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ABSTRACT

Protein generative models have shown remarkable promise in protein design, yet
their success rates remain constrained by reliance on curated sequence-structure
datasets and by misalignment between supervised objectives and real design
goals. We present ProteinZero, an online reinforcement learning framework for
inverse folding models that enables scalable, automated, and continuous self-
improvement with computationally efficient feedback. ProteinZero employs a re-
ward pipeline that combines structural guidance from ESMFold with a novel self-
derived ddG predictor, providing stable multi-objective signals while avoiding the
prohibitive cost of physics-based methods. To ensure robustness in online RL,
we further introduce a novel embedding-level diversity regularizer that mitigates
mode collapse and promotes functionally meaningful sequence variation. Within
a general RL formulation balancing multi-reward optimization, KL-divergence
from a reference model, and diversity regularization, ProteinZero achieves ro-
bust improvements across designability, stability, recovery, and diversity. On the
CATH-4.3 benchmark, it consistently outperforms state-of-the-art baselines in-
cluding ProteinMPNN, ESM-IF, and InstructPLM, reducing design failure rates
by 36-48% and achieving success rates above 90% across diverse folds. Impor-
tantly, a complete RL run can be executed on a single 8 x GPU node within three
days, including reward computation and data generation. These results indicate
that efficient online RL fine-tuning can complement supervised pretraining by al-
lowing protein generative models to evolve continuously from their own outputs
and optimize multiple design objectives without labeled data, opening new possi-
bilities for exploring the vast protein design space.

1 INTRODUCTION

Protein design and engineering represent one of the most promising frontiers in computational biol-
ogy, with applications spanning drug discovery to novel enzymes (Dauparas et al., 2022; Hsu et al.,
2022; Wang et al., 2023a). A central challenge is protein inverse folding: generating amino acid
sequences that fold into desired three-dimensional structures (Jing et al., 2021; Zhang & Skolnick,
2005), serving as the foundation for fixed backbone sequence design. This task is crucial as protein
backbone structure and side-chain conformation jointly determine functionalities like binding and
catalytic interactions. However, optimizing functional properties requires first establishing high des-
ignability (designed sequences correctly folding into target structures) and thermodynamic stability
(free energy difference favoring folded over unfolded states) as foundational prerequisites. Rocklin
et al. (2017) demonstrated that 70-80% of computationally designed proteins fail due to misfolding
or instability, with failures persisting in state-of-the-art Al methods (Bennett et al., 2023; Tsuboyama
et al., 2023). Moreover, tiny (~1-2 A) atomic shifts at binding interfaces can disrupt hydrogen-bond
geometry and packing, causing large affinity and specificity losses (failure to distinguish intended
from off-target binders) (Clackson & Wells, 1995; Bogan & Thorn, 1998; Bajusz et al., 2021).

Recent deep learning breakthroughs including ProteinMPNN (Dauparas et al., 2022), ESM-IF (Hsu
et al., 2022), and graph-based methods (Jing et al., 2021; Wang et al., 2023a) have significantly
improved inverse folding accuracy. However, these methods train on paired sequence-structure data
from the Protein Data Bank (PDB) which, while valuable, represent a minuscule fraction of the
protein sequence space (Dauparas et al., 2022; Hsu et al., 2022; Qiu et al., 2024) and exhibit limited
diversity and natural biases. This data scarcity creates a ceiling for model performance and restricts
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Figure 1: ProteinZero framework. Upper: Online RL components: ESMFold-based designability
(TM-score via US-Align), AAG predictor using backbone-conditioned likelihoods, and embedding
diversity regularization. Lower: Iterative training where inverse folding models generate sequences,
receive multi-objective rewards, and update with KL constraints and diversity regularization. Held-
out CATH-4.3 evaluation demonstrates substantial improvements across all key design metrics.

exploration of novel protein designs beyond known natural and synthetic settings (Fujimoto & Gu,
2021; Shumailov et al., 2024). Moreover, there is a misalignment between the supervised learning
task of inverse folding and actual objectives in real-world protein design, where applications require
high designability, thermal stability, and sequence diversity (providing numerous reliable candidates
for experimental validation rather than converging to known patterns) (Watson et al., 2023; Ingraham
et al., 2023). Existing alignment efforts have focused on RL-finetuning structural generative models
(Campbell et al., 2024; Huguet et al., 2024; Zhou et al., 2024; Gasser et al., 2024; Park et al., 2024),
achieving only single- or few-round alignment with curated offline datasets, limiting exploration to
known successes rather than discovering novel design principles through iterative feedback.

We propose ProteinZero, an online RL fine-tuning framework that addresses multi-objective op-
timization challenges in protein design, enabling automated self-improvement of inverse folding
models while balancing designability, stability, and diversity. Our contributions are:

1. We present ProteinZero, achieving stable multi-round self-improvement in protein se-
quence design through continuous exploration without curated preference datasets.

2. We introduce a self-derived AAG estimator computed from the inverse folding model
using backbone-conditioned likelihoods normalized by unconditional priors. Combined
with ESMFold-based designability rewards, this enables computationally tractable multi-
objective online RL optimization (see Table 6).

3. We develop a novel diversity regularizer operating in protein embedding space rather than
sequence space, preventing mode collapse (Shumailov et al., 2024; Alemohammad et al.,
2024; Holtzman et al., 2020) while maintaining functional coherence.

4. We elucidate the design space of RL fine-tuning by examining algorithms (GRPO, RAFT,
DPO, multi-round DPO), rewards, and regularization strategies, identifying optimal con-
figurations for stable multi-objective optimization without mode collapse.

5. Extensive experiments demonstrate that ProteinZero outperforms existing methods across
all key metrics, achieving 36-48% reduction in design failure rates versus ProteinMPNN
(Dauparas et al., 2022), ESM-IF (Hsu et al., 2022), and InstructPLM (Qiu et al., 2024),
with significant improvements in structural accuracy, stability, and diversity across diverse
protein folds including challenging long chains.
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2 RELATED WORK

Protein Inverse Folding Models. Inverse folding generates amino acid sequences y = (y1, ..., Y1)
for target structures x, formulated as conditional generation pg (y|x) with model parameters 6 trained
via supervised loss on PDB pairs. Ingraham et al. (2019) pioneered graph neural networks for this
task, extended by ProteinMPNN (Dauparas et al., 2022) with noise-aware training. ESM-IF (Hsu
et al., 2022) leveraged pretrained language models, while GVP-GNN (Jing et al., 2021), StructTrans
(Wang et al., 2023a), PiFold (Gao et al., 2023), and GraDe-IF (Yi et al., 2023) introduced geometric
representations, transformers, co-design, and diffusion respectively. InstructPLM (Qiu et al., 2024)
achieved SOTA by adapting frozen language models via structural prompts (our base architecture).
While achieving strong benchmarks, supervised approaches face inherent constraints: limited PDB
datasets restrict exploration of the vast sequence space, and their objectives, optimizing sequence
recovery, may not align with real design goals of maximizing stability, designability, and diversity.
We extend these foundations through online RL with efficient proxy rewards, enabling continuous
learning from self-generated sequences to directly optimize these multiple design objectives.

RLHF of Protein Generative Models. Classical RL approaches to biological sequence design
(Angermueller et al., 2020; Runge et al., 2019) train task-specific policies from scratch via un-
conditional generation or local mutations, a different paradigm detailed in Appendix D.1. With
powerful pre-trained protein models, Reinforcement Learning from Human Feedback (RLHF) has
emerged for fine-tuning generative models. RLHF transforms models through online methods like
PPO (Schulman et al., 2017), GRPO (Shao et al., 2024), and RAFT (Dong et al., 2023) that opti-
mize rewards directly, and offline methods like DPO (Rafailov et al., 2023) using static preference
datasets. While successful in LLMs, applying online RLHF to protein models faces both compu-
tational (Table 6) and reward modeling infrastructure challenges. Current protein RLHF work en-
compasses diverse architectures: Campbell et al. (2024) and Huguet et al. (2024) enhance structural
generation with ReFT, Zhou et al. (2024) applies DPO for antibody design, Xu et al. (2025) employ
multi-round DPO for inverse folding with structural feedback, ResiDPO implements residue-level
DPO with pLDDT scores (Xue et al., 2025), and Wang et al. (2025) introduces online fine-tuning
for discrete diffusion sequence models through direct reward backpropagation via Gumbel-Softmax
approximations, which requires differentiable rewards. These methods primarily address structure
generation or co-design tasks, with most operating offline. Offline approaches rely on pre-collected
rewards without iterative learning from self-generated sequences, limiting exploration of protein
design space. We introduce online RL for inverse folding models using policy gradients with non-
differentiable reward proxies, enabling self-improvement in designability, stability, and diversity.

Diversity Regularization. Promoting diversity in protein generative models is crucial for increas-
ing downstream success rates and maintaining exploration capability in online RL to avoid mode
collapse and reward hacking (Ouyang et al., 2022; Fan et al., 2025; Shumailov et al., 2024) (see
Appendix D.2). Prior work explored sequence-level metrics: Park et al. (2024) employ Hamming
distance as diversity regularizer, operating on raw sequences instead of structure-aware representa-
tions. The DPO-based approach faces challenges in simultaneously optimizing rewards and diver-
sity. We introduce embedding-level diversity regularization that operates in the model’s embedding
space, promoting functionally meaningful variation while preventing mode collapse and maintaining
structural coherence (theoretical derivation in Appendix F, empirical dynamics in Appendix C.3).

3 METHOD

We propose ProteinZero, a framework that fine-tunes protein generative models through on-
line reinforcement learning. Our approach optimizes a reward-based objective Jry () =
Egxnn, ympo(-|2) 7@, y)] —axr - KL (pg (- | 2)|[pret (- | )), where r(z, y) combines multiple design
objectives including designability and stability, p.ef is a reference model (typically the pre-trained
model), and axkr, controls divergence from the reference.

3.1 PROTEINZERO FRAMEWORK: ADDRESSING MODE COLLAPSE IN ONLINE RL FOR
PROTEINS

To realize this objective while preventing mode collapse, ProteinZero couples reward optimiza-
tion with novel diversity constraints, enabling stable and effective online learning. The framework
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enables continuous exploration beyond pre-collected datasets, discovering novel design principles
through iterative feedback.

Reinforcement learning for protein design requires optimizing a model to generate sequences that
maximize a reward function while maintaining reasonable proximity to a reference model. In
practice, recent RL fine-tuning methods can be unified in this general objective through special-
ized algorithms that balance exploitation and exploration: £(6) = Lgr(0) + Lx1.(#). For in-
stance, in the Group Relative Policy Optimization (GRPO) algorithm, this objective is realized as

Lcerpo(0) = —Eyyon [min(A* Do A*clip(=22—, 1-¢,1 + e))} + axr, - KL (pgl|pres) (Shao

P’ psold ’
et al., 2024), where A is the advantage function, py,,, is learned policy of last iteration. However,
we observed that protein generative models suffer from mode collapse in online RL fine-tuning,
converging to a narrow set of solutions that maximize rewards without diversity (see Appendix C.3).
Thus, we incorporate a diversity regularization term, resulting in a more comprehensive objective:

L(0) = Lrr(0) + Lxr(0) + Loiv (0) (1)

While diversity can be promoted by incorporating it directly into the reward, our experiments show
this often causes training instability and performance degradation (see Tables 5 and 3). Thus, Pro-
teinZero applies diversity regularization at the representation level through a separate loss Lpiy (6),
encouraging diversity while preserving the integrity of the main reward optimization (Table 1 and
Figure 5).

To enable practical online RL fine-tuning, we address two critical challenges: (1) the lack of effective
diversity regularization for protein models, and (2) the prohibitive computational cost of reward
evaluation, which can extend training to months. We therefore propose embedding-level diversity
regularization and fast reward modeling to make online fine-tuning practically achievable.

3.1.1 EMBEDDING-LEVEL DIVERSITY REGULARIZATION FOR MODE COLLAPSE
MITIGATION

To address mode collapse in protein generative models during online RL fine-tuning, we propose a
novel diversity regularization operating at the protein embedding level. Unlike token-level diversity
metrics which can compromise functional properties, our approach leverages learned representa-
tions shown to encode hierarchical biological information from local patterns to functional domains
(Simon & Zou, 2024), with embedding distances reflecting functional relationships (Schmirler et al.,
2024; Corso et al., 2021; Blaabjerg et al., 2024). For each protein sequence in a batch, we compute
a fixed-dimensional embedding vector by aggregating the last-layer decoder activations:

ithi
zi(0) = 2L Michie eR’,
Dot M

where h;; € R? is the decoder activation at position ¢ for sample ¢, and m;, € {0,1} an atten-
tion mask. These protein embeddings are /5-normalized before computing a cosine-based diversity
score: Dcos(0;B) = 1 —cos € [0, 1], where €os = ﬁ > i<icj<p €08 (2i, 2;). The diversity
regularization term is incorporated as:

'C'Div(e) = —Qqijy Dcos(9§ B) (3)

1<i<B 2

Since z; depends on 6, this provides informative gradients that foster the generation of diverse,
functionally plausible sequences. Our theoretical analysis (Appendix F) demonstrates how this
embedding-based approach mitigates mode collapse in online RL, a contribution applicable beyond
protein design. Note that while we optimize embedding-level diversity during training, our evalua-
tion employs standard Hamming distance between sequences to provide an orthogonal assessment of
sequence-level diversity. The embedding-level formulation achieves diversity preservation and train-
ing stability, validated in ablation studies (Tables 5 and 3) and training dynamics (Appendix C.3).

3.1.2 FAST PROXY REWARDS: ENABLING PRACTICAL ONLINE RL TRAINING

AlphaFold’s MSA and template searches and FoldX’s physics calculations (Table 6) require minutes
to hours per protein, making online RL infeasible. We address this with two fast proxy rewards:
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Designability Reward: We use ESMFold (Hsu et al., 2022) for structural inference, leveraging
its alignment-free, single-pass architecture instead of AlphaFold2/3’s MSA searches and recycling
steps (Jumper et al., 2021; Abramson et al., 2024). Our designability reward rry (2, y) specifically
uses the TM-score from US-Align Zhang et al. (2022), an updated version of TM-Align (Zhang &
Skolnick, 2005), computed between ESMFold-predicted and target structures, explicitly not ESM-
Fold’s internal confidence score pTM, ensuring our optimization targets actual structural alignment
through length-normalized distance-weighted C, overlaps, not prediction confidence.

Thermal Stability Reward: We propose a novel thermal stability reward rang (2, y), serving as a
backbone-specific folding-energy surrogate for single-chain proteins, referenced to the PDB wild-
type. Because our monomeric setting lacks an inter-chain interface, the unbound-state term required
by the Boltzmann-aligned estimator (BA-DDG) (Jiao et al., 2025) is unevaluable. Instead, drawing
on evidence that backbone-conditioned likelihoods reflect folding stability (Shanker et al., 2024;
Widatalla et al., 2024; Cagiada et al., 2025; Zheng et al., 2023; Ingraham et al., 2019), we normalize
this likelihood with an unconditional sequence prior and anchor it to the wild-type baseline:

AAG(z,y) = —kpT[(logpe(y | ) — logpy(y)) — (log po(yw: | ) —log py(ywe))], (4

where pg(y | «) is the backbone-conditioned inverse-folding likelihood, p,(-) the uncondi-
tional sequence prior, Yyt the PDB wild-type sequence, and kg7 the thermal energy at 298 K
(0.593 kcal mol™!). The prior p,(-) is obtained by running the same inverse-folding network (e.g.,
ProteinMPNN or InstructPLM) with coordinate channels masked, converting it into a sequence-only
language model capturing residue-frequency and chain-length distributions of proteins. Subtracting
log p,,(y) from log ps(y | ) removes background amino-acid composition and chain-length prefer-
ences, isolating backbone-specific excess compatibility of candidate sequence y. Hence, using 4
as reference yields a computationally efficient AAG surrogate for monomeric stability optimization.

Multi-objective reward: Our final reward combines both scores after min-max normalization
to balance scale differences. Normalization is performed across the candidate pool of inverse
folding sequences generated for the same backbone within each reinforcement learning iteration:
Frm = (roy — TR /(rmax — pIiD) and Fang analogously, giving r(z,y) = Armirwm (@, y) +
AaacTanc(x,y). This reward accelerates evaluation 25-100x depending on protein length (Ta-
ble 6), reducing training time from months to days. Our experiments show substantial thermody-

namic stability improvements with high structural fidelity (see Figure 5 and Table 1).

3.2 PROTEINZERO ALGORITHMS: DIVERSITY-REGULARIZED RAFT AND GRPO

Building upon our general framework, we implement two online RL algorithms for fine-tuning in-
verse folding models: RAFT and GRPO. We adapt both methods to incorporate our dual-objective
reward system, designability scores from ESMFold structures evaluated by US-Align, and self-
derived AAG for thermodynamic stability, alongside embedding-level diversity regularization.
These adaptations enable different optimization strategies (detailed in Sections 3.2.1 and 3.2.2).

3.2.1 PROTEINZERORafrT: REWARD-RANKED FINE-TUNING WITH EMBEDDING DIVERSITY

RAFT (Dong et al., 2023) transforms RL into a supervised learning problem by iteratively filtering
model outputs based on rewards. Our adaptation generates multiple candidate sequences per target
structure, evaluates them with our efficient reward, and retains only the best to form a filtered dataset.
Unlike conventional RAFT that incorporates KL-divergence into the reward, we separate the KL
term and add our embedding-based diversity regularization (Lcg is the cross entropy loss):

£ProleinZeroRApT (9) =LcE (97 Diitered ) + oxr, - KL (pG Hpref) — agiy * Deos (95 Diiltered ) ()

3.2.2 PROTEINZEROGrpo: EMBEDDING-DIVERSIFIED POLICY OPTIMIZATION

GRPO (Shao et al., 2024) directly optimizes the policy via a trust-region objective:

i
Yit | T, Yi, <t) 2
0) = E E Ai g
jGRPO( ) zoP(X) i} ~moy, (V) G |yz |:7T901d (yzt ‘ T, Y, <f) )t ©

clip ( 6 <yi’t I x’yi’<t) 1 —e,14 E) Ai,t:| — Dk, [7T0||7Tref] ,
T 014 (yi,t | l',yz'_,<t)
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Figure 2: Performance comparison across seven evaluation metrics (Recovery Rate, Stability, TM
Score, pLDDT, Diversity, ScRMSD <2A%, and Success Rate) for 0-150 residue proteins (left) and
150-300 residue proteins (right). ProteinZero variants achieve the highest across all metrics.

where ¢ and 3 are hyperparameters, and Ai,t is the advantage calculated from relative rewards within
each group. The group relative advantage calculation aligns well with our reward models. Unlike
methods that add KL penalty to rewards, GRPO directly adds KL divergence to the loss. We extend
this formulation by incorporating our embedding-level diversity regularization (Lgrpo = — JGRrPO):

LproteinZerooreo (0) = Larro (8) — uiv - Doos(0; B) @)

Both algorithms effectively implement our ProteinZero framework but approach optimization dif-
ferently. Our experiments demonstrate that both methods significantly outperform baselines, with
ProteinZerogrpo consistently achieving superior performance across evaluated metrics.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Evaluation. We evaluated ProteinZero on CATH-4.3 (Orengo et al., 1997), maintaining the train-
test-validation split from Hsu et al. (2022). Our test set excluded structures with > 40% sequence
identity to training proteins of 0-150 residues and > 30% identity to proteins of 150-300 residues,
enabling assessment of out-of-distribution generalization. We trained and evaluated models sepa-
rately for each length category (0-150, 150-300). We evaluate the models with a comprehensive
set of metrics, including designability metrics measured by both ESMFold and AF3 (TM Score,
PLDDT, scRMSD), stability measured with our fast-ddG predictor and physics-based FoldX/Rosetta
ddG (Schymkowitz et al., 2005)), sequence recovery, and sequence Diversity — see Appendix B.3
for detailed definitions. Overall Success Rate was defined as achieving both scRMSD < 2 A and
FoldX ddG < 0, inspired by Wang et al. (2025).

ProteinZero implementation. We implemented two algorithms: ProteinZerogapr, Which selects
the best-rewarded sequences for fine-tuning, and ProteinZerogrpo, Which directly optimizes policy
using relative rewards, both running for 20 iterations. Both methods employed embedding-level
diversity regularization (agiy, = 0.05) and KL constraints (axyr, = 0.1).

Baselines. We compared against state-of-the-art inverse folding models (ProteinMPNN (Dauparas
et al., 2022), ESM-IF (Hsu et al., 2022), InstructPLM (Qiu et al., 2024)). For RL-finetuniung al-
gorithms, we compare with widely used offline RL baselines including DPO (Rafailov et al., 2023)
and multi-round DPO (Xu et al., 2025).

4.2 MAIN RESULTS

Overall Performance Analysis. Table 1 shows ProteinZero consistently outperforms existing meth-
ods. Both ProteinZerogrpo and ProteinZerogapr surpass all baselines, with ProteinZeroggrpo achiev-
ing best results across metrics (Figure 2). Our approach balances sequence recovery, structural
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Table 1: Comparison of protein sequence design methods for 0-150 and 150-300 residue proteins.

Success Rate is defined as scRMSD < 2A and FoldX ddG < 0. Best scores are highlighted in blue ,
second-best in green . Designability metrics computed by ESMFold (independent AF3 evaluations

confirm the same trend, see Table 2). All results are mean =+ s.e. over 10 independent runs.

Length ‘ Method InverseFold Acc. '|‘hcl'mfﬂ Stability Mclricsﬂ ‘ l)csign?bilit‘y Metrics . ‘ Overall
Recovery Rate 1 Fast-ddG | FoldX ddG | TM Score T PLDDT Diversity T scRMSD | (scRMSD <2A% 1) Success (%) T
[ Base Model
| InstructPLM | 057440000 | —21.54341330 20.87821.405 | 081240011 79.98310.614  0.28140.007 1.484.0.014 (85.71%x0.002) | 84.45%20.0002
§ | SOTA Inverse Folding Models
E ProteinMPNN ‘ 0.426.40.006 ‘ —21.50921030  —20.792:1207 | 0.805:t0.000 7988310502 02800005 1.500:0.037 (82.14%+0.002) ‘ 81.95%0.0002
= ESM-IF 0.3770.006 —17.90041055  —14.32811060 | 0.802:0000 7891810531 0.263:0.005 1.51540.038 (81.25%10.002) | 80.71%0.0002
O RL Baseline Method
< DPO ‘ 0.57110.008 ‘ 2171341 260 2119141332 | 0.82040.000  80.71640571  0.27440.005 1.473.40.041 (87-58%0.002) ‘ 86.44%+0.0002
Multi-Round DPO 0.56910.008 —21.797+1 312 —21.423+1 308 0.82310.011 80.797+0.585 0.266+0.005 1.468.£0.043 (87.95%+0.002) 86.89%+0.0003
‘ Our Online RL Methods
ProteinZerogarr (Ours) 0.587+0.008 —22.236+1 272 —23.168+1 356 0.84910.011 81.560+0.613 0.296+0.007 1.39310.044 (92.86%+0.003) 89.29%+0.0002
ProteinZerogrpo (Ours) 0.590-+0.008 ‘ —22.616+1 327 —24.92441 382 0.867+0.011 82.326.+0.612 0.306+0.007 1.373.0.044 (93.55%+0.003) 90.13%+0.0002
‘ Base Model
" ‘ InstructPLM ‘ 0.570+0.009 ‘ —36.362+2 451 —27.145+1 797 ‘ 0.82410.014 83.783+0.568 0.305+0.008 1.448.£0.045 (88.24%+0.002) ‘ 86.38%+0.0002
: | SOTA Inverse Folding Models
] ProteinMPNN ‘ 0.405:£0.007 ‘ “35.7T850050  —27T.067s15n | 08100012 82361i050s  0-297:0.006 1.4690.010 (86.64% 10.002) ‘ 84.67%.+0.0002
s ESM-IF 0.44640.008 —32.12549007  —24.81611548 | 0.80240.013 8204210536 0.279:0.006 1.487.40.042 (86.09%+0.002) 82.81%+0.0002
g ‘ RL Baseline Method
= ‘ DPO ‘ 0.570-+0.000 ‘ —36.41712305  —28.91541571 | 0.830+0.013  83.837T10506  0.296:0.008 1.441£0.012 (88.97%+0.002) ‘ 87.70%+0.0002
Multi-Round DPO 0.569+0.000 —36.483+2.402 —29.087+1.612 0.83140.014 83.84040.519 0.2881.0.008 1.437 0,044 (89.04%+0.003) 88.05%+0.0002
| Our Online RL Methods
ProteinZerogarr (Ours) 0.5780.000 —37.57542.301 —30.75541.661 0.84140.013 83.850+0.542 0.3244.0.008 1.427 10,046 (89.17%+0.002) 89.36%+0.0002
ProteinZeroggeo (Ours) 0.580-£0.009 ‘ —40.62642.422  —32.80541691 | 0.86240.013 8415410530  0.33Lio.009 1.39340.045 (90-43%+0.002) 91.19%+0.0002

accuracy, and stability while learning from self-generated outputs without additional labels. Im-
portantly, although we only use TM-score (ESMFold/US-Align) and self-derived AAG as rewards
(Section 3.1.2), our evaluation uses orthogonal metrics, FoldX ddG for stability, pLDDT/scRMSD
for structure, recovery/diversity for sequences, demonstrating genuine gains beyond reward hack-
ing. Independent AlphaFold3 evaluation also confirms these improvements are generalizable (see
Tables 2 and 8). For example, ProteinZerogrpo achieves success rates 90.13% and 91.19% for 0-150
and 150-300 residues, respectively, reducing failure rates by 45% (from 18.05% to 9.87%) compared
to ProteinMPNN for small proteins. Notably, compared to InstructPL.M, we simultaneously improve
recovery (0.574 — 0.590) and diversity (0.281 — 0.306), two traditionally conflicting objectives,
demonstrating its ability to balance sequence conservation with exploration.

Comparison with DPO-based fine-tuning. We next compare ProteinZero with widely used DPO
variants to illustrate the advantages of online RL. Regular DPO improves InstructPLM’s success
rate modestly (84.45% —86.89% for 0-150 residues), while Multi-Round DPO further raises it
slightly to 86.89%. However, both variants reduce sequence diversity below the baseline: DPO
lowers it from 0.281 to 0.274 and Multi-Round DPO further to 0.266. In contrast, ProteinZerogrpo
reaches 90.13% success and enhances diversity to 0.306. This divergence reflects a broader trend:
offline methods progressively converge toward narrower solution spaces, limiting exploration of
novel sequences. Online RL with diversity regularization maintains an exploration-exploitation bal-
ance, yielding not only higher diversity but also better structural generalization, as seen in improved
scRMSD (1.373A vs. 1.473A for DPO). Similar patterns hold for larger proteins, where Multi-
Round DPO increases success rate only modestly (86.38% — 88.05%) but still reduces diversity to
0.288, whereas ProteinZero achieves both higher success (91.19%) and greater diversity (0.331).

Comparison with SOTA Inverse Folding Models. We further compare ProteinZero against state-
of-the-art inverse folding models. Starting from InstructPLM (Qiu et al., 2024) as our base model,
ProteinZerogrpo improves TM-score (0.812 — 0.867), stability (FoldX ddG: —20.878 — —24.924
kcal/mol), diversity (0.281 — 0.306), and success rate (84.45% — 90.13%) for short proteins. Sim-
ilar gains are observed for longer proteins, where success rate increases from 86.38% to 91.19%
and stability improves by 21% (-27.145 — —32.805 kcal/mol). Compared with other leading in-
verse folding models, ProteinZero achieves consistently higher success rates, outperforming Pro-
teinMPNN (Dauparas et al., 2022) (81.95%) and ESM-IF (Hsu et al., 2022) (80.71%) across both
size ranges. Qualitative visualizations (Figure 5) further support these findings, highlighting Pro-
teinZero’s ability to generate stable designs with high structural fidelity.

Effectiveness of fast-ddg reward. ProteinZerogrpo achieves substantial gains in thermo-stability
compared to InstructPLM, improving FoldX ddG by 19% (from —20.878 to —24.924 kcal/mol) for
0-150 residues and 21% (from —27.145 to —32.805 kcal/mol) for 150-300 residues. Unlike single-
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Table 2: Independent validation of 150-300 residue proteins using AlphaFold3 versus ESMFold.
Best scores are highlighted in blue , second-best in green .

Method ‘ TM Score ‘ PLDDT 1 scRMSD | scRMSD <2A (%) 1 | Success Rate (%) 1
ESMFold  AF3 | ESMFold AF3 | ESMFold AF3 | ESMFold ~ AF3 | ESMFold  AF3
Base Model
InstructPLM | 08241 08418 | 83.78 85.86 | 14476 14018 | 88.24 90.12 | 86.38 88.41
Offline RL Baselines
DPO 0.8296  0.8454 ‘ 83.84 85.92 1.4407  1.3978 ‘ 88.97 90.58 ‘ 87.70 89.31
Multi-Round DPO | 0.8313  0.8467 83.84 85.94 14372 13953 89.04 90.67 88.05 89.56
Our Online RL Methods
1.4271 1.3891

ProteinZerogrpo 0.8617 0.8718 84.15 86.19 1.3925 1.3598

ProteinZerogarr 0.8413 0.8548 83.85 86.03
90.43 91.76 91.19 92.27

89.17 90.72 ‘ 89.36 90.64

objective methods that trade stability for other properties, ProteinZero simultaneously improves
TM-score (0.812 to 0.867), diversity (0.281 to 0.306), recovery (0.574 to 0.590), and success rate
(84.45% to 90.13%) for small proteins, with similar improvements for larger ones (see Table 1;
extended metrics with wild-type and generated absolute energies in Table 12, Appendix C.5).

4.3 CASE STUDY ON DIVERSE PROTEIN FOLDS AND COMPLEX PROTEIN DESIGN TASKS

Stabilization of Natural Proteins for Therapeutic Value: Our visual comparison in Figure 5
shows ProteinZero converts naturally unstable proteins into stable designs while maintaining struc-
tural fidelity. For challenging targets like membrane proteins and -barrels, for example, our method
achieves substantial stability improvements. The S-barrel structure (4FD5 chain A) transforms from
unstable wild-type (FoldX ddG: 25.75 kcal/mol) to a stable design (—34.18 kcal/mol), while the
membrane protein (2W7T chain A) improves from 42.01 to —36.09 kcal/mol. These results show
ProteinZero’s optimization of sequence-structure relationships, generating stability profiles valuable
for therapeutic and industrial applications. By consistently producing designs with high structural
accuracy and thermodynamic stability across a-helical, 8-sheet, and mixed «/ 3 folds, our approach
expands the design space. While these computational evaluation metrics are promising, experimen-
tal validation remains essential to confirm functional properties.

Performance Scaling Across Protein Complexity: When compared with InstructPLM (our base
model), ProteinZero demonstrates consistent improvements across diverse protein architectures. For
challenging S-rich structures, our approach achieves higher structural accuracy (TM-score: 0.949
vs 0.910 for 1XXM chain C) and improved stability (FoldX ddG: —28.94 vs —8.94 kcal/mol).
These gains extend across (-sheets, «/8 mixed domains, and «a-helical structures, as shown in
Figure 5. ProteinZero delivers substantial improvements for both protein size categories: for O-
150 residues, success rate increases from 84.45% to 90.13%, stability improves from —20.878 to
—24.924 kcal/mol, and diversity rises from 0.281 to 0.306. For 150-300 residues, we observe com-
parable gains: success rate from 86.38% to 91.19%, stability from —27.145 to —32.805 kcal/mol,
and diversity from 0.305 to 0.331. The maintained performance improvements for larger proteins
suggest our reinforcement learning framework handles increased structural complexity effectively.

4.4 EXPLORING THE DESIGN SPACE OF ONLINE RL FOR FINE-TUNING PROTEIN
GENERATIVE MODELS

Reward Model Designs: Our ablation studies demonstrate that combining TM-score and stability
rewards yields the highest overall success rates, consistently outperforming single-objective settings.
For proteins of 0-150 residues, the combined reward achieves 90.13% success, compared to 89.52%
with TM-score only and 85.15% with stability only. For larger proteins (150-300 residues), success
rates are 91.19% for the combined setting, versus 89.76% and 87.38%, respectively. Examing the
individual objectives explains this gap: optimizing only TM-score achieves the best structural ac-
curacy (TM: 0.874 vs. 0.867 for the combined setting, 0-150 residues) but reduces stability, while
optimizing only stability improves FoldX ddG (—25.381 vs.—24.924 kcal/mol) but compromises
structural accuracy (TM: 0.831 vs. 0.867). By contrast, the combined reward balances both criteria,
closing the trade-off and substantially reducing design failures.
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Table 3: Ablation studies for 150-300 residue proteins across three design dimensions: reward
models, learning objectives, and diversity regularization strategies. Best results highlighted in blue .

InverseFold Acc. | Thermal Stability Metrics Designability Metrics Overall
Recovery Rate T | Fast-ddG | FoldX ddG | | TM Scoret PLDDT 1 Diversity T scRMSD J (scRMSD A% 1) | Success (%) T

Design Dimension 1: Reward Model Formulation

Design Configuration

Only TM-score as Reward 0577 -35.793 -25.905 0.870 84.237 0333 1384 (91.25%) 89.76%
Only ddG as Reward 0574 42769 -35.927 0.831 83.540 0327 1447 (88.52%) 87.38%
Full ProteinZero (TM+ddG) 0.580 -40.626 -32.805 0.862 84.154 0331 1.393 (90.43%) 91.19%
Design Dimension 2: Learning Objective Components
Without Diversity Term 0.580 -37.905 -31.185 0.860 84.065 0.281 1.401 (89.71%) 91.32%
Without KL Term 0.569 -40.688 33,193 0.835 83.008 0.328 1440 (89.08%) 87.92%
Full ProteinZero (All Terms) 0.580 -40.626 -32.805 0.862 84.154 0331 1.393 (90.43%) 91.19%
Design Dimension 3: Diversity Regularization Strategies
Diversity as Reward 0558 -33.904 23.967 0.849 83.326 0315 1421 (89.32%) 81.71%
Hamming Distance as Reward 0.568 -32.128 23228 0.836 83.668 0.294 1432 (89.14%) 80.29%
Full ProteinZero (Embedding Diversity) 0.580 -40.626 -32.805 0.862 84.154 0331 1.393 (90.43%) 91.19%

Learning Objective Components: We ablate the diversity regularization and KL divergence to as-
sess their contributions (Tables 5 and 3). Removing the diversity regularization marginally improves
success rate (90.23% vs. 90.13% for 0-150 residues, 91.32% vs. 91.19% for 150-300 residues),
but significantly reduces sequence diversity from 0.306 to 0.268 for 0-150 residues and from 0.331
to 0.281 for 150-300 residues. This 12-15% reduction in diversity indicates convergence to a nar-
rower solution space, limiting its ability to explore functionally diverse sequences, a key concern
with offline RL methods. By contrast, removing KL divergence causes severe degradation: success
rate drops by nearly 4%, TM-score declines by around 0.03, and pLDDT decreases by around 1.3,
reflecting both reduced structural accuracy and confidence. These results show KL regularization is
essential for stable optimization and preventing catastrophic forgetting, while diversity regulariza-
tion, though slightly reducing peak performance, preserves exploration crucial for discovering novel
protein designs beyond the training distribution.

Diversity Regularization Strategies: We compare three strategies for incorporating diversity into
the optimization process (Tables 5 and 3; detailed results in Appendix Table 13): embedding-based
diversity as a reward, Hamming distance as a reward, and embedding-based diversity as a regular-
ization term in the loss. Introducing diversity directly into the reward sharply reduces performance,
with success rates falling to 78.65% and 81.71%, and stability values deteriorating relative to the
baseline. Using Hamming distance performs even worse, lowering success rates to 74.63% and
80.29% and further degrading stability and structural accuracy. By contrast, applying embedding-
based diversity as a regularizer maintains success rates of 90.13% and 91.19%, preserves sequence
diversity at 0.306 and 0.331, and avoids losses in stability or accuracy. These results indicate that
reward-based diversity introduces conflicting signals that destabilize training, whereas regularization
provides consistent gradients that encourage exploration while safeguarding functional objectives.

The ablation studies validate our design choices and highlight the importance of balancing multiple
objectives in online RL for protein design. ProteinZero navigates these trade-offs through separated
optimization signals, multi-objective rewards for primary objectives, and regularization for explo-
ration and stability, yielding a robust approach generalizing across protein sizes and architectures.

4.5 FAST-DDG ACCURACY FOR PREDICTING MUTATIONAL AAG USING WET-LAB
VALIDATED DATA

We assess Fast-ddG correlation with experimental measurements on the Ssym benchmark (Pucci
et al., 2018), comprising 684 single-point mutations with calorimetrically measured AAG val-
ues. Consistent with Eq. 4, we evaluate 342 wild-type—mutant transitions by computing stabil-
ity changes on wild-type backbones. Table 10 (Appendix C.4) compares our predictor against
physics-based oracles (FoldX, Rosetta) and supervised predictors (ThermoMPNN (Dieckhaus et al.,
2024), ThermoNet (Li et al., 2020), PROSTATA (Umerenkov et al., 2022)). Across three con-
figurations, pretrained, Fast-ddG-only, and TM-score + Fast-ddG, our predictor achieves RMSE
1.44-1.47 kcal/mol and PCC 0.60-0.62, matching FoldX (RMSE: 1.56, PCC: 0.63) while oper-
ating 236-760x faster (Tables 6—7). This represents 56% RMSE reduction versus ProteinMPNN
(3.38 kcal/mol, PCC: 0.26), demonstrating gains from specialized optimization. While Ther-
moMPNN achieves superior performance (1.12, 0.72), it requires supervised training and handles
only single-residue perturbations, whereas our unsupervised, self-derived predictor generalizes to



Under review as a conference paper at ICLR 2026
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Figure 3: Fast-ddG predictor performance on the Ssym dataset with 342 wet-lab validated single-
point mutations (wild-type — mutant). Each subfigure shows predicted versus experimental AAG
values for different model variants: (a) pretrained model before RL fine-tuning, (b) fine-tuned with
joint TM-score + Fast-ddG rewards, (c) fine-tuned with Fast-ddG reward only. All variants achieve
comparable correlation with experimental measurements (PCC ~ 0.60-0.62, RMSE ~ 1.44-1.47
kcal/mol).

Table 4: Per-protein performance of the Fast-ddG surrogate on Ssym dataset (342 single-point direct
mutations, wild-type—mutant direction). We report the number of mutations per PDB (ny,), per-
protein RMSE (kcal/mol), and PCC for the pretrained and fine-tuned Fast-ddG variants. Best results

highlighted in blue .

PDB | 1y | RMSE (kcal/mol) | \ PCC 1
‘ | Pretrained  Fast-ddG only ~TM-score + Fast-ddG | Pretrained ~Fast-ddG only = TM-score + Fast-ddG
1L63 118 1.36 1.30 1.33 0.58 0.66 0.60
2LZM | 66 1.16 1.13 1.13 0.74 0.75 0.75
1LZ1 61 1.22 1.12 1.18 0.76 0.78 0.79
1BNI 13 1.09 1.03 1.25 0.62 0.70 0.59

full sequence redesigns. Per-protein analysis (Table 4) confirms improvements generalize across
diverse targets rather than reflecting outlier bias. For the four largest proteins (1L63, 2LZM, 1LZ1,
1BNI; 72.5% of mutations), fine-tuning consistently reduces RMSE, with Fast-ddG-only achiev-
ing best correlation on three of four. On 1L63 (118 mutations), RMSE improves from 1.36 to
1.30 kcal/mol and PCC from 0.58 to 0.66. Representative cases with substantial error reductions
appear in Table 11 (Appendix C.4). Figure 3 shows linear correspondence (PCC =~ 0.60-0.62) with
reduced scatter post-tuning. These results establish that Fast-ddG, though derived from unsupervised
likelihood ratios and optimized for full-sequence inverse folding, achieves accuracy comparable to
physics-based benchmarks while maintaining computational efficiency for online RL.

5 CONCLUSION

We presented ProteinZero, an online reinforcement learning framework that enables protein gen-
erative models to improve beyond supervised pretraining by learning from their own outputs. It
integrates two methodological advances: a fast, unsupervised ddG predictor for efficient stability
signals and an embedding-level diversity regularizer that prevents collapse while encouraging mean-
ingful variation. These components make online RL tractable for protein design and offer insights
for broader RLHF by addressing efficiency and diversity collapse. Experiments show consistent
multi-objective gains across structural accuracy, stability, recovery, and diversity, including on chal-
lenging folds such as S-barrels and membrane proteins. While evaluation relies on in-silico metrics
and requires wet-lab validation, the results demonstrate that efficient online RL can complement su-
pervised methods through scalable feedback, expanding the accessible design space and supporting
applications in therapeutics, enzymes, and synthetic biology.

10
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ETHICS STATEMENT

Our work on ProteinZero focuses on computational methods for protein design optimization. All
experiments were conducted using publicly available datasets (CATH 4.3) and computational sim-
ulations without any wet-lab experimentation or use of biological materials. We acknowledge that
while our method demonstrates improvements in computational metrics, these results require exper-
imental validation before any practical application. The potential applications of improved protein
design methods span therapeutic development, industrial biotechnology, and basic research. We
emphasize that any deployment of designed proteins must follow established safety protocols, reg-
ulatory frameworks, and ethical guidelines for biological research. The computational nature of our
work poses minimal direct ethical concerns, but we recognize the importance of responsible devel-
opment and deployment of Al systems in biological design. We commit to making our code publicly
available to ensure transparency and enable the research community to build upon and scrutinize our
work.

REPRODUCIBILITY STATEMENT

To ensure our results are fully reproducible, we provide comprehensive details of our methodology
and experimental setup. Our framework is described in Section 3, which details the core online
RL objective, our novel embedding-level diversity regularizer (Section 3.1.1), the time-efficient
reward models (Section 3.1.2), and the specific algorithms, ProteinZerogarr (Section 3.2.1) and
ProteinZerogrpo (Section 3.2.2).

Our experimental setup, including the use of the public CATH 4.3 dataset, specific train-test
splits, and evaluation metrics, is detailed in Section 4 and Appendix B.3. Full implementa-
tion details, including all hyperparameters, software dependencies, baseline methods, and com-
putational resource requirements are provided in Appendix B. Our work builds upon the pub-
licly available InstructPLM model, and all evaluation tools (ESMFold, US-align, AlphaFold3,
FoldX, and Rosetta) are open-source. As a demonstration, we provide example protein se-
quences generated by ProteinZerogrpo as .pdb files in the supplementary material, follow-
ing the naming convention: ProteinZero_GRPO_[TargetPDB]_[Chain]_designed.pdb (e.g., Pro-
teinZero_GRPO_2hls_A_designed.pdb), where TargetPDB is the original PDB identifier and Chain
specifies the protein chain used as the structural template. Upon publication, we will release our
complete source code, pre-trained model checkpoints, evaluation scripts, and detailed documenta-
tion to facilitate replication of our findings.
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Figure 4: Integration of ProteinZero within the Al-driven protein design pipeline. Pre-trained gen-
erative models evolve through ProteinZero’s online reinforcement learning framework to produce
optimized protein sequences. These Al-designed candidates proceed to laboratory synthesis and
experimental characterization, enabling applications in diverse biotechnological domains such as
enzyme engineering and therapeutic development. The computational stages (blue) can leverage
GPU parallelization for efficient large-scale processing.

A DISCUSSION

A.1 BROADER IMPACT

ProteinZero represents a methodological advancement in computational protein design by enabling
autonomous improvement of generative models through online reinforcement learning. As illus-
trated in Figure 4, our framework integrates within the broader protein design pipeline, bridging
computational optimization and experimental validation. By reducing reliance on manually curated
datasets from repositories like the Protein Data Bank, which capture only a fraction of viable se-
quence space, our approach offers new possibilities for exploring protein designs beyond naturally
occurring examples.

The computational efficiency gains (achieving comparable results with substantially reduced com-
putational time compared to physics-based methods) and improved success rates demonstrated in
our experiments could accelerate research in therapeutic development, enzyme engineering, and in-
dustrial biotechnology. The reduced computational requirements potentially improve accessibility
of advanced protein design capabilities for research groups with limited resources. Applications
span from developing novel biologics and vaccines to engineering enzymes for sustainable manu-
facturing and bioremediation.

However, we emphasize that our computational metrics, while encouraging, require experimen-
tal validation to confirm biological functionality. The stability and foldability improvements we
demonstrate computationally may not directly translate to enhanced catalytic activity, binding affin-
ity, or other functional properties critical for real-world applications. Furthermore, the path from
computational design to practical application involves multiple validation stages. Each designed
protein undergoes synthesis, experimental characterization, functional testing, and regulatory ap-
proval before deployment. This established multi-step process provides checkpoints for safety and
efficacy verification. Our computational improvements represent the initial stage of this pipeline,
with subsequent experimental validation remaining essential for confirming biological relevance.

The self-improving nature of ProteinZero, learning continuously from generated outputs rather than
requiring new experimental data, represents a shift toward more autonomous systems in computa-
tional biology. While this offers exciting possibilities for accelerating discovery, the comprehensive
experimental validation pipeline ensures that computational predictions are rigorously tested before
practical application. We envision this work contributing to a new generation of Al systems that
can explore biological design spaces more efficiently, ultimately advancing our understanding and
engineering capabilities in protein science.
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Figure 5: Representative cases of protein structure designs from held-out test set. Visual com-
parison between ProteinZero (cyan), native proteins (pink), and InstructPLM (lime green). Top
panels show selected cases where naturally unstable proteins are redesigned by ProteinZero. In
these examples, predicted stability improvements range from 233% to 858% (based on FoldX ddG
calculations) while maintaining structural similarity (TM-scores > 0.95). Bottom panels present
comparative examples with InstructPLM for challenging S-rich structures and complex architec-
tures. In the shown cases, ProteinZero generates designs with negative predicted ddG values while
InstructPLM produces positive values indicating predicted instability. These visualizations repre-
sent individual design outcomes; comprehensive quantitative results are provided in Table 1.

A.2 LIMITATIONS AND FUTURE DIRECTIONS

Restriction to Monomeric Scaffolds. Our experiments target monomeric proteins, a practically
significant class spanning critical therapeutic modalities: de novo miniprotein inhibitors (Cao
et al., 2020), antigen-display architectures (Lutz et al., 2023), and cyclic peptide binders (Ret-
tie et al., 2025). Leading generative methods including RFdiffusion (Watson et al., 2023), Pro-
teinMPNN (Dauparas et al., 2022), and Chroma (Ingraham et al., 2023) have similarly demon-
strated advances on single-chain scaffolds. However, many drug discovery applications require
multimeric complexes and protein-protein interfaces. The core framework components—online RL
optimization, embedding-level diversity regularization, and fast proxy rewards—are architecture-
agnostic and naturally extend to assemblies by incorporating interface-aware structural rewards and
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multimer-capable stability predictors to optimize binding affinity and interface packing simultane-
ously.

Reliance on Computational Proxies. ProteinZero employs computational predictors (Fast-ddG,
ESMFold TM-score) as reward signals. While these metrics act as proxies for biological proper-
ties rather than substitutes for experimental validation, computational screening remains standard
in protein engineering pipelines. Empirical studies demonstrate that computational stability pre-
dictors enrich for mutations that experimentally increase protein thermodynamic stability: 30-40%
of computationally predicted stabilizing mutations are confirmed stable in wet-lab validation, com-
pared to near-zero success rates for random amino acid substitutions (Wijma et al., 2014; Broom
et al., 2017; BuB et al., 2018). However, individual oracles encode systematic preferences—FoldX,
for instance, favors mutations that increase hydrophobic core packing, which may trade off against
solubility (Broom et al., 2017).

We address over-optimization to single-oracle patterns through two mechanisms.  First,
multi-objective optimization with diversity regularization enforces complementary constraints
(structural designability, stability, KL-regularization, embedding diversity), preventing the policy
from satisfying one objective at the expense of others. Second, independent evaluation rigorously
separates training rewards (Fast-ddG, ESMFold) from evaluation metrics (FoldX, AlphaFold3).
Transferability to these independent oracles (Section 4) indicates the model learns generalizable
biophysical principles rather than oracle-specific patterns.

B EXPERIMENTAL DETAILS

B.1 PROMPT/TASK DATASETS

We utilized the CATH-4.3 dataset for training and evaluation, which contains protein domains clas-
sified according to Class, Architecture, Topology, and Homology. The dataset was stratified into two
categories based on sequence length: 0-150 residues and 150-300 residues to evaluate performance
across different structural complexity levels. For rigorous evaluation, we constructed held-out test
sets with sequence identity thresholds of <40% for 0-150 residue proteins and <30% for 150-300
residue proteins, ensuring assessment on genuinely out-of-distribution structures. This stringent fil-
tering prevents overlap with both the training data and the pre-training datasets used by baseline
models (e.g., InstructPLM was pre-trained on CATH-4.2).

During online reinforcement learning, our approach generates training signals entirely from model
outputs evaluated by reward functions, without requiring labeled sequence-structure pairs. The
model iteratively improves through self-generated examples assessed by our computational reward
pipeline. This self-improving paradigm represents a fundamental departure from supervised meth-
ods that depend on curated datasets, enabling continuous learning without additional experimental
data collection.

B.2 IMPLEMENTATION DETAILS
B.2.1 HYPERPARAMETER SETTINGS

ProteinZerogapr: We optimize our model with AdamW using an initial learning rate of 3 x 10~
(B1 = 0.9, B2 = 0.999, ¢ = 1 x 108, weight decay = 0.01) over all RAFT iterations. For each
RAFT iteration, we apply a linear learning-rate decay (with zero warm-up) over the epochs. We
apply rank-16 LoRA adapters (aro,ra = 16, dropout = 0.05) to all self-attention and feed-forward
projections. During each iteration, we partition the CATH 4.3 training set across GPUs, generating
K = 8 candidate sequences per backbone via nucleus sampling (temperature = 0.8, p = 0.9), and
retain only the highest-reward sequence for fine-tuning. Gradient updates are performed only for
backbones where at least 50% of the generated sequences achieve pLDDT > 80. Our policy updates
incorporate a KL regularizer with a coefficient of 0.1 against a frozen reference policy, whereas the
original RAFT implementation used a grid search to explore different KL term weights (0 (disabled),
0.005, 0.01, 0.1). We conduct extensive ablation studies on the KL weight used in the original
RAFT in Table 9 within Section C.2. Our empirical analysis reveals that this specific KL weight
parameterization of 0.1 is critical for achieving superior performance within the ProteinZerogarr
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Table 5: Systematic exploration of the online RL design space in ProteinZero for 0-150 residue pro-
teins. We conduct ablation studies across three critical design dimensions: reward models, learning
objectives, and diversity regularization strategies. For each design dimension, best results are high-

lighted in blue .

InverseFold Acc. | Thermal Stability Metrics Designability Metrics Overall
Recovery Rate T | Fast-ddG | FoldX ddG | | TM Score T PLDDT 1  Diversity T scRMSD | (scRMSD <2A% 1) | Success (%) T

Design Dimension 1: Reward Model Formulation

Design Configuration

Only TM-score as Reward 0.582 -21.598 -21.271 0.874 82.827 0.293 1.372 (93.62%) 89.52%
Only ddG as Reward 0.580 -22.996 -25.381 0.831 82.270 0.299 1.466 (87.75%) 85.15%
Full ProteinZero (TM+ddG) 0.590 -22.616 -24.924 0.867 82.326 0.306 1.373 (93.55%) 90.13%
Design Dimension 2: Learning Objective Components
Without Diversity Term 0.584 -22.526 -24.877 0.861 82.308 0.268 1.397 (92.75%) 90.23%
Without KL Term 0.564 -22.352 -24.264 0.841 80.979 0.316 1.429 (90.53%) 86.41%
Full ProteinZero (All Terms) 0.590 -22.616 -24.924 0.867 82.326 0.306 1.373 (93.55%) 90.13%
Design Dimension 3: Diversity Regularization Strategies
Diversity as Reward 0.579 -19.738 -18.681 0.836 81.107 0.284 1.439 (87.77%) 78.65%
Hamming Distance as Reward 0.565 -14.137 -11.135 0.831 81.785 0.276 1.466 (88.70%) 74.63%
Full ProteinZero (Embedding Diversity) 0.590 -22.616 -24.924 0.867 82.326 0.306 1.373 (93.55%) 90.13%

framework. We additionally employ an embedding-space diversity penalty with a coefficient of
0.05, which was not included in the original RAFT. The reward function equally weights TM-score
and predicted AAG. All experiments utilize mixed-precision FP16 (or BF16 where available) with
two-step gradient accumulation per update. Our results suggest that stronger KL regularization helps
mitigate instability in pretrained protein language models during fine-tuning.

ProteinZeroggrpo: We optimize our model using AdamW with an initial learning rate of 1 x 10~
(B1=0.9,8,=0.999,e=1x 1078, weight decay = 0), and employ a linear learning-rate sched-
uler (no warm-up) over all 20 GRPO iterations. We apply LoRA adapters with rank = 16 (scaling
factor apo,ra = 16, dropout = 0.05) to all self-attention and feed-forward projections. Each episode
samples from the CATH 4.3 training set (distributed across GPUs) and generates K = 8 candi-
date sequences per backbone via nucleus sampling (temperature = 0.8, p = 0.9). Policy updates
proceed only when at least 50% of the generated sequences achieve pLDDT > 80. For policy opti-
mization, we employ a GRPO clipping coefficient ¢ = 0.1 with KL regularization against a frozen
reference policy with a coefficient of 0.1, complemented by an embedding-space diversity penalty
with a coefficient of 0.05. The reward function equally weights TM-score and predicted AAG.
All experiments use mixed-precision FP16, with no gradient accumulation to ensure each episode
constitutes a complete policy update. We note that our KL regularization weight of 0.1 differs from
the original GRPO implementation (Shao et al., 2024), which uses 0.04. We conduct extensive ab-
lation studies on the KL weight used in the original GRPO in Table 9 within Section C.2. These
experiments demonstrate that the KL weight configuration is essential for optimal performance in
our ProteinZeroggrpo setting, which establishes our configuration as the optimal solution. Our ab-
lation studies reveal that decreasing KL regularization strength leads to performance degradation
across multiple metrics, including sequence recovery, Fast-ddG, FoldX DDG, TM-score, pLDDT,
scRMSD, and success rate. These findings indicate that stronger KL regularization may help stabi-
lize pretrained protein language models during fine-tuning.

Direct Preference Optimization (Baseline): For each target structure, we sample K = 8 candidate
sequences at a temperature of 7' = 0.1 to form chosen-rejected pairs according to our reward model,
and we optimize the DPO loss over 20 epochs using AdamW with 8; = 0.9, §2 = 0.999, and a
weight decay of 0.01. Training proceeds only for backbones where at least 50% of the sampled
sequences achieve pLDDT > 80. We apply a KL divergence regularization term against a frozen
reference policy with a coefficient of 0.1, and we incorporate an embedding-space diversity penalty
with a coefficient of 0.05. All experiments are conducted in mixed-precision FP16.

Multi-Round Direct Preference Optimization (Baseline): We extend DPO to iterative refinement
across multiple rounds. For each round, we sample K = 8 candidate sequences per target structure
at temperature 7' = 0.1 from the current policy to form new chosen-rejected pairs according to
our reward model, optimizing the DPO loss for 5 epochs per round using AdamW with g; = 0.9,
B2 = 0.999, and weight decay of 0.01. Gradient updates are performed only when at least 50% of
the generated sequences for a backbone achieve pLDDT > 80. We apply KL divergence regular-
ization against the frozen reference policy (coefficient 0.1) and embedding-space diversity penalty
(coefficient 0.05). All experiments are conducted in mixed-precision FP16.
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Table 6: Total wall-clock time (including MSA and template search) required to generate reward
for eight inverse-folding sequences conditioned on the same structural backbone. Best results are

highlighted in blue . The wall-clock time without MSA search can be found in Appx. Table 7

Length range Structural and Designability Reward \ Thermal Stability Reward (ddG)
ESMFold AlphaFold 2 ColabFold OpenFold AlphaFold 3 \ Fast-ddG(ours) FoldX

0-150 aa 18.7 s 1632.6 5 (~87.3x) 57625 (~30.8x) 67495 (~36.1x) 70545 (~37.7x) ~2s (GPU) 472.3 5 (~236.2x)

150-300 aa 4755 411255 (~86.6x) 127285 (~26.8x) 1424.75(~30.0x) 1920.5s(~40.4x) | ~2s(GPU)  1520.6s (~760.3x)

Table 7: Total wall-clock time (excluding Multiple Sequence Alignment) required to generate eight
inverse-folding sequences conditioned on the same structural backbone for each reward component
in our fine-tuning pipeline (often used for De novo design tasks, but we focus on inverse folding

tasks.). Best results are highlighted in blue .

Length range Structural Alignment Reward (Prediction) ‘ Design Stability Reward (ddG)
ESMFold AlphaFold 2 ColabFold OpenFold AlphaFold 3 ‘ Predicted-ddG FoldX

0-150 aa 18.7 s 197.6 5 (~10.6x) 193.6 5 (~10.4x) 189.65(~10.1x) 199.2 5 (~10.7x) ~2 s (GPU) 472.3 5 (~236.2%)

150-300 aa 475 22325 (~47x)  217.65 (~4.6X) 20085 (~4.2x)  237.6's (~5.0x) ~25(GPU)  1520.6's (~760.3x)

B.2.2 HARDWARE USAGE

All experiments are conducted using eight NVIDIA A100 GPUs. We fine-tune the pretrained model
by stratifying protein sequences into two length categories: 0-150 amino acids and 150-300 amino
acids. Our training protocol divides each complete dataset pass into 20 iterations for granular op-
timization control. We report that processing one full epoch requires approximately 3.23 hours for
the 0-150 amino acid category and 25.58 hours for the 150-300 amino acid category. The number of
training epochs can be flexibly adjusted based on desired performance improvements and available
computational resources. This modular approach enables researchers to balance training thorough-
ness with computational constraints, making online RL fine-tuning feasible on a single multi-GPU
node within practical timeframes.

B.3 EVALUATION METRICS

To ensure statistical robustness, all reported results represent the mean + standard error calculated
over 10 independent training runs initiated with different random seeds. We evaluated ProteinZero
using a comprehensive set of metrics across three key dimensions:

B.3.1 STRUCTURAL ACCURACY

* TM Score: Measures the topological similarity between predicted and target structures,
with values ranging from O to 1 (higher is better) (Zhang & Skolnick, 2004).

e PLDDT (Predicted Local Distance Difference Test): Assesses the confidence in local struc-
ture prediction (Jumper et al., 2021; Abramson et al., 2024).
scRMSD (Self-consistency RMSD of structures): Measures the deviation of side chain

positions, with percentage below 2 A reported as an additional quality indicator (Qiu et al.,
2024; Park et al., 2024).

B.3.2 STABILITY METRICS

Fast-ddG (Jiao et al., 2025): Predicted change in Gibbs free energy, estimated directly from
the model.

FoldX ddG (Schymkowitz et al., 2005): A more rigorous physics-based calculation of sta-
bility using the FoldX force field, which better correlates with experimental measurements.

B.3.3 SEQUENCE PROPERTIES

Recovery: The percentage of amino acids matching reference sequences, indicating how
well the model captures natural sequence preferences (Park et al., 2024).
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* Diversity: A measure of variation among generated sequences, calculated as the mean
normalized Hamming distance between every pair of sequences conditioned on the same
backbone (score ranges from 0O for identical sequences to 1 for sequences that differ at every
position):

=l =

D yie# ym}} :

t=1

2
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B.4 BASELINE METHODS

We compared ProteinZero against several state-of-the-art methods:

B.4.1 SUPERVISED INVERSE FOLDING MODELS

1. ProteinMPNN: A graph-based model that directly predicts amino acid sequences from
backbone structures.

2. ESM-IF: A transformer-based inverse folding model trained on substantial structural data.

3. InstructPLM (our base model): A recently developed protein language model fine-tuned to
follow structural design instructions.

B.4.2 OFFLINE RL BASELINE

DPO (Direct Preference Optimization): A widely used offline reinforcement learning method that
learns from preference data without online interaction.

Multi-Round DPO: An iterative extension of DPO that regenerates preference pairs from the updated
policy at each round, allowing for progressive refinement while remaining offline.

For fair comparison, all baseline methods used the same evaluation protocol and metrics. Instruct-
PLM served as our starting model for ProteinZero fine-tuning, establishing a direct comparison
between supervised learning and our online RL approach.

B.5 REWARD MODEL

Traditional methods for evaluating protein designs require minutes to hours per evaluation, making
online reinforcement learning impractical. We solve this challenge with two efficient reward models:

B.5.1 STRUCTURAL ALIGNMENT REWARD

We use ESMFold for structural inference instead of the slower AlphaFold2/3 (Jumper et al., 2021;
Abramson et al., 2024). The TM-score reward rry (z,y) is computed by first folding the gener-
ated sequence y using ESMFold, then calculating the TM-score (Zhang & Skolnick, 2004) between
the predicted structure and the target structure x with US-align (Zhang et al., 2022), an updated
implementation from the original TM-align (Zhang & Skolnick, 2005).

B.5.2 DESIGN STABILITY REWARD

We calculate raac(z,y), the estimation of AAG by comparing the backbone-conditioned likeli-
hood of each generated sequence with an unconditional sequence prior, p,(y), provided by pre-
trained inverse folding models such as ProteinMPNN and InstructPLM, as proposed in (Jiao et al.,
2025; Shanker et al., 2024; Widatalla et al., 2024; Cagiada et al., 2025; Bennett et al., 2023):
AAG(z,y) = —kpT[(logpe(y | =) — logp,(y)) — (logpe(yw | =) — logpy(yw))], where
ywe represents the PDB wild-type sequence and kpT represents the thermal energy at 298 K
(0.593 kcal mol~1).

Our reward combines both scores after min-max normalization across the candidate pool of inverse
folding sequences generated for the same backbone within each reinforcement learning iteration:

max min

Frm = (rev — PR /(riRax — pmin) and Fang analogously, giving r(z,y) = Armfrm (2, y) +
AaagTang(x,y). This reward model accelerates evaluation speed by at least 2500x compared to
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traditional methods, reducing training time from months to days. The effectiveness of this approach
is demonstrated through comprehensive evaluation metrics presented in Table 1.

B.6 ONLINE RL ALGORITHMS

We implemented and evaluated two online reinforcement learning algorithms for ProteinZero:

B.6.1 PROTEINZERORAFT

Our adaptation of Reward-rAnked Fine-Tuning, which generates multiple candidate sequences, eval-
uates them using our reward models, and retains only the best sequences for supervised fine-tuning.
We extended RAFT with our embedding level diversity regularization term.

B.6.2 PROTEINZEROGRPO

Our adaptation of Group Relative Policy Optimization, which directly optimizes the policy using
relative rewards within each batch. This was further enhanced with our embedding-level diversity
regularization.

B.7 COMPUTATIONAL EFFICIENCY AND POTENTIAL EXTENSIONS TO DE NOVO DESIGN

A critical computational challenge in protein structure-conditioned generation stems from the run-
time requirements of structural inference during reward computation. As shown in Tables 6 and 7,
we comprehensively evaluate the wall-clock time necessary for reward generation across multiple
structural prediction frameworks. For our inverse folding framework, which operates with predeter-
mined backbone structures, ESMFold demonstrates substantial efficiency advantages, requiring only
18.7s and 47.5s for proteins in the 0-150 and 150-300 amino acid ranges, respectively. This repre-
sents a 26-87 x acceleration compared to AlphaFold2, ColabFold, OpenFold, and AlphaFold3. The
computational gap widens significantly when considering Multiple Sequence Alignment (MSA),
which constitutes essential but time-intensive preprocessing for the AlphaFold family models. For
thermal stability prediction, our Fast-ddG approach (~2s on GPU) achieves a 236-760x speedup
over physics-based methods like FoldX. While our current implementation focuses on inverse fold-
ing with fixed backbones, these benchmarks establish important computational baselines for future
extensions to de novo protein design tasks, where simultaneous optimization of sequence and struc-
ture would introduce additional complexity. Notably, as Table 7 demonstrates, our framework’s
reliance on ESMFold eliminates the computational burden of MSA search, a critical advantage
for potential de novo applications where rapid structural evaluation is essential. De novo design
presents different challenges, requiring not only the generation of applicable sequences but also
the exploration of the vast conformational landscape to discover novel protein folds with targeted
functional properties. This expanded search space would require efficient sampling strategies across
both sequence and structural domains, while maintaining physically realistic conformations with
proper hydrophobic packing, secondary structure formation, and domain-level architectural coher-
ence. The computational efficiency gains demonstrated in our proxy reward models suggest that
integrating lightweight structural prediction methods that avoid MSA requirements within a rein-
forcement learning framework could make online learning feasible even for these more complex
design scenarios. The dramatic reduction in evaluation time enabled by our approach makes online
reinforcement learning computationally tractable for current inverse folding tasks, while providing
insights into the feasibility of extending this paradigm to full de novo design in future work.

Recent GPU-accelerated implementations combining optimized MSA generation and TensorRT-
enhanced inference achieve over 130-fold speedups in structure prediction (Didi et al.), suggesting
that incorporating more sophisticated structural oracles into online RL frameworks may become
computationally feasible in the near future.
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Table 8: Independent validation using AlphaFold3 for 0-150 residue proteins. All designability met-
rics are computed using both ESMFold (used in training) and AlphaFold3 (independent evaluation)
to demonstrate that improvements are not artifacts of the reward function. Best scores are high-

lighted in blue , second-best in green .

Method TM Score 1 PLDDT 1t scRMSD | scRMSD <2A (%) 1 | Success Rate (%) 1
etho ESMFold ~ AF3 | ESMFold AF3 | ESMFold AF3 | ESMFold  AF3 | ESMFold  AF3
Base Model
InstructPLM ‘ 0.8121 0.8356 ‘ 79.98 82.45 ‘ 1.4842 1.4287 ‘ 85.71 88.32 ‘ 84.45 86.98
Offline RL Baselines
DPO 0.8198 0.8401 80.72 82.93 1.4727 1.4218 87.58 89.43 86.44 88.12
Multi-Round DPO 0.8228 0.8436 80.80 83.07 1.4678 1.4176 87.95 89.95 86.89 88.71
Our Online RL Methods

1.3929 1.3587

ProteinZerog apr 0.8494 0.8612 81.56 83.48
1.3727 1.3406

ProteinZerogrpo 0.8674 0.8798 82.33 84.09

92.86 93.89 89.29 90.42
93.55 94.67 90.13 91.56

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 INDEPENDENT VALIDATION WITH ALPHAFOLD3

While our evaluation pipeline employs external US-align to compute TM-score between ESMFold-
predicted and target structures rather than relying on ESMFold’s internal predicted TM-score (pTM,
a confidence metric predicting the alignment quality of the folded structure), we sought to further
strengthen our evaluation through comprehensive independent validation using AlphaFold3, the cur-
rent state-of-the-art structure prediction model. This orthogonal assessment provides additional ev-
idence that our performance improvements represent genuine advances in protein design capability
and demonstrates the robustness of our approach across different structure prediction frameworks.

Tables 8 and 2 presents designability metrics computed using both ESMFold (employed during
training) and AlphaFold3 (independent evaluation) for all methods. The improvements observed
through ESMFold evaluation are consistently corroborated by AlphaFold3 results. For 0-150 residue
proteins, ProteinZerogrpo achieves 91.56% success rate with AlphaFold3 evaluation, maintain-
ing its substantial advantage over baselines (InstructPLM: 86.98%, DPO: 88.12%, Multi-Round
DPO: 88.71%). Similar patterns hold for 150-300 residue proteins, where ProteinZerogrpo reaches
92.27% success rate with AlphaFold3. Figure 6 provides qualitative examples of representative
complex protein architectures evaluated with AlphaFold3, further illustrating the structural fidelity
of our designed sequences.

The consistent improvements across both evaluation frameworks validate that our online RL ap-
proach learns generalizable design principles. While we selected ESMFold as our reward model for
computational efficiency, the self-improved policies demonstrate robust performance when evalu-
ated with AlphaFold3, confirming that ProteinZero discovers genuine improvements that transcend
the specific choice of structure predictor used during training. The relative performance rankings
remain unchanged across both evaluation methods: ProteinZero methods consistently outperform
both offline RL baselines and the base model.

These results establish the methodological rigor required for reinforcement learning applications to
protein design. The strong performance under AlphaFold3 evaluation confirms that our approach
achieves robust improvements in protein design capability, providing confidence that the learned
policies will generalize to practical applications beyond our training setup.

C.2 HYPERPARAMETER ABLATION STUDIES

Table 9 presents additional experimental results exploring different hyperparameter configurations
for ProteinZero, specifically evaluating the impact of KL divergence coefficients (ak1,) and diversity
regularization (ag;y) on both ProteinZerogrpo and ProteinZerogapr algorithms across two protein
size categories (0-150 and 150-300 residues).

For ProteinZerogrpo, we test configurations with axr, = 0.04 (the original GRPO setting) and vary-
ing diversity regularization (cvg;v € {0.00,0.05}). In the 0-150 residue category, the configuration
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Optimizing Stability and Alignment Across Complex Proteins of
Diverse Types and Lengths (using AlphaFold3 and Rosetta Energy)
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Figure 6: Qualitative evaluation of ProteinZero using AlphaFold3 and Rosetta Energy. This
figure complements our main results by demonstrating ProteinZero’s performance when evaluated
with alternative protein structure prediction (AlphaFold3) and stability assessment (Rosetta Energy)
tools. Across eight diverse and complex protein architectures (150-300 residues), our designed se-
quences (cyan) maintain exceptional structural alignment with native proteins (pink) as indicated by
high AF3 PTM scores (0.93-0.96) and PLDDT values (89.62-96.92). The substantial improvements
in Rosetta ddG values (-4.091 to -92.5) further validate our approach’s ability to simultaneously
optimize structural accuracy and thermodynamic stability. These results reinforce the conclusions
from our FoldX and ESMFold analyses, confirming that ProteinZero’s online reinforcement learning
framework effectively balances multiple design objectives across various protein classes including
membrane proteins, «/3-mix mixed domains, o-helical structures, and S-barrels.

Table 9: Supplementary experimental results exploring different hyperparameter configurations for
ProteinZero. We evaluate the impact of KL divergence coefficients (akr,) and diversity regulariza-
tion (agiy) on both GRPO and RAFT algorithms across two protein size categories. Best results

within each algorithm and size category are highlighted in blue .

Length | Configuration InverseFold Acc. | Thermal Stability Metrics Designability Metrics Overall
~engf e Recovery Rate T | Fast-ddG| FoldXddG| | TM Scoret PLDDT 1 Diversity T scRMSD | (scRMSD <2A% 1) | Success (%) T
| Additional GRPO Results
E GRPO (akr, = 0.04, agiy = 0.05) 0.58 -22.06 -22.71 0.86 82.13 031 1.39 (93%) 89%
% GRPO (akr, = 0.04, agiy = 0.00) 0.58 -22.50 -24.55 0.85 82.23 0.27 1.41 (90%) 90%
é | Additional RAFT Results
2 RAFT (aky, = 0.005, agiy = 0.05) 0.58 -21.63 -21.18 0.84 80.93 0.30 1.41 (92%) 88%
RAFT (akL = 0.005, agiy = 0.00) 0.58 -21.81 -21.72 0.84 80.97 0.28 1.42 (92%) 88%
RAFT (aky = 0.01, agiy = 0.05) 0.58 -22.12 -22.95 0.85 81.14 0.30 1.40 (92% ) 89%
RAFT (akr, = 0.01, agiy = 0.00) 0.59 -22.18 -22.98 0.84 81.28 0.28 1.42 (92%) 89%
RAFT (axp, = 0.0, agiy = 0.05) 0.58 -21.70 -21.50 0.85 81.08 0.30 1.40 (92% ) 87%
RAFT (ax1, = 0.0, agiy = 0.00) 0.58 -22.03 -22.73 0.84 81.23 0.28 1.41 (92%) 87%
o Additional GRPO Results
@
= GRPO (ak, = 0.04, agiy = 0.05) 0.58 -39.53 -31.95 0.86 83.98 0.33 142 (89% ) 90%
g GRPO (akr, = 0.04, agiy = 0.00) 0.57 -40.40 3215 0.85 84.05 0.29 1.43 (89%) 90%
§ | Additional RAFT Results
z RAFT (akyp, = 0.005, agiy = 0.05) 0.57 -36.61 -28.26 0.84 83.24 0.33 143 (89% ) 88%
- RAFT (ax1, = 0.005, agiy = 0.00) 0.58 -36.79 -28.86 0.83 83.53 0.30 1.44 (88%) 88%
RAFT (axr, = 0.01, agiy = 0.05) 0.58 -37.23 -30.08 0.84 83.57 0.33 143 (89% ) 89%
RAFT (aky, = 0.01, agiy = 0.00) 0.58 -37.48 -30.47 0.84 83.67 0.31 1.44 (88%) 89%
RAFT (axL = 0.0, aqgiy = 0.05) 0.57 -36.53 -27.65 0.84 83.46 0.33 143 (89% ) 87%
RAFT (axy, = 0.0, agiy = 0.00) 0.58 -36.95 -29.47 0.84 83.52 0.31 1.44 (88%) 87%

with aky, = 0.04, agiv = 0.05 achieves recovery rate of 0.58, TM Score of 0.86, sequence diversity
of 0.31, and overall success rate of 89%, while removing diversity regularization (ag;vy = 0.00)
yields enhanced thermal stability (Fast-ddG: -22.50 vs -22.06, FoldX ddG: -24.55 vs -22.71) but
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Figure 7: Training dynamics of ProteinZerogapr across protein size categories. Top: 0-150 residue
proteins. Bottom: 150-300 residue proteins. Each row shows: (Left) Reward-diversity trade-off
demonstrating Pareto frontier between final reward and sequence diversity. (Middle) Evolution of
reward throughout training, showing consistent improvement over InstructPLM baseline. (Right)
Diversity trajectory revealing how our novel embedding-level diversity regularization Lp;, maintains
higher sequence diversity compared to RAFT without this regularization (no div).

significantly degraded sequence diversity (0.27 vs 0.31) and structural accuracy (TM Score: 0.85 vs
0.86), achieving 90% overall success rate. For 150-300 residues, both configurations reach 90% suc-
cess rates, with aigiy = 0.05 providing superior sequence diversity (0.33 vs 0.29) and designability
metrics (TM Score: 0.86 vs 0.85).

For ProteinZerorarr, We examine configurations with akr, € {0.0,0.005,0.01} and agiy €
{0.00,0.05}. In the 0-150 residue category, the best performing configuration (axy, = 0.01, gy =
0.00) achieves recovery rate of 0.59, thermal stability of Fast-ddG: -22.18 and FoldX ddG: -22.98,
and 89% overall success rate. Weaker KL regularization with akxy, = 0.005 consistently under-
performs (88% success rate), while completely removing KL constraints (ax;, = 0.0) further
degrades performance to 87% success rate. For 150-300 residues, similar patterns emerge with
aky, = 0.01 configurations achieving 89% success rates compared to 88% for aiky, = 0.005 and
87% for akr, = 0.0. Importantly, removing diversity regularization consistently reduces sequence
diversity across all configurations.

Despite these extensive explorations, all configurations in Table 9 underperform our optimal settings
reported in Table 1, where aiky, = 0.1 and ag;, = 0.05 achieve superior results: ProteinZerogrpo
reaches 90.13% and 91.19% overall success rates for 0-150 and 150-300 residues respectively, while
ProteinZerogapr achieves 89.29% and 89.36%. These results demonstrate that stronger KL regu-
larization and our embedding-level diversity regularization are essential for optimal protein design
performance.
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Figure 8: Training dynamics of ProteinZerogrpo across protein size categories. Top: 0-150 residue
proteins. Bottom: 150-300 residue proteins. Each row shows: (Left) Reward-diversity trade-off
demonstrating Pareto frontier between final reward and sequence diversity. (Middle) Evolution of
reward throughout training, showing consistent improvement over InstructPLM baseline. (Right)
Diversity trajectory revealing how our novel embedding-level diversity regularization Lp;, maintains
higher sequence diversity compared to GRPO without this regularization (no div).

C.3 TRAINING DYNAMICS AND CONVERGENCE ANALYSIS

Figure 7 and Figure 8 present comprehensive training dynamics for ProteinZero across different
protein size categories, revealing critical insights about online reinforcement learning in protein
design and the broader implications for mitigating mode collapse in RLHF systems.

The training trajectories demonstrate a fundamental challenge in online RL: without explicit diver-
sity maintenance, policies consistently collapse toward narrow, high-reward regions of the solution
space. As shown in the diversity curves (right panels of both figures), standard RAFT and GRPO
without our diversity regularization Lp;, exhibit monotonic diversity decline, with sequence diver-
sity dropping from initial values of 0.28-0.30 to as low as 0.13-0.18 by iteration 20. This represents a
40-55% reduction in exploration capacity, severely limiting the model’s ability to discover novel so-
lutions. In contrast, incorporating our embedding-level diversity regularization maintains sequence
diversity above 0.20-0.26 throughout training, preserving 70-85% of initial exploration capacity
while still achieving comparable or superior reward values. For 150-300 residue proteins, where the
design space is exponentially larger, this effect becomes even more pronounced: models with Lp;y
maintain diversity levels of 0.21-0.26 compared to 0.17-0.23 without regularization.

The reward-diversity trade-off plots (left panels) reveal that maintaining diversity through Lp;, cre-
ates a favorable Pareto frontier where both high rewards and sequence variety are preserved. This
sustained exploration capability translates directly to performance gains. Examining the reward
curves (middle panels), ProteinZero with diversity regularization demonstrates more robust con-
vergence, reaching final rewards of 1.644-1.686 for 0-150 residues and 1.686-1.688 for 150-300
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residues, compared to more variable performance without regularization. The preservation of di-
versity enables the model to continue discovering improved solutions rather than prematurely con-
verging to local optima. This phenomenon is particularly evident in iterations 15-20, where models
without diversity regularization show reward stagnation or decline (e.g., RAFT dropping from 1.648
to 1.626 for 0-150 residues), while regularized models maintain steady improvement or stability.

These findings extend beyond protein design to general online reinforcement learning from human
feedback. Mode collapse represents a critical failure mode in RLHF where policies converge to nar-
row behavioral patterns that maximize immediate rewards but sacrifice long-term adaptability and
robustness. Our embedding-level diversity regularization offers a principled solution by operating
directly in the latent representation space, encouraging exploration of functionally distinct regions
rather than merely surface-level variations. The consistent effectiveness across both RAFT and
GRPO algorithms, and across different protein size categories, suggests that this approach addresses
a fundamental limitation in online RL optimization.

By maintaining a balance between exploitation (achieving high rewards) and exploration (preserv-
ing diversity), our method enables continuous learning and adaptation, essential properties for de-
veloping robust, generalizable Al systems. The quantitative results demonstrate that diversity-aware
online RL achieves 89-91% success rates while maintaining 2-3x higher sequence diversity com-
pared to non-regularized variants. This simultaneous improvement in both performance and explo-
ration capacity validates that preventing mode collapse through embedding-level regularization is
not merely a theoretical benefit but translates to concrete gains in practical applications.

C.4 EXPERIMENTAL VALIDATION OF FAST-DDG ON SSYM BENCHMARK

This section validates Fast-ddG accuracy on experimental thermodynamic measurements from the
Ssym benchmark (Pucci et al., 2018), which comprises 684 single-point mutations across multiple
protein families with calorimetrically determined AAG values and crystal structures. Following
Eq. 4, we evaluate 342 wild-type—mutant transitions by computing stability changes on wild-type
backbone geometries.

Table 10 compares our predictor against physics-based oracles (FoldX, Rosetta) and su-
pervised predictors (ThermoMPNN (Dieckhaus et al., 2024), ThermoNet (Li et al., 2020),
PROSTATA (Umerenkov et al., 2022)). Across three configurations (pretrained, Fast-ddG-only,
TM-score + Fast-ddG), we achieve RMSE 1.44—-1.47 kcal/mol and PCC 0.60-0.62, matching FoldX
(RMSE: 1.56, PCC: 0.63) at 236-760x speedup (Tables 6-7), which is a 56% RMSE improve-
ment over ProteinMPNN (3.38 kcal/mol, PCC: 0.26). ThermoMPNN achieves superior performance
(RMSE: 1.12, PCC: 0.72) but requires supervised training and handles only single-residue perturba-
tions, whereas our unsupervised predictor generalizes to multi-mutation redesigns often exceeding
50% sequence divergence.

Table 11 reports errors for 20 representative mutations across eight families (1CEY, 1LZI,
1L63, 5PTI, 110B, 1BNI, 1VQB, 4LYZ, 2RN2), spanning experimental AAG from —5.70 to
+2.50 kcal/mol. Fine-tuning consistently reduces errors: 1L63 A98V improves from 1.52 to
0.18 kcal/mol; 1VQB V35I from 0.83 to 0.07 kcal/mol. This consistency across diverse targets
indicates Fast-ddG captures generalizable thermodynamic principles.

These results demonstrate that Fast-ddG, though unsupervised and self-derived and optimized for
full-sequence inverse folding, achieves physics-based accuracy on experimental data while main-
taining computational efficiency for online RL.

C.5 COMPLETE PERFORMANCE METRICS WITH ABSOLUTE FOLDING ENERGIES

This section provides extended performance metrics complementing Table 1 in the main text. Ta-
ble 12 presents the complete evaluation including wild-type and generated absolute folding energies,
offering deeper insights into thermodynamic stability improvements.

The wild-type (WT) energy represents the average FoldX folding free energy of native struc-
tures in each length category: 27.09 kcal/mol for 0-150 residues and 36.96 kcal/mol for 150-300
residues. Generated energy denotes the average absolute folding free energy of designed sequences
computed by FoldX. The FoldX ddG column reports the stability change relative to wild-type:
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Table 10: Performance comparison on the Ssym dataset (342 single-point direct mutations, wild-
type—mutant direction). Lower RMSE and higher Pearson correlation coefficient (PCC) indicate

better agreement with experimental AAG values. Best ProteinZero result highlighted in blue .

Model \ RMSE (kcal/mol) | PCC 1
ProteinMPNN 3.38 0.26
ThermoMPNN 1.12 0.72
Rosetta 2.31 0.69
FoldX 1.56 0.63
ThermoNet 1.56 0.47
PROSTATA 1.42 0.51
ProteinZero (pretrained) 1.47 0.60
ProteinZero (TM-score + Fast-ddG) 1.45 0.61
ProteinZero (Fast-ddG only) 1.44 0.62

Table 11: Representative mutations from the Ssym dataset demonstrating improved prediction accu-
racy after fine-tuning. Error denotes absolute deviation [AAG — AAG.y,| in kcal/mol. Best results
for each mutation highlighted in blue .

PDB Mutation | Experimental AAG Prediction Error (kcal/mol) |
(kcal/mol) Pretrained Fast-ddG only TM-score + Fast-ddG

ICEY DI2A 2.50 3.64 1.20 1.32
1LZ1 V2G —2.29 3.54 2.09 1.56
1LZ1 123A —2.50 1.70 0.60 0.64
1L63  VI149A -3.20 1.49 0.50 0.49
1L63  A98V -3.20 1.52 0.61 0.18
1L63  D20A —0.30 3.55 2.64 1.66
1LZ1 V2A —1.50 2.31 1.09 1.40
5PTI  N43G —5.70 3.09 2.16 2.29
1IOB  T9G —2.60 1.78 1.04 0.35
IBNI  T26A —1.70 1.25 0.53 0.39
1L63 S44R 0.20 1.38 0.67 0.33
1BNI 176A —1.70 0.94 0.31 0.26
1IVQB V35l —0.60 0.83 0.22 0.07
1L63 A42V —2.70 2.37 1.77 0.52
4L.YZ  T40S —0.30 1.45 0.23 0.90
1VQB 147M —1.70 1.15 0.61 0.62
1L63  L46A —1.90 1.33 0.68 0.81
1VQB 147L —0.40 0.91 0.40 0.35
2RN2  D70N 0.90 2.40 1.90 1.60
1L63 27M —3.10 1.23 0.76 0.74

ddG = Generated Energy — WT Energy. More negative ddG values indicate enhanced thermo-
dynamic stability relative to native sequences.

ProteinZero achieves substantial stability improvements across both length categories. For 0-150
residues, ProteinZeroGRPO reduces generated energy from 6.21 kcal/mol (InstructPLM baseline)
to 2.17 kcal/mol, corresponding to FoldX ddG improvement from -20.878 to -24.924 kcal/mol, a
4.05 kcal/mol enhancement (19.4% relative improvement). For 150-300 residues, generated energy
decreases from 9.82 to 4.16 kcal/mol, yielding FoldX ddG improvement from -27.145 to -32.805
kcal/mol, a 5.66 kcal/mol enhancement (20.8% relative improvement). These gains demonstrate that
online RL with Fast-ddG optimization transfers effectively to independent physics-based oracles,
validating that our framework learns generalizable thermodynamic principles rather than overfitting
to training proxies.
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Table 12: Extended version of Table 1 including wild-type and generated folding energies. Perfor-
mance comparison of protein inverse folding methods on CATH-4.3 benchmark proteins grouped
by length (0-150 and 150-300 residues). Metrics include sequence recovery, thermal stability
(Fast-ddG, absolute folding energies, FoldX ddG), and designability (TM-score, pLDDT, diversity,
scRMSD). Success rate is defined as scRMSD < 2A and FoldX ddG < 0. Designability metrics
computed using ESMFold; independent AlphaFold3 validation confirms consistent trends (Table 2).

Best results highlighted in blue , second-best in green .

Overall
Success (%) T

InverseFold Acc.
Recovery Rate 1

Thermal Stability Metrics Designability Metrics
Fast-ddG | WT Energy Gen. Energy | FoldX ddG | | TM Score T PLDDT 1 Diversity }  scRMSD | (<2A% 1)

Length ‘
‘ Base Model
[
[

Method

InstructPLM | 0574 | 21543 27.09 6.21 20878 | 0812 79.983 0281 1484 (85.71%) |  8445%
H SOTA Inverse Folding Models
% | ProteinMPNN ‘ 0426 ‘ -21.509 27.09 630 20792 0.805 79.883 0.280 1,500 (82.14%) ‘ 81.95%
Z | ESMIF 0377 -17.900 27.09 1276 -14.328 0.802 78.918 0263 1515 (81.25%) 80.71%
= RL Baseline Methods
< ‘ DPO ‘ 0571 ‘ 21713 27.09 5.90 21191 ‘ 0.820 80.716 0274 1.473 (87.58%) ‘ 86.44%
Multi-Round DPO 0.569 21.797 27.09 5.67 21423 0823 80.797 0266 1468 (87.95%) 86.89%
| Our Online RL Methods
ProteinZerogarr (Ours) 0587 -22.236 27.09 392 -23.168 0.849 81.560 0296 1393 (92.86%) 89.29%
ProteinZerogreo (Ours) 0.590 ‘ 22616 27.09 217 24.924 ‘ 0867 82326 0306 1373 (93.55%) ‘ 90.13%
| Base Model
| InstructPLM | 0570 | -36362 36.96 9.82 27145 | 0824 83.783 0305 1448 (3824%) | 8638%
2z SOTA Inverse Folding Models
g | ProweinMPNN ‘ 0.405 ‘ 35778 36.96 9.90 27.057 0816 82361 0297 1.469 (86.64%) ‘ 84.67%
s | ESMIE 0446 -32.125 36.96 12.14 24.816 0.802 82.042 0279 1.487 (86.09%) 82.81%
2 RL Baseline Methods
- ‘ PO ‘ 0570 ‘ 36.417 36.96 8.05 28915 ‘ 0830 83.837 0296 1441 (88.97%) ‘ 87.70%
Multi-Round DPO 0.569 -36.483 36.96 7.87 -29.087 0831 83.840 0288 1437 (89.04%) 88.05%
| Our Online RL Methods
ProteinZerogarr (Ours) 0578 -37.575 36.96 621 -30.755 0841 83.850 0324 1427 (89.17%) 89.36%
ProteinZeroggro (Ours) 0.580 ‘ -40.626 36.96 4.16 -32.805 ‘ 0.862 84.154 0331 1393 (90.43%) ‘ 91.19%

D ADDITIONAL RELATED WORK

D.1 CrLASSICAL RL vs. RLHF FINE-TUNING FOR BIOLOGICAL SEQUENCE DESIGN

Classical reinforcement learning approaches to biological sequence design emerged before the ad-
vent of powerful pre-trained protein models, representing a fundamentally different paradigm from
modern RLHF fine-tuning. These methods, developed when large-scale protein language mod-
els were not yet available, train task-specific policies from scratch, optimizing sequences directly
for defined reward signals. Early work formulated sequence design as Markov decision processes
where agents construct or modify sequences step-by-step. Angermueller et al. (2020) employed PPO
with model-based variants (DyNA-PPO) to optimize DNA binding sites and antimicrobial peptides,
achieving improved sample efficiency through learned simulators. Runge et al. (2019) introduced
LEARNA for RNA inverse folding, using PPO to build sequences nucleotide-by-nucleotide with
meta-learning across large-scale structure datasets. Even recent planning-based approaches con-
tinue this paradigm: Lutz et al. (2023) developed AlphaZero-style MCTS for protein nanomaterial
design, discovering assemblies with atomic-precision geometry verified by cryo-EM, while Wang
et al. (2023b) proposed EvoPlay, treating amino acid mutations as moves in single-player games
for efficient variant exploration. Classical RL methods typically rely on physics-based or learned
oracles (e.g., Rosetta energies, AlphaFold predictions, docking scores) within optimization loops.
Skwark et al. (2020) used Rosetta-based binding energy to evolve ACE2 variants against SARS-
CoV-2, demonstrating substantial improvements in binding affinity with significantly reduced com-
putational requirements compared to traditional design algorithms. These approaches perform on-
line optimization, iteratively querying oracles which can require thousands to millions of evaluations
for complex objectives. Model-based variants help address computational costs: DyNA-PPO trains
surrogate models between experimental rounds, while Jain et al. (2022) combines GFlowNets with
active learning to sample diverse high-fitness sequences proportional to reward, achieving enhanced
diversity compared to standard RL baselines. Wang et al. (2025) introduced DRAKES for reward
optimization in discrete diffusion models. Their approach enables direct reward backpropagation
through diffusion trajectories via Gumbel-Softmax approximations when rewards are differentiable;
for non-differentiable rewards, they resort to standard policy gradient methods (PPO) or reward-
weighted maximum likelihood estimation. ProteinZero targets protein inverse folding models, em-
ploying online RL with policy gradients designed from the outset for non-differentiable scalar re-
wards from structure predictors (ESMFold, US-align) and stability oracles (Fast-ddG, FoldX). A
key distinction lies in diversity handling: DRAKES reports sequence entropy as a post-hoc metric
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without explicit regularization, whereas ProteinZero incorporates embedding-level diversity regu-
larization with theoretical guarantees (Appendix F) to actively prevent mode collapse during train-
ing. While both advance reward-guided protein design, they address complementary model classes:
DRAKES for discrete diffusion, ProteinZero for protein inverse folding.

Classical methods often focus on specific objectives such as binding affinity, folding accuracy, or
assembly geometry, learning the necessary biophysical constraints through exploration. In con-
trast, RLHF fine-tuning, enabled by the recent emergence of powerful pre-trained models, operates
in a different problem setting: leveraging these foundation models that already encode extensive
biophysical knowledge, we refine competent generators rather than training naive policies. This
setting enables holistic multi-objective optimization for generalizable improvements, promotes se-
quence realism without hard-coded penalties, and achieves sample-efficient learning as every oracle
query refines an already capable model rather than teaching basic constraints from scratch. The
pre-trained foundation facilitates generation of biologically plausible candidates that satisfy RL ob-
jectives, fundamentally changing the optimization landscape compared to classical approaches that
must discover these constraints through extensive exploration from scratch.

D.2 MODE COLLAPSE IN ONLINE REINFORCEMENT LEARNING

Mode collapse represents a critical failure mode in online reinforcement learning where policies
converge to narrow output distributions despite diverse valid solutions existing. Kirk et al. (2024)
demonstrate that RLHF significantly reduces output diversity compared to supervised fine-tuning,
with models producing uniform responses across different inputs. Cui et al. (2025) reveal that policy
entropy plummets early in training, causing exploration to vanish and performance to saturate. As
models converge to limited outputs, policy distributions become highly peaked, creating a vicious
cycle where reduced diversity leads to overconfidence, further limiting exploration. The standard
KL penalty in PPO-style RLHF only partially alleviates this issue, as reverse KL is inherently mode-
seeking, which favors single high-probability solutions.

Various mitigation strategies have emerged. Entropy regularization directly adds bonuses to main-
tain broader distributions: Shekhar et al. (2024) integrate self-entropy into preference optimiza-
tion, while Wang et al. (2024) show forward KL and Jensen-Shannon divergences achieve better
alignment-diversity trade-offs than reverse KL. Diversity-reinforced objectives explicitly incorpo-
rate variety into rewards, with Li et al. (2025) using semantic clustering as diversity bonuses to
achieve simultaneous improvements in quality and novelty. Data mixing strategies like SimpleMix
(Li & Khashabi, 2025) combine on-policy and off-policy data to prevent collapse by maintaining
broader training distributions.

Our embedding-level diversity regularization represents a novel contribution. Unlike existing ap-
proaches operating on output probabilities or rewards, we directly encourage semantic diversity in
latent representation space. By penalizing similarity between hidden states of generated sequences,
our method captures meaningful variation beyond surface differences. This complements traditional
regularization: KL maintains proximity to reference distributions, entropy encourages probabilistic
exploration, while our embedding regularizer ensures exploration of functionally distinct sequence
regions. For protein design with expensive oracles, maintaining diversity is critical to maximize
information per query. Our approach enables covering more possibilities with fewer oracle calls,
avoiding redundant evaluations. The combination provides robust protection against mode collapse
while maintaining alignment with design objectives, as demonstrated by simultaneous improve-
ments in diversity and performance metrics.

D.3 RELATION TO FULLY ATOMISTIC GENERATIVE MODELS

Recent sequence-structure co-generation models include fully atomistic generators (Chroma (In-
graham et al., 2023), Protpardelle (Chu et al., 2024), ProteinGenerator (Lisanza et al., 2023)) and
backbone-level co-design methods (MultiFlow (Campbell et al., 2024)). These models learn joint
distributions over three-dimensional backbone geometries and amino acid sequences for de novo
fold sampling with compatible sequences. They combine continuous backbone representations
(residue frames or atomic coordinates) with discrete or relaxed sequence representations; Protein-
Generator performs diffusion in continuous sequence space coupled to structure prediction networks
for atomic coordinates.
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Table 13: Comparison of diversity incorporation strategies. We report success rate, FoldX ddG
(kcal/mol), and TM-score for proteins of different lengths.

Strategy Success Rate (%) FoldX ddG (kcal/mol) TM-score
0-150 150-300 0-150 150-300 0-150 150-300

(1) Embedding reward 78.65 81.71 -18.681 -23.967 0.836 0.831

(2) Hamming reward 74.63 80.29 -11.135 -23.228 0.836 0.831

(3) Embedding regularization ~ 90.13 91.19 -24.924 -32.805 0.867 0.867

ProteinZero addresses the complementary problem of backbone-conditioned inverse folding. In
practical engineering workflows, enzyme optimization or epitope-specific binder design, backbone
geometry is predetermined by experimental structures, docking simulations, or motif grafting and
must be preserved as a hard constraint. The objective is identifying sequences maximizing stability
and foldability for fixed geometries rather than generating novel backbone shapes. ProteinZero
provides sequence refinement on fixed backbones where structural template preservation is essential.

A fundamental distinction lies in computational tractability for online RL. Applying online RL to
joint sequence-structure generators entails repeated sampling in high-dimensional continuous coor-
dinate space (R3*¥, often including side-chain atoms), with reward evaluation requiring expensive
physics-based simulations or slow structural oracles for geometric validity. ProteinZero operates
in discrete sequence space with efficient proxy rewards (Fast-ddG, ESMFold), demonstrating that
multi-objective, online RL is tractable for sequence optimization. Our evaluation focuses on stan-
dard backbone-conditioned inverse folding benchmarks (CATH-4.3) rather than direct comparison
with de novo atomistic generators. This isolates the online RL algorithm’s contribution: fixed back-
bones ensure the observed 36-48% reduction in design failure rates is attributable to policy opti-
mization and diversity regularization rather than backbone sampling or flexibility.

E ADDITIONAL RESULTS ON DIVERSITY REGULARIZATION STRATEGIES

In the main text, we discuss the impact of incorporating diversity through different strategies. For
completeness, Table 13 reports the detailed numerical results, including success rate, FoldX ddG,
and TM-score for both protein length categories. These results further illustrate that embedding-
based diversity applied as a regularizer preserves stability and structural accuracy, while reward-
based variants lead to significant degradation in performance.

F DIVERSITY REGULARIZER: THEORETICAL FOUNDATION FOR
PREVENTING MODE COLLAPSE

We provide a theoretical analysis of our embedding-level diversity regularizer, demonstrating how
it helps prevent mode collapse in online reinforcement learning. We formalize mode collapse for a
conditional policy py(y | ) as a sharp decrease in policy entropy Hy(Y | X=x) and a contraction of
its effective support. This perspective aligns with maximum-entropy RL, where entropy encourages
stochasticity and prevents brittle policies (Haarnoja et al., 2018; Levine, 2018; Geist et al., 2019).
The standard KL-regularized objective, E[r] — axr, KL(p||prct), yields the Boltzmann distribution
p*(y | ) x pret(y | x)exp(r(x,y)/axr). A small axy, or highly peaked rewards can drive
concentration and an entropy drop, a known mode-seeking behavior (Todorov, 2006; Levine, 2018).

F.1 MEAN-FIELD OBJECTIVE AND PROPERTIES

Let Z = 9(X,Y) € S?! denote the unit-norm embeddings of generated sequences, as con-
structed in Section 3.1.1. For a fixed input z, we simplify notation by considering probabil-
ity measures p(-) = pp(- | x) on sequences y. We define a symmetric kernel c(y,y’) =

cos(vo(x, y), Yo (x,y")).
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Assumption 1 (Absolute continuity and i.i.d. pairing). For each z, the feasible setis {p € A : p(- |
x) K pret(- | )}, ensuring KL(p||pret) is finite. Expectations over pairs (y,y') are taken w.r.t. the
product measure p(- | ) @ p(- | ) (i.i.d. draws).

Remark 1 (Setting and scope of analysis). All variational arguments below fix 6 and the condition-
ing input x, and treat p(-) = py(- | ©) as the optimization variable. We work with discrete sequence
policies, so pyei(y | ) > 0 on the feasible support, making atomic distributions 6, admissible
whenever pres(y* | ) > 0.

Coefficient sign convention. Throughout we assume nonnegative coefficients, in particular agi, > 0
(and axkr, > 0), so that the diversity term acts as a repulsive regularizer.

At the population level, we analyze the regularized functional for any fixed z:

Tp) = Ey~plr(@.y)] — axr KLp || prec(- | 7)) — %

Remark 2. Writing the diversity term as + %4~ (1 - IE[C]) is equivalent up to an additive constant
and yields the same optimizer.

max E le(y, / ) 8
PEA: pKLpres(+|z) Y,y p[ (v, y )] 3

Lemma 1 (Diversity as a penalty on the embedding mean). Under Assumption 1, with Z =
Ve(X,Y) on the unit sphere, the diversity term is the squared norm of the mean embedding:

Eyymp|c(y,y)] = HJEpr [Z]Hz Consequently, the objective
Adiv

Jlp] = Ep[r] — ax . KL(p||pret) — 5

is concave in p. It is strictly concave on the relative interior if axy, > 0.

B, (2]]13

Proposition 1 (Interior fixed point with a non-local repulsive potential). Assume axi, > 0. Any
interior stationary point p* of Eq. 8 (where p*(y) > 0 for all feasible y) satisfies

" 1 i .
Pyl z) < pret(y | x) exp( r(z,y) — —— Po(y; p )>, 9)
QKL oKL
where the potential ®o(y;p) = Eyp[c(y,y)] is a non-local repulsive term. Placing mass on
a sequence y increases the “energy” of other sequences y' with similar embeddings, discouraging
collapse.

F.2 GUARANTEES AGAINST COLLAPSE TO A SINGLE MODE

With aky, > 0, the KL term alone rules out collapse to a point mass (delta distribution). The diver-
sity term adds a non-local repulsion that discourages uni-directional concentration in representation
space.

Theorem 1 (KL barrier to deterministic collapse). Suppose axi, > 0 and Assumption 1 holds. Let
y* be any sequence with pyer(y* | ) > 0. If another sequence y' # y* exists with pyes(y' | ) > 0,
then the point mass p = 0, is not a stationary point of Eq. 8.

Proof. Consider a perturbation p. = (1 —¢)d,+ + 9, for a small € > 0. The change in the reward
term is AJreward = € (r(z,9') — r(x,y*)) + O(e?). For the diversity term, let ¢ = ¢(y*,y’). The
change is A Jgiy = aaqive(1 — ¢) + O(e?). For the KL divergence, the change is

AKL := KL(psHpref) - KL(éy* Hpref)

Dref (y* | $)
=(1—-¢)log(l—¢) + eloge + elog————F——.
pref(y/ | ‘T)
Using (1 — ¢)log(l — &) = —& + O(e?), we find that —ax;, AKL is dominated by the term
—axkreloge. Combining these, the directional derivative of the full objective is:
— TI5. .
lim M = r(;[;’ y/) — r(x7 y*) —+ adiv(l — c)
e—0t €
reward diversity
+ akL <1 —loge — log %) +o(1).
KL barrier
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As e — 0T, the —loge term drives the quotient to +co. Moving probability mass away from
any single point mass 6« thus always increases the objective, meaning J,» cannot be a stationary
point. O

Proposition 2 (No-KL case: finite condition that rules out a delta optimum). If axr, = 0 and there
exists y' # y* such that

r(z,y) —r(z,y") + aav(l—cly*,y)) > 0,
then p = 0y~ is not a (local) maximizer of Eq. 8.
Corollary 1 (Readable sufficient condition). For any y*,y’ with pyet(y* | ), pret(y' | ) > 0

» Ifaky, > 0, then p(- | ) = 0y~ is never stationary (Theorem 1).

* If akr, = 0, a sufficient condition for non-stationarity is v(z,y*) — r(z,y’) < aa (1 —
c(y*,y')), which is the finite, reward—diversity tradeoff stated in Proposition 2.

Remark 3 (Scope of the diversity term). Since E, ,/[c(y,y")] = |E[Z]
discourages uni-directional concentration (single-mode collapse aligned with one embedding direc-
tion). It may not penalize symmetric few-mode collapse where E[Z] ~ 0.

F.3 ENTROPY LOWER BOUND AND IMPLEMENTATION

The diversity regularizer also yields a conservative lower bound on policy entropy. Let Z =
1Ye(X,Y) € S?! and define the cosine kernel k(z,2') = (1 + cos(z,2'))/2 € [0,1]. The in-
formation potential of the embedding distribution vg(- | ) is

142 | X=2) :=E[k(2,2') | X=2] =1 — 1 Deos(0; 2),

Dcos(o;x) =1- E[COS(Z, Z’) | X:Z]

Since HY | X) > H(Y | X) > Ho(Z | X)and Ho(Z | X) > —log I (Z | X), we obtain the
lower bound on policy entropy and perplexity:

1

Ho(Y | X=x) > —log(1 — 3Dcos(0; 2)), Perpy(z) > W (10)
JI13) €

1
2
By Lemma 1, E[cos(Z, Z')] = ||E[Z]||3 € [0,1], hence I}, = 1 (1 + |[E[Z [1/2,1]. Thus the
bound is conservative and cannot exceed log 2 (equivalently, the perplexity lower bound is at most
2). It should be viewed as a safety valve rather than a strong guarantee.

Remark 4 (Mini-batch estimator). In practice we estimate D..s using off-diagonal pairs to avoid
upward bias:

s 1
Blew] = gy o eten ) = MR € [ ]
l#]
= ——— 1
Deos = 1—Ecos] € [O 1—&-71}
When m > 3, 1 — Dcos/2 > 0 holds automatically; for m = 2, a tiny truncation can be applied
before evaluating —log(1 — Deos/2).

The objective in Eq. 8 is implemented in our ProteinZerogapr and ProteinZerogrpo algorithms by
appending the diversity loss term, which induces the repulsive fixed point from Eq. 9 and benefits
from the entropy guarantees of Eq. 10.

G USE ofF LLMS

We acknowledge the use of Large Language Models (LLMs) to assist in the preparation of this
manuscript. LLMs were employed exclusively for language polishing to improve clarity, grammar,
and consistency of technical writing. All scientific content, experimental design, methodology, data
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analysis, and core insights represent original work by the authors. LLMs did not contribute to the
conceptualization, experimentation, or interpretation of results. All factual claims, mathematical
derivations, and experimental outcomes were independently generated and verified by the authors.
The use of LLMs was strictly limited to improving the presentation and readability of our inde-
pendently developed research, serving only as writing aids rather than contributing to the scientific
content itself.
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