

000 001 002 003 004 005 PROTEINZERO: SELF-IMPROVING PROTEIN GENERA- 006 TION VIA ONLINE REINFORCEMENT LEARNING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Protein generative models have shown remarkable promise in protein design, yet their success rates remain constrained by reliance on curated sequence-structure datasets and by misalignment between supervised objectives and real design goals. We present ProteinZero, an online reinforcement learning framework for inverse folding models that enables scalable, automated, and continuous self-improvement with computationally efficient feedback. ProteinZero employs a reward pipeline that combines structural guidance from ESMFold with a novel self-derived ddG predictor, providing stable multi-objective signals while avoiding the prohibitive cost of physics-based methods. To ensure robustness in online RL, we further introduce a novel embedding-level diversity regularizer that mitigates mode collapse and promotes functionally meaningful sequence variation. Within a general RL formulation balancing multi-reward optimization, KL-divergence from a reference model, and diversity regularization, ProteinZero achieves robust improvements across designability, stability, recovery, and diversity. On the CATH-4.3 benchmark, it consistently outperforms state-of-the-art baselines including ProteinMPNN, ESM-IF, and InstructPLM, reducing design failure rates by 36-48% and achieving success rates above 90% across diverse folds. Importantly, a complete RL run can be executed on a single $8 \times$ GPU node within three days, including reward computation and data generation. These results indicate that efficient online RL fine-tuning can complement supervised pretraining by allowing protein generative models to evolve continuously from their own outputs and optimize multiple design objectives without labeled data, opening new possibilities for exploring the vast protein design space.

1 INTRODUCTION

Protein design and engineering represent one of the most promising frontiers in computational biology, with applications spanning drug discovery to novel enzymes (Dauparas et al., 2022; Hsu et al., 2022; Wang et al., 2023a). A central challenge is protein inverse folding: generating amino acid sequences that fold into desired three-dimensional structures (Jing et al., 2021; Zhang & Skolnick, 2005), serving as the foundation for fixed backbone sequence design. This task is crucial as protein backbone structure and side-chain conformation jointly determine functionalities like binding and catalytic interactions. However, optimizing functional properties requires first establishing high designability (designed sequences correctly folding into target structures) and thermodynamic stability (free energy difference favoring folded over unfolded states) as foundational prerequisites. Rocklin et al. (2017) demonstrated that 70-80% of computationally designed proteins fail due to misfolding or instability, with failures persisting in state-of-the-art AI methods (Bennett et al., 2023; Tsuboyama et al., 2023). Moreover, tiny ($\approx 1\text{-}2 \text{ \AA}$) atomic shifts at binding interfaces can disrupt hydrogen-bond geometry and packing, causing large affinity and specificity losses (failure to distinguish intended from off-target binders) (Clackson & Wells, 1995; Bogan & Thorn, 1998; Bajusz et al., 2021).

Recent deep learning breakthroughs including ProteinMPNN (Dauparas et al., 2022), ESM-IF (Hsu et al., 2022), and graph-based methods (Jing et al., 2021; Wang et al., 2023a) have significantly improved inverse folding accuracy. However, these methods train on paired sequence-structure data from the Protein Data Bank (PDB) which, while valuable, represent a minuscule fraction of the protein sequence space (Dauparas et al., 2022; Hsu et al., 2022; Qiu et al., 2024) and exhibit limited diversity and natural biases. This data scarcity creates a ceiling for model performance and restricts

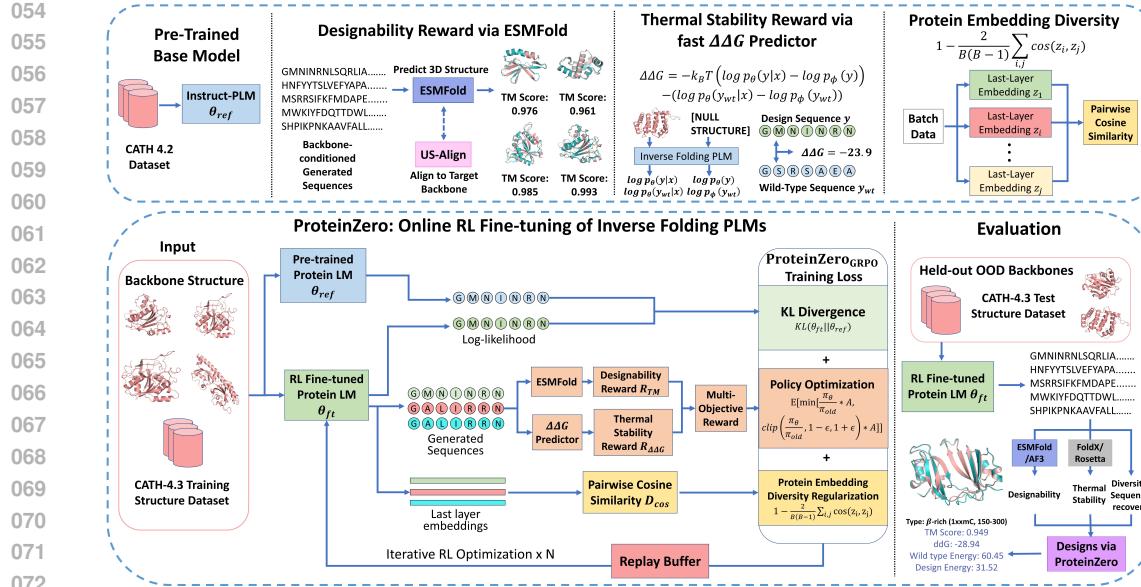


Figure 1: **ProteinZero framework.** **Upper:** Online RL components: ESMFold-based designability (TM-score via US-Align), $\Delta\Delta G$ predictor using backbone-conditioned likelihoods, and embedding diversity regularization. **Lower:** Iterative training where inverse folding models generate sequences, receive multi-objective rewards, and update with KL constraints and diversity regularization. Held-out CATH-4.3 evaluation demonstrates substantial improvements across all key design metrics.

exploration of novel protein designs beyond known natural and synthetic settings (Fujimoto & Gu, 2021; Shumailov et al., 2024). Moreover, there is a misalignment between the supervised learning task of inverse folding and actual objectives in real-world protein design, where applications require high designability, thermal stability, and sequence diversity (providing numerous reliable candidates for experimental validation rather than converging to known patterns) (Watson et al., 2023; Ingraham et al., 2023). Existing alignment efforts have focused on RL-finetuning structural generative models (Campbell et al., 2024; Huguet et al., 2024; Zhou et al., 2024; Gasser et al., 2024; Park et al., 2024), achieving only single- or few-round alignment with curated offline datasets, limiting exploration to known successes rather than discovering novel design principles through iterative feedback.

We propose ProteinZero, an online RL fine-tuning framework that addresses multi-objective optimization challenges in protein design, enabling automated self-improvement of inverse folding models while balancing designability, stability, and diversity. Our contributions are:

1. We present ProteinZero, achieving stable multi-round self-improvement in protein sequence design through continuous exploration without curated preference datasets.
2. We introduce a self-derived $\Delta\Delta G$ estimator computed from the inverse folding model using backbone-conditioned likelihoods normalized by unconditional priors. Combined with ESMFold-based designability rewards, this enables computationally tractable multi-objective online RL optimization (see Table 6).
3. We develop a novel diversity regularizer operating in protein embedding space rather than sequence space, preventing mode collapse (Shumailov et al., 2024; Alemdohammad et al., 2024; Holtzman et al., 2020) while maintaining functional coherence.
4. We elucidate the design space of RL fine-tuning by examining algorithms (GRPO, RAFT, DPO, multi-round DPO), rewards, and regularization strategies, identifying optimal configurations for stable multi-objective optimization without mode collapse.
5. Extensive experiments demonstrate that ProteinZero outperforms existing methods across all key metrics, achieving 36-48% reduction in design failure rates versus ProteinMPNN (Dauparas et al., 2022), ESM-IF (Hsu et al., 2022), and InstructPLM (Qiu et al., 2024), with significant improvements in structural accuracy, stability, and diversity across diverse protein folds including challenging long chains.

108

2 RELATED WORK

110 **Protein Inverse Folding Models.** Inverse folding generates amino acid sequences $y = (y_1, \dots, y_L)$
 111 for target structures x , formulated as conditional generation $p_\theta(y|x)$ with model parameters θ trained
 112 via supervised loss on PDB pairs. Ingraham et al. (2019) pioneered graph neural networks for this
 113 task, extended by ProteinMPNN (Dauparas et al., 2022) with noise-aware training. ESM-IF (Hsu
 114 et al., 2022) leveraged pretrained language models, while GVP-GNN (Jing et al., 2021), StructTrans
 115 (Wang et al., 2023a), PiFold (Gao et al., 2023), and GraDe-IF (Yi et al., 2023) introduced geometric
 116 representations, transformers, co-design, and diffusion respectively. InstructPLM (Qiu et al., 2024)
 117 achieved SOTA by adapting frozen language models via structural prompts (our base architecture).
 118 While achieving strong benchmarks, supervised approaches face inherent constraints: limited PDB
 119 datasets restrict exploration of the vast sequence space, and their objectives, optimizing sequence
 120 recovery, may not align with real design goals of maximizing stability, designability, and diversity.
 121 We extend these foundations through online RL with efficient proxy rewards, enabling continuous
 122 learning from self-generated sequences to directly optimize these multiple design objectives.
 123

124 **RLHF of Protein Generative Models.** Classical RL approaches to biological sequence design
 125 (Angermueller et al., 2020; Runge et al., 2019) train task-specific policies from scratch via un-
 126 conditional generation or local mutations, a different paradigm detailed in Appendix D.1. With
 127 powerful pre-trained protein models, Reinforcement Learning from Human Feedback (RLHF) has
 128 emerged for fine-tuning generative models. RLHF transforms models through online methods like
 129 PPO (Schulman et al., 2017), GRPO (Shao et al., 2024), and RAFT (Dong et al., 2023) that opti-
 130 mize rewards directly, and offline methods like DPO (Rafailov et al., 2023) using static preference
 131 datasets. While successful in LLMs, applying online RLHF to protein models faces both compu-
 132 tational (Table 6) and reward modeling infrastructure challenges. Current protein RLHF work en-
 133 compasses diverse architectures: Campbell et al. (2024) and Huguet et al. (2024) enhance structural
 134 generation with ReFT, Zhou et al. (2024) applies DPO for antibody design, Xu et al. (2025) employ
 135 multi-round DPO for inverse folding with structural feedback, ResidDPO implements residue-level
 136 DPO with pLDDT scores (Xue et al., 2025), and Wang et al. (2025) introduces online fine-tuning
 137 for discrete diffusion sequence models through direct reward backpropagation via Gumbel-Softmax
 138 approximations, which requires differentiable rewards. These methods primarily address structure
 139 generation or co-design tasks, with most operating offline. Offline approaches rely on pre-collected
 140 rewards without iterative learning from self-generated sequences, limiting exploration of protein
 141 design space. We introduce online RL for inverse folding models using policy gradients with non-
 142 differentiable reward proxies, enabling self-improvement in designability, stability, and diversity.
 143

144 **Diversity Regularization.** Promoting diversity in protein generative models is crucial for increas-
 145 ing downstream success rates and maintaining exploration capability in online RL to avoid mode
 146 collapse and reward hacking (Ouyang et al., 2022; Fan et al., 2025; Shumailov et al., 2024) (see
 147 Appendix D.2). Prior work explored sequence-level metrics: Park et al. (2024) employ Hamming
 148 distance as diversity regularizer, operating on raw sequences instead of structure-aware representa-
 149 tions. The DPO-based approach faces challenges in simultaneously optimizing rewards and diver-
 150 sity. We introduce embedding-level diversity regularization that operates in the model’s embedding
 151 space, promoting functionally meaningful variation while preventing mode collapse and maintaining
 152 structural coherence (theoretical derivation in Appendix F, empirical dynamics in Appendix C.3).
 153

154

3 METHOD

155 We propose ProteinZero, a framework that fine-tunes protein generative models through on-
 156 line reinforcement learning. Our approach optimizes a reward-based objective $\mathcal{J}_{\text{RL}}(\theta) =$
 157 $\mathbb{E}_{x \sim \mathcal{D}_x, y \sim p_\theta(\cdot|x)}[r(x, y)] - \alpha_{\text{KL}} \cdot \text{KL}(p_\theta(\cdot|x) \| p_{\text{ref}}(\cdot|x))$, where $r(x, y)$ combines multiple design
 158 objectives including designability and stability, p_{ref} is a reference model (typically the pre-trained
 159 model), and α_{KL} controls divergence from the reference.
 160

161

3.1 PROTEINZERO FRAMEWORK: ADDRESSING MODE COLLAPSE IN ONLINE RL FOR 162 PROTEINS

163 To realize this objective while preventing mode collapse, ProteinZero couples reward optimiza-
 164 tion with novel diversity constraints, enabling stable and effective online learning. The framework
 165

enables continuous exploration beyond pre-collected datasets, discovering novel design principles through iterative feedback.

Reinforcement learning for protein design requires optimizing a model to generate sequences that maximize a reward function while maintaining reasonable proximity to a reference model. In practice, recent RL fine-tuning methods can be unified in this general objective through specialized algorithms that balance exploitation and exploration: $\mathcal{L}(\theta) = \mathcal{L}_{\text{RL}}(\theta) + \mathcal{L}_{\text{KL}}(\theta)$. For instance, in the Group Relative Policy Optimization (GRPO) algorithm, this objective is realized as $\mathcal{L}_{\text{GRPO}}(\theta) = -\mathbb{E}_{(x,y) \sim \mathcal{B}} \left[\min \left(A^* \frac{p_\theta}{p_{\theta_{\text{old}}}}, A^* \text{clip} \left(\frac{p_\theta}{p_{\theta_{\text{old}}}}, 1-\epsilon, 1+\epsilon \right) \right) \right] + \alpha_{\text{KL}} \cdot \text{KL}(p_\theta \| p_{\text{ref}})$ (Shao et al., 2024), where A is the advantage function, $p_{\theta_{\text{old}}}$ is learned policy of last iteration. However, we observed that protein generative models suffer from mode collapse in online RL fine-tuning, converging to a narrow set of solutions that maximize rewards without diversity (see Appendix C.3). Thus, we incorporate a diversity regularization term, resulting in a more comprehensive objective:

$$\mathcal{L}(\theta) = \mathcal{L}_{\text{RL}}(\theta) + \mathcal{L}_{\text{KL}}(\theta) + \mathcal{L}_{\text{Div}}(\theta) \quad (1)$$

While diversity can be promoted by incorporating it directly into the reward, our experiments show this often causes training instability and performance degradation (see Tables 5 and 3). Thus, ProteinZero applies diversity regularization at the representation level through a separate loss $\mathcal{L}_{\text{Div}}(\theta)$, encouraging diversity while preserving the integrity of the main reward optimization (Table 1 and Figure 5).

To enable practical online RL fine-tuning, we address two critical challenges: (1) the lack of effective diversity regularization for protein models, and (2) the prohibitive computational cost of reward evaluation, which can extend training to months. We therefore propose embedding-level diversity regularization and fast reward modeling to make online fine-tuning practically achievable.

3.1.1 EMBEDDING-LEVEL DIVERSITY REGULARIZATION FOR MODE COLLAPSE MITIGATION

To address mode collapse in protein generative models during online RL fine-tuning, we propose a novel diversity regularization operating at the protein embedding level. Unlike token-level diversity metrics which can compromise functional properties, our approach leverages learned representations shown to encode hierarchical biological information from local patterns to functional domains (Simon & Zou, 2024), with embedding distances reflecting functional relationships (Schmirler et al., 2024; Corso et al., 2021; Blaabjerg et al., 2024). For each protein sequence in a batch, we compute a fixed-dimensional embedding vector by aggregating the last-layer decoder activations:

$$z_i(\theta) = \frac{\sum_t m_{i,t} h_{i,t}}{\sum_t m_{i,t}} \in \mathbb{R}^d, \quad 1 \leq i \leq B \quad (2)$$

where $h_{i,t} \in \mathbb{R}^d$ is the decoder activation at position t for sample i , and $m_{i,t} \in \{0, 1\}$ an attention mask. These protein embeddings are ℓ_2 -normalized before computing a cosine-based diversity score: $D_{\text{cos}}(\theta; \mathcal{B}) = 1 - \overline{\cos} \in [0, 1]$, where $\overline{\cos} = \frac{2}{B(B-1)} \sum_{1 \leq i < j \leq B} \cos(z_i, z_j)$. The diversity regularization term is incorporated as:

$$\mathcal{L}_{\text{Div}}(\theta) = -\alpha_{\text{div}} \cdot D_{\text{cos}}(\theta; \mathcal{B}) \quad (3)$$

Since z_i depends on θ , this provides informative gradients that foster the generation of diverse, functionally plausible sequences. Our theoretical analysis (Appendix F) demonstrates how this embedding-based approach mitigates mode collapse in online RL, a contribution applicable beyond protein design. Note that while we optimize embedding-level diversity during training, our evaluation employs standard Hamming distance between sequences to provide an orthogonal assessment of sequence-level diversity. The embedding-level formulation achieves diversity preservation and training stability, validated in ablation studies (Tables 5 and 3) and training dynamics (Appendix C.3).

3.1.2 FAST PROXY REWARDS: ENABLING PRACTICAL ONLINE RL TRAINING

AlphaFold’s MSA and template searches and FoldX’s physics calculations (Table 6) require minutes to hours per protein, making online RL infeasible. We address this with two fast proxy rewards:

Designability Reward: We use ESMFold (Hsu et al., 2022) for structural inference, leveraging its alignment-free, single-pass architecture instead of AlphaFold2/3’s MSA searches and recycling steps (Jumper et al., 2021; Abramson et al., 2024). Our designability reward $r_{\text{TM}}(x, y)$ specifically uses the TM-score from US-Align Zhang et al. (2022), an updated version of TM-Align (Zhang & Skolnick, 2005), computed between ESMFold-predicted and target structures, explicitly not ESMFold’s internal confidence score pTM, ensuring our optimization targets actual structural alignment through length-normalized distance-weighted C_{α} overlaps, not prediction confidence.

Thermal Stability Reward: We propose a novel thermal stability reward $r_{\Delta\Delta G}(x, y)$, serving as a backbone-specific folding-energy surrogate for single-chain proteins, referenced to the PDB wild-type. Because our monomeric setting lacks an inter-chain interface, the unbound-state term required by the Boltzmann-aligned estimator (BA-DDG) (Jiao et al., 2025) is unevaluable. Instead, drawing on evidence that backbone-conditioned likelihoods reflect folding stability (Shanker et al., 2024; Widatalla et al., 2024; Cagiada et al., 2025; Zheng et al., 2023; Ingraham et al., 2019), we normalize this likelihood with an unconditional sequence prior and anchor it to the wild-type baseline:

$$\Delta\Delta G(x, y) = -k_B T [(\log p_{\theta}(y | x) - \log p_{\varphi}(y)) - (\log p_{\theta}(y_{\text{wt}} | x) - \log p_{\varphi}(y_{\text{wt}}))], \quad (4)$$

where $p_{\theta}(y | x)$ is the backbone-conditioned inverse-folding likelihood, $p_{\varphi}(\cdot)$ the unconditional sequence prior, y_{wt} the PDB wild-type sequence, and $k_B T$ the thermal energy at 298 K (0.593 kcal mol⁻¹). The prior $p_{\varphi}(\cdot)$ is obtained by running the same inverse-folding network (e.g., ProteinMPNN or InstructPLM) with coordinate channels masked, converting it into a sequence-only language model capturing residue-frequency and chain-length distributions of proteins. Subtracting $\log p_{\varphi}(y)$ from $\log p_{\theta}(y | x)$ removes background amino-acid composition and chain-length preferences, isolating backbone-specific excess compatibility of candidate sequence y . Hence, using y_{wt} as reference yields a computationally efficient $\Delta\Delta G$ surrogate for monomeric stability optimization.

Multi-objective reward: Our final reward combines both scores after min-max normalization to balance scale differences. Normalization is performed across the candidate pool of inverse folding sequences generated for the same backbone within each reinforcement learning iteration: $\tilde{r}_{\text{TM}} = (r_{\text{TM}} - r_{\text{TM}}^{\min}) / (r_{\text{TM}}^{\max} - r_{\text{TM}}^{\min})$ and $\tilde{r}_{\Delta\Delta G}$ analogously, giving $r(x, y) = \lambda_{\text{TM}} \tilde{r}_{\text{TM}}(x, y) + \lambda_{\Delta\Delta G} \tilde{r}_{\Delta\Delta G}(x, y)$. This reward accelerates evaluation 25-100x depending on protein length (Table 6), reducing training time from months to days. Our experiments show substantial thermodynamic stability improvements with high structural fidelity (see Figure 5 and Table 1).

3.2 PROTEINZERO ALGORITHMS: DIVERSITY-REGULARIZED RAFT AND GRPO

Building upon our general framework, we implement two online RL algorithms for fine-tuning inverse folding models: RAFT and GRPO. We adapt both methods to incorporate our dual-objective reward system, designability scores from ESMFold structures evaluated by US-Align, and self-derived $\Delta\Delta G$ for thermodynamic stability, alongside embedding-level diversity regularization. These adaptations enable different optimization strategies (detailed in Sections 3.2.1 and 3.2.2).

3.2.1 PROTEINZERO_{RAFT}: REWARD-RANKED FINE-TUNING WITH EMBEDDING DIVERSITY

RAFT (Dong et al., 2023) transforms RL into a supervised learning problem by iteratively filtering model outputs based on rewards. Our adaptation generates multiple candidate sequences per target structure, evaluates them with our efficient reward, and retains only the best to form a filtered dataset. Unlike conventional RAFT that incorporates KL-divergence into the reward, we separate the KL term and add our embedding-based diversity regularization (\mathcal{L}_{CE} is the cross entropy loss):

$$\mathcal{L}_{\text{ProteinZero}_{\text{RAFT}}}(\theta) = \mathcal{L}_{\text{CE}}(\theta; \mathcal{D}_{\text{filtered}}) + \alpha_{\text{KL}} \cdot \text{KL}(p_{\theta} \| p_{\text{ref}}) - \alpha_{\text{div}} \cdot D_{\text{cos}}(\theta; \mathcal{D}_{\text{filtered}}) \quad (5)$$

3.2.2 PROTEINZERO_{GRPO}: EMBEDDING-DIVERSIFIED POLICY OPTIMIZATION

GRPO (Shao et al., 2024) directly optimizes the policy via a trust-region objective:

$$\begin{aligned} \mathcal{J}_{\text{GRPO}}(\theta) &= \mathbb{E}_{x \sim P(X), \{y_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(Y|x)} \frac{1}{G} \sum_{i=1}^G \frac{1}{|y_i|} \sum_{t=1}^{|y_i|} \min \left[\frac{\pi_{\theta}(y_{i,t} | x, y_{i,<t})}{\pi_{\theta_{\text{old}}}(y_{i,t} | x, y_{i,<t})} \hat{A}_{i,t}, \right. \\ &\quad \left. \text{clip} \left(\frac{\pi_{\theta}(y_{i,t} | x, y_{i,<t})}{\pi_{\theta_{\text{old}}}(y_{i,t} | x, y_{i,<t})}, 1 - \varepsilon, 1 + \varepsilon \right) \hat{A}_{i,t} \right] - \beta \mathbb{D}_{KL}[\pi_{\theta} || \pi_{\text{ref}}], \end{aligned} \quad (6)$$

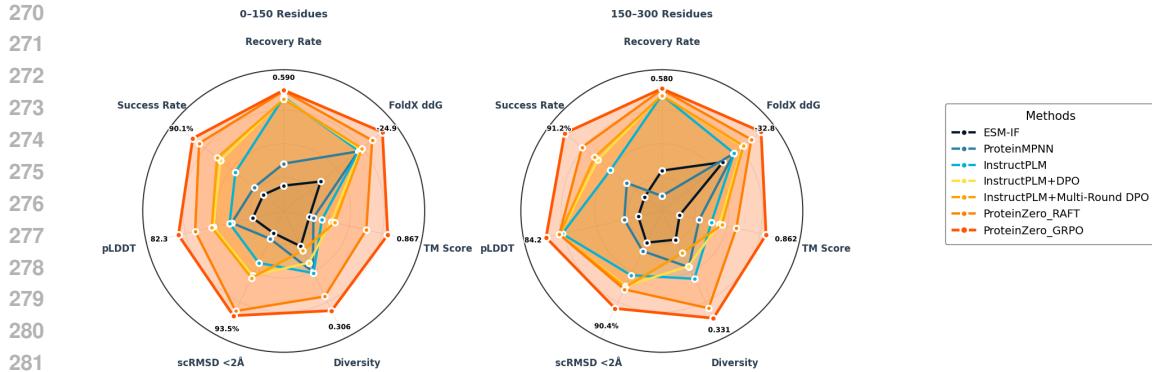


Figure 2: Performance comparison across seven evaluation metrics (Recovery Rate, Stability, TM Score, pLDDT, Diversity, scRMSD $<2\text{\AA}$, and Success Rate) for 0-150 residue proteins (left) and 150-300 residue proteins (right). ProteinZero variants achieve the highest across all metrics.

where ε and β are hyperparameters, and $\hat{A}_{i,t}$ is the advantage calculated from relative rewards within each group. The group relative advantage calculation aligns well with our reward models. Unlike methods that add KL penalty to rewards, GRPO directly adds KL divergence to the loss. We extend this formulation by incorporating our embedding-level diversity regularization ($\mathcal{L}_{\text{GRPO}} = -\mathcal{J}_{\text{GRPO}}$):

$$\mathcal{L}_{\text{ProteinZero}_{\text{GRPO}}}(\theta) = \mathcal{L}_{\text{GRPO}}(\theta) - \alpha_{\text{div}} \cdot D_{\text{cos}}(\theta; \mathcal{B}) \quad (7)$$

Both algorithms effectively implement our ProteinZero framework but approach optimization differently. Our experiments demonstrate that both methods significantly outperform baselines, with ProteinZero_{GRPO} consistently achieving superior performance across evaluated metrics.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Evaluation. We evaluated ProteinZero on CATH-4.3 (Orengo et al., 1997), maintaining the train-test-validation split from Hsu et al. (2022). Our test set excluded structures with $> 40\%$ sequence identity to training proteins of 0-150 residues and $> 30\%$ identity to proteins of 150-300 residues, enabling assessment of out-of-distribution generalization. We trained and evaluated models separately for each length category (0-150, 150-300). We evaluate the models with a comprehensive set of metrics, including designability metrics measured by both ESMFold and AF3 (TM Score, PLDDT, scRMSD), stability measured with our fast-ddG predictor and physics-based FoldX/Rosetta ddG (Schymkowitz et al., 2005)), sequence recovery, and sequence Diversity — see Appendix B.3 for detailed definitions. Overall Success Rate was defined as achieving both scRMSD $< 2 \text{\AA}$ and FoldX ddG < 0 , inspired by Wang et al. (2025).

ProteinZero implementation. We implemented two algorithms: ProteinZero_{RAFT}, which selects the best-rewarded sequences for fine-tuning, and ProteinZero_{GRPO}, which directly optimizes policy using relative rewards, both running for 20 iterations. Both methods employed embedding-level diversity regularization ($\alpha_{\text{div}} = 0.05$) and KL constraints ($\alpha_{\text{KL}} = 0.1$).

Baselines. We compared against state-of-the-art inverse folding models (ProteinMPNN (Dauparas et al., 2022), ESM-IF (Hsu et al., 2022), InstructPLM (Qiu et al., 2024)). For RL-finetuning algorithms, we compare with widely used offline RL baselines including DPO (Rafailov et al., 2023) and multi-round DPO (Xu et al., 2025).

4.2 MAIN RESULTS

Overall Performance Analysis. Table 1 shows ProteinZero consistently outperforms existing methods. Both ProteinZero_{GRPO} and ProteinZero_{RAFT} surpass all baselines, with ProteinZero_{GRPO} achieving best results across metrics (Figure 2). Our approach balances sequence recovery, structural

324
 325 Table 1: Comparison of protein sequence design methods for 0-150 and 150-300 residue proteins.
 326 Success Rate is defined as $\text{scRMSD} < 2\text{\AA}$ and $\text{FoldX ddG} < 0$. Best scores are highlighted in blue,
 327 second-best in green. Designability metrics computed by ESMFold (independent AF3 evaluations
 328 confirm the same trend, see Table 2). All results are mean \pm s.e. over 10 independent runs.
 329

Length	Method	InverseFold Acc.		Thermal Stability Metrics		Designability Metrics			Overall Success (%) \uparrow		
		Recovery Rate \uparrow	Fast-ddG \downarrow	FoldX ddG \downarrow	TM Score \uparrow	PLDDT \uparrow	Diversity \uparrow	scRMSD \downarrow (scRMSD $< 2\text{\AA}$ \uparrow)			
<i>Base Model</i>											
<i>SOTA Inverse Folding Models</i>											
0-150 residues	InstructPLM	0.574 \pm 0.009	-21.543 \pm 1.330	-20.878 \pm 1.445	0.812 \pm 0.011	79.983 \pm 0.614	0.281 \pm 0.007	1.484 \pm 0.044 (85.71% \pm 0.002)	84.45% \pm 0.0002		
	ProteinMPNN	0.426 \pm 0.006	-21.509 \pm 1.230	-20.792 \pm 1.207	0.805 \pm 0.009	79.883 \pm 0.502	0.280 \pm 0.005	1.500 \pm 0.037 (82.14% \pm 0.002)	81.95% \pm 0.0002		
	ESM-IF	0.377 \pm 0.006	-17.900 \pm 1.235	-14.328 \pm 1.269	0.802 \pm 0.009	78.918 \pm 0.534	0.263 \pm 0.005	1.515 \pm 0.038 (81.25% \pm 0.002)	80.71% \pm 0.0002		
	<i>RL Baseline Method</i>										
	DPO	0.571 \pm 0.008	-21.713 \pm 1.260	-21.191 \pm 1.332	0.820 \pm 0.010	80.716 \pm 0.571	0.274 \pm 0.005	1.473 \pm 0.041 (87.58% \pm 0.002)	86.44% \pm 0.0002		
	Multi-Round DPO	0.569 \pm 0.008	-21.797 \pm 1.312	-21.423 \pm 1.398	0.823 \pm 0.011	80.797 \pm 0.585	0.266 \pm 0.005	1.468 \pm 0.043 (87.95% \pm 0.002)	86.89% \pm 0.0003		
	<i>Our Online RL Methods</i>										
	ProteinZero _{RAFT} (Ours)	0.587 \pm 0.008	-22.236 \pm 1.272	-23.168 \pm 1.356	0.849 \pm 0.011	81.560 \pm 0.613	0.296 \pm 0.007	1.393 \pm 0.044 (92.86% \pm 0.003)	89.29% \pm 0.0002		
	ProteinZero _{GRPO} (Ours)	0.590 \pm 0.008	-22.616 \pm 1.327	-24.924 \pm 1.382	0.867 \pm 0.011	82.326 \pm 0.612	0.306 \pm 0.007	1.373 \pm 0.044 (93.55% \pm 0.003)	90.13% \pm 0.0002		
	<i>Base Model</i>										
150-300 residues	InstructPLM	0.570 \pm 0.009	-36.362 \pm 2.451	-27.145 \pm 1.797	0.824 \pm 0.014	83.783 \pm 0.568	0.305 \pm 0.008	1.448 \pm 0.048 (88.24% \pm 0.002)	86.38% \pm 0.0002		
	<i>SOTA Inverse Folding Models</i>										
	ProteinMPNN	0.405 \pm 0.007	-35.778 \pm 2.280	-27.057 \pm 1.581	0.816 \pm 0.012	82.361 \pm 0.548	0.297 \pm 0.006	1.469 \pm 0.040 (86.64% \pm 0.002)	84.67% \pm 0.0002		
	ESM-IF	0.446 \pm 0.008	-32.125 \pm 2.207	-24.816 \pm 1.548	0.802 \pm 0.013	82.042 \pm 0.536	0.279 \pm 0.006	1.487 \pm 0.042 (86.09% \pm 0.002)	82.81% \pm 0.0002		
	<i>RL Baseline Method</i>										
	DPO	0.570 \pm 0.009	-36.417 \pm 2.325	-28.915 \pm 1.571	0.830 \pm 0.013	83.837 \pm 0.506	0.296 \pm 0.008	1.441 \pm 0.042 (88.97% \pm 0.002)	87.70% \pm 0.0002		
	Multi-Round DPO	0.569 \pm 0.009	-36.483 \pm 2.402	-29.087 \pm 1.612	0.831 \pm 0.014	83.840 \pm 0.519	0.288 \pm 0.008	1.437 \pm 0.044 (89.04% \pm 0.003)	88.05% \pm 0.0002		
	<i>Our Online RL Methods</i>										
	ProteinZero _{RAFT} (Ours)	0.578 \pm 0.009	-37.575 \pm 2.391	-30.755 \pm 1.661	0.841 \pm 0.013	83.850 \pm 0.542	0.324 \pm 0.008	1.427 \pm 0.046 (89.17% \pm 0.002)	89.36% \pm 0.0002		
	ProteinZero _{GRPO} (Ours)	0.580 \pm 0.009	-40.626 \pm 2.422	-32.805 \pm 1.694	0.862 \pm 0.013	84.154 \pm 0.539	0.331 \pm 0.009	1.393 \pm 0.045 (90.43% \pm 0.002)	91.19% \pm 0.0002		

344 accuracy, and stability while learning from self-generated outputs without additional labels. Importantly, although we only use TM-score (ESMFold/US-Align) and self-derived $\Delta\Delta G$ as rewards (Section 3.1.2), our evaluation uses orthogonal metrics, FoldX ddG for stability, pLDDT/scRMSD for structure, recovery/diversity for sequences, demonstrating genuine gains beyond reward hacking. Independent AlphaFold3 evaluation also confirms these improvements are generalizable (see Tables 2 and 8). For example, ProteinZero_{GRPO} achieves success rates 90.13% and 91.19% for 0-150 and 150-300 residues, respectively, reducing failure rates by 45% (from 18.05% to 9.87%) compared to ProteinMPNN for small proteins. Notably, compared to InstructPLM, we simultaneously improve recovery (0.574 \rightarrow 0.590) and diversity (0.281 \rightarrow 0.306), two traditionally conflicting objectives, demonstrating its ability to balance sequence conservation with exploration.

354
 355 **Comparison with DPO-based fine-tuning.** We next compare ProteinZero with widely used DPO
 356 variants to illustrate the advantages of online RL. Regular DPO improves InstructPLM’s success
 357 rate modestly (84.45% \rightarrow 86.89% for 0-150 residues), while Multi-Round DPO further raises it
 358 slightly to 86.89%. However, both variants reduce sequence diversity below the baseline: DPO
 359 lowers it from 0.281 to 0.274 and Multi-Round DPO further to 0.266. In contrast, ProteinZero_{GRPO}
 360 reaches 90.13% success and enhances diversity to 0.306. This divergence reflects a broader trend:
 361 offline methods progressively converge toward narrower solution spaces, limiting exploration of
 362 novel sequences. Online RL with diversity regularization maintains an exploration-exploitation
 363 balance, yielding not only higher diversity but also better structural generalization, as seen in improved
 364 scRMSD (1.373 \AA vs. 1.473 \AA for DPO). Similar patterns hold for larger proteins, where Multi-
 365 Round DPO increases success rate only modestly (86.38% \rightarrow 88.05%) but still reduces diversity to
 366 0.288, whereas ProteinZero achieves both higher success (91.19%) and greater diversity (0.331).

367
 368 **Comparison with SOTA Inverse Folding Models.** We further compare ProteinZero against state-
 369 of-the-art inverse folding models. Starting from InstructPLM (Qiu et al., 2024) as our base model,
 370 ProteinZero_{GRPO} improves TM-score (0.812 \rightarrow 0.867), stability (FoldX ddG: -20.878 \rightarrow -24.924
 371 kcal/mol), diversity (0.281 \rightarrow 0.306), and success rate (84.45% \rightarrow 90.13%) for short proteins. Simi-
 372 lar gains are observed for longer proteins, where success rate increases from 86.38% to 91.19%
 373 and stability improves by 21% (-27.145 \rightarrow -32.805 kcal/mol). Compared with other leading in-
 374 verse folding models, ProteinZero achieves consistently higher success rates, outperforming Pro-
 375 teinMPNN (Dauparas et al., 2022) (81.95%) and ESM-IF (Hsu et al., 2022) (80.71%) across both
 376 size ranges. Qualitative visualizations (Figure 5) further support these findings, highlighting Pro-
 377 teinZero’s ability to generate stable designs with high structural fidelity.

378
 379 **Effectiveness of fast-ddg reward.** ProteinZero_{GRPO} achieves substantial gains in thermo-stability
 380 compared to InstructPLM, improving FoldX ddG by 19% (from -20.878 to -24.924 kcal/mol) for
 381 0-150 residues and 21% (from -27.145 to -32.805 kcal/mol) for 150-300 residues. Unlike single-

378 Table 2: Independent validation of 150-300 residue proteins using AlphaFold3 versus ESMFold.
 379 Best scores are highlighted in blue, second-best in green.
 380

381 Method	382 TM Score ↑ ESMFold AF3		383 PLDDT ↑ ESMFold AF3		384 scRMSD ↓ ESMFold AF3		385 scRMSD <2Å (%) ↑ ESMFold AF3		386 Success Rate (%) ↑ ESMFold AF3	
<i>Base Model</i>										
InstructPLM	0.8241	0.8418	83.78	85.86	1.4476	1.4018	88.24	90.12	86.38	88.41
<i>Offline RL Baselines</i>										
DPO	0.8296	0.8454	83.84	85.92	1.4407	1.3978	88.97	90.58	87.70	89.31
Multi-Round DPO	0.8313	0.8467	83.84	85.94	1.4372	1.3953	89.04	90.67	88.05	89.56
<i>Our Online RL Methods</i>										
ProteinZero _{RAFT}	0.8413	0.8548	83.85	86.03	1.4271	1.3891	89.17	90.72	89.36	90.64
ProteinZero _{GRPO}	0.8617	0.8718	84.15	86.19	1.3925	1.3598	90.43	91.76	91.19	92.27

391
 392 objective methods that trade stability for other properties, ProteinZero simultaneously improves
 393 TM-score (0.812 to 0.867), diversity (0.281 to 0.306), recovery (0.574 to 0.590), and success rate
 394 (84.45% to 90.13%) for small proteins, with similar improvements for larger ones (see Table 1;
 395 extended metrics with wild-type and generated absolute energies in Table 12, Appendix C.5).

397 4.3 CASE STUDY ON DIVERSE PROTEIN FOLDS AND COMPLEX PROTEIN DESIGN TASKS

398
 399 **Stabilization of Natural Proteins for Therapeutic Value:** Our visual comparison in Figure 5
 400 shows ProteinZero converts naturally unstable proteins into stable designs while maintaining struc-
 401 tural fidelity. For challenging targets like membrane proteins and β -barrels, for example, our method
 402 achieves substantial stability improvements. The β -barrel structure (4FD5 chain A) transforms from
 403 unstable wild-type (FoldX ddG: 25.75 kcal/mol) to a stable design (-34.18 kcal/mol), while the
 404 membrane protein (2W7T chain A) improves from 42.01 to -36.09 kcal/mol. These results show
 405 ProteinZero’s optimization of sequence-structure relationships, generating stability profiles valuable
 406 for therapeutic and industrial applications. By consistently producing designs with high structural
 407 accuracy and thermodynamic stability across α -helical, β -sheet, and mixed α/β folds, our approach
 408 expands the design space. While these computational evaluation metrics are promising, experimen-
 409 tal validation remains essential to confirm functional properties.

410
 411 **Performance Scaling Across Protein Complexity:** When compared with InstructPLM (our base
 412 model), ProteinZero demonstrates consistent improvements across diverse protein architectures. For
 413 challenging β -rich structures, our approach achieves higher structural accuracy (TM-score: 0.949
 414 vs 0.910 for 1XXM chain C) and improved stability (FoldX ddG: -28.94 vs -8.94 kcal/mol).
 415 These gains extend across β -sheets, α/β mixed domains, and α -helical structures, as shown in
 416 Figure 5. ProteinZero delivers substantial improvements for both protein size categories: for 0-
 417 150 residues, success rate increases from 84.45% to 90.13%, stability improves from -20.878 to
 418 -24.924 kcal/mol, and diversity rises from 0.281 to 0.306. For 150-300 residues, we observe com-
 419 parable gains: success rate from 86.38% to 91.19%, stability from -27.145 to -32.805 kcal/mol,
 420 and diversity from 0.305 to 0.331. The maintained performance improvements for larger proteins
 421 suggest our reinforcement learning framework handles increased structural complexity effectively.

422 4.4 EXPLORING THE DESIGN SPACE OF ONLINE RL FOR FINE-TUNING PROTEIN 423 GENERATIVE MODELS

424
 425 **Reward Model Designs:** Our ablation studies demonstrate that combining TM-score and stability
 426 rewards yields the highest overall success rates, consistently outperforming single-objective settings.
 427 For proteins of 0-150 residues, the combined reward achieves 90.13% success, compared to 89.52%
 428 with TM-score only and 85.15% with stability only. For larger proteins (150-300 residues), success
 429 rates are 91.19% for the combined setting, versus 89.76% and 87.38%, respectively. Examining the
 430 individual objectives explains this gap: optimizing only TM-score achieves the best structural ac-
 431 curacy (TM: 0.874 vs. 0.867 for the combined setting, 0-150 residues) but reduces stability, while
 432 optimizing only stability improves FoldX ddG (-25.381 vs. -24.924 kcal/mol) but compromises
 433 structural accuracy (TM: 0.831 vs. 0.867). By contrast, the combined reward balances both criteria,
 434 closing the trade-off and substantially reducing design failures.

432 Table 3: Ablation studies for 150-300 residue proteins across three design dimensions: reward
 433 models, learning objectives, and diversity regularization strategies. Best results highlighted in blue.
 434

435 Design Configuration	436 InverseFold Acc.		437 Thermal Stability Metrics		438 Designability Metrics			439 Overall Success (%) ↑
	440 Recovery Rate ↑	441 Fast-ddG ↓	442 FoldX ddG ↓	443 TM Score ↑	444 PLDDT ↑	445 Diversity ↑	446 scRMSD ↓ (scRMSD < 2 Å % ↑)	
<i>Design Dimension 1: Reward Model Formulation</i>								
Only TM-score as Reward	0.577	-35.793	-25.905	0.870	84.237	0.333	1.384 (91.25%)	89.76%
Only ddG as Reward	0.574	-42.769	-35.927	0.831	83.540	0.327	1.447 (88.52%)	87.38%
Full ProteinZero (TM+ddG)	0.580	-40.626	-32.805	0.862	84.154	0.331	1.393 (90.43%)	91.19%
<i>Design Dimension 2: Learning Objective Components</i>								
Without Diversity Term	0.580	-37.905	-31.185	0.860	84.065	0.281	1.401 (89.71%)	91.32%
Without KL Term	0.569	-40.688	-33.193	0.835	83.008	0.328	1.440 (89.08%)	87.92%
Full ProteinZero (All Terms)	0.580	-40.626	-32.805	0.862	84.154	0.331	1.393 (90.43%)	91.19%
<i>Design Dimension 3: Diversity Regularization Strategies</i>								
Diversity as Reward	0.558	-33.904	-23.967	0.849	83.326	0.315	1.421 (89.32%)	81.71%
Hamming Distance as Reward	0.568	-32.128	-23.228	0.836	83.668	0.294	1.432 (89.14%)	80.29%
Full ProteinZero (Embedding Diversity)	0.580	-40.626	-32.805	0.862	84.154	0.331	1.393 (90.43%)	91.19%

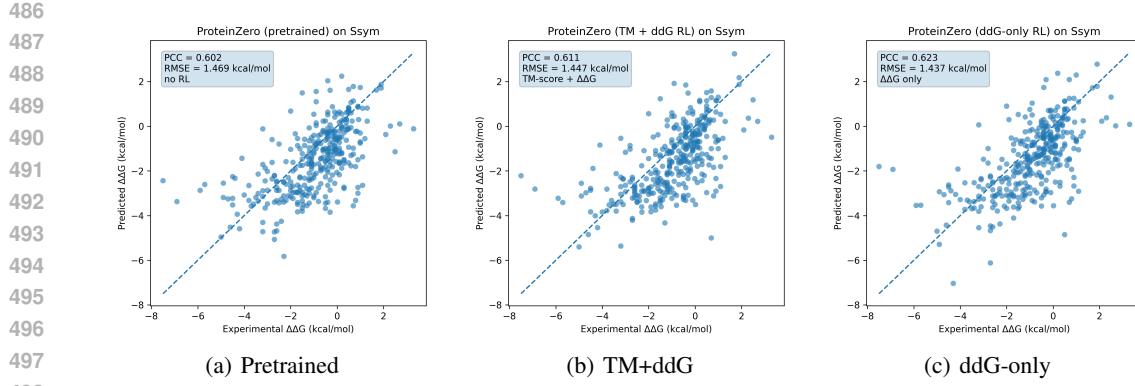
447 **Learning Objective Components:** We ablate the diversity regularization and KL divergence to as-
 448 sess their contributions (Tables 5 and 3). Removing the diversity regularization marginally improves
 449 success rate (90.23% vs. 90.13% for 0-150 residues, 91.32% vs. 91.19% for 150-300 residues),
 450 but significantly reduces sequence diversity from 0.306 to 0.268 for 0-150 residues and from 0.331
 451 to 0.281 for 150-300 residues. This 12-15% reduction in diversity indicates convergence to a nar-
 452 rrower solution space, limiting its ability to explore functionally diverse sequences, a key concern
 453 with offline RL methods. By contrast, removing KL divergence causes severe degradation: success
 454 rate drops by nearly 4%, TM-score declines by around 0.03, and pLDDT decreases by around 1.3,
 455 reflecting both reduced structural accuracy and confidence. These results show KL regularization is
 456 essential for stable optimization and preventing catastrophic forgetting, while diversity regulariza-
 457 tion, though slightly reducing peak performance, preserves exploration crucial for discovering novel
 458 protein designs beyond the training distribution.

459 **Diversity Regularization Strategies:** We compare three strategies for incorporating diversity into
 460 the optimization process (Tables 5 and 3; detailed results in Appendix Table 13): embedding-based
 461 diversity as a reward, Hamming distance as a reward, and embedding-based diversity as a regular-
 462 ization term in the loss. Introducing diversity directly into the reward sharply reduces performance,
 463 with success rates falling to 78.65% and 81.71%, and stability values deteriorating relative to the
 464 baseline. Using Hamming distance performs even worse, lowering success rates to 74.63% and
 465 80.29% and further degrading stability and structural accuracy. By contrast, applying embedding-
 466 based diversity as a regularizer maintains success rates of 90.13% and 91.19%, preserves sequence
 467 diversity at 0.306 and 0.331, and avoids losses in stability or accuracy. These results indicate that
 468 reward-based diversity introduces conflicting signals that destabilize training, whereas regularization
 469 provides consistent gradients that encourage exploration while safeguarding functional objectives.

470 The ablation studies validate our design choices and highlight the importance of balancing multiple
 471 objectives in online RL for protein design. ProteinZero navigates these trade-offs through separated
 472 optimization signals, multi-objective rewards for primary objectives, and regularization for explo-
 473 ration and stability, yielding a robust approach generalizing across protein sizes and architectures.

474 4.5 FAST-DDG ACCURACY FOR PREDICTING MUTATIONAL $\Delta\Delta G$ USING WET-LAB 475 VALIDATED DATA

476 We assess Fast-ddG correlation with experimental measurements on the Ssym benchmark (Pucci
 477 et al., 2018), comprising 684 single-point mutations with calorimetrically measured $\Delta\Delta G$ val-
 478 ues. Consistent with Eq. 4, we evaluate 342 wild-type → mutant transitions by computing stabil-
 479 ity changes on wild-type backbones. Table 10 (Appendix C.4) compares our predictor against
 480 physics-based oracles (FoldX, Rosetta) and supervised predictors (ThermoMPNN (Dieckhaus et al.,
 481 2024), ThermoNet (Li et al., 2020), PROSTATA (Umerenkov et al., 2022)). Across three con-
 482 figurations, pretrained, Fast-ddG-only, and TM-score + Fast-ddG, our predictor achieves RMSE
 483 1.44–1.47 kcal/mol and PCC 0.60–0.62, matching FoldX (RMSE: 1.56, PCC: 0.63) while oper-
 484 ating 236–760× faster (Tables 6–7). This represents 56% RMSE reduction versus ProteinMPNN
 485 (3.38 kcal/mol, PCC: 0.26), demonstrating gains from specialized optimization. While Thermo-
 486 MPNN achieves superior performance (1.12, 0.72), it requires supervised training and handles
 487 only single-residue perturbations, whereas our unsupervised, self-derived predictor generalizes to



499
500
501
502
503
504

Figure 3: Fast-ddG predictor performance on the Ssym dataset with 342 wet-lab validated single-point mutations (wild-type \rightarrow mutant). Each subfigure shows predicted versus experimental $\Delta\Delta G$ values for different model variants: (a) pretrained model before RL fine-tuning, (b) fine-tuned with joint TM-score + Fast-ddG rewards, (c) fine-tuned with Fast-ddG reward only. All variants achieve comparable correlation with experimental measurements (PCC ≈ 0.60 – 0.62 , RMSE ≈ 1.44 – 1.47 kcal/mol).

505
506
507
508
509

Table 4: Per-protein performance of the Fast-ddG surrogate on Ssym dataset (342 single-point direct mutations, wild-type \rightarrow mutant direction). We report the number of mutations per PDB (n_{mut}), per-protein RMSE (kcal/mol), and PCC for the pretrained and fine-tuned Fast-ddG variants. Best results highlighted in blue.

510
511
512
513
514
515
516
517

PDB	n_{mut}	RMSE (kcal/mol) \downarrow			PCC \uparrow		
		Pretrained	Fast-ddG only	TM-score + Fast-ddG	Pretrained	Fast-ddG only	TM-score + Fast-ddG
1L63	118	1.36	1.30	1.33	0.58	0.66	0.60
2LZM	66	1.16	1.13	1.13	0.74	0.75	0.75
1LZ1	61	1.22	1.12	1.18	0.76	0.78	0.79
1BNI	13	1.09	1.03	1.25	0.62	0.70	0.59

518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

full sequence redesigns. Per-protein analysis (Table 4) confirms improvements generalize across diverse targets rather than reflecting outlier bias. For the four largest proteins (1L63, 2LZM, 1LZ1, 1BNI; 72.5% of mutations), fine-tuning consistently reduces RMSE, with Fast-ddG-only achieving best correlation on three of four. On 1L63 (118 mutations), RMSE improves from 1.36 to 1.30 kcal/mol and PCC from 0.58 to 0.66. Representative cases with substantial error reductions appear in Table 11 (Appendix C.4). Figure 3 shows linear correspondence (PCC ≈ 0.60 – 0.62) with reduced scatter post-tuning. These results establish that Fast-ddG, though derived from unsupervised likelihood ratios and optimized for full-sequence inverse folding, achieves accuracy comparable to physics-based benchmarks while maintaining computational efficiency for online RL.

5 CONCLUSION

530
531
532
533
534
535
536
537
538
539

We presented ProteinZero, an online reinforcement learning framework that enables protein generative models to improve beyond supervised pretraining by learning from their own outputs. It integrates two methodological advances: a fast, unsupervised ddG predictor for efficient stability signals and an embedding-level diversity regularizer that prevents collapse while encouraging meaningful variation. These components make online RL tractable for protein design and offer insights for broader RLHF by addressing efficiency and diversity collapse. Experiments show consistent multi-objective gains across structural accuracy, stability, recovery, and diversity, including on challenging folds such as β -barrels and membrane proteins. While evaluation relies on in-silico metrics and requires wet-lab validation, the results demonstrate that efficient online RL can complement supervised methods through scalable feedback, expanding the accessible design space and supporting applications in therapeutics, enzymes, and synthetic biology.

540
541
ETHICS STATEMENT542
543
544
545
546
547
548
549
550
551
552
553
Our work on ProteinZero focuses on computational methods for protein design optimization. All experiments were conducted using publicly available datasets (CATH 4.3) and computational simulations without any wet-lab experimentation or use of biological materials. We acknowledge that while our method demonstrates improvements in computational metrics, these results require experimental validation before any practical application. The potential applications of improved protein design methods span therapeutic development, industrial biotechnology, and basic research. We emphasize that any deployment of designed proteins must follow established safety protocols, regulatory frameworks, and ethical guidelines for biological research. The computational nature of our work poses minimal direct ethical concerns, but we recognize the importance of responsible development and deployment of AI systems in biological design. We commit to making our code publicly available to ensure transparency and enable the research community to build upon and scrutinize our work.554
555
REPRODUCIBILITY STATEMENT556
557
558
559
560
561
To ensure our results are fully reproducible, we provide comprehensive details of our methodology and experimental setup. Our framework is described in Section 3, which details the core online RL objective, our novel embedding-level diversity regularizer (Section 3.1.1), the time-efficient reward models (Section 3.1.2), and the specific algorithms, ProteinZero_{RAFT} (Section 3.2.1) and ProteinZero_{GRPO} (Section 3.2.2).562
563
564
565
566
567
568
569
570
571
572
Our experimental setup, including the use of the public CATH 4.3 dataset, specific train-test splits, and evaluation metrics, is detailed in Section 4 and Appendix B.3. Full implementation details, including all hyperparameters, software dependencies, baseline methods, and computational resource requirements are provided in Appendix B. Our work builds upon the publicly available InstructPLM model, and all evaluation tools (ESMFold, US-align, AlphaFold3, FoldX, and Rosetta) are open-source. As a demonstration, we provide example protein sequences generated by ProteinZero_{GRPO} as .pdb files in the supplementary material, following the naming convention: ProteinZero_GRPO_[TargetPDB]_[Chain]_designed.pdb (e.g., ProteinZero_GRPO_2hls_A_designed.pdb), where TargetPDB is the original PDB identifier and Chain specifies the protein chain used as the structural template. Upon publication, we will release our complete source code, pre-trained model checkpoints, evaluation scripts, and detailed documentation to facilitate replication of our findings.573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594 REFERENCES
595

596 Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
597 Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambbrick, et al. Accurate structure
598 prediction of biomolecular interactions with alphafold 3. *Nature*, 630(8016):493–500, 2024.

599 Sina Alemohammad, Josue Casco-Rodriguez, Lorenzo Luzi, Ahmed Imtiaz Humayun, Hossein
600 Babaei, Daniel LeJeune, Ali Siahkoohi, and Richard G. Baraniuk. Self-consuming gener-
601 ative models go MAD. In *The Twelfth International Conference on Learning Representa-
602 tions, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=ShjMHfmPs0>.

603 Christof Angermueller, David Dohan, David Belanger, Ramya Deshpande, Kevin Murphy, and Lucy
604 Colwell. Model-based reinforcement learning for biological sequence design. In *International
605 Conference on Learning Representations*, 2020. URL <https://openreview.net/forum?id=Hk1xbgBKvr>.

606 Dávid Bajusz, Warren S Wade, Grzegorz Satała, Andrzej J Bojarski, Janez Ilaš, Jessica Ebner, Flo-
607 rian Grebien, Henrietta Papp, Ferenc Jakab, Alice Douangamath, et al. Exploring protein hotspots
608 by optimized fragment pharmacophores. *Nature Communications*, 12(1):3201, 2021.

609 Nathaniel R Bennett, Brian Coventry, Inna Goreshnik, Buwei Huang, Aza Allen, Dionne Vafeados,
610 Ying Po Peng, Justas Dauparas, Minkyung Baek, Lance Stewart, et al. Improving de novo protein
611 binder design with deep learning. *Nature Communications*, 14(1):2625, 2023.

612 Lasse M Blaabjerg, Nicolas Jonsson, Wouter Boomsma, Amelie Stein, and Kresten Lindorff-Larsen.
613 Ssemb: A joint embedding of protein sequence and structure enables robust variant effect predic-
614 tions. *Nature Communications*, 15(1):9646, 2024.

615 Andrew A Bogan and Kurt S Thorn. Anatomy of hot spots in protein interfaces. *Journal of molecular
616 biology*, 280(1):1–9, 1998.

617 Aron Broom, Zachary Jacobi, Kyle Trainor, and Elizabeth M Meiering. Computational tools help
618 improve protein stability but with a solubility tradeoff. *Journal of Biological Chemistry*, 292(35):
619 14349–14361, 2017.

620 Oliver Buß, Jens Rudat, and Katrin Ochsenreither. Foldx as protein engineering tool: better than
621 random based approaches? *Computational and structural biotechnology journal*, 16:25–33, 2018.

622 Matteo Cagiada, Sergey Ovchinnikov, and Kresten Lindorff-Larsen. Predicting absolute protein
623 folding stability using generative models. *Protein Science*, 34(1):e5233, 2025.

624 Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
625 flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
626 *arXiv preprint arXiv:2402.04997*, 2024.

627 Longxing Cao, Inna Goreshnik, Brian Coventry, James Brett Case, Lauren Miller, Lisa Kozodoy,
628 Rita E Chen, Lauren Carter, Alexandra C Walls, Young-Jun Park, et al. De novo design of
629 picomolar sars-cov-2 miniprotein inhibitors. *Science*, 370(6515):426–431, 2020.

630 Alexander E Chu, Jinho Kim, Lucy Cheng, Gina El Nesr, Minkai Xu, Richard W Shuai, and Po-Ssu
631 Huang. An all-atom protein generative model. *Proceedings of the National Academy of Sciences*,
632 121(27):e2311500121, 2024.

633 Tim Clackson and James A Wells. A hot spot of binding energy in a hormone-receptor interface.
634 *Science*, 267(5196):383–386, 1995.

635 Gabriele Corso, Zhitao Ying, Michal Pándy, Petar Veličković, Jure Leskovec, and Pietro Liò. Neu-
636 ral distance embeddings for biological sequences. *Advances in Neural Information Processing
637 Systems*, 34:18539–18551, 2021.

638 Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
639 Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
640 reasoning language models. *arXiv preprint arXiv:2505.22617*, 2025.

648 Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F Milles,
 649 Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep learning–
 650 based protein sequence design using proteinmpnn. *Science*, 378(6615):49–56, 2022.

651

652 Kieran Didi, Prashant Sohani, Fabian Berressem, Alexander Nesterovskiy, Boris Fomitchev, Robert
 653 Ohannessian, Mohamed Elbalkini, Jonathan Cogan, Anthony Costa, Arash Vahdat, et al. Highly
 654 efficient protein structure prediction on nvidia rtx blackwell and grace-hopper.

655 Henry Dieckhaus, Michael Brocidacono, Nicholas Z Randolph, and Brian Kuhlman. Transfer learning
 656 to leverage larger datasets for improved prediction of protein stability changes. *Proceedings
 657 of the national academy of sciences*, 121(6):e2314853121, 2024.

658

659 Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
 660 Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
 661 foundation model alignment. *arXiv preprint arXiv:2304.06767*, 2023.

662 Jiajun Fan, Shuaikе Shen, Chaoran Cheng, Yuxin Chen, Chumeng Liang, and Ge Liu. Online
 663 reward-weighted fine-tuning of flow matching with wasserstein regularization. In *The Thirteenth
 664 International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=2IoffExvuw>.

665

666 Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
 667 *Advances in neural information processing systems*, 34:20132–20145, 2021.

668

669 Zhangyang Gao, Cheng Tan, and Stan Z. Li. Pifold: Toward effective and efficient protein inverse
 670 folding. In *The Eleventh International Conference on Learning Representations*, 2023. URL
 671 <https://openreview.net/forum?id=oMsN9TYwJ0j>.

672

673 Hans-Christof Gasser, Diego A Oyarzún, Javier Alfaro, and Ajitha Rajan. Integrating mhc class i
 674 visibility targets into the proteinmpnn protein design process. *bioRxiv*, pp. 2024–06, 2024.

675

676 Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized markov decision
 677 processes. In *International conference on machine learning*, pp. 2160–2169. PMLR, 2019.

678

679 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
 680 maximum entropy deep reinforcement learning with a stochastic actor. In *International conference
 681 on machine learning*, pp. 1861–1870. Pmlr, 2018.

682

683 Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
 684 degeneration. In *8th International Conference on Learning Representations, ICLR 2020, Addis
 685 Ababa, Ethiopia, April 26-30, 2020*. OpenReview.net, 2020. URL <https://openreview.net/forum?id=rygGQyrFvH>.

686

687 Chloe Hsu, Robert Verkuil, Jason Liu, Zeming Lin, Brian Hie, Tom Sercu, Adam Lerer, and Alexander
 688 Rives. Learning inverse folding from millions of predicted structures. In Kamalika Chaudhuri,
 689 Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), *International
 690 Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA*, vol-
 691 ume 162 of *Proceedings of Machine Learning Research*, pp. 8946–8970. PMLR, 2022. URL
<https://proceedings.mlr.press/v162/hsu22a.html>.

692

693 Guillaume Huguet, James Vuckovic, Kilian Fatras, Eric Thibodeau-Laufer, Pablo Lemos, Riashat
 694 Islam, Cheng-Hao Liu, Jarrid Rector-Brooks, Tara Akhound-Sadegh, Michael M. Bronstein,
 695 Alexander Tong, and Avishek Joey Bose. Sequence-augmented se(3)-flow matching for condi-
 696 tional protein backbone generation. *CoRR*, abs/2405.20313, 2024. doi: 10.48550/ARXIV.2405.
 697 20313. URL <https://doi.org/10.48550/arXiv.2405.20313>.

698

699 John Ingraham, Vikas Garg, Regina Barzilay, and Tommi Jaakkola. Generative models for graph-
 700 based protein design. *Advances in neural information processing systems*, 32, 2019.

701

John B Ingraham, Max Baranov, Zak Costello, Karl W Barber, Wujie Wang, Ahmed Ismail, Vincent
 Frappier, Dana M Lord, Christopher Ng-Thow-Hing, Erik R Van Vlack, et al. Illuminating protein
 space with a programmable generative model. *Nature*, 623(7989):1070–1078, 2023.

702 Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure FP
 703 Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, et al.
 704 Biological sequence design with gflownets. In *International Conference on Machine Learning*,
 705 pp. 9786–9801. PMLR, 2022.

706 Xiaoran Jiao, Weian Mao, Wengong Jin, Peiyuan Yang, Hao Chen, and Chunhua Shen. Boltzmann-
 707 aligned inverse folding model as a predictor of mutational effects on protein-protein interactions.
 708 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=lzdFImKK8w>.

709

710 Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael John Lamarre Townshend, and Ron O.
 711 Dror. Learning from protein structure with geometric vector perceptrons. In *9th International
 712 Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021*.
 713 OpenReview.net, 2021. URL <https://openreview.net/forum?id=1YLJDvSx6J4>.

714

715 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
 716 Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
 717 protein structure prediction with alphafold. *nature*, 596(7873):583–589, 2021.

718 Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward
 719 Grefenstette, and Roberta Raileanu. Understanding the effects of RLHF on LLM generalisation
 720 and diversity. In *The Twelfth International Conference on Learning Representations*, 2024. URL
 721 <https://openreview.net/forum?id=PXD3FAVHJT>.

722

723 Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
 724 *arXiv preprint arXiv:1805.00909*, 2018.

725

726 Bian Li, Yucheng T Yang, John A Capra, and Mark B Gerstein. Predicting changes in protein
 727 thermodynamic stability upon point mutation with deep 3d convolutional neural networks. *PLoS
 728 computational biology*, 16(11):e1008291, 2020.

729

730 Tianjian Li and Daniel Khashabi. SIMPLEMIX: Frustratingly simple mixing of off- and on-policy
 731 data in language model preference learning. In *Forty-second International Conference on Ma-
 chine Learning*, 2025. URL <https://openreview.net/forum?id=ucU1o3PNB0>.

731

732 Tianjian Li, Yiming Zhang, Ping Yu, Swarnadeep Saha, Daniel Khashabi, Jason Weston, Jack Lan-
 733 chantin, and Tianlu Wang. Jointly reinforcing diversity and quality in language model generations.
 734 *arXiv preprint arXiv:2509.02534*, 2025.

735

736 Sidney Lyayuga Lisanza, Jake Merle Gershon, Sam Tipps, Lucas Arnoldt, Samuel Hendel,
 737 Jeremiah Nelson Sims, Xinting Li, and David Baker. Joint generation of protein sequence and
 738 structure with rosettafold sequence space diffusion. *bioRxiv*, pp. 2023–05, 2023.

739

740 Isaac D Lutz, Shunzhi Wang, Christoffer Norn, Alexis Courbet, Andrew J Borst, Yan Ting Zhao,
 741 Annie Dosey, Longxing Cao, Jinwei Xu, Elizabeth M Leaf, et al. Top-down design of protein
 742 architectures with reinforcement learning. *Science*, 380(6642):266–273, 2023.

743

744 Christine A Orengo, Alex D Michie, Susan Jones, David T Jones, Mark B Swindells, and Janet M
 Thornton. Cath—a hierachic classification of protein domain structures. *Structure*, 5(8):1093–
 1109, 1997.

745

746 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
 747 Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
 748 Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan
 749 Leike, and Ryan Lowe. Training language models to follow instructions with human feedback.
 750 In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), *Ad-
 751 vances in Neural Information Processing Systems 35: Annual Conference on Neural Information
 752 Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
 753 2022*, 2022.

754

755 Ryan Park, Darren J. Hsu, C. Brian Roland, Maria Korshunova, Chen Tessler, Shie Mannor, Olivia
 Viessmann, and Bruno Trentini. Improving inverse folding for peptide design with diversity-
 regularized direct preference optimization. *CoRR*, abs/2410.19471, 2024. doi: 10.48550/ARXIV.
 2410.19471. URL <https://doi.org/10.48550/arXiv.2410.19471>.

756 Fabrizio Pucci, Katrien V Bernaerts, Jean Marc Kwasigroch, and Marianne Rooman. Quantification
 757 of biases in predictions of protein stability changes upon mutations. *Bioinformatics*, 34(21):
 758 3659–3665, 2018.

759

760 Jiezhang Qiu, Junde Xu, Jie Hu, Hanqun Cao, Liya Hou, Zijun Gao, Xinyi Zhou, Anni Li, Xiujuan
 761 Li, Bin Cui, Fei Yang, Shuang Peng, Ning Sun, Fangyu Wang, Aimin Pan, Jie Tang, Jieping Ye,
 762 Junyang Lin, Jin Tang, Xingxu Huang, Peng Ann Heng, and Guangyong Chen. Instructplm:
 763 Aligning protein language models to follow protein structure instructions. *bioRxiv*, 2024. doi: 10.
 764 1101/2024.04.17.589642. URL <https://www.biorxiv.org/content/early/2024/04/20/2024.04.17.589642>.

765

766 Rafael Raffailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and
 767 Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
 768 In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
 769 (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on Neural
 770 Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
 771 2023*, 2023.

772

773 Stephen A Rettie, Katelyn V Campbell, Asim K Bera, Alex Kang, Simon Kozlov, Yensi Flores
 774 Bueso, Joshmyn De La Cruz, Maggie Ahlrichs, Suna Cheng, Stacey R Gerben, et al. Cyclic
 775 peptide structure prediction and design using alphafold2. *Nature Communications*, 16(1):4730,
 776 2025.

777

778 Gabriel J Rocklin, Tamuka M Chidyausiku, Inna Goreshnik, Alex Ford, Scott Houlston, Alexander
 779 Lemak, Lauren Carter, Rashmi Ravichandran, Vikram K Mulligan, Aaron Chevalier, et al. Global
 780 analysis of protein folding using massively parallel design, synthesis, and testing. *Science*, 357
 (6347):168–175, 2017.

781

782 Frederic Runge, Danny Stoll, Stefan Falkner, and Frank Hutter. Learning to design RNA. In *International Conference on Learning Representations*, 2019. URL <https://openreview.net/forum?id=ByfyHh05tQ>.

783

784 Robert Schmirler, Michael Heinzinger, and Burkhard Rost. Fine-tuning protein language models
 785 boosts predictions across diverse tasks. *Nature Communications*, 15(1):7407, 2024.

786

787 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 788 optimization algorithms. *CoRR*, abs/1707.06347, 2017. URL <http://arxiv.org/abs/1707.06347>.

789

790 Joost Schymkowitz, Jesper Borg, Francois Stricher, Robby Nys, Frederic Rousseau, and Luis Ser-
 791 rano. The foldx web server: an online force field. *Nucleic acids research*, 33(suppl_2):W382–
 792 W388, 2005.

793

794 Varun R. Shanker, Theodora U. J. Bruun, Brian L. Hie, and Peter S. Kim. Unsupervised evolution of
 795 protein and antibody complexes with a structure-informed language model. *Science*, 385(6704):
 796 46–53, 2024. doi: 10.1126/science.adk8946. URL <https://www.science.org/doi/abs/10.1126/science.adk8946>.

797

798 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,
 799 Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
 800 language models. *CoRR*, abs/2402.03300, 2024. doi: 10.48550/ARXIV.2402.03300. URL
 801 <https://doi.org/10.48550/arXiv.2402.03300>.

802

803 Shivanshu Shekhar, Shreyas Singh, and Tong Zhang. See-dpo: Self entropy enhanced direct prefer-
 804 ence optimization. *arXiv preprint arXiv:2411.04712*, 2024.

805

806 Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross Anderson, and Yarin Gal.
 807 Ai models collapse when trained on recursively generated data. *Nature*, 631(8022):755–759,
 808 2024.

809

Elana Simon and James Zou. Interplm: Discovering interpretable features in protein language mod-
 810 els via sparse autoencoders. *bioRxiv*, pp. 2024–11, 2024.

810 Marcin J Skwark, Nicolás López Carranza, Thomas Pierrot, Joe Phillips, Slim Said, Alexandre
 811 Laterre, Amine Kerkeni, Uğur Şahin, and Karim Beguir. Designing a prospective covid-19 ther-
 812 apeutic with reinforcement learning. *arXiv preprint arXiv:2012.01736*, 2020.

813

814 Emanuel Todorov. Linearly-solvable markov decision problems. *Advances in neural information*
 815 *processing systems*, 19, 2006.

816

817 Kotaro Tsuboyama, Justas Dauparas, Jonathan Chen, Elodie Laine, Yasser Mohseni Behbahani,
 818 Jonathan J Weinstein, Niall M Mangan, Sergey Ovchinnikov, and Gabriel J Rocklin. Mega-scale
 819 experimental analysis of protein folding stability in biology and design. *Nature*, 620(7973):434–
 444, 2023.

820

821 Dmitriy Umerenkov, Tatiana I Shashkova, Pavel V Strashnov, Fedor Nikolaev, Maria Sindeeva,
 822 Nikita V Ivanisenko, and Olga L Kardymon. Prostata: protein stability assessment using trans-
 823 formers. *BioRxiv*, pp. 2022–12, 2022.

824

825 Chaoqi Wang, Yibo Jiang, Chenghao Yang, Han Liu, and Yuxin Chen. Beyond reverse KL: General-
 826 izing direct preference optimization with diverse divergence constraints. In *The Twelfth Interna-
 827 tional Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=2cRzmWXK9N>.

828

829 Chenyu Wang, Masatoshi Uehara, Yichun He, Amy Wang, Avantika Lal, Tommi Jaakkola, Sergey
 830 Levine, Aviv Regev, Hanchen, and Tommaso Biancalani. Fine-tuning discrete diffusion models
 831 via reward optimization with applications to DNA and protein design. In *The Thirteenth Interna-
 832 tional Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=G328D1xt4W>.

833

834 Chuanrui Wang, Bozitao Zhong, Zuobai Zhang, Narendra Chaudhary, Sanchit Misra, and Jian
 835 Tang. Pdb-struct: A comprehensive benchmark for structure-based protein design. *CoRR*,
 836 abs/2312.00080, 2023a. doi: 10.48550/ARXIV.2312.00080. URL <https://doi.org/10.48550/arXiv.2312.00080>.

837

838 Yi Wang, Hui Tang, Lichao Huang, Lulu Pan, Lixiang Yang, Huanming Yang, Feng Mu, and Meng
 839 Yang. Self-play reinforcement learning guides protein engineering. *Nature Machine Intelligence*,
 840 5(8):845–860, 2023b.

841

842 Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippé, Jason Yim, Helen E Eise-
 843 nach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of
 844 protein structure and function with rfdiffusion. *Nature*, 620(7976):1089–1100, 2023.

845

846 Talal Widatalla, Rafael Rafailov, and Brian Hie. Aligning protein generative models with experi-
 847 mental fitness via direct preference optimization. *bioRxiv*, pp. 2024–05, 2024.

848

849 Hein J Wijma, Robert J Floor, Peter A Jekel, David Baker, Siewert J Marrink, and Dick B Janssen.
 850 Computationally designed libraries for rapid enzyme stabilization. *Protein Engineering, Design*
 851 & Selection, 27(2):49–58, 2014.

852

853 Junde Xu, Zijun Gao, Xinyi Zhou, Jie Hu, Xingyi Cheng, Le Song, Guangyong Chen, Pheng-
 854 Ann Heng, and Jiezhong Qiu. Protein inverse folding from structure feedback. *arXiv preprint*
 855 *arXiv:2506.03028*, 2025.

856

857 Fanglei Xue, Andrew Kubaney, Zhichun Guo, Joseph K Min, Ge Liu, Yi Yang, and David Baker.
 858 Improving protein sequence design through designability preference optimization. *arXiv preprint*
 859 *arXiv:2506.00297*, 2025.

860

861 Kai Yi, Bingxin Zhou, Yiqing Shen, Pietro Liò, and Yuguang Wang. Graph denoising diffusion for
 862 inverse protein folding. *Advances in Neural Information Processing Systems*, 36:10238–10257,
 863 2023.

864

865 Chengxin Zhang, Morgan Shine, Anna Marie Pyle, and Yang Zhang. Us-align: universal structure
 866 alignments of proteins, nucleic acids, and macromolecular complexes. *Nature methods*, 19(9):
 867 1109–1115, 2022.

864 Yang Zhang and Jeffrey Skolnick. Scoring function for automated assessment of protein structure
865 template quality. *Proteins: Structure, Function, and Bioinformatics*, 57(4):702–710, 2004.
866

867 Yang Zhang and Jeffrey Skolnick. Tm-align: a protein structure alignment algorithm based on the
868 tm-score. *Nucleic acids research*, 33(7):2302–2309, 2005.

869 Zaixiang Zheng, Yifan Deng, Dongyu Xue, Yi Zhou, Fei Ye, and Quanquan Gu. Structure-informed
870 language models are protein designers. In *International conference on machine learning*, pp.
871 42317–42338. PMLR, 2023.

872

873 Xiangxin Zhou, Dongyu Xue, Ruizhe Chen, Zaixiang Zheng, Liang Wang, and Quan-
874 quan Gu. Antigen-specific antibody design via direct energy-based preference opti-
875 mization. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ul-
876 rich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Advances in Neural In-
877 formation Processing Systems 38: Annual Conference on Neural Information Pro-
878 cessing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
879 2024*. URL http://papers.nips.cc/paper_files/paper/2024/hash/daef77101ba5711084a57442c8cf2709-Abstract-Conference.html.

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

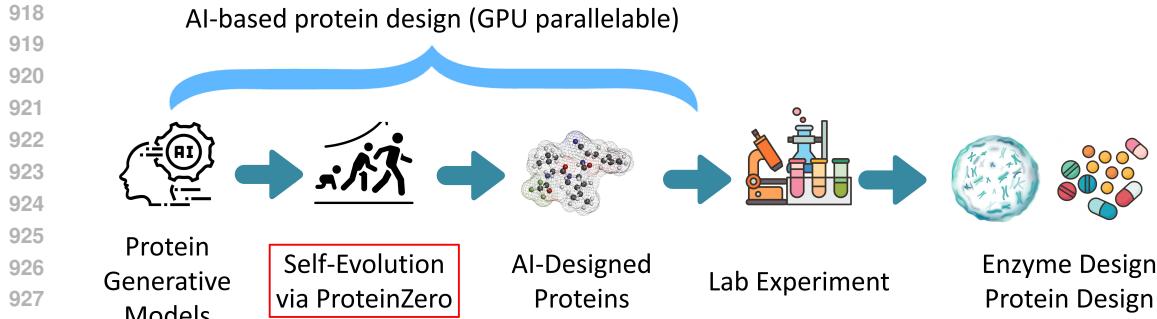


Figure 4: Integration of ProteinZero within the AI-driven protein design pipeline. Pre-trained generative models evolve through ProteinZero’s online reinforcement learning framework to produce optimized protein sequences. These AI-designed candidates proceed to laboratory synthesis and experimental characterization, enabling applications in diverse biotechnological domains such as enzyme engineering and therapeutic development. The computational stages (blue) can leverage GPU parallelization for efficient large-scale processing.

A DISCUSSION

A.1 BROADER IMPACT

ProteinZero represents a methodological advancement in computational protein design by enabling autonomous improvement of generative models through online reinforcement learning. As illustrated in Figure 4, our framework integrates within the broader protein design pipeline, bridging computational optimization and experimental validation. By reducing reliance on manually curated datasets from repositories like the Protein Data Bank, which capture only a fraction of viable sequence space, our approach offers new possibilities for exploring protein designs beyond naturally occurring examples.

The computational efficiency gains (achieving comparable results with substantially reduced computational time compared to physics-based methods) and improved success rates demonstrated in our experiments could accelerate research in therapeutic development, enzyme engineering, and industrial biotechnology. The reduced computational requirements potentially improve accessibility of advanced protein design capabilities for research groups with limited resources. Applications span from developing novel biologics and vaccines to engineering enzymes for sustainable manufacturing and bioremediation.

However, we emphasize that our computational metrics, while encouraging, require experimental validation to confirm biological functionality. The stability and foldability improvements we demonstrate computationally may not directly translate to enhanced catalytic activity, binding affinity, or other functional properties critical for real-world applications. Furthermore, the path from computational design to practical application involves multiple validation stages. Each designed protein undergoes synthesis, experimental characterization, functional testing, and regulatory approval before deployment. This established multi-step process provides checkpoints for safety and efficacy verification. Our computational improvements represent the initial stage of this pipeline, with subsequent experimental validation remaining essential for confirming biological relevance.

The self-improving nature of ProteinZero, learning continuously from generated outputs rather than requiring new experimental data, represents a shift toward more autonomous systems in computational biology. While this offers exciting possibilities for accelerating discovery, the comprehensive experimental validation pipeline ensures that computational predictions are rigorously tested before practical application. We envision this work contributing to a new generation of AI systems that can explore biological design spaces more efficiently, ultimately advancing our understanding and engineering capabilities in protein science.

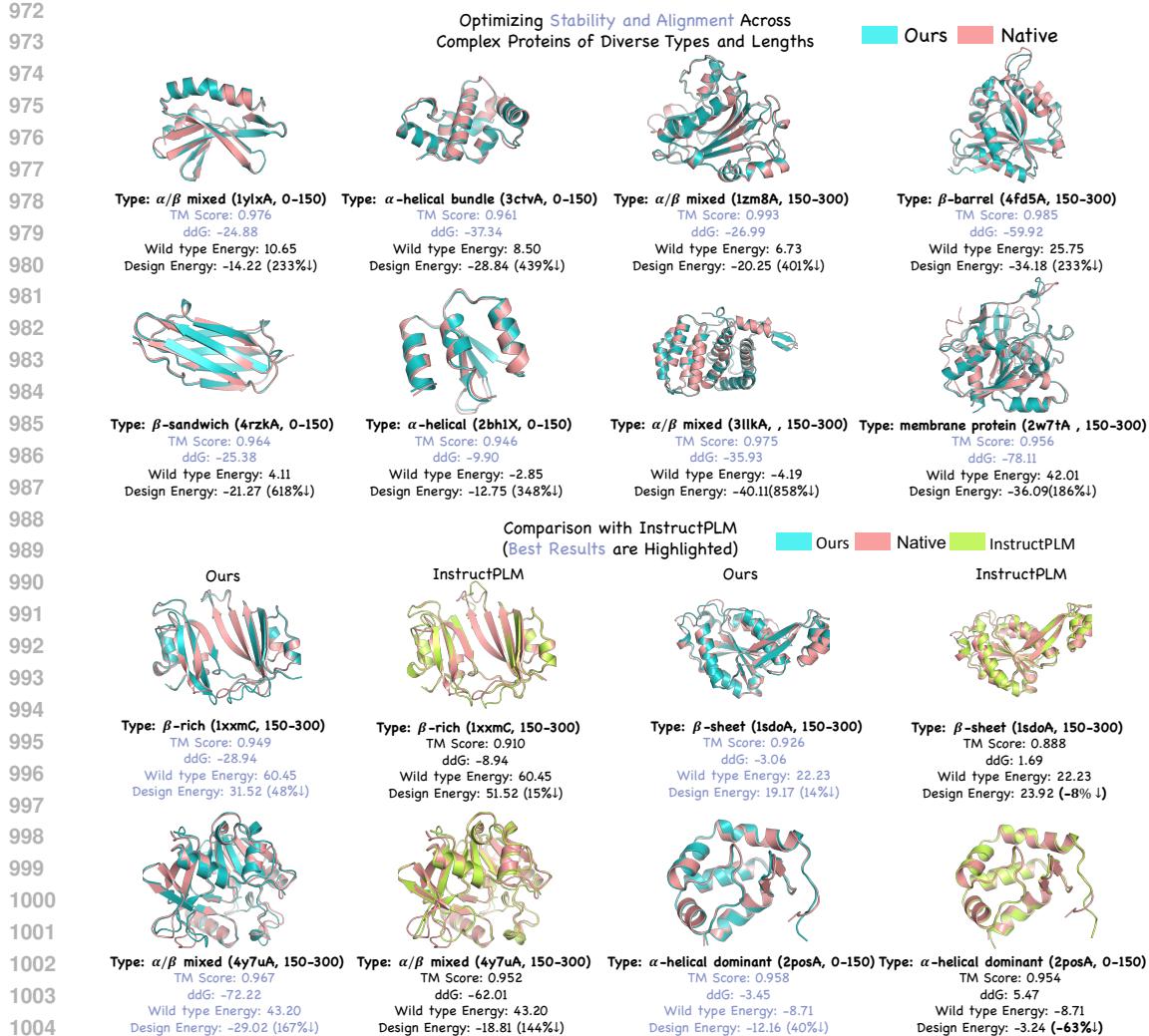


Figure 5: Representative cases of protein structure designs from held-out test set. Visual comparison between ProteinZero (cyan), native proteins (pink), and InstructPLM (lime green). Top panels show selected cases where naturally unstable proteins are redesigned by ProteinZero. In these examples, predicted stability improvements range from 233% to 858% (based on FoldX ddG calculations) while maintaining structural similarity (TM-scores > 0.95). Bottom panels present comparative examples with InstructPLM for challenging β -rich structures and complex architectures. In the shown cases, ProteinZero generates designs with negative predicted ddG values while InstructPLM produces positive values indicating predicted instability. These visualizations represent individual design outcomes; comprehensive quantitative results are provided in Table 1.

A.2 LIMITATIONS AND FUTURE DIRECTIONS

Restriction to Monomeric Scaffolds. Our experiments target monomeric proteins, a practically significant class spanning critical therapeutic modalities: *de novo* miniprotein inhibitors (Cao et al., 2020), antigen-display architectures (Lutz et al., 2023), and cyclic peptide binders (Rettie et al., 2025). Leading generative methods including RFdiffusion (Watson et al., 2023), ProteinMPNN (Dauparas et al., 2022), and Chroma (Ingraham et al., 2023) have similarly demonstrated advances on single-chain scaffolds. However, many drug discovery applications require multimeric complexes and protein-protein interfaces. The core framework components—online RL optimization, embedding-level diversity regularization, and fast proxy rewards—are architecture-agnostic and naturally extend to assemblies by incorporating interface-aware structural rewards and

1026 multimer-capable stability predictors to optimize binding affinity and interface packing simultaneously.
 1027
 1028

1029 **Reliance on Computational Proxies.** ProteinZero employs computational predictors (Fast-ddG,
 1030 ESMFold TM-score) as reward signals. While these metrics act as proxies for biological proper-
 1031 ties rather than substitutes for experimental validation, computational screening remains standard
 1032 in protein engineering pipelines. Empirical studies demonstrate that computational stability pre-
 1033 dictors enrich for mutations that experimentally increase protein thermodynamic stability: 30–40%
 1034 of computationally predicted stabilizing mutations are confirmed stable in wet-lab validation, com-
 1035 compared to near-zero success rates for random amino acid substitutions (Wijma et al., 2014; Broom
 1036 et al., 2017; Buß et al., 2018). However, individual oracles encode systematic preferences—FoldX,
 1037 for instance, favors mutations that increase hydrophobic core packing, which may trade off against
 1038 solubility (Broom et al., 2017).

1039 We address over-optimization to single-oracle patterns through two mechanisms. First,
 1040 multi-objective optimization with diversity regularization enforces complementary constraints
 1041 (structural designability, stability, KL-regularization, embedding diversity), preventing the policy
 1042 from satisfying one objective at the expense of others. Second, independent evaluation rigorously
 1043 separates training rewards (Fast-ddG, ESMFold) from evaluation metrics (FoldX, AlphaFold3).
 1044 Transferability to these independent oracles (Section 4) indicates the model learns generalizable
 1045 biophysical principles rather than oracle-specific patterns.
 1046

1047 B EXPERIMENTAL DETAILS

1048 B.1 PROMPT/TASK DATASETS

1049 We utilized the CATH-4.3 dataset for training and evaluation, which contains protein domains clas-
 1050 sified according to Class, Architecture, Topology, and Homology. The dataset was stratified into two
 1051 categories based on sequence length: 0–150 residues and 150–300 residues to evaluate performance
 1052 across different structural complexity levels. For rigorous evaluation, we constructed held-out test
 1053 sets with sequence identity thresholds of <40% for 0–150 residue proteins and <30% for 150–300
 1054 residue proteins, ensuring assessment on genuinely out-of-distribution structures. This stringent fil-
 1055 tering prevents overlap with both the training data and the pre-training datasets used by baseline
 1056 models (e.g., InstructPLM was pre-trained on CATH-4.2).
 1057

1058 During online reinforcement learning, our approach generates training signals entirely from model
 1059 outputs evaluated by reward functions, without requiring labeled sequence-structure pairs. The
 1060 model iteratively improves through self-generated examples assessed by our computational reward
 1061 pipeline. This self-improving paradigm represents a fundamental departure from supervised meth-
 1062 ods that depend on curated datasets, enabling continuous learning without additional experimental
 1063 data collection.
 1064

1065 B.2 IMPLEMENTATION DETAILS

1066 B.2.1 HYPERPARAMETER SETTINGS

1067 **ProteinZero_{RAFT}:** We optimize our model with AdamW using an initial learning rate of 3×10^{-5}
 1068 ($\beta_1 = 0.9$, $\beta_2 = 0.999$, $\epsilon = 1 \times 10^{-8}$, weight decay = 0.01) over all RAFT iterations. For each
 1069 RAFT iteration, we apply a linear learning-rate decay (with zero warm-up) over the epochs. We
 1070 apply rank-16 LoRA adapters ($\alpha_{\text{LoRA}} = 16$, dropout = 0.05) to all self-attention and feed-forward
 1071 projections. During each iteration, we partition the CATH 4.3 training set across GPUs, generating
 1072 $K = 8$ candidate sequences per backbone via nucleus sampling (temperature = 0.8, $p = 0.9$), and
 1073 retain only the highest-reward sequence for fine-tuning. Gradient updates are performed only for
 1074 backbones where at least 50% of the generated sequences achieve pLLDT > 80. Our policy updates
 1075 incorporate a KL regularizer with a coefficient of 0.1 against a frozen reference policy, whereas the
 1076 original RAFT implementation used a grid search to explore different KL term weights (0 (disabled),
 1077 0.005, 0.01, 0.1). We conduct extensive ablation studies on the KL weight used in the original
 1078 RAFT in Table 9 within Section C.2. Our empirical analysis reveals that this specific KL weight
 1079 parameterization of 0.1 is critical for achieving superior performance within the **ProteinZero_{RAFT}**

1080
 1081
 1082 Table 5: Systematic exploration of the online RL design space in ProteinZero for 0-150 residue pro-
 1083 teins. We conduct ablation studies across three critical design dimensions: reward models, learning
 1084 objectives, and diversity regularization strategies. For each design dimension, best results are high-
 1085 lighted in blue.
 1086

Design Configuration	InverseFold Acc. Recovery Rate \uparrow	Thermal Stability Metrics		Designability Metrics			Overall Success (%) \uparrow
		Fast-ddG \downarrow	FoldX ddG \downarrow	TM Score \uparrow	PLDDT \uparrow	Diversity \uparrow	
<i>Design Dimension 1: Reward Model Formulation</i>							
Only TM-score as Reward	0.582	-21.598	-21.271	0.874	82.827	0.293	1.372 (93.62%)
Only ddG as Reward	0.580	-22.996	-25.381	0.831	82.270	0.299	1.466 (87.75%)
Full ProteinZero (TM+ddG)	0.590	-22.616	-24.924	0.867	82.326	0.306	1.373 (93.55%)
<i>Design Dimension 2: Learning Objective Components</i>							
Without Diversity Term	0.584	-22.526	-24.877	0.861	82.308	0.268	1.397 (92.75%)
Without KL Term	0.564	-22.352	-24.264	0.841	80.979	0.316	1.429 (90.53%)
Full ProteinZero (All Terms)	0.590	-22.616	-24.924	0.867	82.326	0.306	1.373 (93.55%)
<i>Design Dimension 3: Diversity Regularization Strategies</i>							
Diversity as Reward	0.579	-19.738	-18.681	0.836	81.107	0.284	1.439 (87.77%)
Hamming Distance as Reward	0.565	-14.137	-11.135	0.831	81.785	0.276	1.466 (88.70%)
Full ProteinZero (Embedding Diversity)	0.590	-22.616	-24.924	0.867	82.326	0.306	1.373 (93.55%)

1095
 1096 framework. We additionally employ an embedding-space diversity penalty with a coefficient of
 1097 0.05, which was not included in the original RAFT. The reward function equally weights TM-score
 1098 and predicted $\Delta\Delta G$. All experiments utilize mixed-precision FP16 (or BF16 where available) with
 1099 two-step gradient accumulation per update. Our results suggest that stronger KL regularization helps
 1100 mitigate instability in pretrained protein language models during fine-tuning.

1101
ProteinZero_{GRPO}: We optimize our model using AdamW with an initial learning rate of 1×10^{-6}
 1102 ($\beta_1 = 0.9$, $\beta_2 = 0.999$, $\epsilon = 1 \times 10^{-8}$, weight decay = 0), and employ a linear learning-rate sched-
 1103 ule (no warm-up) over all 20 GRPO iterations. We apply LoRA adapters with rank $r = 16$ (scaling
 1104 factor $\alpha_{\text{LoRA}} = 16$, dropout = 0.05) to all self-attention and feed-forward projections. Each episode
 1105 samples from the CATH 4.3 training set (distributed across GPUs) and generates $K = 8$ candi-
 1106 date sequences per backbone via nucleus sampling (temperature = 0.8, $p = 0.9$). Policy updates
 1107 proceed only when at least 50% of the generated sequences achieve $\text{pLDDT} > 80$. For policy opti-
 1108 mization, we employ a GRPO clipping coefficient $\varepsilon = 0.1$ with KL regularization against a frozen
 1109 reference policy with a coefficient of 0.1, complemented by an embedding-space diversity penalty
 1110 with a coefficient of 0.05. The reward function equally weights TM-score and predicted $\Delta\Delta G$.
 1111 All experiments use mixed-precision FP16, with no gradient accumulation to ensure each episode
 1112 constitutes a complete policy update. We note that our KL regularization weight of 0.1 differs from
 1113 the original GRPO implementation (Shao et al., 2024), which uses 0.04. We conduct extensive
 1114 ablation studies on the KL weight used in the original GRPO in Table 9 within Section C.2. These
 1115 experiments demonstrate that the KL weight configuration is essential for optimal performance in
 1116 our **ProteinZero_{GRPO}** setting, which establishes our configuration as the optimal solution. Our
 1117 ablation studies reveal that decreasing KL regularization strength leads to performance degradation
 1118 across multiple metrics, including sequence recovery, Fast-ddG, FoldX DDG, TM-score, pLDDT,
 1119 scRMSD, and success rate. These findings indicate that stronger KL regularization may help stabi-
 1120 lize pretrained protein language models during fine-tuning.

1121
Direct Preference Optimization (Baseline): For each target structure, we sample $K = 8$ candidate
 1122 sequences at a temperature of $T = 0.1$ to form chosen-rejected pairs according to our reward model,
 1123 and we optimize the DPO loss over 20 epochs using AdamW with $\beta_1 = 0.9$, $\beta_2 = 0.999$, and a
 1124 weight decay of 0.01. Training proceeds only for backbones where at least 50% of the sampled
 1125 sequences achieve $\text{pLDDT} > 80$. We apply a KL divergence regularization term against a frozen
 1126 reference policy with a coefficient of 0.1, and we incorporate an embedding-space diversity penalty
 1127 with a coefficient of 0.05. All experiments are conducted in mixed-precision FP16.

1128
Multi-Round Direct Preference Optimization (Baseline): We extend DPO to iterative refinement
 1129 across multiple rounds. For each round, we sample $K = 8$ candidate sequences per target structure
 1130 at temperature $T = 0.1$ from the current policy to form new chosen-rejected pairs according to
 1131 our reward model, optimizing the DPO loss for 5 epochs per round using AdamW with $\beta_1 = 0.9$,
 1132 $\beta_2 = 0.999$, and weight decay of 0.01. Gradient updates are performed only when at least 50% of
 1133 the generated sequences for a backbone achieve $\text{pLDDT} > 80$. We apply KL divergence regular-
 1134 ization against the frozen reference policy (coefficient 0.1) and embedding-space diversity penalty
 (coefficient 0.05). All experiments are conducted in mixed-precision FP16.

1134
 1135 Table 6: Total wall-clock time (including MSA and template search) required to generate reward
 1136 for eight inverse-folding sequences conditioned on the same structural backbone. Best results are
 1137 highlighted in blue. The wall-clock time without MSA search can be found in Appx. Table 7

Length range	Structural and Designability Reward					Thermal Stability Reward (ddG)	
	ESMFold	AlphaFold 2	ColabFold	OpenFold	AlphaFold 3	Fast-ddG(ours)	FoldX
0-150 aa	18.7 s	1632.6 s (~87.3×)	576.2 s (~30.8×)	674.9 s (~36.1×)	705.4 s (~37.7×)	~2 s (GPU)	472.3 s (~236.2×)
150-300 aa	47.5 s	4112.5 s (~86.6×)	1272.8 s (~26.8×)	1424.7 s (~30.0×)	1920.5 s (~40.4×)	~2 s (GPU)	1520.6 s (~760.3×)

1142
 1143 Table 7: Total wall-clock time (excluding Multiple Sequence Alignment) required to generate eight
 1144 inverse-folding sequences conditioned on the same structural backbone for each reward component
 1145 in our fine-tuning pipeline (often used for De novo design tasks, but we focus on inverse folding
 1146 tasks.). Best results are highlighted in blue.

Length range	Structural Alignment Reward (Prediction)					Design Stability Reward (ddG)	
	ESMFold	AlphaFold 2	ColabFold	OpenFold	AlphaFold 3	Predicted-ddG	FoldX
0-150 aa	18.7 s	197.6 s (~10.6×)	193.6 s (~10.4×)	189.6 s (~10.1×)	199.2 s (~10.7×)	~2 s (GPU)	472.3 s (~236.2×)
150-300 aa	47.5 s	223.2 s (~4.7×)	217.6 s (~4.6×)	200.8 s (~4.2×)	237.6 s (~5.0×)	~2 s (GPU)	1520.6 s (~760.3×)

B.2.2 HARDWARE USAGE

1154 All experiments are conducted using eight NVIDIA A100 GPUs. We fine-tune the pretrained model
 1155 by stratifying protein sequences into two length categories: 0-150 amino acids and 150-300 amino
 1156 acids. Our training protocol divides each complete dataset pass into 20 iterations for granular
 1157 optimization control. We report that processing one full epoch requires approximately 3.23 hours for
 1158 the 0-150 amino acid category and 25.58 hours for the 150-300 amino acid category. The number of
 1159 training epochs can be flexibly adjusted based on desired performance improvements and available
 1160 computational resources. This modular approach enables researchers to balance training thorough-
 1161 ness with computational constraints, making online RL fine-tuning feasible on a single multi-GPU
 1162 node within practical timeframes.

B.3 EVALUATION METRICS

1165 To ensure statistical robustness, all reported results represent the mean \pm standard error calculated
 1166 over 10 independent training runs initiated with different random seeds. We evaluated ProteinZero
 1167 using a comprehensive set of metrics across three key dimensions:

B.3.1 STRUCTURAL ACCURACY

- 1171 • TM Score: Measures the topological similarity between predicted and target structures,
 1172 with values ranging from 0 to 1 (higher is better) (Zhang & Skolnick, 2004).
- 1173 • PLDDT (Predicted Local Distance Difference Test): Assesses the confidence in local struc-
 1174 ture prediction (Jumper et al., 2021; Abramson et al., 2024).
- 1175 • scRMSD (Self-consistency RMSD of structures): Measures the deviation of side chain
 1176 positions, with percentage below 2 Å reported as an additional quality indicator (Qiu et al.,
 1177 2024; Park et al., 2024).

B.3.2 STABILITY METRICS

- 1180 • Fast-ddG (Jiao et al., 2025): Predicted change in Gibbs free energy, estimated directly from
 1181 the model.
- 1182 • FoldX ddG (Schymkowitz et al., 2005): A more rigorous physics-based calculation of sta-
 1183 bility using the FoldX force field, which better correlates with experimental measurements.

B.3.3 SEQUENCE PROPERTIES

- 1185 • Recovery: The percentage of amino acids matching reference sequences, indicating how
 1186 well the model captures natural sequence preferences (Park et al., 2024).

1188 • Diversity: A measure of variation among generated sequences, calculated as the mean
 1189 normalized Hamming distance between every pair of sequences conditioned on the same
 1190 backbone (score ranges from 0 for identical sequences to 1 for sequences that differ at every
 1191 position):

$$D_{\text{Hamming}}(\mathcal{B}) = \frac{2}{B(B-1)} \sum_{1 \leq i < j \leq B} \left[\frac{1}{L} \sum_{t=1}^L \mathbf{1}[y_{i,t} \neq y_{j,t}] \right].$$

1196 B.4 BASELINE METHODS

1198 We compared ProteinZero against several state-of-the-art methods:

1200 B.4.1 SUPERVISED INVERSE FOLDING MODELS

1202 1. ProteinMPNN: A graph-based model that directly predicts amino acid sequences from
 1203 backbone structures.

1204 2. ESM-IF: A transformer-based inverse folding model trained on substantial structural data.

1205 3. InstructPLM (our base model): A recently developed protein language model fine-tuned to
 1206 follow structural design instructions.

1208 B.4.2 OFFLINE RL BASELINE

1210 DPO (Direct Preference Optimization): A widely used offline reinforcement learning method that
 1211 learns from preference data without online interaction.

1212 Multi-Round DPO: An iterative extension of DPO that regenerates preference pairs from the updated
 1213 policy at each round, allowing for progressive refinement while remaining offline.

1214 For fair comparison, all baseline methods used the same evaluation protocol and metrics. Instruct-
 1215 PLM served as our starting model for ProteinZero fine-tuning, establishing a direct comparison
 1216 between supervised learning and our online RL approach.

1218 B.5 REWARD MODEL

1220 Traditional methods for evaluating protein designs require minutes to hours per evaluation, making
 1221 online reinforcement learning impractical. We solve this challenge with two efficient reward models:

1223 B.5.1 STRUCTURAL ALIGNMENT REWARD

1225 We use ESMFold for structural inference instead of the slower AlphaFold2/3 (Jumper et al., 2021;
 1226 Abramson et al., 2024). The TM-score reward $r_{\text{TM}}(x, y)$ is computed by first folding the generated
 1227 sequence y using ESMFold, then calculating the TM-score (Zhang & Skolnick, 2004) between
 1228 the predicted structure and the target structure x with US-align (Zhang et al., 2022), an updated
 1229 implementation from the original TM-align (Zhang & Skolnick, 2005).

1230 B.5.2 DESIGN STABILITY REWARD

1232 We calculate $r_{\Delta\Delta G}(x, y)$, the estimation of $\Delta\Delta G$ by comparing the backbone-conditioned likelihood
 1233 of each generated sequence with an unconditional sequence prior, $p_\varphi(y)$, provided by pre-trained
 1234 inverse folding models such as ProteinMPNN and InstructPLM, as proposed in (Jiao et al.,
 1235 2025; Shanker et al., 2024; Widatalla et al., 2024; Cagiada et al., 2025; Bennett et al., 2023):
 1236 $\Delta\Delta G(x, y) = -k_B T [(\log p_\theta(y \mid x) - \log p_\varphi(y)) - (\log p_\theta(y_{\text{wt}} \mid x) - \log p_\varphi(y_{\text{wt}}))]$, where
 1237 y_{wt} represents the PDB wild-type sequence and $k_B T$ represents the thermal energy at 298 K
 1238 (0.593 kcal mol⁻¹).

1239 Our reward combines both scores after min-max normalization across the candidate pool of inverse
 1240 folding sequences generated for the same backbone within each reinforcement learning iteration:
 1241 $\tilde{r}_{\text{TM}} = (r_{\text{TM}} - r_{\text{TM}}^{\min}) / (r_{\text{TM}}^{\max} - r_{\text{TM}}^{\min})$ and $\tilde{r}_{\Delta\Delta G}$ analogously, giving $r(x, y) = \lambda_{\text{TM}} \tilde{r}_{\text{TM}}(x, y) +$
 $\lambda_{\Delta\Delta G} \tilde{r}_{\Delta\Delta G}(x, y)$. This reward model accelerates evaluation speed by at least 2500x compared to

1242 traditional methods, reducing training time from months to days. The effectiveness of this approach
 1243 is demonstrated through comprehensive evaluation metrics presented in Table 1.
 1244

1245

1246 B.6 ONLINE RL ALGORITHMS

1247

1248 We implemented and evaluated two online reinforcement learning algorithms for ProteinZero:
 1249

1250

1251 B.6.1 PROTEINZERO_{RAFT}

1252

1253 Our adaptation of Reward-rAnked Fine-Tuning, which generates multiple candidate sequences, eval-
 1254 uates them using our reward models, and retains only the best sequences for supervised fine-tuning.
 1255 We extended RAFT with our embedding level diversity regularization term.
 1256

1257

1258 B.6.2 PROTEINZERO_{GRPO}

1259

1260 Our adaptation of Group Relative Policy Optimization, which directly optimizes the policy using
 1261 relative rewards within each batch. This was further enhanced with our embedding-level diversity
 1262 regularization.
 1263

1264

1265 B.7 COMPUTATIONAL EFFICIENCY AND POTENTIAL EXTENSIONS TO DE NOVO DESIGN

1266

1267 A critical computational challenge in protein structure-conditioned generation stems from the run-
 1268 time requirements of structural inference during reward computation. As shown in Tables 6 and 7,
 1269 we comprehensively evaluate the wall-clock time necessary for reward generation across multiple
 1270 structural prediction frameworks. For our inverse folding framework, which operates with predeter-
 1271 mined backbone structures, ESMFold demonstrates substantial efficiency advantages, requiring only
 1272 18.7s and 47.5s for proteins in the 0-150 and 150-300 amino acid ranges, respectively. This repre-
 1273 sents a 26-87 \times acceleration compared to AlphaFold2, ColabFold, OpenFold, and AlphaFold3. The
 1274 computational gap widens significantly when considering Multiple Sequence Alignment (MSA),
 1275 which constitutes essential but time-intensive preprocessing for the AlphaFold family models. For
 1276 thermal stability prediction, our Fast-ddG approach (\sim 2s on GPU) achieves a 236-760 \times speedup
 1277 over physics-based methods like FoldX. While our current implementation focuses on inverse fold-
 1278 ing with fixed backbones, these benchmarks establish important computational baselines for future
 1279 extensions to de novo protein design tasks, where simultaneous optimization of sequence and struc-
 1280 ture would introduce additional complexity. Notably, as Table 7 demonstrates, our framework’s
 1281 reliance on ESMFold eliminates the computational burden of MSA search, a critical advantage
 1282 for potential de novo applications where rapid structural evaluation is essential. De novo design
 1283 presents different challenges, requiring not only the generation of applicable sequences but also
 1284 the exploration of the vast conformational landscape to discover novel protein folds with targeted
 1285 functional properties. This expanded search space would require efficient sampling strategies across
 1286 both sequence and structural domains, while maintaining physically realistic conformations with
 1287 proper hydrophobic packing, secondary structure formation, and domain-level architectural coher-
 1288 ence. The computational efficiency gains demonstrated in our proxy reward models suggest that
 1289 integrating lightweight structural prediction methods that avoid MSA requirements within a rein-
 1290 forcement learning framework could make online learning feasible even for these more complex
 1291 design scenarios. The dramatic reduction in evaluation time enabled by our approach makes online
 1292 reinforcement learning computationally tractable for current inverse folding tasks, while providing
 1293 insights into the feasibility of extending this paradigm to full de novo design in future work.
 1294

1295 Recent GPU-accelerated implementations combining optimized MSA generation and TensorRT-
 1296 enhanced inference achieve over 130-fold speedups in structure prediction (Didi et al.), suggesting
 1297 that incorporating more sophisticated structural oracles into online RL frameworks may become
 1298 computationally feasible in the near future.

1296 Table 8: Independent validation using AlphaFold3 for 0-150 residue proteins. All designability met-
 1297 rics are computed using both ESMFold (used in training) and AlphaFold3 (independent evaluation)
 1298 to demonstrate that improvements are not artifacts of the reward function. Best scores are high-
 1299 lighted in blue, second-best in green.

Method	TM Score ↑		PLDDT ↑		scRMSD ↓		scRMSD <2Å (%) ↑		Success Rate (%) ↑	
	ESMFold	AF3	ESMFold	AF3	ESMFold	AF3	ESMFold	AF3	ESMFold	AF3
<i>Base Model</i>										
InstructPLM	0.8121	0.8356	79.98	82.45	1.4842	1.4287	85.71	88.32	84.45	86.98
<i>Offline RL Baselines</i>										
DPO	0.8198	0.8401	80.72	82.93	1.4727	1.4218	87.58	89.43	86.44	88.12
Multi-Round DPO	0.8228	0.8436	80.80	83.07	1.4678	1.4176	87.95	89.95	86.89	88.71
<i>Our Online RL Methods</i>										
ProteinZero _{RAFT}	0.8494	0.8612	81.56	83.48	1.3929	1.3587	92.86	93.89	89.29	90.42
ProteinZero _{GRPO}	0.8674	0.8798	82.33	84.09	1.3727	1.3406	93.55	94.67	90.13	91.56

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 INDEPENDENT VALIDATION WITH ALPHAFOLD3

While our evaluation pipeline employs external US-align to compute TM-score between ESMFold-predicted and target structures rather than relying on ESMFold’s internal predicted TM-score (pTM, a confidence metric predicting the alignment quality of the folded structure), we sought to further strengthen our evaluation through comprehensive independent validation using AlphaFold3, the current state-of-the-art structure prediction model. This orthogonal assessment provides additional evidence that our performance improvements represent genuine advances in protein design capability and demonstrates the robustness of our approach across different structure prediction frameworks.

Tables 8 and 2 presents designability metrics computed using both ESMFold (employed during training) and AlphaFold3 (independent evaluation) for all methods. The improvements observed through ESMFold evaluation are consistently corroborated by AlphaFold3 results. For 0-150 residue proteins, ProteinZero_{GRPO} achieves 91.56% success rate with AlphaFold3 evaluation, maintaining its substantial advantage over baselines (InstructPLM: 86.98%, DPO: 88.12%, Multi-Round DPO: 88.71%). Similar patterns hold for 150-300 residue proteins, where ProteinZero_{GRPO} reaches 92.27% success rate with AlphaFold3. Figure 6 provides qualitative examples of representative complex protein architectures evaluated with AlphaFold3, further illustrating the structural fidelity of our designed sequences.

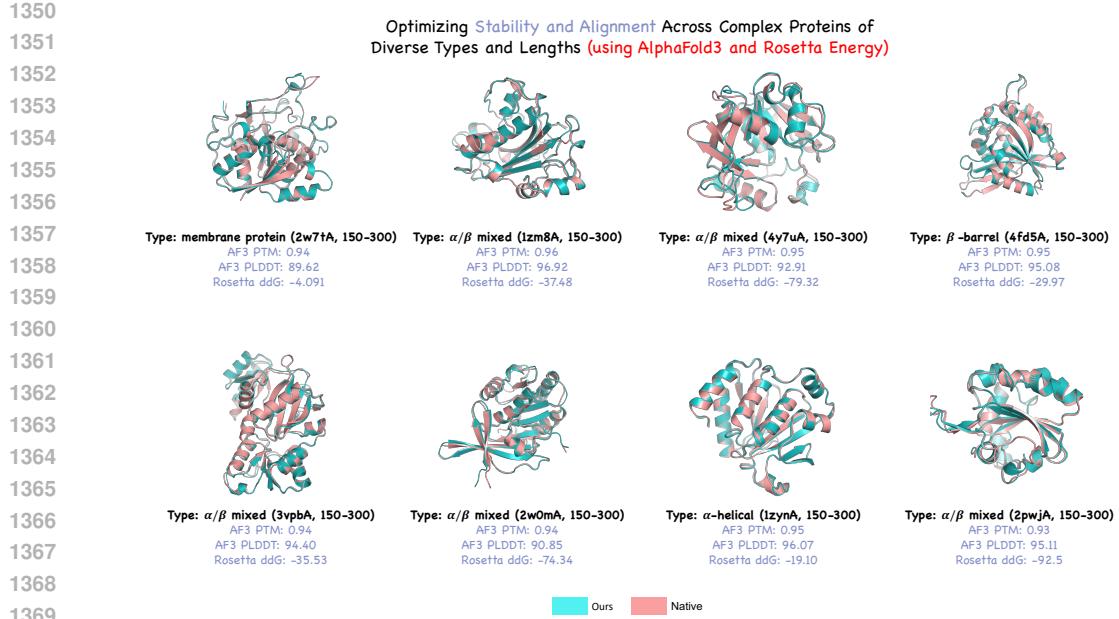
The consistent improvements across both evaluation frameworks validate that our online RL approach learns generalizable design principles. While we selected ESMFold as our reward model for computational efficiency, the self-improved policies demonstrate robust performance when evaluated with AlphaFold3, confirming that ProteinZero discovers genuine improvements that transcend the specific choice of structure predictor used during training. The relative performance rankings remain unchanged across both evaluation methods: ProteinZero methods consistently outperform both offline RL baselines and the base model.

These results establish the methodological rigor required for reinforcement learning applications to protein design. The strong performance under AlphaFold3 evaluation confirms that our approach achieves robust improvements in protein design capability, providing confidence that the learned policies will generalize to practical applications beyond our training setup.

C.2 HYPERPARAMETER ABLATION STUDIES

Table 9 presents additional experimental results exploring different hyperparameter configurations for ProteinZero, specifically evaluating the impact of KL divergence coefficients (α_{KL}) and diversity regularization (α_{div}) on both ProteinZero_{GRPO} and ProteinZero_{RAFT} algorithms across two protein size categories (0-150 and 150-300 residues).

For ProteinZero_{GRPO}, we test configurations with $\alpha_{KL} = 0.04$ (the original GRPO setting) and varying diversity regularization ($\alpha_{div} \in \{0.00, 0.05\}$). In the 0-150 residue category, the configuration



1371 **Figure 6: Qualitative evaluation of ProteinZero using AlphaFold3 and Rosetta Energy.** This
1372 figure complements our main results by demonstrating ProteinZero’s performance when evaluated
1373 with alternative protein structure prediction (AlphaFold3) and stability assessment (Rosetta Energy)
1374 tools. Across eight diverse and complex protein architectures (150-300 residues), our designed
1375 sequences (cyan) maintain exceptional structural alignment with native proteins (pink) as indicated by
1376 high AF3 PTM scores (0.93-0.96) and PLDDT values (89.62-96.92). The substantial improvements
1377 in Rosetta ddG values (-4.091 to -92.5) further validate our approach’s ability to simultaneously
1378 optimize structural accuracy and thermodynamic stability. These results reinforce the conclusions
1379 from our FoldX and ESMFold analyses, confirming that ProteinZero’s online reinforcement learning
1380 framework effectively balances multiple design objectives across various protein classes including
1381 membrane proteins, α/β -mix mixed domains, α -helical structures, and β -barrels.

1382 Table 9: Supplementary experimental results exploring different hyperparameter configurations for
1383 ProteinZero. We evaluate the impact of KL divergence coefficients (α_{KL}) and diversity regularization
1384 (α_{div}) on both GRPO and RAFT algorithms across two protein size categories. Best results
1385 within each algorithm and size category are highlighted in blue.

1386

Length	Configuration	InverseFold Acc.		Thermal Stability Metrics		Designability Metrics			Overall Success (%) \uparrow
		Recovery Rate \uparrow	Fast-ddG \downarrow	FoldX ddG \downarrow	TM Score \uparrow	PLDDT \uparrow	Diversity \uparrow	scRMSD \downarrow (scRMSD $< 2\text{\AA}$ \uparrow)	
Additional GRPO Results									
0-150 residues	GRPO ($\alpha_{KL} = 0.04$, $\alpha_{div} = 0.05$)	0.58	-22.06	-22.71	0.86	82.13	0.31	1.39 (93%)	89%
	GRPO ($\alpha_{KL} = 0.04$, $\alpha_{div} = 0.00$)	0.58	-22.50	-24.55	0.85	82.23	0.27	1.41 (90%)	90%
Additional RAFT Results									
0-150 residues	RAFT ($\alpha_{KL} = 0.005$, $\alpha_{div} = 0.05$)	0.58	-21.63	-21.18	0.84	80.93	0.30	1.41 (92%)	88%
	RAFT ($\alpha_{KL} = 0.005$, $\alpha_{div} = 0.00$)	0.58	-21.81	-21.72	0.84	80.97	0.28	1.42 (92%)	88%
	RAFT ($\alpha_{KL} = 0.01$, $\alpha_{div} = 0.05$)	0.58	-22.12	-22.95	0.85	81.14	0.30	1.40 (92%)	89%
	RAFT ($\alpha_{KL} = 0.01$, $\alpha_{div} = 0.00$)	0.59	-22.18	-22.98	0.84	81.28	0.28	1.42 (92%)	89%
	RAFT ($\alpha_{KL} = 0.0$, $\alpha_{div} = 0.05$)	0.58	-21.70	-21.50	0.85	81.08	0.30	1.40 (92%)	87%
	RAFT ($\alpha_{KL} = 0.0$, $\alpha_{div} = 0.00$)	0.58	-22.03	-22.73	0.84	81.23	0.28	1.41 (92%)	87%
Additional GRPO Results									
150-300 residues	GRPO ($\alpha_{KL} = 0.04$, $\alpha_{div} = 0.05$)	0.58	-39.53	-31.95	0.86	83.98	0.33	1.42 (89%)	90%
	GRPO ($\alpha_{KL} = 0.04$, $\alpha_{div} = 0.00$)	0.57	-40.40	-32.15	0.85	84.05	0.29	1.43 (89%)	90%
Additional RAFT Results									
150-300 residues	RAFT ($\alpha_{KL} = 0.005$, $\alpha_{div} = 0.05$)	0.57	-36.61	-28.26	0.84	83.24	0.33	1.43 (89%)	88%
	RAFT ($\alpha_{KL} = 0.005$, $\alpha_{div} = 0.00$)	0.58	-36.79	-28.86	0.83	83.53	0.30	1.44 (88%)	88%
	RAFT ($\alpha_{KL} = 0.01$, $\alpha_{div} = 0.05$)	0.58	-37.23	-30.08	0.84	83.57	0.33	1.43 (89%)	89%
	RAFT ($\alpha_{KL} = 0.01$, $\alpha_{div} = 0.00$)	0.58	-37.48	-30.47	0.84	83.67	0.31	1.44 (88%)	89%
	RAFT ($\alpha_{KL} = 0.0$, $\alpha_{div} = 0.05$)	0.57	-36.53	-27.65	0.84	83.46	0.33	1.43 (89%)	87%
	RAFT ($\alpha_{KL} = 0.0$, $\alpha_{div} = 0.00$)	0.58	-36.95	-29.47	0.84	83.52	0.31	1.44 (88%)	87%

1400
1401
1402 with $\alpha_{KL} = 0.04$, $\alpha_{div} = 0.05$ achieves recovery rate of 0.58, TM Score of 0.86, sequence diversity
1403 of 0.31, and overall success rate of 89%, while removing diversity regularization ($\alpha_{div} = 0.00$)
yields enhanced thermal stability (Fast-ddG: -22.50 vs -22.06, FoldX ddG: -24.55 vs -22.71) but

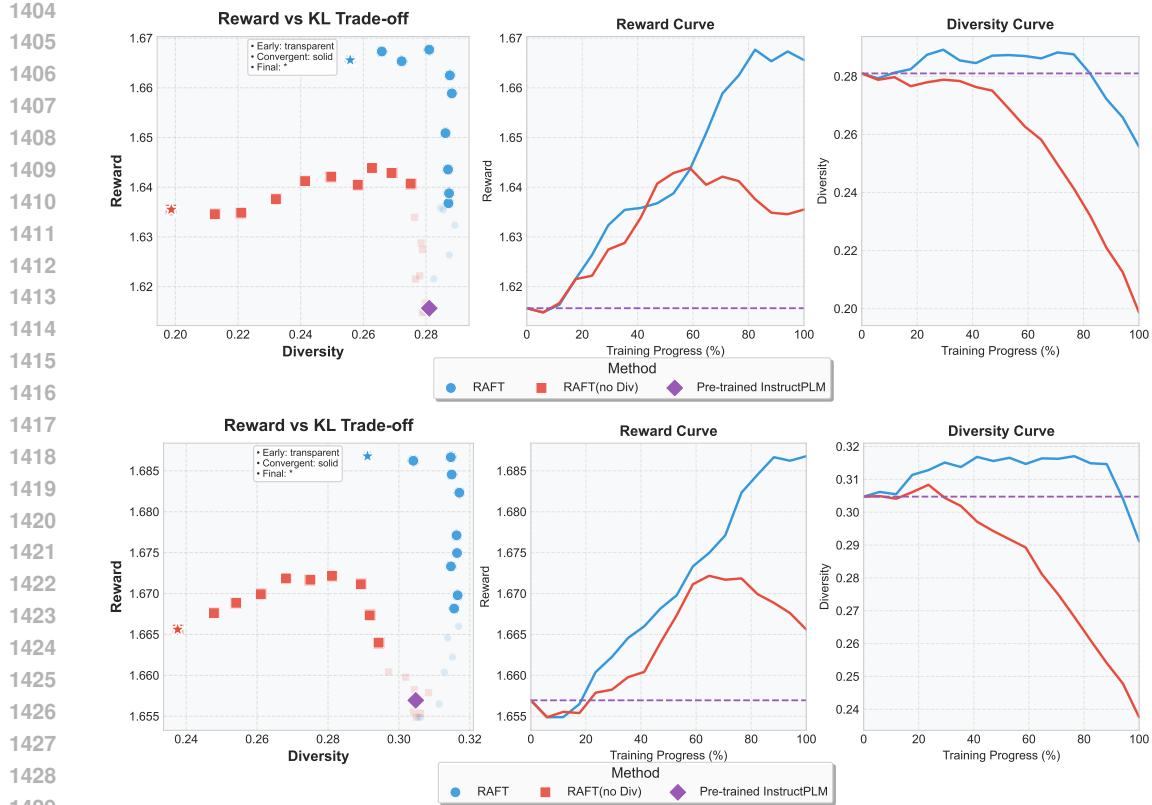


Figure 7: Training dynamics of ProteinZero_{RAFT} across protein size categories. **Top:** 0-150 residue proteins. **Bottom:** 150-300 residue proteins. Each row shows: **(Left)** Reward-diversity trade-off demonstrating Pareto frontier between final reward and sequence diversity. **(Middle)** Evolution of reward throughout training, showing consistent improvement over InstructPLM baseline. **(Right)** Diversity trajectory revealing how our novel embedding-level diversity regularization \mathcal{L}_{Div} maintains higher sequence diversity compared to RAFT without this regularization (no div).

significantly degraded sequence diversity (0.27 vs 0.31) and structural accuracy (TM Score: 0.85 vs 0.86), achieving 90% overall success rate. For 150-300 residues, both configurations reach 90% success rates, with $\alpha_{\text{div}} = 0.05$ providing superior sequence diversity (0.33 vs 0.29) and designability metrics (TM Score: 0.86 vs 0.85).

For ProteinZero_{RAFT}, we examine configurations with $\alpha_{\text{KL}} \in \{0.0, 0.005, 0.01\}$ and $\alpha_{\text{div}} \in \{0.00, 0.05\}$. In the 0-150 residue category, the best performing configuration ($\alpha_{\text{KL}} = 0.01, \alpha_{\text{div}} = 0.00$) achieves recovery rate of 0.59, thermal stability of Fast-ddG: -22.18 and FoldX ddG: -22.98, and 89% overall success rate. Weaker KL regularization with $\alpha_{\text{KL}} = 0.005$ consistently underperforms (88% success rate), while completely removing KL constraints ($\alpha_{\text{KL}} = 0.0$) further degrades performance to 87% success rate. For 150-300 residues, similar patterns emerge with $\alpha_{\text{KL}} = 0.01$ configurations achieving 89% success rates compared to 88% for $\alpha_{\text{KL}} = 0.005$ and 87% for $\alpha_{\text{KL}} = 0.0$. Importantly, removing diversity regularization consistently reduces sequence diversity across all configurations.

Despite these extensive explorations, all configurations in Table 9 underperform our optimal settings reported in Table 1, where $\alpha_{\text{KL}} = 0.1$ and $\alpha_{\text{div}} = 0.05$ achieve superior results: ProteinZero_{GRPO} reaches 90.13% and 91.19% overall success rates for 0-150 and 150-300 residues respectively, while ProteinZero_{RAFT} achieves 89.29% and 89.36%. These results demonstrate that stronger KL regularization and our embedding-level diversity regularization are essential for optimal protein design performance.

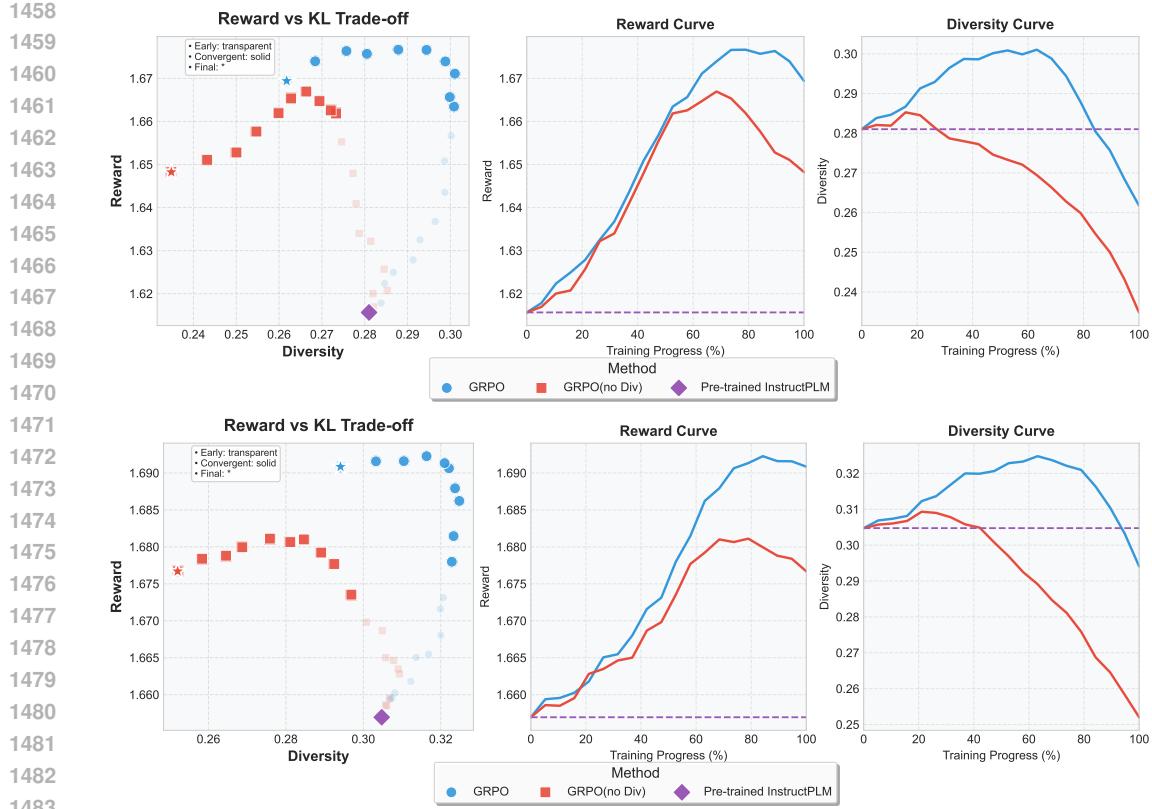


Figure 8: Training dynamics of ProteinZero_{GRPO} across protein size categories. **Top:** 0-150 residue proteins. **Bottom:** 150-300 residue proteins. Each row shows: **(Left)** Reward-diversity trade-off demonstrating Pareto frontier between final reward and sequence diversity. **(Middle)** Evolution of reward throughout training, showing consistent improvement over InstructPLM baseline. **(Right)** Diversity trajectory revealing how our novel embedding-level diversity regularization \mathcal{L}_{Div} maintains higher sequence diversity compared to GRPO without this regularization (no div).

C.3 TRAINING DYNAMICS AND CONVERGENCE ANALYSIS

Figure 7 and Figure 8 present comprehensive training dynamics for ProteinZero across different protein size categories, revealing critical insights about online reinforcement learning in protein design and the broader implications for mitigating mode collapse in RLHF systems.

The training trajectories demonstrate a fundamental challenge in online RL: without explicit diversity maintenance, policies consistently collapse toward narrow, high-reward regions of the solution space. As shown in the diversity curves (right panels of both figures), standard RAFT and GRPO without our diversity regularization \mathcal{L}_{Div} exhibit monotonic diversity decline, with sequence diversity dropping from initial values of 0.28-0.30 to as low as 0.13-0.18 by iteration 20. This represents a 40-55% reduction in exploration capacity, severely limiting the model’s ability to discover novel solutions. In contrast, incorporating our embedding-level diversity regularization maintains sequence diversity above 0.20-0.26 throughout training, preserving 70-85% of initial exploration capacity while still achieving comparable or superior reward values. For 150-300 residue proteins, where the design space is exponentially larger, this effect becomes even more pronounced: models with \mathcal{L}_{Div} maintain diversity levels of 0.21-0.26 compared to 0.17-0.23 without regularization.

The reward-diversity trade-off plots (left panels) reveal that maintaining diversity through \mathcal{L}_{Div} creates a favorable Pareto frontier where both high rewards and sequence variety are preserved. This sustained exploration capability translates directly to performance gains. Examining the reward curves (middle panels), ProteinZero with diversity regularization demonstrates more robust convergence, reaching final rewards of 1.644-1.686 for 0-150 residues and 1.686-1.688 for 150-300

1512 residues, compared to more variable performance without regularization. The preservation of di-
 1513 versity enables the model to continue discovering improved solutions rather than prematurely con-
 1514 verging to local optima. This phenomenon is particularly evident in iterations 15-20, where models
 1515 without diversity regularization show reward stagnation or decline (e.g., RAFT dropping from 1.648
 1516 to 1.626 for 0-150 residues), while regularized models maintain steady improvement or stability.

1517 These findings extend beyond protein design to general online reinforcement learning from human
 1518 feedback. Mode collapse represents a critical failure mode in RLHF where policies converge to nar-
 1519 row behavioral patterns that maximize immediate rewards but sacrifice long-term adaptability and
 1520 robustness. Our embedding-level diversity regularization offers a principled solution by operating
 1521 directly in the latent representation space, encouraging exploration of functionally distinct regions
 1522 rather than merely surface-level variations. The consistent effectiveness across both RAFT and
 1523 GRPO algorithms, and across different protein size categories, suggests that this approach addresses
 1524 a fundamental limitation in online RL optimization.

1525 By maintaining a balance between exploitation (achieving high rewards) and exploration (preserv-
 1526 ing diversity), our method enables continuous learning and adaptation, essential properties for de-
 1527 veloping robust, generalizable AI systems. The quantitative results demonstrate that diversity-aware
 1528 online RL achieves 89-91% success rates while maintaining 2-3 \times higher sequence diversity com-
 1529 pared to non-regularized variants. This simultaneous improvement in both performance and explo-
 1530 ration capacity validates that preventing mode collapse through embedding-level regularization is
 1531 not merely a theoretical benefit but translates to concrete gains in practical applications.

1532

1533 C.4 EXPERIMENTAL VALIDATION OF FAST-DDG ON SSYM BENCHMARK

1534

1535 This section validates Fast-ddG accuracy on experimental thermodynamic measurements from the
 1536 Ssym benchmark (Pucci et al., 2018), which comprises 684 single-point mutations across multiple
 1537 protein families with calorimetrically determined $\Delta\Delta G$ values and crystal structures. Following
 1538 Eq. 4, we evaluate 342 wild-type \rightarrow mutant transitions by computing stability changes on wild-type
 1539 backbone geometries.

1540

1541 Table 10 compares our predictor against physics-based oracles (FoldX, Rosetta) and su-
 1542 pervised predictors (ThermoMPNN (Dieckhaus et al., 2024), ThermoNet (Li et al., 2020),
 1543 PROSTATA (Umerenkov et al., 2022)). Across three configurations (pretrained, Fast-ddG-only,
 1544 TM-score + Fast-ddG), we achieve RMSE 1.44–1.47 kcal/mol and PCC 0.60–0.62, matching FoldX
 1545 (RMSE: 1.56, PCC: 0.63) at 236–760 \times speedup (Tables 6–7), which is a 56% RMSE improve-
 1546 ment over ProteinMPNN (3.38 kcal/mol, PCC: 0.26). ThermoMPNN achieves superior performance
 1547 (RMSE: 1.12, PCC: 0.72) but requires supervised training and handles only single-residue perturba-
 1548 tions, whereas our unsupervised predictor generalizes to multi-mutation redesigns often exceeding
 50% sequence divergence.

1549

1550 Table 11 reports errors for 20 representative mutations across eight families (1CEY, 1LZ1,
 1551 1L63, 5PTI, 1IOB, 1BNI, 1VQB, 4LYZ, 2RN2), spanning experimental $\Delta\Delta G$ from -5.70 to
 1552 +2.50 kcal/mol. Fine-tuning consistently reduces errors: 1L63 A98V improves from 1.52 to
 0.18 kcal/mol; 1VQB V35I from 0.83 to 0.07 kcal/mol. This consistency across diverse targets
 1553 indicates Fast-ddG captures generalizable thermodynamic principles.

1554

1555 These results demonstrate that Fast-ddG, though unsupervised and self-derived and optimized for
 1556 full-sequence inverse folding, achieves physics-based accuracy on experimental data while main-
 1557 taining computational efficiency for online RL.

1558

1559 C.5 COMPLETE PERFORMANCE METRICS WITH ABSOLUTE FOLDING ENERGIES

1560

1561 This section provides extended performance metrics complementing Table 1 in the main text. Ta-
 1562 ble 12 presents the complete evaluation including wild-type and generated absolute folding energies,
 1563 offering deeper insights into thermodynamic stability improvements.

1564

1565 The wild-type (WT) energy represents the average FoldX folding free energy of native struc-
 1566 tures in each length category: 27.09 kcal/mol for 0-150 residues and 36.96 kcal/mol for 150-300
 1567 residues. Generated energy denotes the average absolute folding free energy of designed sequences
 1568 computed by FoldX. The FoldX ddG column reports the stability change relative to wild-type:

1566 Table 10: Performance comparison on the Ssym dataset (342 single-point direct mutations, wild-
 1567 type→mutant direction). Lower RMSE and higher Pearson correlation coefficient (PCC) indicate
 1568 better agreement with experimental $\Delta\Delta G$ values. Best ProteinZero result highlighted in blue .
 1569

1570	Model	1571	RMSE (kcal/mol) ↓	1572	PCC ↑
1572	ProteinMPNN	1573	3.38	1574	0.26
1573	ThermoMPNN	1574	1.12	1575	0.72
1574	Rosetta	1575	2.31	1576	0.69
1575	FoldX	1577	1.56	1578	0.63
1576	ThermoNet	1577	1.56	1578	0.47
1577	PROSTATA	1578	1.42	1579	0.51
1578	ProteinZero (pretrained)	1579	1.47	1580	0.60
1580	ProteinZero (TM-score + Fast-ddG)	1581	1.45	1582	0.61
1581	ProteinZero (Fast-ddG only)	1582	1.44	1583	0.62

1582 Table 11: Representative mutations from the Ssym dataset demonstrating improved prediction accu-
 1583 racy after fine-tuning. Error denotes absolute deviation $|\widehat{\Delta\Delta G} - \Delta\Delta G_{\text{exp}}|$ in kcal/mol. Best results
 1584 for each mutation highlighted in blue .
 1585

1586	PDB	Mutation	Experimental $\Delta\Delta G$ (kcal/mol)	Prediction Error (kcal/mol) ↓		
				1587	Pretrained	Fast-ddG only
1588	1CEY	D12A	2.50	3.64	1.20	1.32
1589	1LZ1	V2G	-2.29	3.54	2.09	1.56
1590	1LZ1	I23A	-2.50	1.70	0.60	0.64
1591	1L63	V149A	-3.20	1.49	0.50	0.49
1592	1L63	A98V	-3.20	1.52	0.61	0.18
1593	1L63	D20A	-0.30	3.55	2.64	1.66
1594	1LZ1	V2A	-1.50	2.31	1.09	1.40
1595	5PTI	N43G	-5.70	3.09	2.16	2.29
1596	1IOB	T9G	-2.60	1.78	1.04	0.35
1597	1BNI	T26A	-1.70	1.25	0.53	0.39
1598	1L63	S44R	0.20	1.38	0.67	0.33
1599	1BNI	I76A	-1.70	0.94	0.31	0.26
1600	1VQB	V35I	-0.60	0.83	0.22	0.07
1601	1L63	A42V	-2.70	2.37	1.77	0.52
1602	4LYZ	T40S	-0.30	1.45	0.23	0.90
1603	1VQB	I47M	-1.70	1.15	0.61	0.62
1604	1L63	L46A	-1.90	1.33	0.68	0.81
1605	1VQB	I47L	-0.40	0.91	0.40	0.35
1606	2RN2	D70N	0.90	2.40	1.90	1.60
1607	1L63	I27M	-3.10	1.23	0.76	0.74

1609 ddG = Generated Energy – WT Energy. More negative ddG values indicate enhanced thermo-
 1610 dynamic stability relative to native sequences.

1612 ProteinZero achieves substantial stability improvements across both length categories. For 0-150
 1613 residues, ProteinZeroGRPO reduces generated energy from 6.21 kcal/mol (InstructPLM baseline)
 1614 to 2.17 kcal/mol, corresponding to FoldX ddG improvement from -20.878 to -24.924 kcal/mol, a
 1615 4.05 kcal/mol enhancement (19.4% relative improvement). For 150-300 residues, generated energy
 1616 decreases from 9.82 to 4.16 kcal/mol, yielding FoldX ddG improvement from -27.145 to -32.805
 1617 kcal/mol, a 5.66 kcal/mol enhancement (20.8% relative improvement). These gains demonstrate that
 1618 online RL with Fast-ddG optimization transfers effectively to independent physics-based oracles,
 1619 validating that our framework learns generalizable thermodynamic principles rather than overfitting
 to training proxies.

1620 Table 12: Extended version of Table 1 including wild-type and generated folding energies. Performance
 1621 comparison of protein inverse folding methods on CATH-4.3 benchmark proteins grouped
 1622 by length (0-150 and 150-300 residues). Metrics include sequence recovery, thermal stability
 1623 (Fast-ddG, absolute folding energies, FoldX ddG), and designability (TM-score, pLDDT, diversity,
 1624 scRMSD). Success rate is defined as scRMSD $< 2\text{\AA}$ and FoldX ddG < 0 . Designability metrics
 1625 computed using ESMFold; independent AlphaFold3 validation confirms consistent trends (Table 2).
 1626 Best results highlighted in **blue**, second-best in **green**.

Length	Method	InverseFold Acc. Recovery Rate \uparrow		Thermal Stability Metrics			Designability Metrics			Overall Success (%) \uparrow		
		Fast-ddG \downarrow	WT Energy	Gen. Energy \downarrow	FoldX ddG \downarrow	TM Score \uparrow	PLDDT \uparrow	Diversity \uparrow	scRMSD \downarrow ($< 2\text{\AA}$ %) \uparrow			
<i>Base Model</i>												
<i>SOTA Inverse Folding Models</i>												
0-150 residues	InstructPLM	0.574	-21.543	27.09	6.21	-20.878	0.812	79.983	0.281	1.484 (85.71%)		
	<i>RL Baseline Methods</i>											
	ProteinMPNN	0.426	-21.509	27.09	6.30	-20.792	0.805	79.883	0.280	1.500 (82.14%)		
	ESM-IF	0.377	-17.900	27.09	12.76	-14.326	0.802	78.918	0.263	1.515 (81.25%)		
	DPO	0.571	-21.713	27.09	5.90	-21.191	0.820	80.716	0.274	1.473 (87.58%)		
	Multi-Round DPO	0.569	-21.797	27.09	5.67	-21.423	0.823	80.797	0.266	1.468 (87.95%)		
	<i>Our Online RL Methods</i>											
	ProteinZero _{RAFT} (Ours)	0.587	-22.236	27.09	3.92	-23.168	0.849	81.560	0.296	1.393 (92.86%)		
	ProteinZero _{GRPO} (Ours)	0.590	-22.616	27.09	2.17	-24.924	0.867	82.326	0.306	1.373 (93.55%)		
	<i>Base Model</i>											
150-300 residues	InstructPLM	0.570	-36.362	36.96	9.82	-27.145	0.824	83.783	0.305	1.448 (88.24%)		
	<i>SOTA Inverse Folding Models</i>											
	ProteinMPNN	0.405	-35.778	36.96	9.90	-27.057	0.816	82.361	0.297	1.469 (86.64%)		
	ESM-IF	0.446	-32.125	36.96	12.14	-24.816	0.802	82.042	0.279	1.487 (86.09%)		
	DPO	0.570	-36.417	36.96	8.05	-28.915	0.830	83.837	0.296	1.441 (88.97%)		
	Multi-Round DPO	0.569	-36.483	36.96	7.87	-29.087	0.831	83.840	0.288	1.437 (89.04%)		
	<i>Our Online RL Methods</i>											
	ProteinZero _{RAFT} (Ours)	0.578	-37.575	36.96	6.21	-30.755	0.841	83.850	0.324	1.427 (89.17%)		
	ProteinZero _{GRPO} (Ours)	0.580	-40.626	36.96	4.16	-32.805	0.862	84.154	0.331	1.393 (90.43%)		
	<i>Base Model</i>											

D ADDITIONAL RELATED WORK

D.1 CLASSICAL RL VS. RLHF FINE-TUNING FOR BIOLOGICAL SEQUENCE DESIGN

Classical reinforcement learning approaches to biological sequence design emerged before the advent of powerful pre-trained protein models, representing a fundamentally different paradigm from modern RLHF fine-tuning. These methods, developed when large-scale protein language models were not yet available, train task-specific policies from scratch, optimizing sequences directly for defined reward signals. Early work formulated sequence design as Markov decision processes where agents construct or modify sequences step-by-step. Angermueller et al. (2020) employed PPO with model-based variants (DyNA-PPO) to optimize DNA binding sites and antimicrobial peptides, achieving improved sample efficiency through learned simulators. Runge et al. (2019) introduced LEARNA for RNA inverse folding, using PPO to build sequences nucleotide-by-nucleotide with meta-learning across large-scale structure datasets. Even recent planning-based approaches continue this paradigm: Lutz et al. (2023) developed AlphaZero-style MCTS for protein nanomaterial design, discovering assemblies with atomic-precision geometry verified by cryo-EM, while Wang et al. (2023b) proposed EvoPlay, treating amino acid mutations as moves in single-player games for efficient variant exploration. Classical RL methods typically rely on physics-based or learned oracles (e.g., Rosetta energies, AlphaFold predictions, docking scores) within optimization loops. Skwark et al. (2020) used Rosetta-based binding energy to evolve ACE2 variants against SARS-CoV-2, demonstrating substantial improvements in binding affinity with significantly reduced computational requirements compared to traditional design algorithms. These approaches perform online optimization, iteratively querying oracles which can require thousands to millions of evaluations for complex objectives. Model-based variants help address computational costs: DyNA-PPO trains surrogate models between experimental rounds, while Jain et al. (2022) combines GFlowNets with active learning to sample diverse high-fitness sequences proportional to reward, achieving enhanced diversity compared to standard RL baselines. Wang et al. (2025) introduced DRAKES for reward optimization in discrete diffusion models. Their approach enables direct reward backpropagation through diffusion trajectories via Gumbel-Softmax approximations when rewards are differentiable; for non-differentiable rewards, they resort to standard policy gradient methods (PPO) or reward-weighted maximum likelihood estimation. ProteinZero targets protein inverse folding models, employing online RL with policy gradients designed from the outset for non-differentiable scalar rewards from structure predictors (ESMFold, US-align) and stability oracles (Fast-ddG, FoldX). A key distinction lies in diversity handling: DRAKES reports sequence entropy as a post-hoc metric

1674 without explicit regularization, whereas ProteinZero incorporates embedding-level diversity regu-
 1675 larization with theoretical guarantees (Appendix F) to actively prevent mode collapse during train-
 1676 ing. While both advance reward-guided protein design, they address complementary model classes:
 1677 DRAKES for discrete diffusion, ProteinZero for protein inverse folding.

1678 Classical methods often focus on specific objectives such as binding affinity, folding accuracy, or
 1679 assembly geometry, learning the necessary biophysical constraints through exploration. In con-
 1680 trast, RLHF fine-tuning, enabled by the recent emergence of powerful pre-trained models, operates
 1681 in a different problem setting: leveraging these foundation models that already encode extensive
 1682 biophysical knowledge, we refine competent generators rather than training naive policies. This
 1683 setting enables holistic multi-objective optimization for generalizable improvements, promotes se-
 1684 quence realism without hard-coded penalties, and achieves sample-efficient learning as every oracle
 1685 query refines an already capable model rather than teaching basic constraints from scratch. The
 1686 pre-trained foundation facilitates generation of biologically plausible candidates that satisfy RL ob-
 1687 jectives, fundamentally changing the optimization landscape compared to classical approaches that
 1688 must discover these constraints through extensive exploration from scratch.

1689 D.2 MODE COLLAPSE IN ONLINE REINFORCEMENT LEARNING

1690 Mode collapse represents a critical failure mode in online reinforcement learning where policies
 1691 converge to narrow output distributions despite diverse valid solutions existing. Kirk et al. (2024)
 1692 demonstrate that RLHF significantly reduces output diversity compared to supervised fine-tuning,
 1693 with models producing uniform responses across different inputs. Cui et al. (2025) reveal that policy
 1694 entropy plummets early in training, causing exploration to vanish and performance to saturate. As
 1695 models converge to limited outputs, policy distributions become highly peaked, creating a vicious
 1696 cycle where reduced diversity leads to overconfidence, further limiting exploration. The standard
 1697 KL penalty in PPO-style RLHF only partially alleviates this issue, as reverse KL is inherently mode-
 1698 seeking, which favors single high-probability solutions.

1699 Various mitigation strategies have emerged. Entropy regularization directly adds bonuses to main-
 1700 tain broader distributions: Shekhar et al. (2024) integrate self-entropy into preference optimiza-
 1701 tion, while Wang et al. (2024) show forward KL and Jensen-Shannon divergences achieve better
 1702 alignment-diversity trade-offs than reverse KL. Diversity-reinforced objectives explicitly incorpo-
 1703 rate variety into rewards, with Li et al. (2025) using semantic clustering as diversity bonuses to
 1704 achieve simultaneous improvements in quality and novelty. Data mixing strategies like SimpleMix
 1705 (Li & Khashabi, 2025) combine on-policy and off-policy data to prevent collapse by maintaining
 1706 broader training distributions.

1707 Our embedding-level diversity regularization represents a novel contribution. Unlike existing ap-
 1708 proaches operating on output probabilities or rewards, we directly encourage semantic diversity in
 1709 latent representation space. By penalizing similarity between hidden states of generated sequences,
 1710 our method captures meaningful variation beyond surface differences. This complements traditional
 1711 regularization: KL maintains proximity to reference distributions, entropy encourages probabilistic
 1712 exploration, while our embedding regularizer ensures exploration of functionally distinct sequence
 1713 regions. For protein design with expensive oracles, maintaining diversity is critical to maximize
 1714 information per query. Our approach enables covering more possibilities with fewer oracle calls,
 1715 avoiding redundant evaluations. The combination provides robust protection against mode collapse
 1716 while maintaining alignment with design objectives, as demonstrated by simultaneous improve-
 1717 ments in diversity and performance metrics.

1718 D.3 RELATION TO FULLY ATOMISTIC GENERATIVE MODELS

1719 Recent sequence-structure co-generation models include fully atomistic generators (Chroma (In-
 1720 graham et al., 2023), Protpardelle (Chu et al., 2024), ProteinGenerator (Lisanza et al., 2023)) and
 1721 backbone-level co-design methods (MultiFlow (Campbell et al., 2024)). These models learn joint
 1722 distributions over three-dimensional backbone geometries and amino acid sequences for *de novo*
 1723 fold sampling with compatible sequences. They combine continuous backbone representations
 1724 (residue frames or atomic coordinates) with discrete or relaxed sequence representations; Protein-
 1725 Generator performs diffusion in continuous sequence space coupled to structure prediction networks
 1726 for atomic coordinates.

1728
1729 Table 13: Comparison of diversity incorporation strategies. We report success rate, FoldX ddG
1730 (kcal/mol), and TM-score for proteins of different lengths.
1731

Strategy	Success Rate (%)		FoldX ddG (kcal/mol)		TM-score	
	0–150	150–300	0–150	150–300	0–150	150–300
(1) Embedding reward	78.65	81.71	-18.681	-23.967	0.836	0.831
(2) Hamming reward	74.63	80.29	-11.135	-23.228	0.836	0.831
(3) Embedding regularization	90.13	91.19	-24.924	-32.805	0.867	0.867

1737
1738
1739 ProteinZero addresses the complementary problem of backbone-conditioned inverse folding. In
1740 practical engineering workflows, enzyme optimization or epitope-specific binder design, backbone
1741 geometry is predetermined by experimental structures, docking simulations, or motif grafting and
1742 must be preserved as a hard constraint. The objective is identifying sequences maximizing stability
1743 and foldability for fixed geometries rather than generating novel backbone shapes. ProteinZero
1744 provides sequence refinement on fixed backbones where structural template preservation is essential.

1745 A fundamental distinction lies in computational tractability for online RL. Applying online RL to
1746 joint sequence-structure generators entails repeated sampling in high-dimensional continuous coor-
1747 dinate space ($\mathbb{R}^{3 \times N}$, often including side-chain atoms), with reward evaluation requiring expensive
1748 physics-based simulations or slow structural oracles for geometric validity. ProteinZero operates
1749 in discrete sequence space with efficient proxy rewards (Fast-ddG, ESMFold), demonstrating that
1750 multi-objective, online RL is tractable for sequence optimization. Our evaluation focuses on stan-
1751 dard backbone-conditioned inverse folding benchmarks (CATH-4.3) rather than direct comparison
1752 with *de novo* atomistic generators. This isolates the online RL algorithm’s contribution: fixed back-
1753 bones ensure the observed 36–48% reduction in design failure rates is attributable to policy opti-
1754 mization and diversity regularization rather than backbone sampling or flexibility.

1755 E ADDITIONAL RESULTS ON DIVERSITY REGULARIZATION STRATEGIES

1756 In the main text, we discuss the impact of incorporating diversity through different strategies. For
1757 completeness, Table 13 reports the detailed numerical results, including success rate, FoldX ddG,
1758 and TM-score for both protein length categories. These results further illustrate that embedding-
1759 based diversity applied as a regularizer preserves stability and structural accuracy, while reward-
1760 based variants lead to significant degradation in performance.

1761 F DIVERSITY REGULARIZER: THEORETICAL FOUNDATION FOR 1762 PREVENTING MODE COLLAPSE

1763 We provide a theoretical analysis of our embedding-level diversity regularizer, demonstrating how
1764 it helps prevent mode collapse in online reinforcement learning. We formalize mode collapse for a
1765 conditional policy $p_\theta(y \mid x)$ as a sharp decrease in policy entropy $H_\theta(Y \mid X=x)$ and a contraction of
1766 its effective support. This perspective aligns with maximum-entropy RL, where entropy encourages
1767 stochasticity and prevents brittle policies (Haarnoja et al., 2018; Levine, 2018; Geist et al., 2019).
1768 The standard KL-regularized objective, $\mathbb{E}[r] - \alpha_{KL} \text{KL}(p \parallel p_{\text{ref}})$, yields the Boltzmann distribution
1769 $p^*(y \mid x) \propto p_{\text{ref}}(y \mid x) \exp(r(x, y) / \alpha_{KL})$. A small α_{KL} or highly peaked rewards can drive
1770 concentration and an entropy drop, a known mode-seeking behavior (Todorov, 2006; Levine, 2018).

1771 F.1 MEAN-FIELD OBJECTIVE AND PROPERTIES

1772 Let $Z = \psi_\theta(X, Y) \in \mathbb{S}^{d-1}$ denote the unit-norm embeddings of generated sequences, as con-
1773 structed in Section 3.1.1. For a fixed input x , we simplify notation by considering probabili-
1774 ty measures $p(\cdot) \equiv p_\theta(\cdot \mid x)$ on sequences y . We define a symmetric kernel $c(y, y') =$
1775 $\cos(\psi_\theta(x, y), \psi_\theta(x, y'))$.

1782 **Assumption 1** (Absolute continuity and i.i.d. pairing). *For each x , the feasible set is $\{p \in \Delta : p(\cdot | x) \ll p_{\text{ref}}(\cdot | x)\}$, ensuring $\text{KL}(p \| p_{\text{ref}})$ is finite. Expectations over pairs (y, y') are taken w.r.t. the product measure $p(\cdot | x) \otimes p(\cdot | x)$ (i.i.d. draws).*

1783 **Remark 1** (Setting and scope of analysis). *All variational arguments below fix θ and the conditioning input x , and treat $p(\cdot) \equiv p_{\theta}(\cdot | x)$ as the optimization variable. We work with discrete sequence policies, so $p_{\text{ref}}(y | x) > 0$ on the feasible support, making atomic distributions δ_{y^*} admissible whenever $p_{\text{ref}}(y^* | x) > 0$.*

1789 **Coefficient sign convention.** Throughout we assume nonnegative coefficients, in particular $\alpha_{\text{div}} \geq 0$ (and $\alpha_{\text{KL}} \geq 0$), so that the diversity term acts as a repulsive regularizer.

1792 At the population level, we analyze the regularized functional for any fixed x :

$$1793 \max_{p \in \Delta: p \ll p_{\text{ref}}(\cdot | x)} \mathcal{J}[p] := \mathbb{E}_{y \sim p}[r(x, y)] - \alpha_{\text{KL}} \text{KL}(p \| p_{\text{ref}}(\cdot | x)) - \frac{\alpha_{\text{div}}}{2} \mathbb{E}_{y, y' \sim p}[c(y, y')]. \quad (8)$$

1795 **Remark 2.** *Writing the diversity term as $+\frac{\alpha_{\text{div}}}{2}(1 - \mathbb{E}[c])$ is equivalent up to an additive constant and yields the same optimizer.*

1797 **Lemma 1** (Diversity as a penalty on the embedding mean). *Under Assumption 1, with $Z = \psi_{\theta}(X, Y)$ on the unit sphere, the diversity term is the squared norm of the mean embedding: $\mathbb{E}_{y, y' \sim p}[c(y, y')] = \|\mathbb{E}_{y \sim p}[Z]\|_2^2$. Consequently, the objective*

$$1801 \mathcal{J}[p] = \mathbb{E}_p[r] - \alpha_{\text{KL}} \text{KL}(p \| p_{\text{ref}}) - \frac{\alpha_{\text{div}}}{2} \|\mathbb{E}_p[Z]\|_2^2$$

1803 is concave in p . It is strictly concave on the relative interior if $\alpha_{\text{KL}} > 0$.

1804 **Proposition 1** (Interior fixed point with a non-local repulsive potential). *Assume $\alpha_{\text{KL}} > 0$. Any 1805 interior stationary point p^* of Eq. 8 (where $p^*(y) > 0$ for all feasible y) satisfies*

$$1806 \quad 1807 \quad 1808 \quad p^*(y | x) \propto p_{\text{ref}}(y | x) \exp\left(\frac{1}{\alpha_{\text{KL}}} r(x, y) - \frac{\alpha_{\text{div}}}{\alpha_{\text{KL}}} \Phi_{\theta}(y; p^*)\right), \quad (9)$$

1809 where the potential $\Phi_{\theta}(y; p) := \mathbb{E}_{y' \sim p}[c(y, y')]$ is a **non-local repulsive term**. Placing mass on 1810 a sequence y increases the “energy” of other sequences y' with similar embeddings, discouraging 1811 collapse.

1813 F.2 GUARANTEES AGAINST COLLAPSE TO A SINGLE MODE

1814 With $\alpha_{\text{KL}} > 0$, the KL term alone rules out collapse to a point mass (delta distribution). The diversity 1815 term adds a non-local repulsion that discourages uni-directional concentration in representation 1816 space.

1817 **Theorem 1** (KL barrier to deterministic collapse). *Suppose $\alpha_{\text{KL}} > 0$ and Assumption 1 holds. Let 1818 y^* be any sequence with $p_{\text{ref}}(y^* | x) > 0$. If another sequence $y' \neq y^*$ exists with $p_{\text{ref}}(y' | x) > 0$, 1819 then the point mass $p = \delta_{y^*}$ is not a stationary point of Eq. 8.*

1821 *Proof.* Consider a perturbation $p_{\varepsilon} = (1 - \varepsilon)\delta_{y^*} + \varepsilon\delta_{y'}$ for a small $\varepsilon > 0$. The change in the reward 1822 term is $\Delta\mathcal{J}_{\text{reward}} = \varepsilon(r(x, y') - r(x, y^*)) + O(\varepsilon^2)$. For the diversity term, let $c = c(y^*, y')$. The 1823 change is $\Delta\mathcal{J}_{\text{div}} = \alpha_{\text{div}}\varepsilon(1 - c) + O(\varepsilon^2)$. For the KL divergence, the change is 1824

$$1825 \quad \Delta\text{KL} := \text{KL}(p_{\varepsilon} \| p_{\text{ref}}) - \text{KL}(\delta_{y^*} \| p_{\text{ref}}) \\ 1826 \quad = (1 - \varepsilon) \log(1 - \varepsilon) + \varepsilon \log \varepsilon + \varepsilon \log \frac{p_{\text{ref}}(y^* | x)}{p_{\text{ref}}(y' | x)}.$$

1828 Using $(1 - \varepsilon) \log(1 - \varepsilon) = -\varepsilon + O(\varepsilon^2)$, we find that $-\alpha_{\text{KL}} \Delta\text{KL}$ is dominated by the term 1829 $-\alpha_{\text{KL}}\varepsilon \log \varepsilon$. Combining these, the directional derivative of the full objective is:

$$1831 \quad \lim_{\varepsilon \rightarrow 0^+} \frac{\mathcal{J}[p_{\varepsilon}] - \mathcal{J}[\delta_{y^*}]}{\varepsilon} = \underbrace{r(x, y') - r(x, y^*)}_{\text{reward}} + \underbrace{\alpha_{\text{div}}(1 - c)}_{\text{diversity}} \\ 1832 \quad + \underbrace{\alpha_{\text{KL}} \left(1 - \log \varepsilon - \log \frac{p_{\text{ref}}(y^* | x)}{p_{\text{ref}}(y' | x)}\right)}_{\text{KL barrier}} + o(1).$$

1836 As $\varepsilon \rightarrow 0^+$, the $-\log \varepsilon$ term drives the quotient to $+\infty$. Moving probability mass away from
 1837 any single point mass δ_{y^*} thus always increases the objective, meaning δ_{y^*} cannot be a stationary
 1838 point. \square

1839
 1840 **Proposition 2** (No-KL case: finite condition that rules out a delta optimum). *If $\alpha_{\text{KL}} = 0$ and there
 1841 exists $y' \neq y^*$ such that*

$$1842 \quad r(x, y') - r(x, y^*) + \alpha_{\text{div}}(1 - c(y^*, y')) > 0,$$

1843 then $p = \delta_{y^*}$ is not a (local) maximizer of Eq. 8.

1844
 1845 **Corollary 1** (Readable sufficient condition). *For any y^*, y' with $p_{\text{ref}}(y^* | x), p_{\text{ref}}(y' | x) > 0$:*

- 1846 • *If $\alpha_{\text{KL}} > 0$, then $p(\cdot | x) = \delta_{y^*}$ is never stationary (Theorem 1).*
- 1847 • *If $\alpha_{\text{KL}} = 0$, a sufficient condition for non-stationarity is $r(x, y^*) - r(x, y') < \alpha_{\text{div}}(1 - c(y^*, y'))$, which is the finite, reward–diversity tradeoff stated in Proposition 2.*

1848
 1849 **Remark 3** (Scope of the diversity term). *Since $\mathbb{E}_{y, y'}[c(y, y')] = \|\mathbb{E}[Z]\|^2$, the regularizer mainly
 1850 discourages uni-directional concentration (single-mode collapse aligned with one embedding direc-
 1851 tion). It may not penalize symmetric few-mode collapse where $\mathbb{E}[Z] \approx 0$.*

1852 F.3 ENTROPY LOWER BOUND AND IMPLEMENTATION

1853 The diversity regularizer also yields a conservative lower bound on policy entropy. Let $Z =$
 1854 $\psi_\theta(X, Y) \in \mathbb{S}^{d-1}$ and define the cosine kernel $k(z, z') = (1 + \cos(z, z'))/2 \in [0, 1]$. The *in-*
 1855 *formation potential* of the embedding distribution $\nu_\theta(\cdot | x)$ is

$$1856 \quad I_k(Z | X=x) := \mathbb{E}[k(Z, Z') | X=x] = 1 - \frac{1}{2} \bar{D}_{\text{cos}}(\theta; x),$$

$$1857 \quad \bar{D}_{\text{cos}}(\theta; x) := 1 - \mathbb{E}[\cos(Z, Z') | X=x].$$

1858 Since $H(Y | X) \geq H_2(Y | X) \geq H_2(Z | X)$ and $H_2(Z | X) \geq -\log I_k(Z | X)$, we obtain the
 1859 lower bound on policy entropy and perplexity:

$$1860 \quad H_\theta(Y | X=x) \geq -\log(1 - \frac{1}{2} \bar{D}_{\text{cos}}(\theta; x)), \quad \text{Perp}_\theta(x) \geq \frac{1}{1 - \frac{1}{2} \bar{D}_{\text{cos}}(\theta; x)}. \quad (10)$$

1861 By Lemma 1, $\mathbb{E}[\cos(Z, Z')] = \|\mathbb{E}[Z]\|_2^2 \in [0, 1]$, hence $I_k = \frac{1}{2}(1 + \|\mathbb{E}[Z]\|_2^2) \in [1/2, 1]$. Thus the
 1862 bound is conservative and cannot exceed $\log 2$ (equivalently, the perplexity lower bound is at most
 1863 2). It should be viewed as a safety valve rather than a strong guarantee.

1864
 1865 **Remark 4** (Mini-batch estimator). *In practice we estimate \bar{D}_{cos} using off-diagonal pairs to avoid
 1866 upward bias:*

$$1867 \quad \widehat{\mathbb{E}[\cos]} = \frac{1}{m(m-1)} \sum_{i \neq j} \cos(z_i, z_j) = \frac{m\|\bar{z}\|_2^2 - 1}{m-1} \in \left[-\frac{1}{m-1}, 1 \right],$$

$$1868 \quad \widehat{\bar{D}}_{\text{cos}} = 1 - \widehat{\mathbb{E}[\cos]} \in \left[0, 1 + \frac{1}{m-1} \right].$$

1869 When $m \geq 3$, $1 - \widehat{\bar{D}}_{\text{cos}}/2 > 0$ holds automatically; for $m = 2$, a tiny truncation can be applied
 1870 before evaluating $-\log(1 - \widehat{\bar{D}}_{\text{cos}}/2)$.

1871 The objective in Eq. 8 is implemented in our ProteinZero_{RAFT} and ProteinZero_{GRPO} algorithms by
 1872 appending the diversity loss term, which induces the repulsive fixed point from Eq. 9 and benefits
 1873 from the entropy guarantees of Eq. 10.

1874 G USE OF LLMs

1875 We acknowledge the use of Large Language Models (LLMs) to assist in the preparation of this
 1876 manuscript. LLMs were employed exclusively for language polishing to improve clarity, grammar,
 1877 and consistency of technical writing. All scientific content, experimental design, methodology, data

1890 analysis, and core insights represent original work by the authors. LLMs did not contribute to the
1891 conceptualization, experimentation, or interpretation of results. All factual claims, mathematical
1892 derivations, and experimental outcomes were independently generated and verified by the authors.
1893 The use of LLMs was strictly limited to improving the presentation and readability of our inde-
1894 pendently developed research, serving only as writing aids rather than contributing to the scientific
1895 content itself.

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943