1

.
Then by a union bound over all pairs i, j, we have that all points are distinct with probability at least
1− 1

nc1−2 , which is greater than 99/100 for sufficiently large c1.

Next we give a short derivation of Fact 10, which gives a sharp bound on the CDF of a binomial
distribution, and is used in proving Claims 8 and 9.
Fact 10 (Binomial CDF Bound, 2.20 of [Ahle, 2017]). Let Ft(·) be the CDF of a mean centered
binomial random variable with t trials and success probability 1/2. There are universal constants
c1, c2 such that, for any x satisfying c1 ≤ x ≤

√
t/c1,

1

3x
e
− x2

2 ·
(
1+

c2x2

t

)
≤ Ft(−x ·

√
t/2) ≤ 1

x
e
− x2

2 ·
(
1− c2x2

t

)
.

Proof. Applying 2.20 of [Ahle, 2017] with p = q = 1/2 gives that

Ft(−x ·
√
t/2) ∈ 1√

2πx
exp

(
−tD

(
1

2
− x

2
√
t

∥∥1
2

))
·
(
1± c

(
1

x2
+

x√
t

))
,

for some constant c, where use the notation D(a∥b) def
= a log(a/b) + (1− a) log((1− a)/(1− b)).

This is the KL divergence between two Bernoulli distributions with success probabilities a and b. We
can then apply equation (2.13) of [Ahle, 2017] to claim that, for a constant c2,

D

(
1

2
− x

2
√
t

∥∥1
2

)
∈ x2

2t
± c2

x4

2t2
,

Plugging back in, we have that for constants c and c2,

Ft(−x ·
√
t/2) ∈ 1√

2πx
exp

(
−x2

2
·
(
1± c2x

2

t

))
·
(
1± c

(
1

x2
+

x√
t

))
.

If we assume c1 ≤ x ≤
√
t/c1 for large enough constant c1 then 1

3x ≤
1√
2πx
·
(
1− c

(
1
x2 + x√

t

))
and 1√

2πx
·
(
1 + c

(
1
x2 + x√

t

))
≤ 1

x , which completes the proof.
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paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract states the main theoretical contributions of the paper accurately,
as does the introduction.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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NA answer to this question will not be perceived well by the reviewers.
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implications would be.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
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proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
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of the paper (regardless of whether the code and data are provided or not)?
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Justification: This paper does not include experiments requiring code or data.
Guidelines:
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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• The instructions should contain the exact command and environment needed to run to
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versions (if applicable).
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
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Answer: [NA]
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: There are no violations of the NeurIPS Code of Ethics in this paper.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: Nearest neighbor search is a fundamental and long-studied algorithmic problem.
Algorithms for the problem thus have societal impact, many positive, but possibly negative.
However, since our work focuses on theoretical foundations of the nearest neighbor search
problem, it is difficult to comment in a meaningful and concrete way on its potential for
societal impact. We believe its main impact will be a better scientific understanding of
existing methods based on search in navigable graphs.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: This paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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