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Abstract

Automated code generation is a pivotal capabil-001
ity of large language models (LLMs). How-002
ever, assessing this capability in real-world003
scenarios remains challenging. Previous meth-004
ods focus more on low-level code generation,005
such as model loading, instead of generat-006
ing high-level codes catering for real-world007
tasks, such as image-to-text, text classification,008
in various domains. Therefore, we construct009
AICoderEval, a dataset focused on real-world010
tasks in various domains based on Hugging-011
Face, PyTorch, and TensorFlow, along with012
comprehensive metrics for evaluation and en-013
hancing LLMs’ task-specific code generation014
capability. After that, we propose CoderGen,015
an agent-based framework, to help LLMs gen-016
erate codes related to real-world tasks on the017
constructed AICoderEval. Moreover, we train018
a more powerful task-specific code generation019
model, named AICoder, which is refined on020
codellama based on AICoderEval. Our experi-021
ments demonstrate the effectiveness of Coder-022
Gen in improving LLMs’ task-specific code023
generation capability (by 30.26% on SR@All024
and 19.88% on SR@Any). And the proposed025
AICoder also outperform the current code gen-026
eration LLMs, indicating the great quality of027
the AICoderEval benchmark for evaluation and028
enhancing LLMs’ task-specific code generation029
capability.030

1 Introduction031

Large language models attract attention for their032

general capabilities (Chowdhery et al., 2022;033

Brown et al., 2020; Workshop et al., 2023; Tou-034

vron et al., 2023; Du et al., 2022), achieve high035

scores on evaluations such as HumanEval (Chen036

et al., 2021) and MBPP (Ni et al., 2023), which037

primarily focus on basic programming languages.038

However, their application capabilities in real soft-039

ware development, especially in the field of arti-040

ficial intelligence using specific libraries (such as041

HuggingFace, PyTorch, TensorFlow, etc.), remain 042

unclear. Although these libraries are very popular 043

in AI development, how to evaluate and improve 044

the code generation capabilities of large language 045

models using these libraries is still a hard question. 046

Current researches explore how to leverage 047

LLMs to use tool to call specific libraries. For 048

instance, studies such as HuggingGPT (Shen et al., 049

2023) and Gorilla (Patil et al., 2023) try to generate 050

single-line calls of APIs in specific domains. These 051

studies show that even simple API calls require 052

models to have a deep understanding and the ability 053

to correctly use the libraries. However, these stud- 054

ies have not yet fully addressed how to automate 055

the evaluation and enhancement of models’ code 056

generation capabilities in flexibly using specific li- 057

braries, especially when dealing with complex and 058

diverse programming tasks. 059

To address this challenge, we construct the 060

AICoderEval dataset, a benchmark for AI-oriented 061

programming tasks to measure programming ca- 062

pabilities within this domain. Then, we propose 063

an agent-based framework called CoderGen, to 064

generate task-specific codes. CoderGen simplifies 065

the construction of datasets related to task-specific 066

code on different libraries, enabling the automatic 067

generation of training and testing samples. As illus- 068

trated in Figure 1, general code generation LLMs 069

(e.g. codellama) may produce incorrect answers 070

when it comes to pipeline and model API calls 071

based on given function instructions. Our fine- 072

tuned model demonstrates improved performance 073

as it learns how to use the library for specific tasks. 074

This approach allows for a more accurate assess- 075

ment of a model’s application capabilities in real 076

software development and provides direction for 077

further model improvements. 078

Our work includes three main contributions: 079

• Benchmark Construction: We build the 080

AICoderEval dataset, which focuses on AI 081
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Figure 1: The AICoder generated by our CoderGen framework is capable of programming for domain-specific tasks
and selecting the appropriate libraries for invocation. In part A depicts the output generated by codellama-7b-python,
which incorrectly invoked a library using the pipeline method. In contrast, the part B presents the results produced
by the AICoder, accurately selecting and calling the appropriate library to fulfill the requirements.

tasks and includes code generation tasks re-082

lated to AI libraries, along with test cases and083

complete programs for evaluating these tasks.084

These tasks cover a variety of library functions085

and usage patterns, ensuring that the model086

learns comprehensive knowledge about the087

libraries.088

• Framework Design: We design and construct089

the CoderGen framework to generate high-090

quality training data. During the inference091

stage, we use an LLM-based agent to guide092

the generation of code that adheres to spe-093

cific library usage standards, with continuous094

improvements in code quality. The agent in-095

teracts with the model multiple times to re-096

fine and optimize the code generation process,097

making it more consistent with library usage098

norms and best practices.099

• Model Evaluation: We evaluate multiple large100

language models on AICoderEval, demon-101

strating their code generation capabilities in102

actual AI development tasks and the perfor-103

mance enhancements after training with our104

framework. This approach allows us to com-105

pare the performance of different models and106

identify their strengths and limitations in us-107

ing specific libraries.108

Through these contributions, CoderGen provides 109

a more comprehensive and practical evaluation 110

method for the code generation capabilities of large 111

language models and points the way for further 112

model improvements. We hope this framework 113

will assist researchers and developers in better un- 114

derstanding and leveraging the potential of large 115

language models in software development, particu- 116

larly when programming with specific libraries. 117

2 Benchmark Construction 118

2.1 Data Collection 119

Inspired by related work (Patil et al., 2023), we aim 120

to leverage GPT-4 (OpenAI et al., 2023) to process 121

data collected from the web and format it into a 122

specific structure. Focusing on the field of artificial 123

intelligence, we select the Hugging Face Hub and 124

PyTorch Hub as our target libraries. Models within 125

these libraries can be invoked through a unified 126

API, and their descriptions and documentation are 127

available on the official websites. To reduce the 128

complexity introduced by library descriptions, we 129

directly employ data that has been automatically 130

processed and filtered by GPT-4 as our input, which 131

we then further process to create the dataset we 132

demand. 133

The data is derived from the web and filtered 134

accordingly contains the following information: 135
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Category Cnt. %
Natural Language Processing 383 77.8%
Computer Vision 50 10.2%
Tabular Data 18 3.7%
Audio and Speech 17 3.5%
Classification 12 2.4%
Multimodal 9 1.8%
Reinforcement Learning 3 0.6%
Total 492 100%

Table 1: Data Category Statistics

domain, model name, model description, exam-136

ple code, and performance metrics. Human pro-137

grammers can make full use of this information to138

attempt development. Therefore, for a more intel-139

ligent agent, it is theoretically possible to utilize140

this information to learn how to develop based on141

library specifications.142

2.2 Data Pre-processing143

To construct a dataset capable of automated eval-144

uation, we draw on the evaluation methodology145

of humaneval. Our goal is to generate executable146

code files using GPT-4, streamlining the process147

by focusing on Python code generation. Each file148

is meticulously structured to encompass a suite149

of components, ensuring the integrity of the tests:150

package installation instructions, package imports,151

main function definition, functionality description,152

function input/output/raise error descriptions, func-153

tion implementation, testing function, and testing154

function calls.155

To effectively guide GPT-4, we provide in-156

context prompts and examples, which serve to elicit157

a demand and an end-to-end solution based on spe-158

cific APIs within the libraries. We also utilize the159

function calling feature of GPT-4, which allows160

for partial output and enhances the stability of the161

output. This approach also yields correct code ex-162

amples that align with the given prompts. The163

prompt we are using is displayed in appendix A.1.164

By consolidating the evaluation into a single165

code file, we simplify the testing process, enabling166

the execution of all tests through a solitary file.167

Moreover, we strive for diversity in the generated168

test cases, particularly in terms of difficulty. We169

adeptly guide GPT-4, through carefully crafted170

prompts, to produce three distinct test cases: the171

first assesses normal code execution, the second172

evaluates handling of exceptional inputs, and the173

third confirms correct results for normal inputs. 174

Following the processing of approximately 175

9,000 pieces of information related to AI library 176

APIs, we proceed to generate a total of 9,000 files 177

for testing purposes. Utilizing machines equipped 178

with GPUs, we meticulously filter the results, re- 179

taining approximately 2,000 program files that pass 180

at least one test case. We further refine our dataset 181

to select about 500 program files that successfully 182

pass all test cases. For our evaluations, we focus 183

on the 500 files data, which demonstrates a com- 184

prehensive passing rate across all test cases. This 185

approach ensures a rigorous and thorough evalua- 186

tion of the generated code, while also providing a 187

solid foundation for future research in automated 188

code generation and evaluation. 189

In table 1, we further statistics on the categories 190

and their proportions in the dataset. We counted 191

the task categories within the dataset, with Natural 192

Language Processing tasks comprising the largest 193

share at 77.8%, followed by Computer Vision at 194

10.2%. Additionally, tasks such as Tabular Data, 195

Audio and Speech, Classification, Multimodal, and 196

Reinforcement Learning each account for less than 197

5%. Tasks in Natural Language Processing include 198

text classification, text generation, sentence sim- 199

ilarity matching, etc. In Computer Vision, tasks 200

include image classification, image segmentation, 201

image generation, and so on. These more specific 202

tasks are not listed in the table. 203

3 Methodology 204

In this paper, we introduce CoderGen, an agent- 205

based framework for generating codes on tasks in 206

AICoderEval, as depicted in figure 2. This frame- 207

work can construct domain-specific tasks bench- 208

mark, for training and evaluation, and then fine- 209

tunes a code generation model on the benchmark. 210

3.1 Error Traceback and Analysis 211

The CoderGen framework includes a robust error 212

traceback and analysis mechanism to ensure that 213

the generated code is not only syntactically correct 214

but also functionally sound. Figure 3 shows an ex- 215

ample of error traceback and related prompt. After 216

the initial code generation, the framework executes 217

the code within a controlled environment to test its 218

functionality. If the code fails to execute correctly, 219

the system captures the error traceback, which pro- 220

vides a detailed record of the path through the code 221

that led to the failure. This traceback is then an- 222
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Figure 2: CoderGen: A Domain-Specific Code Generation Architecture. This architecture comprises two
integral components. On the left side, AICoderEval data is produced by analyzing library documentation with
provided document data (model meta-information). This data, which includes testable programs, is subsequently
validated within an execution environment. We then utilize this data to train a LLM (AICoder in following paper).
On the right side, an LLM-based agent is employed to direct the code generation process. Actual executable
environments are utilized to push feedback to both the agent and the LLM, aiding in the refinement of the generated
code.

Figure 3: Error traceback analyze example
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alyzed by the framework to identify the specific223

point of failure, whether it be a syntax error, a log-224

ical error, or an issue with the code’s interaction225

with external libraries or APIs.226

The error analysis component of CoderGen lever-227

ages the fine-tuned language model to interpret the228

error messages and suggest potential fixes. These229

suggestions are based on the model’s understand-230

ing of the code’s intended functionality and the231

context of the error within the broader codebase.232

The suggestions are then presented to the user, who233

can choose to implement them, or they can be auto-234

matically applied by the system for further testing.235

This iterative process of error detection, analysis,236

and correction continues until the code success-237

fully executes all test cases and meets the specified238

requirements.239

3.2 Iterative Code Re-generation240

Once the errors have been identified and sugges-241

tions for improvement have been made, the Coder-242

Gen framework enters the code re-generation phase.243

Here, the framework uses the feedback from the244

error analysis to refine the code generation process.245

The erroneous code snippet, along with the sugges-246

tions and the original instruction, are fed back into247

the language model, which then generates a new248

version of the code snippet.249

This new code snippet is then retested, and the250

process of error detection, analysis, and correction251

is repeated. This iterative cycle ensures that the252

generated code not only resolves the immediate253

issues but also improves in quality and robustness254

with each iteration. The framework’s ability to255

learn from its mistakes and adapt its code genera-256

tion strategy based on real-time feedback is a key257

feature that sets CoderGen apart from traditional258

code generation systems.259

By incorporating these iterative feedback loops,260

CoderGen aims to produce code that is not only cor-261

rect but also efficient and maintainable, reflecting262

the best practices and idioms of the target domain.263

This approach has the potential to significantly re-264

duce the time and effort required for developers to265

produce high-quality code, particularly in complex266

and specialized domains.267

4 Experiment268

4.1 Experimental Setup269

We design a set of hyperparameters to optimize270

the training process and enhance the capabilities271

of the models. To foster diversity in the generated 272

content, we set the temperature parameter to 0.7. 273

Simultaneously, we adjust the top-p value to 0.95 274

to improve the precision of the generated outputs. 275

We employ a learning rate of 2e-4 alongside beta 276

values of (0.9, 0.999) to maintain the stability of 277

the training process. We carefully configure the 278

batch size to 4, with gradient accumulation steps, to 279

ensure computational efficiency while maximizing 280

resource utilization. In pursuit of a delicate balance 281

between novelty and coherence, we utilize LoRA 282

parameters with a rank of 8 and an alpha value of 283

32. Additionally, we fine-tune both the top-p value 284

and the temperature parameter to 0.7. 285

4.2 Main Results 286

In this study, we utilized the AICoderEval dataset 287

to test multiple popular API and open-source LLM 288

models, particularly those equipped with code gen- 289

eration capabilities. The models tested included 290

gpt-3.5-turbo-1106 supported by OpenAI, as well 291

as Llama 2 7b / 13b / 70b (Touvron et al., 2023) 292

and Codellama 7b / 13b / 34b (Rozière et al., 2024) 293

models developed by Meta. Furthermore, we fine- 294

tuned AICoder 7b/13b based on the codellama 295

model. Table 2 presents a comparison of these mod- 296

els’ performance in their original versions and after 297

the introduction of an error repair agent, where 298

SR@All represents the success rate of all tests 299

passed for a single program, and SR@Any repre- 300

sents the success rate of any test case passed for a 301

single program. 302

From Table 2, it is evident that the introduc- 303

tion of the error repair agent significantly im- 304

proved the SR@All and SR@Any metrics for all 305

models. On average, Large Language Models 306

(LLMs) demonstrate a 30.26% improvement in 307

task-specific code generation capabilities as mea- 308

sured by SR@All and a 19.88% enhancement as 309

measured by SR@Any across all tested models. 310

For instance, GPT-3.5-turbo-1106’s SR@All in- 311

creased from 9.16% to 13.03%, and SR@Any from 312

46.84% to 60.63%. This indicates that feedback 313

correction can effectively enhance the generation 314

accuracy and problem-solving capabilities of the 315

models. Additionally, we observe that model scale 316

has a significant impact on performance improve- 317

ment. In the Llama 2 series, the larger the model 318

scale, the more pronounced the performance im- 319

provement. For example, llama-2-70b exhibited a 320

more significant increase in SR@All and SR@Any 321

compared to llama-2-7b. After domain-specific 322
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Models Orig Bugfix Agent Relative Increase
SR@All SR@Any SR@All SR@Any SR@All ↑% SR@Any ↑%

GPT-3.5-turbo-1106 9.16 46.84 13.03 60.63 42.25 29.44
llama-2-7b 1.23 26.02 1.83 33.41 48.78 28.40
llama-2-13b 2.76 42.04 3.98 51.24 44.20 21.88
llama-2-70b 6.32 65.89 8.16 78.68 29.11 19.41
codellama-7b-python 19.58 66.95 23.86 78.18 21.86 16.77
codellama-13b-python 20.46 67.22 23.88 75.67 16.72 12.57
codellama-34b-python 23.68 70.19 25.78 77.33 8.87 10.17
AICoder-7b 27.55 84.69 - - - -
↑ 3.87 14.50 - - - -
↑% 16.34 20.66 - - - -
AICoder-13b 26.53 87.76 - - - -
↑ 2.85 17.57 - - - -
↑% 12.04 25.03 - - - -

Table 2: Experiment on AICoderEval dataset

Models CL CT Rank
GPT-3.5-turbo-1106 8.6 62.9 1
llama-2-7b 16.2 112.9 5
llama-2-13b 18.5 116.3 7
llama-2-70b 13.1 107.8 4
codellama-7b-python 21.5 128.3 9
codellama-13b-python 18.9 116.3 8
codellama-34b-python 18.4 114.4 6
AICoder-7b 13.6 86.6 3
AICoder-13b 12.5 83.4 2

Table 3: Experiment on AICoderEval dataset. CL is for
average code lines, and CT is for average code tokens

AICoder-7b AICoder-13b
SR@All SR@Any SR@All SR@Any

NLP 31.32 87.95 28.91 91.97
CV 0.00 71.43 0.00 71.43
Audio 0.00 50.00 0.00 25.00
MM 50.00 100.00 50.00 100.00
Tabular 0.00 50.00 50.00 100.00
RL 0.00 0.00 0.00 0.00
Overall 27.55 84.69 26.53 87.76

Table 4: AICoder evaluation on different category

fine-tuning, the performance of the original net- 323

work can be significantly enhanced, as AICoder-7b 324

achieved SOTA in SR@All and SR@Any com- 325

pared to all tested baselines. 326

Table 3 shows the number of code lines (CL) 327

and code tokens (CT) generated by different mod- 328

els. We can identify a pattern where shorter code 329

generated by the models typically implies stronger 330

problem-solving abilities and more concise solu- 331

tions. For instance, codellama-34b-python had 332

lower CL and CT than codellama-7b-python, which 333

aligns with its relative performance in SR@All and 334

SR@Any, while AICoder outperformed with sig- 335

nificantly shorter generated code lines compared to 336

other models. 337

Table 4 displays the performance of AICoder 338

models across different task categories. We can see 339

that for NLP tasks, AICoder-7b and AICoder-13b 340

achieved SR@All of 31.32% and 28.91%, respec- 341

tively, indicating good performance; however, both 342

models performed poorly in CV and Audio tasks, 343

suggesting inadequate training. This indicates that 344

models have an advantage in specific tasks where 345

they are well-trained, but face challenges in other 346

domains. 347

In summary, the introduction of the error repair 348

agent has significantly improved the overall perfor- 349

mance of the models, whether it is the success rate 350

of all tests passed for a single program (SR@All) 351

or any test case passed (SR@Any). The increase 352

in model scale has a positive impact on perfor- 353

mance improvement, especially in the Llama 2 354

series where larger model scales result in more 355
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w/o sug w/ sug
SR@All SR@Any SR@All SR@Any

L.7b 1.60 31.58 1.83 33.41
L.13b 3.73 50.00 3.98 51.24
L.70b 7.48 76.19 8.16 78.68
CL.7b 24.09 80.00 23.86 78.18
CL.13b 23.21 73.66 23.88 75.67
CL.34b 26.44 79.56 25.78 77.33

Table 5: ablation on agent strategy w/ and w/o sugges-
tion for different llama-series model. L.7b/13b/70b is
short for Llama-2-7b/13b/70b. CL.7b/13b/34b is short
for Codellama-7b/13b/34b-python

pronounced performance gains. The fine-tuning356

strategy has also demonstrated its effectiveness,357

particularly for the AICoder model, which achieved358

state-of-the-art performance in all tested baselines359

after fine-tuning. The performance of the models360

varies significantly across different task categories,361

indicating the necessity for domain-specific opti-362

mization and improvement.363

4.3 Ablation364

The table 5 presents an ablation study on the agent365

strategy for different Llama series models, includ-366

ing scenarios with and without suggestions. The367

models are categorized into two types: Llama-2368

and Codellama, with metrics consistent with previ-369

ous experiments, namely SR@All and SR@Any.370

The results indicate that, overall, the models per-371

form better with the suggestion-based strategy (w/372

sug) compared to the strategy without suggestions373

(w/o sug). For instance, the Llama-2-7b model has374

an SR@All of 1.60% without suggestions, which375

improves to 1.83% with suggestions. Similarly,376

SR@Any increases from 31.58% to 33.41%. This377

trend is consistent across most models.378

Among all the models, the Codellama-7b-python379

model with the suggestion-based strategy achieves380

the highest SR@All of 24.09% and the highest381

SR@Any of 80.00%. On the other hand, the Llama-382

2-7b model without the suggestion-based strategy383

performs the worst, with an SR@All of 1.60% and384

an SR@Any of 31.58%.385

In summary, these results suggest that incorporat-386

ing suggestions into the agent strategy can enhance387

the performance of Llama and Codellama series388

models.389

4.4 Case Study 390

Initially, we perform a case study on the code pro- 391

duced by AICoder-7b. We provide a well-trained 392

AICoder-7b with an instruction that encompasses 393

the import of function packages, the definition of 394

the function, and associated comments, enabling 395

AICoder-7b to generate the complete code. 396

As depicted in Figure 1 (part B), the functional 397

requirement for the task is as follows: 398

Translates English text to Spanish us- 399

ing the Helsinki-NLP translation model 400

Upon examining the code completed by the 401

model, we note that AICoder-7b selects an ap- 402

propriate model that can meet the requirement 403

and invokes the necessary capabilities to accom- 404

plish the task. However, codellama-7b-python 405

incorrectly chooses ’translation_en_to_es’ as the 406

pipeline name, which is an erroneous inference. 407

Furthermore, the agent is also capable of identi- 408

fying corresponding exceptions and providing error 409

messages. In another case detailed in Section 3, the 410

model analyzes the error traceback from the ex- 411

ecution environment of the previously generated 412

code. The analysis suggests that a try-except block 413

is necessary for the subsequent code generation. 414

Subsequently, the LLM can process the prompt 415

and generate new code accordingly. In the ablation 416

study section, we discuss the strategies employed 417

in the prompt design, which shows that the agent 418

can enhance the overall system performance. 419

5 Related Work 420

5.1 Code Generation 421

Utilizing language models for code generation is 422

a challenging task (Li et al., 2022; Xu et al., 2022; 423

Jain et al., 2022). Researchers propose various 424

methods to enhance the capabilities of language 425

models in programming tasks, including task de- 426

composition (Kim et al., 2023; Yao et al., 2023), 427

self-debug (Chen et al., 2024), and code gener- 428

ation models. These efforts primarily focus on 429

the generation of general code, with less attention 430

given to the capabilities of domain-specific code. 431

In real-world scenarios, however, we often use li- 432

braries to create new tools and implement more 433

complex functionalities through longer chains of 434

function calls. Therefore, our research aims to en- 435

able programs to automatically solve tasks using 436

domain-specific libraries and to verify the results 437
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automatically, thereby expanding the capabilities438

of code generation.439

5.2 Tool Usage440

Large language models can leverage tools to en-441

hance their capabilities, such as Toolformer (Schick442

et al., 2023) and GPT-4 (OpenAI et al., 2023) mak-443

ing API calls more feasible. Traditional tools in-444

clude web browsing, calculators, code interpreters,445

etc., with these efforts aiming to invoke general446

capabilities. HuggingGPT (Shen et al., 2023) and447

Gorilla (Patil et al., 2023), on the other hand, focus448

on domain-specific API calls. Our research aims449

to explore the programming capabilities of specific450

domain libraries, thereby expanding the scope of451

program usability.452

5.3 Agent453

An agent is generally represented as an entity with454

the capability to interact with the environment and455

take actions, either based on feedback from the456

environment or driven by intrinsic motivations. It457

exhibits greater adaptability and versatility in its458

capabilities and execution outcomes compared to459

ordinary programs. LLM-based Agents have re-460

cently been widely discussed (Xi et al., 2023; Wang461

et al., 2023; Park et al., 2023); they expand their462

capabilities through the use of tools, and planning463

ability is also one of the most important capabilities464

of LLM-based Agents. In the field of code genera-465

tion, previous work has focused more on one-time466

code generation, such as CodeGen (Nijkamp et al.,467

2023), CodeX (Chen et al., 2021). However, in468

real-world scenarios, we approach the expected469

results incrementally through feedback from the470

actual environment, such as execution information471

and error messages. In this paper, our research472

aims to enable Agents to analyze error messages,473

allowing the program to execute correctly.474

6 Conclusions and Future Work475

This paper introduces CoderGen, an automatic476

learning and evaluation framework designed to im-477

prove the assessment of code generation capabil-478

ities, especially when dealing with libraries com-479

monly used in real software development. Coder-480

Gen automatically constructs an evaluation dataset,481

AICoderEval, for libraries related to artificial intel-482

ligence, and trains a domain-optimized code gen-483

eration model based on this dataset. Furthermore,484

the AICoder model is fine-tuned on the codellama485

dataset and evaluated on the AICoderEval dataset,486

demonstrating its superiority over other code gen- 487

eration models. Our work represents a significant 488

advancement in evaluating and enhancing code gen- 489

eration capabilities in real software development 490

by focusing on the understanding and application 491

of libraries commonly used in actual software de- 492

velopment processes. In future work, we plan to 493

optimize the CoderGen framework to support a 494

wider range of libraries and software development 495

scenarios, validate its generality and effectiveness 496

with diverse datasets and tasks, and integrate it with 497

the latest code generation technologies to further 498

enhance model performance and practicality. 499

Limitation 500

The CoderGen framework makes great strides in 501

evaluating code generation skills, but it currently 502

has some limitations. First, it mainly uses a dataset 503

on AI specific tasks, so it needs more testing to 504

see if it works well for other types of software 505

development. Second, even though we improve the 506

AICoder model with the codellama dataset, it could 507

still be better, and we need to keep working on it. 508

Lastly, our testing method is simple and needs to be 509

more robust for testing, possibly by using Docker 510

and cloud platforms to make it easier for others to 511

repeat our tests and build on our work. 512
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A Appendix

A.1 Prompt Details

Task Prompt

1. Please design a requirement that can be described in one sent-
ence.
2. Based on the above description, generate code to implement the
requirement.
3. Function comments should follow the Google Python Style Guide,
including args, returns, and raises.
4. Write corresponding test functions based on the generated code.
5. The test cases should be three examples of different difficulty
levels, e.g., the first one verifies that the function executes
normally, the second verifies that incorrect inputs are handled
properly, and thethird verifies that the function returns the cor-
rect value.
6. For testing purposes, read image and audio files, download
them from online resources to the local machine, or obtain them
from datasets; do not provide fake or non-existent file addresses.

Import example

import subprocess
requirements = ["package1", "package2"]
for package in requirements:

subprocess.run(['pip', 'install', '-U', package])

Test prompt

1. The function starts by printing "Testing started."
2. For images or audio, load a dataset or download data from on-
line resources.
3. The test case starts by printing "Testing case [x/x] started",
prints "succeeded" on success, and "failed" on failure.
4. The function ends by printing "Testing finished."

Test example

def test_...():
print("Test started.")
dataset = load_dataset("...")

sample_data = dataset[0] # Extract a sample from the dataset

# Test case 1:...
print("Test case [1/3] started.")
try:

assert assert 1, f"Test case [1/3] failed: ..."
print(f"Test case [1/3] succeeded: ...")

except Exception as e::
print(f"Test case [1/3] failed: ...\nerror:", e)

# Test case 2:...

# Test case 3:...

# Run the test function
test_...()

Table 6: Prompt details of GPT-4 dataset generation. Combining all parts from table into a complete prompt enables
GPT-4 to convert domain documents into an executable code dataset.
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