
CoderGen: Towards Domain-Specific Code Generation of
Large Language Models

Anonymous ACL submission

Abstract

Automated code generation is a pivotal capabil-001
ity of large language models (LLMs). How-002
ever, assessing this capability in real-world003
scenarios remains challenging. Previous meth-004
ods focus more on low-level code generation,005
such as model loading, instead of generat-006
ing high-level codes catering for real-world007
tasks, such as image-to-text, text classification,008
in various domains. Therefore, we construct009
AICoderEval, a dataset focused on real-world010
tasks in various domains based on Hugging-011
Face, PyTorch, and TensorFlow, along with012
comprehensive metrics for evaluation and en-013
hancing LLMs’ task-specific code generation014
capability. After that, we propose CoderGen,015
an agent-based framework, to help LLMs gen-016
erate codes related to real-world tasks on the017
constructed AICoderEval. Moreover, we train018
a more powerful task-specific code generation019
model, named AICoder, which is refined on020
codellama based on AICoderEval. Our experi-021
ments demonstrate the effectiveness of Coder-022
Gen in improving LLMs’ task-specific code023
generation capability (by 30.26% on SR@All024
and 19.88% on SR@Any). And the proposed025
AICoder also outperform the current code gen-026
eration LLMs, indicating the great quality of027
the AICoderEval benchmark for evaluation and028
enhancing LLMs’ task-specific code generation029
capability.030

1 Introduction031

Large language models attract attention for their032

general capabilities (Chowdhery et al., 2022;033

Brown et al., 2020; Workshop et al., 2023; Tou-034

vron et al., 2023; Du et al., 2022), achieve high035

scores on evaluations such as HumanEval (Chen036

et al., 2021) and MBPP (Ni et al., 2023), which037

primarily focus on basic programming languages.038

However, their application capabilities in real soft-039

ware development, especially in the field of arti-040

ficial intelligence using specific libraries (such as041

HuggingFace, PyTorch, TensorFlow, etc.), remain 042

unclear. Although these libraries are very popular 043

in AI development, how to evaluate and improve 044

the code generation capabilities of large language 045

models using these libraries is still a hard question. 046

Current researches explore how to leverage 047

LLMs to use tool to call specific libraries. For 048

instance, studies such as HuggingGPT (Shen et al., 049

2023) and Gorilla (Patil et al., 2023) try to generate 050

single-line calls of APIs in specific domains. These 051

studies show that even simple API calls require 052

models to have a deep understanding and the ability 053

to correctly use the libraries. However, these stud- 054

ies have not yet fully addressed how to automate 055

the evaluation and enhancement of models’ code 056

generation capabilities in flexibly using specific li- 057

braries, especially when dealing with complex and 058

diverse programming tasks. 059

To address this challenge, we construct the 060

AICoderEval dataset, a benchmark for AI-oriented 061

programming tasks to measure programming ca- 062

pabilities within this domain. Then, we propose 063

an agent-based framework called CoderGen, to 064

generate task-specific codes. CoderGen simplifies 065

the construction of datasets related to task-specific 066

code on different libraries, enabling the automatic 067

generation of training and testing samples. As illus- 068

trated in Figure 1, general code generation LLMs 069

(e.g. codellama) may produce incorrect answers 070

when it comes to pipeline and model API calls 071

based on given function instructions. Our fine- 072

tuned model demonstrates improved performance 073

as it learns how to use the library for specific tasks. 074

This approach allows for a more accurate assess- 075

ment of a model’s application capabilities in real 076

software development and provides direction for 077

further model improvements. 078

Our work includes three main contributions: 079

• Benchmark Construction: We build the 080

AICoderEval dataset, which focuses on AI 081

1

Figure 1: The AICoder generated by our CoderGen framework is capable of programming for domain-specific tasks
and selecting the appropriate libraries for invocation. In part A depicts the output generated by codellama-7b-python,
which incorrectly invoked a library using the pipeline method. In contrast, the part B presents the results produced
by the AICoder, accurately selecting and calling the appropriate library to fulfill the requirements.

tasks and includes code generation tasks re-082

lated to AI libraries, along with test cases and083

complete programs for evaluating these tasks.084

These tasks cover a variety of library functions085

and usage patterns, ensuring that the model086

learns comprehensive knowledge about the087

libraries.088

• Framework Design: We design and construct089

the CoderGen framework to generate high-090

quality training data. During the inference091

stage, we use an LLM-based agent to guide092

the generation of code that adheres to spe-093

cific library usage standards, with continuous094

improvements in code quality. The agent in-095

teracts with the model multiple times to re-096

fine and optimize the code generation process,097

making it more consistent with library usage098

norms and best practices.099

• Model Evaluation: We evaluate multiple large100

language models on AICoderEval, demon-101

strating their code generation capabilities in102

actual AI development tasks and the perfor-103

mance enhancements after training with our104

framework. This approach allows us to com-105

pare the performance of different models and106

identify their strengths and limitations in us-107

ing specific libraries.108

Through these contributions, CoderGen provides 109

a more comprehensive and practical evaluation 110

method for the code generation capabilities of large 111

language models and points the way for further 112

model improvements. We hope this framework 113

will assist researchers and developers in better un- 114

derstanding and leveraging the potential of large 115

language models in software development, particu- 116

larly when programming with specific libraries. 117

2 Benchmark Construction 118

2.1 Data Collection 119

Inspired by related work (Patil et al., 2023), we aim 120

to leverage GPT-4 (OpenAI et al., 2023) to process 121

data collected from the web and format it into a 122

specific structure. Focusing on the field of artificial 123

intelligence, we select the Hugging Face Hub and 124

PyTorch Hub as our target libraries. Models within 125

these libraries can be invoked through a unified 126

API, and their descriptions and documentation are 127

available on the official websites. To reduce the 128

complexity introduced by library descriptions, we 129

directly employ data that has been automatically 130

processed and filtered by GPT-4 as our input, which 131

we then further process to create the dataset we 132

demand. 133

The data is derived from the web and filtered 134

accordingly contains the following information: 135

2

Category Cnt. %
Natural Language Processing 383 77.8%
Computer Vision 50 10.2%
Tabular Data 18 3.7%
Audio and Speech 17 3.5%
Classification 12 2.4%
Multimodal 9 1.8%
Reinforcement Learning 3 0.6%
Total 492 100%

Table 1: Data Category Statistics

domain, model name, model description, exam-136

ple code, and performance metrics. Human pro-137

grammers can make full use of this information to138

attempt development. Therefore, for a more intel-139

ligent agent, it is theoretically possible to utilize140

this information to learn how to develop based on141

library specifications.142

2.2 Data Pre-processing143

To construct a dataset capable of automated eval-144

uation, we draw on the evaluation methodology145

of humaneval. Our goal is to generate executable146

code files using GPT-4, streamlining the process147

by focusing on Python code generation. Each file148

is meticulously structured to encompass a suite149

of components, ensuring the integrity of the tests:150

package installation instructions, package imports,151

main function definition, functionality description,152

function input/output/raise error descriptions, func-153

tion implementation, testing function, and testing154

function calls.155

To effectively guide GPT-4, we provide in-156

context prompts and examples, which serve to elicit157

a demand and an end-to-end solution based on spe-158

cific APIs within the libraries. We also utilize the159

function calling feature of GPT-4, which allows160

for partial output and enhances the stability of the161

output. This approach also yields correct code ex-162

amples that align with the given prompts. The163

prompt we are using is displayed in appendix A.1.164

By consolidating the evaluation into a single165

code file, we simplify the testing process, enabling166

the execution of all tests through a solitary file.167

Moreover, we strive for diversity in the generated168

test cases, particularly in terms of difficulty. We169

adeptly guide GPT-4, through carefully crafted170

prompts, to produce three distinct test cases: the171

first assesses normal code execution, the second172

evaluates handling of exceptional inputs, and the173

third confirms correct results for normal inputs. 174

Following the processing of approximately 175

9,000 pieces of information related to AI library 176

APIs, we proceed to generate a total of 9,000 files 177

for testing purposes. Utilizing machines equipped 178

with GPUs, we meticulously filter the results, re- 179

taining approximately 2,000 program files that pass 180

at least one test case. We further refine our dataset 181

to select about 500 program files that successfully 182

pass all test cases. For our evaluations, we focus 183

on the 500 files data, which demonstrates a com- 184

prehensive passing rate across all test cases. This 185

approach ensures a rigorous and thorough evalua- 186

tion of the generated code, while also providing a 187

solid foundation for future research in automated 188

code generation and evaluation. 189

In table 1, we further statistics on the categories 190

and their proportions in the dataset. We counted 191

the task categories within the dataset, with Natural 192

Language Processing tasks comprising the largest 193

share at 77.8%, followed by Computer Vision at 194

10.2%. Additionally, tasks such as Tabular Data, 195

Audio and Speech, Classification, Multimodal, and 196

Reinforcement Learning each account for less than 197

5%. Tasks in Natural Language Processing include 198

text classification, text generation, sentence sim- 199

ilarity matching, etc. In Computer Vision, tasks 200

include image classification, image segmentation, 201

image generation, and so on. These more specific 202

tasks are not listed in the table. 203

3 Methodology 204

In this paper, we introduce CoderGen, an agent- 205

based framework for generating codes on tasks in 206

AICoderEval, as depicted in figure 2. This frame- 207

work can construct domain-specific tasks bench- 208

mark, for training and evaluation, and then fine- 209

tunes a code generation model on the benchmark. 210

3.1 Error Traceback and Analysis 211

The CoderGen framework includes a robust error 212

traceback and analysis mechanism to ensure that 213

the generated code is not only syntactically correct 214

but also functionally sound. Figure 3 shows an ex- 215

ample of error traceback and related prompt. After 216

the initial code generation, the framework executes 217

the code within a controlled environment to test its 218

functionality. If the code fails to execute correctly, 219

the system captures the error traceback, which pro- 220

vides a detailed record of the path through the code 221

that led to the failure. This traceback is then an- 222

3

Figure 2: CoderGen: A Domain-Specific Code Generation Architecture. This architecture comprises two
integral components. On the left side, AICoderEval data is produced by analyzing library documentation with
provided document data (model meta-information). This data, which includes testable programs, is subsequently
validated within an execution environment. We then utilize this data to train a LLM (AICoder in following paper).
On the right side, an LLM-based agent is employed to direct the code generation process. Actual executable
environments are utilized to push feedback to both the agent and the LLM, aiding in the refinement of the generated
code.

Figure 3: Error traceback analyze example

4

alyzed by the framework to identify the specific223

point of failure, whether it be a syntax error, a log-224

ical error, or an issue with the code’s interaction225

with external libraries or APIs.226

The error analysis component of CoderGen lever-227

ages the fine-tuned language model to interpret the228

error messages and suggest potential fixes. These229

suggestions are based on the model’s understand-230

ing of the code’s intended functionality and the231

context of the error within the broader codebase.232

The suggestions are then presented to the user, who233

can choose to implement them, or they can be auto-234

matically applied by the system for further testing.235

This iterative process of error detection, analysis,236

and correction continues until the code success-237

fully executes all test cases and meets the specified238

requirements.239

3.2 Iterative Code Re-generation240

Once the errors have been identified and sugges-241

tions for improvement have been made, the Coder-242

Gen framework enters the code re-generation phase.243

Here, the framework uses the feedback from the244

error analysis to refine the code generation process.245

The erroneous code snippet, along with the sugges-246

tions and the original instruction, are fed back into247

the language model, which then generates a new248

version of the code snippet.249

This new code snippet is then retested, and the250

process of error detection, analysis, and correction251

is repeated. This iterative cycle ensures that the252

generated code not only resolves the immediate253

issues but also improves in quality and robustness254

with each iteration. The framework’s ability to255

learn from its mistakes and adapt its code genera-256

tion strategy based on real-time feedback is a key257

feature that sets CoderGen apart from traditional258

code generation systems.259

By incorporating these iterative feedback loops,260

CoderGen aims to produce code that is not only cor-261

rect but also efficient and maintainable, reflecting262

the best practices and idioms of the target domain.263

This approach has the potential to significantly re-264

duce the time and effort required for developers to265

produce high-quality code, particularly in complex266

and specialized domains.267

4 Experiment268

4.1 Experimental Setup269

We design a set of hyperparameters to optimize270

the training process and enhance the capabilities271

of the models. To foster diversity in the generated 272

content, we set the temperature parameter to 0.7. 273

Simultaneously, we adjust the top-p value to 0.95 274

to improve the precision of the generated outputs. 275

We employ a learning rate of 2e-4 alongside beta 276

values of (0.9, 0.999) to maintain the stability of 277

the training process. We carefully configure the 278

batch size to 4, with gradient accumulation steps, to 279

ensure computational efficiency while maximizing 280

resource utilization. In pursuit of a delicate balance 281

between novelty and coherence, we utilize LoRA 282

parameters with a rank of 8 and an alpha value of 283

32. Additionally, we fine-tune both the top-p value 284

and the temperature parameter to 0.7. 285

4.2 Main Results 286

In this study, we utilized the AICoderEval dataset 287

to test multiple popular API and open-source LLM 288

models, particularly those equipped with code gen- 289

eration capabilities. The models tested included 290

gpt-3.5-turbo-1106 supported by OpenAI, as well 291

as Llama 2 7b / 13b / 70b (Touvron et al., 2023) 292

and Codellama 7b / 13b / 34b (Rozière et al., 2024) 293

models developed by Meta. Furthermore, we fine- 294

tuned AICoder 7b/13b based on the codellama 295

model. Table 2 presents a comparison of these mod- 296

els’ performance in their original versions and after 297

the introduction of an error repair agent, where 298

SR@All represents the success rate of all tests 299

passed for a single program, and SR@Any repre- 300

sents the success rate of any test case passed for a 301

single program. 302

From Table 2, it is evident that the introduc- 303

tion of the error repair agent significantly im- 304

proved the SR@All and SR@Any metrics for all 305

models. On average, Large Language Models 306

(LLMs) demonstrate a 30.26% improvement in 307

task-specific code generation capabilities as mea- 308

sured by SR@All and a 19.88% enhancement as 309

measured by SR@Any across all tested models. 310

For instance, GPT-3.5-turbo-1106’s SR@All in- 311

creased from 9.16% to 13.03%, and SR@Any from 312

46.84% to 60.63%. This indicates that feedback 313

correction can effectively enhance the generation 314

accuracy and problem-solving capabilities of the 315

models. Additionally, we observe that model scale 316

has a significant impact on performance improve- 317

ment. In the Llama 2 series, the larger the model 318

scale, the more pronounced the performance im- 319

provement. For example, llama-2-70b exhibited a 320

more significant increase in SR@All and SR@Any 321

compared to llama-2-7b. After domain-specific 322

5

Models Orig Bugfix Agent Relative Increase
SR@All SR@Any SR@All SR@Any SR@All ↑% SR@Any ↑%

GPT-3.5-turbo-1106 9.16 46.84 13.03 60.63 42.25 29.44
llama-2-7b 1.23 26.02 1.83 33.41 48.78 28.40
llama-2-13b 2.76 42.04 3.98 51.24 44.20 21.88
llama-2-70b 6.32 65.89 8.16 78.68 29.11 19.41
codellama-7b-python 19.58 66.95 23.86 78.18 21.86 16.77
codellama-13b-python 20.46 67.22 23.88 75.67 16.72 12.57
codellama-34b-python 23.68 70.19 25.78 77.33 8.87 10.17
AICoder-7b 27.55 84.69 - - - -
↑ 3.87 14.50 - - - -
↑% 16.34 20.66 - - - -
AICoder-13b 26.53 87.76 - - - -
↑ 2.85 17.57 - - - -
↑% 12.04 25.03 - - - -

Table 2: Experiment on AICoderEval dataset

Models CL CT Rank
GPT-3.5-turbo-1106 8.6 62.9 1
llama-2-7b 16.2 112.9 5
llama-2-13b 18.5 116.3 7
llama-2-70b 13.1 107.8 4
codellama-7b-python 21.5 128.3 9
codellama-13b-python 18.9 116.3 8
codellama-34b-python 18.4 114.4 6
AICoder-7b 13.6 86.6 3
AICoder-13b 12.5 83.4 2

Table 3: Experiment on AICoderEval dataset. CL is for
average code lines, and CT is for average code tokens

AICoder-7b AICoder-13b
SR@All SR@Any SR@All SR@Any

NLP 31.32 87.95 28.91 91.97
CV 0.00 71.43 0.00 71.43
Audio 0.00 50.00 0.00 25.00
MM 50.00 100.00 50.00 100.00
Tabular 0.00 50.00 50.00 100.00
RL 0.00 0.00 0.00 0.00
Overall 27.55 84.69 26.53 87.76

Table 4: AICoder evaluation on different category

fine-tuning, the performance of the original net- 323

work can be significantly enhanced, as AICoder-7b 324

achieved SOTA in SR@All and SR@Any com- 325

pared to all tested baselines. 326

Table 3 shows the number of code lines (CL) 327

and code tokens (CT) generated by different mod- 328

els. We can identify a pattern where shorter code 329

generated by the models typically implies stronger 330

problem-solving abilities and more concise solu- 331

tions. For instance, codellama-34b-python had 332

lower CL and CT than codellama-7b-python, which 333

aligns with its relative performance in SR@All and 334

SR@Any, while AICoder outperformed with sig- 335

nificantly shorter generated code lines compared to 336

other models. 337

Table 4 displays the performance of AICoder 338

models across different task categories. We can see 339

that for NLP tasks, AICoder-7b and AICoder-13b 340

achieved SR@All of 31.32% and 28.91%, respec- 341

tively, indicating good performance; however, both 342

models performed poorly in CV and Audio tasks, 343

suggesting inadequate training. This indicates that 344

models have an advantage in specific tasks where 345

they are well-trained, but face challenges in other 346

domains. 347

In summary, the introduction of the error repair 348

agent has significantly improved the overall perfor- 349

mance of the models, whether it is the success rate 350

of all tests passed for a single program (SR@All) 351

or any test case passed (SR@Any). The increase 352

in model scale has a positive impact on perfor- 353

mance improvement, especially in the Llama 2 354

series where larger model scales result in more 355

6

w/o sug w/ sug
SR@All SR@Any SR@All SR@Any

L.7b 1.60 31.58 1.83 33.41
L.13b 3.73 50.00 3.98 51.24
L.70b 7.48 76.19 8.16 78.68
CL.7b 24.09 80.00 23.86 78.18
CL.13b 23.21 73.66 23.88 75.67
CL.34b 26.44 79.56 25.78 77.33

Table 5: ablation on agent strategy w/ and w/o sugges-
tion for different llama-series model. L.7b/13b/70b is
short for Llama-2-7b/13b/70b. CL.7b/13b/34b is short
for Codellama-7b/13b/34b-python

pronounced performance gains. The fine-tuning356

strategy has also demonstrated its effectiveness,357

particularly for the AICoder model, which achieved358

state-of-the-art performance in all tested baselines359

after fine-tuning. The performance of the models360

varies significantly across different task categories,361

indicating the necessity for domain-specific opti-362

mization and improvement.363

4.3 Ablation364

The table 5 presents an ablation study on the agent365

strategy for different Llama series models, includ-366

ing scenarios with and without suggestions. The367

models are categorized into two types: Llama-2368

and Codellama, with metrics consistent with previ-369

ous experiments, namely SR@All and SR@Any.370

The results indicate that, overall, the models per-371

form better with the suggestion-based strategy (w/372

sug) compared to the strategy without suggestions373

(w/o sug). For instance, the Llama-2-7b model has374

an SR@All of 1.60% without suggestions, which375

improves to 1.83% with suggestions. Similarly,376

SR@Any increases from 31.58% to 33.41%. This377

trend is consistent across most models.378

Among all the models, the Codellama-7b-python379

model with the suggestion-based strategy achieves380

the highest SR@All of 24.09% and the highest381

SR@Any of 80.00%. On the other hand, the Llama-382

2-7b model without the suggestion-based strategy383

performs the worst, with an SR@All of 1.60% and384

an SR@Any of 31.58%.385

In summary, these results suggest that incorporat-386

ing suggestions into the agent strategy can enhance387

the performance of Llama and Codellama series388

models.389

4.4 Case Study 390

Initially, we perform a case study on the code pro- 391

duced by AICoder-7b. We provide a well-trained 392

AICoder-7b with an instruction that encompasses 393

the import of function packages, the definition of 394

the function, and associated comments, enabling 395

AICoder-7b to generate the complete code. 396

As depicted in Figure 1 (part B), the functional 397

requirement for the task is as follows: 398

Translates English text to Spanish us- 399

ing the Helsinki-NLP translation model 400

Upon examining the code completed by the 401

model, we note that AICoder-7b selects an ap- 402

propriate model that can meet the requirement 403

and invokes the necessary capabilities to accom- 404

plish the task. However, codellama-7b-python 405

incorrectly chooses ’translation_en_to_es’ as the 406

pipeline name, which is an erroneous inference. 407

Furthermore, the agent is also capable of identi- 408

fying corresponding exceptions and providing error 409

messages. In another case detailed in Section 3, the 410

model analyzes the error traceback from the ex- 411

ecution environment of the previously generated 412

code. The analysis suggests that a try-except block 413

is necessary for the subsequent code generation. 414

Subsequently, the LLM can process the prompt 415

and generate new code accordingly. In the ablation 416

study section, we discuss the strategies employed 417

in the prompt design, which shows that the agent 418

can enhance the overall system performance. 419

5 Related Work 420

5.1 Code Generation 421

Utilizing language models for code generation is 422

a challenging task (Li et al., 2022; Xu et al., 2022; 423

Jain et al., 2022). Researchers propose various 424

methods to enhance the capabilities of language 425

models in programming tasks, including task de- 426

composition (Kim et al., 2023; Yao et al., 2023), 427

self-debug (Chen et al., 2024), and code gener- 428

ation models. These efforts primarily focus on 429

the generation of general code, with less attention 430

given to the capabilities of domain-specific code. 431

In real-world scenarios, however, we often use li- 432

braries to create new tools and implement more 433

complex functionalities through longer chains of 434

function calls. Therefore, our research aims to en- 435

able programs to automatically solve tasks using 436

domain-specific libraries and to verify the results 437

7

automatically, thereby expanding the capabilities438

of code generation.439

5.2 Tool Usage440

Large language models can leverage tools to en-441

hance their capabilities, such as Toolformer (Schick442

et al., 2023) and GPT-4 (OpenAI et al., 2023) mak-443

ing API calls more feasible. Traditional tools in-444

clude web browsing, calculators, code interpreters,445

etc., with these efforts aiming to invoke general446

capabilities. HuggingGPT (Shen et al., 2023) and447

Gorilla (Patil et al., 2023), on the other hand, focus448

on domain-specific API calls. Our research aims449

to explore the programming capabilities of specific450

domain libraries, thereby expanding the scope of451

program usability.452

5.3 Agent453

An agent is generally represented as an entity with454

the capability to interact with the environment and455

take actions, either based on feedback from the456

environment or driven by intrinsic motivations. It457

exhibits greater adaptability and versatility in its458

capabilities and execution outcomes compared to459

ordinary programs. LLM-based Agents have re-460

cently been widely discussed (Xi et al., 2023; Wang461

et al., 2023; Park et al., 2023); they expand their462

capabilities through the use of tools, and planning463

ability is also one of the most important capabilities464

of LLM-based Agents. In the field of code genera-465

tion, previous work has focused more on one-time466

code generation, such as CodeGen (Nijkamp et al.,467

2023), CodeX (Chen et al., 2021). However, in468

real-world scenarios, we approach the expected469

results incrementally through feedback from the470

actual environment, such as execution information471

and error messages. In this paper, our research472

aims to enable Agents to analyze error messages,473

allowing the program to execute correctly.474

6 Conclusions and Future Work475

This paper introduces CoderGen, an automatic476

learning and evaluation framework designed to im-477

prove the assessment of code generation capabil-478

ities, especially when dealing with libraries com-479

monly used in real software development. Coder-480

Gen automatically constructs an evaluation dataset,481

AICoderEval, for libraries related to artificial intel-482

ligence, and trains a domain-optimized code gen-483

eration model based on this dataset. Furthermore,484

the AICoder model is fine-tuned on the codellama485

dataset and evaluated on the AICoderEval dataset,486

demonstrating its superiority over other code gen- 487

eration models. Our work represents a significant 488

advancement in evaluating and enhancing code gen- 489

eration capabilities in real software development 490

by focusing on the understanding and application 491

of libraries commonly used in actual software de- 492

velopment processes. In future work, we plan to 493

optimize the CoderGen framework to support a 494

wider range of libraries and software development 495

scenarios, validate its generality and effectiveness 496

with diverse datasets and tasks, and integrate it with 497

the latest code generation technologies to further 498

enhance model performance and practicality. 499

Limitation 500

The CoderGen framework makes great strides in 501

evaluating code generation skills, but it currently 502

has some limitations. First, it mainly uses a dataset 503

on AI specific tasks, so it needs more testing to 504

see if it works well for other types of software 505

development. Second, even though we improve the 506

AICoder model with the codellama dataset, it could 507

still be better, and we need to keep working on it. 508

Lastly, our testing method is simple and needs to be 509

more robust for testing, possibly by using Docker 510

and cloud platforms to make it easier for others to 511

repeat our tests and build on our work. 512

References 513

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie 514
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind 515
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 516
Askell, Sandhini Agarwal, Ariel Herbert-Voss, 517
Gretchen Krueger, Tom Henighan, Rewon Child, 518
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, 519
Clemens Winter, Christopher Hesse, Mark Chen, Eric 520
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, 521
Jack Clark, Christopher Berner, Sam McCandlish, 522
Alec Radford, Ilya Sutskever, and Dario Amodei. 523
2020. Language models are few-shot learners. In 524
Proceedings of the 34th International Conference on 525
Neural Information Processing Systems, NIPS’20, 526
Red Hook, NY, USA. Curran Associates Inc. 527

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 528
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka- 529
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 530
Greg Brockman, Alex Ray, Raul Puri, Gretchen 531
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas- 532
try, Pamela Mishkin, Brooke Chan, Scott Gray, 533
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 534
Kaiser, Mohammad Bavarian, Clemens Winter, 535
Philippe Tillet, Felipe Petroski Such, Dave Cum- 536
mings, Matthias Plappert, Fotios Chantzis, Eliza- 537
beth Barnes, Ariel Herbert-Voss, William Hebgen 538
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie 539

8

Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,540
William Saunders, Christopher Hesse, Andrew N.541
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan542
Morikawa, Alec Radford, Matthew Knight, Miles543
Brundage, Mira Murati, Katie Mayer, Peter Welinder,544
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya545
Sutskever, and Wojciech Zaremba. 2021. Evaluating546
large language models trained on code.547

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and548
Denny Zhou. 2024. Teaching large language models549
to self-debug. In The Twelfth International Confer-550
ence on Learning Representations.551

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,552
Maarten Bosma, Gaurav Mishra, Adam Roberts,553
Paul Barham, Hyung Won Chung, Charles Sutton,554
Sebastian Gehrmann, Parker Schuh, Kensen Shi,555
Sasha Tsvyashchenko, Joshua Maynez, Abhishek556
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-557
odkumar Prabhakaran, Emily Reif, Nan Du, Ben558
Hutchinson, Reiner Pope, James Bradbury, Jacob559
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,560
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,561
Sunipa Dev, Henryk Michalewski, Xavier Garcia,562
Vedant Misra, Kevin Robinson, Liam Fedus, Denny563
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,564
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,565
David Dohan, Shivani Agrawal, Mark Omernick, An-566
drew M. Dai, Thanumalayan Sankaranarayana Pil-567
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,568
Rewon Child, Oleksandr Polozov, Katherine Lee,569
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark570
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy571
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,572
and Noah Fiedel. 2022. Palm: Scaling language mod-573
eling with pathways.574

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,575
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. Glm:576
General language model pretraining with autoregres-577
sive blank infilling. In Proceedings of the 60th An-578
nual Meeting of the Association for Computational579
Linguistics (Volume 1: Long Papers), pages 320–335.580

Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan581
Natarajan, Suresh Parthasarathy, Sriram Rajamani,582
and Rahul Sharma. 2022. Jigsaw: large language583
models meet program synthesis. In Proceedings of584
the 44th International Conference on Software Engi-585
neering, ICSE ’22, page 1219–1231, New York, NY,586
USA. Association for Computing Machinery.587

Geunwoo Kim, Pierre Baldi, and Stephen McAleer.588
2023. Language models can solve computer tasks.589
arXiv preprint arXiv:2303.17491.590

Yujia Li, David Choi, Junyoung Chung, Nate Kush-591
man, Julian Schrittwieser, Rémi Leblond, Tom Ec-592
cles, James Keeling, Felix Gimeno, Agustin Dal593
Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-594
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-595
Sen Huang, Johannes Welbl, Sven Gowal, Alexey596
Cherepanov, James Molloy, Daniel J. Mankowitz,597
Esme Sutherland Robson, Pushmeet Kohli, Nando598

de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. 599
2022. Competition-level code generation with alpha- 600
code. Science, 378(6624):1092–1097. 601

Ansong Ni, Jeevana Priya Inala, Chenglong Wang, Alex 602
Polozov, Christopher Meek, Dragomir Radev, and 603
Jianfeng Gao. 2023. Learning math reasoning from 604
self-sampled correct and partially-correct solutions. 605
In The 2023 International Conference on Learning 606
Representations (2023 ICLR). 607

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan 608
Wang, Yingbo Zhou, Silvio Savarese, and Caiming 609
Xiong. 2023. Codegen: An open large language 610
model for code with multi-turn program synthesis. 611
ICLR. 612

OpenAI, :, Josh Achiam, Steven Adler, Sandhini Agar- 613
wal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale- 614
man, Diogo Almeida, Janko Altenschmidt, Sam Alt- 615
man, Shyamal Anadkat, Red Avila, Igor Babuschkin, 616
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim- 617
ing Bao, Mo Bavarian, Jeff Belgum, Irwan Bello, 618
Jake Berdine, Gabriel Bernadett-Shapiro, Christo- 619
pher Berner, Lenny Bogdonoff, Oleg Boiko, Made- 620
laine Boyd, Anna-Luisa Brakman, Greg Brockman, 621
Tim Brooks, Miles Brundage, Kevin Button, Trevor 622
Cai, Rosie Campbell, Andrew Cann, Brittany Carey, 623
Chelsea Carlson, Rory Carmichael, Brooke Chan, 624
Che Chang, Fotis Chantzis, Derek Chen, Sully Chen, 625
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, 626
Chester Cho, Casey Chu, Hyung Won Chung, Dave 627
Cummings, Jeremiah Currier, Yunxing Dai, Cory 628
Decareaux, Thomas Degry, Noah Deutsch, Damien 629
Deville, Arka Dhar, David Dohan, Steve Dowl- 630
ing, Sheila Dunning, Adrien Ecoffet, Atty Eleti, 631
Tyna Eloundou, David Farhi, Liam Fedus, Niko 632
Felix, Simón Posada Fishman, Juston Forte, Is- 633
abella Fulford, Leo Gao, Elie Georges, Christian 634
Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh, 635
Rapha Gontijo-Lopes, Jonathan Gordon, Morgan 636
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, 637
Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse 638
Han, Jeff Harris, Yuchen He, Mike Heaton, Jo- 639
hannes Heidecke, Chris Hesse, Alan Hickey, Wade 640
Hickey, Peter Hoeschele, Brandon Houghton, Kenny 641
Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu 642
Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger 643
Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie 644
Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, 645
Ali Kamali, Ingmar Kanitscheider, Nitish Shirish 646
Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook 647
Kim, Christina Kim, Yongjik Kim, Hendrik Kirch- 648
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, 649
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon- 650
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal 651
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan 652
Leike, Jade Leung, Daniel Levy, Chak Ming Li, 653
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz 654
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, 655
Anna Makanju, Kim Malfacini, Sam Manning, Todor 656
Markov, Yaniv Markovski, Bianca Martin, Katie 657
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer 658
McKinney, Christine McLeavey, Paul McMillan, 659

9

http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://openreview.net/forum?id=KuPixIqPiq
https://openreview.net/forum?id=KuPixIqPiq
https://openreview.net/forum?id=KuPixIqPiq
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
https://doi.org/10.1145/3510003.3510203
https://doi.org/10.1145/3510003.3510203
https://doi.org/10.1145/3510003.3510203
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158

Jake McNeil, David Medina, Aalok Mehta, Jacob660
Menick, Luke Metz, Andrey Mishchenko, Pamela661
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel662
Mossing, Tong Mu, Mira Murati, Oleg Murk, David663
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,664
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,665
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex666
Paino, Joe Palermo, Ashley Pantuliano, Giambat-667
tista Parascandolo, Joel Parish, Emy Parparita, Alex668
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-669
man, Filipe de Avila Belbute Peres, Michael Petrov,670
Henrique Ponde de Oliveira Pinto, Michael, Poko-671
rny, Michelle Pokrass, Vitchyr Pong, Tolly Pow-672
ell, Alethea Power, Boris Power, Elizabeth Proehl,673
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,674
Cameron Raymond, Francis Real, Kendra Rimbach,675
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-676
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,677
Girish Sastry, Heather Schmidt, David Schnurr, John678
Schulman, Daniel Selsam, Kyla Sheppard, Toki679
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav680
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,681
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin682
Sokolowsky, Yang Song, Natalie Staudacher, Fe-683
lipe Petroski Such, Natalie Summers, Ilya Sutskever,684
Jie Tang, Nikolas Tezak, Madeleine Thompson, Phil685
Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-686
ston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-687
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,688
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,689
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,690
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-691
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,692
Clemens Winter, Samuel Wolrich, Hannah Wong,693
Lauren Workman, Sherwin Wu, Jeff Wu, Michael694
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-695
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong696
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao697
Zheng, Juntang Zhuang, William Zhuk, and Barret698
Zoph. 2023. Gpt-4 technical report.699

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai,700
Meredith Ringel Morris, Percy Liang, and Michael S.701
Bernstein. 2023. Generative agents: Interactive simu-702
lacra of human behavior. In In the 36th Annual ACM703
Symposium on User Interface Software and Technol-704
ogy (UIST ’23), UIST ’23, New York, NY, USA.705
Association for Computing Machinery.706

Shishir G. Patil, Tianjun Zhang, Xin Wang, and707
Joseph E. Gonzalez. 2023. Gorilla: Large language708
model connected with massive apis.709

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten710
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,711
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy712
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna713
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron714
Grattafiori, Wenhan Xiong, Alexandre Défossez,715
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar-716
tin, Nicolas Usunier, Thomas Scialom, and Gabriel717
Synnaeve. 2024. Code llama: Open foundation mod-718
els for code.719

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta720

Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola 721
Cancedda, and Thomas Scialom. 2023. Toolformer: 722
Language models can teach themselves to use tools. 723
ArXiv, abs/2302.04761. 724

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, 725
Weiming Lu, and Yueting Zhuang. 2023. Hugging- 726
GPT: Solving AI tasks with chatGPT and its friends 727
in hugging face. In Thirty-seventh Conference on 728
Neural Information Processing Systems. 729

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 730
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 731
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 732
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton 733
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 734
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 735
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An- 736
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 737
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, 738
Isabel Kloumann, Artem Korenev, Punit Singh Koura, 739
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di- 740
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar- 741
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly- 742
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen- 743
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten, 744
Ruan Silva, Eric Michael Smith, Ranjan Subrama- 745
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay- 746
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu, 747
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, 748
Melanie Kambadur, Sharan Narang, Aurelien Ro- 749
driguez, Robert Stojnic, Sergey Edunov, and Thomas 750
Scialom. 2023. Llama 2: Open foundation and fine- 751
tuned chat models. 752

Zekun Wang, Ge Zhang, Kexin Yang, Ning Shi, 753
Wangchunshu Zhou, Shaochun Hao, Guangzheng 754
Xiong, Yizhi Li, Mong Yuan Sim, Xiuying Chen, 755
Qingqing Zhu, Zhenzhu Yang, Adam Nik, Qi Liu, 756
Chenghua Lin, Shi Wang, Ruibo Liu, Wenhu Chen, 757
Ke Xu, Dayiheng Liu, Yike Guo, and Jie Fu. 2023. 758
Interactive natural language processing. 759

BigScience Workshop, :, Teven Le Scao, Angela Fan, 760
Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel 761
Hesslow, Roman Castagné, Alexandra Sasha Luc- 762
cioni, François Yvon, Matthias Gallé, Jonathan 763
Tow, Alexander M. Rush, Stella Biderman, Albert 764
Webson, Pawan Sasanka Ammanamanchi, Thomas 765
Wang, Benoît Sagot, Niklas Muennighoff, Albert Vil- 766
lanova del Moral, Olatunji Ruwase, Rachel Bawden, 767
Stas Bekman, Angelina McMillan-Major, Iz Belt- 768
agy, Huu Nguyen, Lucile Saulnier, Samson Tan, Pe- 769
dro Ortiz Suarez, Victor Sanh, Hugo Laurençon, 770
Yacine Jernite, Julien Launay, Margaret Mitchell, 771
Colin Raffel, Aaron Gokaslan, Adi Simhi, Aitor 772
Soroa, Alham Fikri Aji, Amit Alfassy, Anna Rogers, 773
Ariel Kreisberg Nitzav, Canwen Xu, Chenghao Mou, 774
Chris Emezue, Christopher Klamm, Colin Leong, 775
Daniel van Strien, David Ifeoluwa Adelani, Dragomir 776
Radev, Eduardo González Ponferrada, Efrat Lev- 777
kovizh, Ethan Kim, Eyal Bar Natan, Francesco De 778
Toni, Gérard Dupont, Germán Kruszewski, Giada 779
Pistilli, Hady Elsahar, Hamza Benyamina, Hieu Tran, 780
Ian Yu, Idris Abdulmumin, Isaac Johnson, Itziar 781

10

http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2305.15334
http://arxiv.org/abs/2305.15334
http://arxiv.org/abs/2305.15334
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
https://api.semanticscholar.org/CorpusID:256697342
https://api.semanticscholar.org/CorpusID:256697342
https://api.semanticscholar.org/CorpusID:256697342
https://openreview.net/forum?id=yHdTscY6Ci
https://openreview.net/forum?id=yHdTscY6Ci
https://openreview.net/forum?id=yHdTscY6Ci
https://openreview.net/forum?id=yHdTscY6Ci
https://openreview.net/forum?id=yHdTscY6Ci
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2305.13246

Gonzalez-Dios, Javier de la Rosa, Jenny Chim, Jesse782
Dodge, Jian Zhu, Jonathan Chang, Jörg Frohberg,783
Joseph Tobing, Joydeep Bhattacharjee, Khalid Al-784
mubarak, Kimbo Chen, Kyle Lo, Leandro Von Werra,785
Leon Weber, Long Phan, Loubna Ben allal, Lu-786
dovic Tanguy, Manan Dey, Manuel Romero Muñoz,787
Maraim Masoud, María Grandury, Mario Šaško,788
Max Huang, Maximin Coavoux, Mayank Singh,789
Mike Tian-Jian Jiang, Minh Chien Vu, Moham-790
mad A. Jauhar, Mustafa Ghaleb, Nishant Subramani,791
Nora Kassner, Nurulaqilla Khamis, Olivier Nguyen,792
Omar Espejel, Ona de Gibert, Paulo Villegas, Pe-793
ter Henderson, Pierre Colombo, Priscilla Amuok,794
Quentin Lhoest, Rheza Harliman, Rishi Bommasani,795
Roberto Luis López, Rui Ribeiro, Salomey Osei,796
Sampo Pyysalo, Sebastian Nagel, Shamik Bose,797
Shamsuddeen Hassan Muhammad, Shanya Sharma,798
Shayne Longpre, Somaieh Nikpoor, Stanislav Silber-799
berg, Suhas Pai, Sydney Zink, Tiago Timponi Tor-800
rent, Timo Schick, Tristan Thrush, Valentin Danchev,801
Vassilina Nikoulina, Veronika Laippala, Violette802
Lepercq, Vrinda Prabhu, Zaid Alyafeai, Zeerak Ta-803
lat, Arun Raja, Benjamin Heinzerling, Chenglei Si,804
Davut Emre Taşar, Elizabeth Salesky, Sabrina J.805
Mielke, Wilson Y. Lee, Abheesht Sharma, Andrea806
Santilli, Antoine Chaffin, Arnaud Stiegler, Debajy-807
oti Datta, Eliza Szczechla, Gunjan Chhablani, Han808
Wang, Harshit Pandey, Hendrik Strobelt, Jason Alan809
Fries, Jos Rozen, Leo Gao, Lintang Sutawika, M Sai-810
ful Bari, Maged S. Al-shaibani, Matteo Manica, Ni-811
hal Nayak, Ryan Teehan, Samuel Albanie, Sheng812
Shen, Srulik Ben-David, Stephen H. Bach, Taewoon813
Kim, Tali Bers, Thibault Fevry, Trishala Neeraj, Ur-814
mish Thakker, Vikas Raunak, Xiangru Tang, Zheng-815
Xin Yong, Zhiqing Sun, Shaked Brody, Yallow Uri,816
Hadar Tojarieh, Adam Roberts, Hyung Won Chung,817
Jaesung Tae, Jason Phang, Ofir Press, Conglong Li,818
Deepak Narayanan, Hatim Bourfoune, Jared Casper,819
Jeff Rasley, Max Ryabinin, Mayank Mishra, Minjia820
Zhang, Mohammad Shoeybi, Myriam Peyrounette,821
Nicolas Patry, Nouamane Tazi, Omar Sanseviero,822
Patrick von Platen, Pierre Cornette, Pierre François823
Lavallée, Rémi Lacroix, Samyam Rajbhandari, San-824
chit Gandhi, Shaden Smith, Stéphane Requena, Suraj825
Patil, Tim Dettmers, Ahmed Baruwa, Amanpreet826
Singh, Anastasia Cheveleva, Anne-Laure Ligozat,827
Arjun Subramonian, Aurélie Névéol, Charles Lover-828
ing, Dan Garrette, Deepak Tunuguntla, Ehud Reiter,829
Ekaterina Taktasheva, Ekaterina Voloshina, Eli Bog-830
danov, Genta Indra Winata, Hailey Schoelkopf, Jan-831
Christoph Kalo, Jekaterina Novikova, Jessica Zosa832
Forde, Jordan Clive, Jungo Kasai, Ken Kawamura,833
Liam Hazan, Marine Carpuat, Miruna Clinciu, Na-834
joung Kim, Newton Cheng, Oleg Serikov, Omer835
Antverg, Oskar van der Wal, Rui Zhang, Ruochen836
Zhang, Sebastian Gehrmann, Shachar Mirkin, Shani837
Pais, Tatiana Shavrina, Thomas Scialom, Tian Yun,838
Tomasz Limisiewicz, Verena Rieser, Vitaly Protasov,839
Vladislav Mikhailov, Yada Pruksachatkun, Yonatan840
Belinkov, Zachary Bamberger, Zdeněk Kasner, Al-841
ice Rueda, Amanda Pestana, Amir Feizpour, Ammar842
Khan, Amy Faranak, Ana Santos, Anthony Hevia,843
Antigona Unldreaj, Arash Aghagol, Arezoo Abdol-844

lahi, Aycha Tammour, Azadeh HajiHosseini, Bahareh 845
Behroozi, Benjamin Ajibade, Bharat Saxena, Car- 846
los Muñoz Ferrandis, Daniel McDuff, Danish Con- 847
tractor, David Lansky, Davis David, Douwe Kiela, 848
Duong A. Nguyen, Edward Tan, Emi Baylor, Ez- 849
inwanne Ozoani, Fatima Mirza, Frankline Onon- 850
iwu, Habib Rezanejad, Hessie Jones, Indrani Bhat- 851
tacharya, Irene Solaiman, Irina Sedenko, Isar Ne- 852
jadgholi, Jesse Passmore, Josh Seltzer, Julio Bonis 853
Sanz, Livia Dutra, Mairon Samagaio, Maraim El- 854
badri, Margot Mieskes, Marissa Gerchick, Martha 855
Akinlolu, Michael McKenna, Mike Qiu, Muhammed 856
Ghauri, Mykola Burynok, Nafis Abrar, Nazneen Ra- 857
jani, Nour Elkott, Nour Fahmy, Olanrewaju Samuel, 858
Ran An, Rasmus Kromann, Ryan Hao, Samira Al- 859
izadeh, Sarmad Shubber, Silas Wang, Sourav Roy, 860
Sylvain Viguier, Thanh Le, Tobi Oyebade, Trieu Le, 861
Yoyo Yang, Zach Nguyen, Abhinav Ramesh Kashyap, 862
Alfredo Palasciano, Alison Callahan, Anima Shukla, 863
Antonio Miranda-Escalada, Ayush Singh, Benjamin 864
Beilharz, Bo Wang, Caio Brito, Chenxi Zhou, Chirag 865
Jain, Chuxin Xu, Clémentine Fourrier, Daniel León 866
Periñán, Daniel Molano, Dian Yu, Enrique Manjava- 867
cas, Fabio Barth, Florian Fuhrimann, Gabriel Altay, 868
Giyaseddin Bayrak, Gully Burns, Helena U. Vrabec, 869
Imane Bello, Ishani Dash, Jihyun Kang, John Giorgi, 870
Jonas Golde, Jose David Posada, Karthik Ranga- 871
sai Sivaraman, Lokesh Bulchandani, Lu Liu, Luisa 872
Shinzato, Madeleine Hahn de Bykhovetz, Maiko 873
Takeuchi, Marc Pàmies, Maria A Castillo, Mari- 874
anna Nezhurina, Mario Sänger, Matthias Samwald, 875
Michael Cullan, Michael Weinberg, Michiel De 876
Wolf, Mina Mihaljcic, Minna Liu, Moritz Freidank, 877
Myungsun Kang, Natasha Seelam, Nathan Dahlberg, 878
Nicholas Michio Broad, Nikolaus Muellner, Pascale 879
Fung, Patrick Haller, Ramya Chandrasekhar, Renata 880
Eisenberg, Robert Martin, Rodrigo Canalli, Rosaline 881
Su, Ruisi Su, Samuel Cahyawijaya, Samuele Garda, 882
Shlok S Deshmukh, Shubhanshu Mishra, Sid Ki- 883
blawi, Simon Ott, Sinee Sang-aroonsiri, Srishti Ku- 884
mar, Stefan Schweter, Sushil Bharati, Tanmay Laud, 885
Théo Gigant, Tomoya Kainuma, Wojciech Kusa, Ya- 886
nis Labrak, Yash Shailesh Bajaj, Yash Venkatraman, 887
Yifan Xu, Yingxin Xu, Yu Xu, Zhe Tan, Zhongli 888
Xie, Zifan Ye, Mathilde Bras, Younes Belkada, and 889
Thomas Wolf. 2023. Bloom: A 176b-parameter 890
open-access multilingual language model. 891

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen 892
Ding, Boyang Hong, Ming Zhang, Junzhe Wang, 893
Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, 894
Xiao Wang, Limao Xiong, Yuhao Zhou, Weiran 895
Wang, Changhao Jiang, Yicheng Zou, Xiangyang 896
Liu, Zhangyue Yin, Shihan Dou, Rongxiang Weng, 897
Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan 898
Zheng, Xipeng Qiu, Xuanjing Huang, and Tao Gui. 899
2023. The rise and potential of large language model 900
based agents: A survey. 901

Frank F. Xu, Uri Alon, Graham Neubig, and Vincent Jo- 902
sua Hellendoorn. 2022. A systematic evaluation of 903
large language models of code. In Proceedings of the 904
6th ACM SIGPLAN International Symposium on Ma- 905
chine Programming, MAPS 2022, page 1–10, New 906

11

http://arxiv.org/abs/2211.05100
http://arxiv.org/abs/2211.05100
http://arxiv.org/abs/2211.05100
http://arxiv.org/abs/2309.07864
http://arxiv.org/abs/2309.07864
http://arxiv.org/abs/2309.07864
https://doi.org/10.1145/3520312.3534862
https://doi.org/10.1145/3520312.3534862
https://doi.org/10.1145/3520312.3534862

York, NY, USA. Association for Computing Machin-907
ery.908

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak909
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.910
ReAct: Synergizing reasoning and acting in language911
models. In International Conference on Learning912
Representations (ICLR).913

12

A Appendix

A.1 Prompt Details

Task Prompt

1. Please design a requirement that can be described in one sent-
ence.
2. Based on the above description, generate code to implement the
requirement.
3. Function comments should follow the Google Python Style Guide,
including args, returns, and raises.
4. Write corresponding test functions based on the generated code.
5. The test cases should be three examples of different difficulty
levels, e.g., the first one verifies that the function executes
normally, the second verifies that incorrect inputs are handled
properly, and thethird verifies that the function returns the cor-
rect value.
6. For testing purposes, read image and audio files, download
them from online resources to the local machine, or obtain them
from datasets; do not provide fake or non-existent file addresses.

Import example

import subprocess
requirements = ["package1", "package2"]
for package in requirements:

subprocess.run(['pip', 'install', '-U', package])

Test prompt

1. The function starts by printing "Testing started."
2. For images or audio, load a dataset or download data from on-
line resources.
3. The test case starts by printing "Testing case [x/x] started",
prints "succeeded" on success, and "failed" on failure.
4. The function ends by printing "Testing finished."

Test example

def test_...():
print("Test started.")
dataset = load_dataset("...")

sample_data = dataset[0] # Extract a sample from the dataset

Test case 1:...
print("Test case [1/3] started.")
try:

assert assert 1, f"Test case [1/3] failed: ..."
print(f"Test case [1/3] succeeded: ...")

except Exception as e::
print(f"Test case [1/3] failed: ...\nerror:", e)

Test case 2:...

Test case 3:...

Run the test function
test_...()

Table 6: Prompt details of GPT-4 dataset generation. Combining all parts from table into a complete prompt enables
GPT-4 to convert domain documents into an executable code dataset.

13

	Introduction
	Benchmark Construction
	Data Collection
	Data Pre-processing

	Methodology
	Error Traceback and Analysis
	Iterative Code Re-generation

	 Experiment
	Experimental Setup
	Main Results
	Ablation
	Case Study

	 Related Work
	Code Generation
	Tool Usage
	Agent

	Conclusions and Future Work
	Appendix
	Prompt Details

